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ABSTRACT, Let G be a locally compact group, and let K be a compact sub-
group of Aut( G) , the group of automorphisms of G, There is a natural action 
of K on the convolution algebra LI(G), and we denote by Li(G) the sub-
algebra of those elements in L I (G) that are invariant under this action, The 
pair (K, G) is called a Gelfand pair if Li(G) is commutative. In this pa-
per we consider the case where G is a connected, simply connected solvable 
Lie group and K ~ Aut(G) is a compact, connected group. We characterize 
such Gelfand pairs (K, G) , and determine a moduli space for the associated 
K-spherical functions. 

INTRODUCTION 

Let G be a locally compact group, and let K be a compact subgroup of 
Aut( G), the group of automorphisms of G. There is a natural action of K 
on the convolution algebra L I (G) , and we denote by L i (G) the subalgebra of 
those elements in L I (G) that are invariant under this action. The pair (K, G) 
is called a Gelfand pair if Li(G) is commutative. A more general and more 
usual definition of Gelfand pairs assumes that K is a compact subgroup of 
G. One then defines (K, G) to be a Gelfand pair if the subalgebra of K-
bi-invariant elements in L I (G) is commutative. This is the case, for exam-
ple, if (G, K) is a Riemannian symmetric pair, as was shown by Gelfand in 
1950, [Ge]. In this paper we consider the case where G is a connected, simply 
connected solvable Lie group and K ~ Aut( G) is a compact, connected group. 

For the remainder of the paper, unless otherwise stated, S will denote a con-
nected, simply connected solvable Lie group and N will denote a connected, 
simply connected nilpotent Lie group, with corresponding Lie algebras .9, .AI', 
and K will denote a compact, connected subgroup of the appropriate automor-
phism group. 

The classification of Gelfand pairs involving solvable groups presupposes a 
classification for such pairs involving nilpotent groups, which is the subject we 
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first consider. An important reduction is given by 

Theorem A. If (K, N) is a Gelfand pair then N is at most two step. 

The proof is based on the observation that (K, G) is a Gelfand pair if, and 
only if, products (as sets) of K-orbits in G commute, i.e. for each x, y E G, 
(K . x)(K . y) = (K . y)(K . x). 

The criterion that we generally use to determine if (K, N) is a Gelfand 
pair is contained in a theorem due to Carcano, [Ca], which we now recall. Let 
7t E iii, and denote by Kn the set of all elements k E K such that 7t k ~ 7t 

where ttk is the element of iii defined by 7tk (x) = 7t(k . x) for all x EN. 
Then there is a projective representation Wn of Kn on Hn ' the representation 
space of 7t. Wn is called the intertwining representation for 7t. If a is the 
cocycle of Wn there is a decomposition 

Wn = L c(T, Wn)T, 
TEK: 

where c(T, Wn) denotes the multiplicity of T in Wn . Carcano's theorem 
states that (K, N) is a Gelfand pair if c(T, Wn ) ~ I for all 7t in a set of 
full Plancherel measure, and that, conversely, if (K, N) is a Gelfand pair then 
c(T, Wn ) ~ I for every 7t E iii . 

Since the representations of 2-step nilpotent groups factor through tensor 
products of representations of Heisenberg x abelian groups, the classification 
of Gelfand pairs (K, N) reduces to classification of Gelfand pairs (K, Hn) , 
where Hn is the 2n + I-dimensional Heisenberg group. We realize Hn as 
CD x R with multiplication given by (z, t)(z' , t') = (z + z' , t + t' + 2~zz'). If 
K ~ Aut(Hn) , then, after conjugating by an element of Aut(Hn) if necessary, 
we may assume that K ~ U(n), the group of n x n unitary matrices acting on 
CD in the usual fashion. Given such a K , we denote by Kc its complexification, 
which may be considered as a subgroup of Gl(n, C). We denote by qeD] the 
polynomial ring over CD . There is a natural action of Kc on qeD]. 

Theorem B. Suppose that K acts irreducibly on CD. (K, Hn) is a Gelfand pair 
if, and only if, Kc acts without multiciplicity on qeD]. 

Victor Kac, [Ka], has given a complete list of all such groups Kc acting 
without multiplicity on qeD]. If the action of K on CD is not irreducible, 
consider the irreducible decomposition CD = Ef= I Vj , and let K j denote the 
subgroup of U(V) given by the (irreducible) action of K on ~. The subset 
of Hn given by ~ x R is isomorphic to Hm , where mj = dim(~). For 

J 

E Z+ I t pD" ... ,Dp - /OIP P h p . K' d 'bl n 1 , ••. , np e - IO'j=1 j,D.' were j,D. IS a j-lrre UCI e 
I I 

subspace of qfj]. 
Theorem e. (K, N) is a Gelfand pair if, and only if, the subrepresentations of 
K on the various pD" ... ,Dp are all distinct. 
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We next consider the free, two-step nilpotent Lie group on n-generators, 
F(n). We identify its Lie algebra Yen) with Rn EEll:n , where Rn is viewed as 
1 x n real matrices, l:n is the set of n x n skew symmetric matrices, and the 
bracket is defined by [( u, V), (v, V)] = (0, ut V - V I u). The automorphism 
group of Yen) is identified with Gl(n, R) x Hom(Rn , l:n) with the action 
of (A, v) on (u, V) given by (A, v)· (u, V) = (uA, AlVA + v(u)). Thus, 
O( n) , the group of n x n orthogonal matrices is a maximal compact subgroup 
of Aut(Y(n)). We denote by SO(n) the subgroup of matrices of determinant 
one. 

Theorem D. Let K be a closed (not necessarily connected) subgroup of SO(n). 
(K, F(n)) is a Gelfand pair if, and only if K = SO(n). 

Suppose now that a two-step N is given with [A', A'] = % , where % is 
the center of A'. (If this condition is not satisfied, then N has an abelian 
direct product factor that does not playa role in the current considerations.) 
Given a compact, connected K ~ Aut(N), we fix a K-invariant inner product, 
(', .) , on A', and denote by ~ , the orthogonal complement of % in A'. 
Let Xl' ... ,Xn be an orthonormal basis for ~ . Define the homomorphism 
A.: Yen) ~ A' by setting A(ei ) = Xi (where e l , ... ,en is the standard basis 
for RD ), and J,.(Ei ,) = [Xi' X), (where Ei ,j = [(ei , 0), (ej , 0)] E Y(n)). Let 
% denote the kernel of A (~l:n)' Note that A.: RD ~ ~ is an isometry (where 
Yen) is equipped with the (standard) inner product ((u, V), (v, V)) = uv l + 
! tr(VV t )). Given k E K, we define k E Aut(Y(n)) by k(ei ) = r\k'(A(e))) 
and k(Ei,j) = [k.ei,k.ej ], and set K = {klk E K}. Then K ~ O(n), 
and one has that K is maximal compact if, and only if, K = Ojy(n) := {A E 

O(n)IA . % (:= AI% A) = %}. 
Let % denote the orthogonal complement in l:n of %, and set A':;; = 

Rn EEl% with Lie bracket defined by [(u, V), (v, V)]:;; = P:;;(ulv -vlu), where 
P:;; is the orthogonal projection of l:n onto %. Then A':;; ~ A' and K ~ 
Aut(A':;;) . 

For nonzero B E % , let ~ denote the subset of A':;; given by Rn B EEl RB , 
i.e. the range of B in Rn plus the line through B, and define a Lie bracket 
similar to the above by following the bracket in Yen) with the orthogonal 
projection onto RB. The quotient Lie algebra A':;; / -To, where -To is the or-
thogonal complement in % of RB is isomorphic to the direct sum of ide-
als ~ and (Rn B).l. , the latter being commutative. Let HB denote the sim-
ply connected Lie group corresponding to ~, and given b E (Rn B).l. , let 
K(b,B) = {k E Klk. (b, B) = (b, B)}. 

Theorem E. (K, N) is a Gelfand pair if (K(b,B) ' HB) is a Gelfand pair for all 
(b, B) in a set offull Plancherel measure, and conversely, if (K , N) is a Gelfand 
pair, then (K(b, B) ,HB) is a Gelfand pair for all B E %, bE (Rn B).l. . 
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We demonstrate the use of Theorem E in two examples. In the first, let N 
be the group whose Lie algebra has a basis X, Y, ' Y2 , Z, ' Z2' and with all 
non-trivial commutators determined by [X, Y,] = Z, and [X, Y2] = Z2' We 
show that there is no compact subgroup K <;;;; Aut(N) for which (K, N) is a 
Gelfand pair. 

In the second example, we give a short proof of a theorem due to H. Leptin 
[Le] which states that if K is the n-dimensional torus (and N is a two-step 
group with [./Y,./Y] = % , the center of ./Y) then (K, N) is a Gelfand pair if, 
and only if, N is the quotient of the direct product of n-copies of H, ' with 
K lifting to a U ( I) action on each factor H, . 

We turn now to solvable groups. The essential new ingredient is another 
theorem due to H. Leptin, which was privately communicatated to the authors. 
Since a proof has not appeared in the literature, we include his proof here. 

Theorem (Leptin). Let .9 be a solvable Lie algebra with nilradical ./Y. Let K 
be a compact, connected subgroup of Aut(.9), and let Yo = {X E .9lk . X = 
X, V k E K}. Then .9 = Yo +./Y. 

For X E .9 , let i x denote the inner-automorphism of S determined by 
exp X, and denote by rad(S) the simply connected nilpotent Lie group whose 
Lie algebra is the nilradical of .9. Using Leptin's theorem we can prove 

Theorem F. (K, S) is a Gelfand pair if, and only if, (K, rad(S)) is a Gelfand 
pair, and for each X E Yo, yES there is a k E K such that ix(Y) = k· y. 

Finally, we consider the K-spherical functions associated to a Gelfand pair 
(K, S). Recall that a K-spherical function ¢ is a continuous, complex valued 
function defined on S satisfying ¢(e) = I and fK ¢(xk· y) dk = ¢(x)¢(y) for 
each x, YES. It is well known that integration against a K -spherical func-
tion, ¢, defines a complex homomorphism on L~(S), that this homomorphism 
is continuous if ¢ is bounded, and that each continuous homomorphism of 
Li(S) is obtained in this manner. We denote by !J.(K, S) the set of continuous 
homomorphisms on L~(S). It follows from Theorem F, that if (K, S) is a 
Gelfand pair then S has polynomial growth, [Je], and hence that L' (S) is a 
symmetric Banach *-algebra, [Lu]. From this one can show that the bounded 
K -spherical functions are positive definite, in sharp contrast to the case when 
(G, K) is a Riemannian symmetric pair (cf. [He]). 

We first consider Gelfand pairs (K, N). One shows that if 7C E Nand 
7C' = 7Ck ' then the intertwining representations Wrr and Wrr , have the same 
irreducible subspaces. 

Theorem G. Let (K. N) be a Gelfand pair. Then ¢ is a bounded K-spherical 
function if, and only if, there is a 7C E N and a ~ E Va <;;;; H rr , II~II = I, such 
that for each x EN, 

¢(x) = ¢rr ,¢(X) := 1 (7C(k . x)~ , ~) dk, 
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where ~ is an irreducible subspace for the intertwining representation 
Furthermore, bounded K -spherical functions ¢ 1C , ~ = ¢ 1C' ,~' if, and only if, 
7t k for some k E K and ~ ,~' belong to the same ~. 

89 

W1C . , 
7t = 

Theorem G states that there is a 1-1 corespondence between d(K, N) and 
the fibered product it / K X1C a(W1C' H 1C ), where it / K denotes the K-orbits in 
it, and a(W1C' H 1C ) denotes the irreducible components of W1C in H 1C • 

Suppose now that (K, S) is a Gelfand pair. Let Xl ' ... ,Xp be a basis for 
a complement of ,AI' , the nilradical of .9 , in Yo. For each YES, there exist 
unique n(y) E N (=exp(,AI')) and t(y) E RP such that y = n(y)IIjexp(tj(y)Xj)' 

Theorem H. ¢ is a bounded K-spherical function on S if, and only if, ¢IN 
is a bounded K -spherical function on N and there exists a E RP such that 
¢(y) = ¢(n(y))ej(a,t(y)). Thus, 

d(K, S) = d(K , N) x Ii' . 
Remarks. A number of authors, in addition to those already mentioned, have 
considered Gelfand pairs of the form (K, N), and the associated K-spherical 
functions. In [HR] it is shown that the usual action of a maximal torus in 
U(n) on Hn provides an example of a Gelfand pair, and the K-spherical 
functions are expressed in terms of Laguerre polynomials. The paper [KR] 
exhibits examples (K, N), where N is an irreducible group of Heisenberg 
type and K is either Spin( n) or a maximal connected compact subgroup of 
Aut(n). In [Cal, examples are presented where N arises as the Silov boundary 
of a Siegel domain of type II and K = S U (P) x U (q). The generalized Laguerre 
polynomials introduced in [Hz] are shown in [Di] to be associated to certain 
Gelfand pairs (U(n), Hn)' 
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PRELIMINARIES 

Consider a unimodular group G with K ~ G a compact subgroup. We 
denote the L I -functions that are invariant under both the left and right actions 
of K on G by L I (G / / K). These form a subalgebra of the group algebra L I (G) 
with respect to the convolution product 

(1.1) f* g(x) = [f(y)g(y-IX)dY = [f(xy-l)g(Y)dY . 

According to the traditional definition, one says that K ~ G is a Gelfand pair 
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Suppose now that K is a compact group acting on G by automorphisms via 
some homomorphism ¢: K ---+ Aut( G). One can form the semidirect product 
K ()( G, with group law 

( 1.2) 

where we write k· x for ¢(k)(x). Right K-invariance of a functionf: K ()( 
G ---+ C means that f(k, x) depends only on x. Accordingly, if one defines 
fG: G ---+ C by fG(x) = f(e, x), then one obtains a bijection LI(K ()( G/ /K) ~ 
Li(G) given by f ...... f G. Here Li(G) denotes the K-invariant functions on 
G, i.e. those f E LI(G) such that f(k ox) = f(x) for all x E G and k E K. 
One verifies easily that this map respects the convolution product and we see 
that K ~ K ()( G is a Gelfand pair if, and only if, the convolution algebra 
Li(G) is commutative. Thus, the definition given in the introduction agrees 
with the more standard one. 

Note that if (KI' G) is a Gelfand pair and KI ~ K2 , then (K2' G) is also a 
Gelfand pair. Also note that we can assume that K acts faithfully on G since 
we can always replace K by K /ker( ¢). In this way we can regard K as a 
compact subgroup of Aut( G) . It is a useful fact that the Gelfand pair property 
depends only on the conjugacy class of K in Aut( G) . 

Lemma 1.3. Let K, L be compact groups acting on G which are conjugate 
inside Aut( G). Then (K, G) is a Gelfand pair if, and only if, (L, G) is a 
Gelfand pair. 

Proof. For f E L1(G), define fL E L~(G) by 

( 1.4) 

The map f ...... fL is onto L~(G). Suppose that L = uKu- 1 for some u E 
Aut( G). Then 

fL(X) = tf«Uku- l ) .x)dk 

= t (f 0 u)(k 0 (u -I (x))) dk 

f K-I = ( 0 u) (u (x)). 

It follows that fL(U(X)) = (foU)K(X) and that L~(G) ---+ Li(G): f ...... fou:= 
c'P(f) is a vector space isomorphism. 

Let dx denote Haar measure on G. Then u*(dx) = il(u) dx for some 
nonzero real number il(u). We will show that c'P(f) * c'P(g) = il(u)c'P(f * g). It 
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follows that f * g = g * f ¢} <1»(1) * <I»(g) = <I»(g) * <I»(f). We compute 

(<1»(1) * <I»(g))(x) = [ <1»(1) (y)<I»(g)(y -I x) dy 

= [(10 u)(y)(g 0 u)(y -I x) dy 

= [f(u(y))g(U(Y -I)U(X)) dy 

= [f(y)g(y -I u(x))u· (dy) 

= Li(u) [f(y)g(Y-'U(X))dY 

= Li(u)(f * g)(u(x)) 
= Li(u)<I»(1 * g)(x). D 
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Suppose now that G is a Lie group. For D E W' (G) , the space of compactly 
supported distributions, define the K -average DK by' 

( 1.5) K K (D ,f) = (D, f ), 
for each f E C;'(G) , where fK is defined by (1.4). The space of K-invariant, 
compactly supported distributions is 

(1.6) W;(G) = {D E W/JDK = D} = {DKJD E W/(G)}. 

If Ox is the delta function at x E G then 0; E W;(G) has compact support 
K·x. One has 

(1. 7) 

Lemma 1.8. The K -invariant test functions are dense in g; (G) . 

Proof. Merely note that if {un} £:;; W (G) , and un --> D E W' (G) , then 
DK =D, for each DEW;(G). 0 

The convolution of distributions DI ' D2 E W' (G) is defined by 

( 1.9) 

where lxf(y) = f(x-'y). In particular, one has 

(1.10) (0; * OK , f) = r r f((k , · X)(k2 . y)) dk l dk2. 
Y iKiK 

K U --> n 

Lemma 1.11. If (K, G) is a Gelfand pair then convolution in W;(G) is commu-
tative. 
Proof. This follows immediately from commutativity of Li(G) and Lemma 
1.8. 0 
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Theorem 1.12. (K, G) is a Gelfand pair if, and only if, for all X, Y E G, xy E 
(K·y)(K·x). 

,{, . KKK K Proo). Suppose that xy ~ (K·y)(K·x). We wIll show that <>x *<>y =/=<>y *<>x ,so 
(K, G) fails to be a Gelfand pair by Lemma 1.11. Indeed, one can find a non-
negative test function f: G --+ R with f(xy) = 1 and f((K· y)(K . x)) = {O} 
by compactness of (K· y)(K . x). But then (1.10) shows that (<>; * <>: ,f) is 
positive, whereas (<>: * <>; , f) = O. 

Conversely, suppose xy E (K . y)(K . x) for all x, y E G, and let f, g E 
Li(G). Then 

f*g(x)= faf(Xy)g(y-l)dY= fa f ((k3 · y )x)g(y-l)dY , 

where xy = (k1 • y)(k2 . x) = k2((k3 . y)x). Note that k1 , k2' and k3 depend 
on the integration variable y. Using K-invariance of f we write 

f * g(x) = fa L f(k· ((k3' y)x))g(y-l) dk dy 

= fa L f((k· y)(kk3- 1 • x))g(y-l) dk dy 

via y t-+ k - 1 • Y 

using K -invariance 

via k t-+ kk3 

= Lg*f(k'X)dk 

changing the order of integration 
=g*f(x) 

using K -invariance. 0 

It is not difficult to check that the condition in Theorem 1.12 is equivalent 
to the more symmetrical condition that (K· x)(K . y) = (K . y)(K . x) . 

THREE-STEP GROUPS 

We now begin our consideration of Gelfand pairs that involve nilpotent 
groups. Let N be a connected, simply connected nilpotent Lie group with 
Lie algebra ./Y. Recall the descending central series for ./Y , 
(2.1) ./Y =./Y(1)-:J./Y(2) -:J ... -:J'/y(n) -:J'/y(n+l) = {O}, 
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where JY(k) = [JY, JY(k-I)] for k > 1 . We say that N is an n-step group if 
JY(n) :f; {O} . 

Fix any inner product (., .) on JY, and let ~ denote the orthogonal com-
plement to JY(k+l) inside JY(k) for 1 ~ k ~ n - 1. Also, set JII"" = JY(n) so 
that 

(2.2) JY =.;t; EB A; EB ... EB JII"" and JY(k) = ~ EB ... EB JII"" 
for 1 ~ k ~ n. 
Lemma 2.3. Let N be an n-step group with n ~ 3. Then 

[.;t;, JY(n-I)] :f; {O}. 

Proof. Suppose [.;t; , JY(n-I)] = {O}, and choose any n elements XI' XI' ... , 
Xn_l , Y E JY. Then W = [XI' [X2' [ ... [Xn- 2, Xn_d···]]] is an element of 
JY(n-l) , and writing Y = U + V where U E.;t;, V E JY(2) , we see that 

[Y, W] = [U, W] + [V, W] = [V, W] = 0 

since [.;t; , JY(n-I)] = 0 and any n-fold bracket of terms in JY(2) must vanish. 
However, this shows that JY cannot be n-step since all n-fold brackets in JY 
are zero. 0 

The main result of this section is 

Theorem 2.4. If N is an n-step group with n ~ 3 then there are no Gelfand 
pairs (K, N) . 
Proof. Since K is compact, there is a K-invariant inner product (., .) on JY . 
Indeed, such an inner product can be obtained by averaging an arbitrary one 
with respect to the K-action. Form the decomposition (2.2) using this inner 
product and choose any X E.;t;, Y E JII",,-I with [X, Y] :f; O. This is possible 
by Lemma 2.3, and the observations that JY(n-l) = JII",,-I EB JII"" and JII"" is 
contained in the center. 

Let exp denote the exponential map from JY to N. We will show that for 
x = exp(X), y = exp(Y) one has xy f/. (K ·y)(K ·x). Suppose otherwise, and 
pick k l , k2 E K so that xy = (k l .y)(k2 ·x). By the Baker-Campbell-Hausdorf 
formula one has 

(2.5) X + Y + HX, Y] = k2 . X + kl . Y + ![kl . Y, k2 . X], 

where (k, X) ~ k· X is the derived action of K on JY . 
Since any automorphism of JY must preserve each JY(k) , we have kl . Y E 

JY(n-I). Thus X and k2 . X differ by an element W E JY(n-I) , so that 
k2 . X = X + W. As.;t; and JY(n-l) are orthogonal subspaces in JY and 
the K-action preserves orthogonality, we see that W = O. That is k2 • X = X, 
and (2.5) becomes 

(2.6) 
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The same trick now shows that k\ . Y = Y , since the two differ by an element 
of .AI'". Finally, (2.6) becomes [X, Y] = [Y, X], which is impossible since 
[X, Y] ~ O. 0 

SOME REPRESENTATION THEORY 

This section will serve to introduce some notation and to describe a result 
due to G. Carcano. Since this result is of primary importance to our analysis, 
we will include a sketch of the proof. 

If 7C and 7C' are irreducible unitary representations of N, we write 7C ~ 
7C' to indicate that 7C and 7C' are unitarily equivalent. We denote by it the 
equivalence classes of irreducible unitary representations of N. Given k E K 
and 7C E it we denote by 7C k the representation defined by 
(3.1) 7Ck (X)=7C(k.x). 

The stabilizer of 7C under this action is 
(3.2) K7( = {k E K: 7Ck ~ 7C}. 
We denote by &7( the coadjoint orbit in ./JI'* corresponding to 7C according to 
the Kirillov theory, and note that K7( is also the stabilizer of &7( under the dual 
action of K on ./JI'* . 

For each k E K7(' one can choose an intertwining operator W7((k) with 
7Ck (X) = W7((k)7C(X)W7((k)-\ for each x EN. The map k I---> W7((k) need not 
be a representation of K7(' Indeed, the W7((k)'s are only characterized up to 
multiplicative constants in the circle T by the intertwining condition. In fact, 
there will be a map 
(3.3) 0' (= 0'7(): K7( x K7( --+ T 

for which W7((k\k2) = O'(k\, k2)W7((k\)W7((k2). The map 0' can be made mea-
surable and is called the multiplier for the projective representation W7(' We 
call W7( the intertwining representation for the representation 7C. 

Many aspects of representation theory can be extended to projective repre-
sentations as well (cf. [Maj). In particular, compactness of K7( implies that W7( 
decomposes as a direct sum of irreducible (projective) representations. Writing 
c(T, W7() for the multiplicity of T in W7(' one has 

(3.4) W7( = L c(T, W7()T. 
TEK; 

Here, k: denotes the set of unitary equivalence classes of projective repre-
sentations of K7( with multiplier 0' (= 0'7()' The following theorem is from 
[Ca]. 
Theorem 3.5. If (K, N) is a Gelfand pair, then c(T, W7() ~ 1 for all 7C E 
it, and conversely, if c(T, W7() ~ 1 for almost all (with respect to Plancherel 
measure) 7C E it then (K, N) is a Gelfand pair. 
Proof. For completness we sketch what is essentially Carcano's proof. 
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surable and is called the multiplier for the projective representation W7(' We 
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TEK; 

Here, k: denotes the set of unitary equivalence classes of projective repre-
sentations of K7( with multiplier 0' (= 0'7()' The following theorem is from 
[Ca]. 
Theorem 3.5. If (K, N) is a Gelfand pair, then c(T, W7() ~ 1 for all 7C E 
it, and conversely, if c(T, W7() ~ 1 for almost all (with respect to Plancherel 
measure) 7C E it then (K, N) is a Gelfand pair. 
Proof. For completness we sketch what is essentially Carcano's proof. 
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Let n E N and let Wn be the intertwining representation of Kn with multi-
plier a . If T is any irreducible projective representation of Kn with multiplier 
(j, then 

(3.6) R(k, x) = T(k) ® n(x)Wn(k) 

is an irreducible representation of Kn ex N whose restriction to N is a multiple 
of n, and the induced representation Ind~~:N(R) is irreducible for K ex N. 
By considering all nand T, one obtains all equivalence classes of irreducible 
representations of K ex N in this manner (cf. [MaD. 

It is well known that if KeG is a Gelfand pair, then for each irre-
ducible representation n of G, the space of K-fixed vectors has dimension 
c( 1 K ' nlK ) E {O, I} (cf. [HeD. For the representation R given by (3.6), one 
has 

Kr:xN I K I) K - ) IndK r:xN(R) K ~ IndK (R K = IndK (T ® Wn ' 
1r 1r 1t 1f 

and by Frobenius reciprocity for compact groups, 
K- - -c(lJ(',lndK (T®Wn))=c(lKIK , T®Wn)=c(1K' T®Wn)· 

H H H 

This last value can be written as c( T, Wn ) since 1 K has multiciplicity 1 in 
H 

T ® T and multiplicity 0 in T ® S for S not equivalent to T. This shows the 
necessity of the condition. 

Now suppose n E N satisfies the multiplicity condition. Denote the Hilbert 
space on which it acts by Hn , and form the decomposition 

(3.7) 

into Kn -irreducible subspaces. (If T is not a subrepresentation of Wn , then 
Hft' T = {O}.) If f E L~(N) then one shows that the operator n(f) commutes 
with every Wn(k). Since each factor Hft'T in (3.7) occurs only once, n(f) 
must preserve these factors and thus, acts as a scalar in each by Schur's Lemma. 
It follows that if f, g E L~(N) then the operators n(f) and n(g) commute 
and hence n(f * g) = n(g * f). When this equality holds for almost all n EN, 
one concludes that f * g = g * f by appealing to the Plancherel Theorem. 0 

We remark that the result holds more generally for compact actions oa sep-
arable locally compact groups. 

HEISENBERG GROUPS 

The (2n + 1 )-dimensional Heisenberg group Hn has Lie algebra ~ with 
basis Xl' ... , X n , Yl , ... , Yn , Z and structure equations given by [Xi' ¥;1 
= Z. The group Sp(n, R) of real 2n x 2n symplectic matrices acts on 
Span(XI ' ... , X n , Yl ' ... , Yn ) by automorphisms of ~. It is well known 
that U(n) = Sp(n, R) n O(2n) = Sp(n, R) n SO(2n) is a maximal compact 
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connected subgroup of Aut(Hn) (cf. [Hol). (The full automorphism group con-
tains inner automorphisms, dilations and an involution that sends Z to - Z 
in addition to these symplectic automorphisms.) If one models Hn as en x R, 
as we generally will, then U(n) becomes the group of n x n unitary matrices 
acting on en in the usual fashion. 

We recall the representation theory of Hn' A generic set of coadjoint orbits 
in ~* is parametrized by nonzero A. E R, where the orbit &';. is the hyperplane 
in ~* of all functionals taking the value A. at Z . The action of U(n) on ~* 
preserves each &';.' Hence, if 1C;. is the element of fin corresponding to &';.' 
then U (n) also preserves the equivalence class of 1C;.' 

One can realize 1C;. in the Fock space 

(4.1) H).(o) = {entire f: en ----> q!cn e-21;'llwI2If(w)12 dw < oo} 

as 

(4.2) ( t)f() -i;'/+;'(2(w, z}-I Z I2)f( ) 1C;.Z, W =e w-z 

for A. > 0 and 

(4.3) 

for A. < O. Here (w, z) denotes the Hermitian inner product on en . We refer 
the reader to [Ho or Ta] for a discussion of the Fock model. 

Define n). (k): H). (0) ----> H). (0) by 
-\ (4.4) n).(k)f(z) = f(k z). 

Then n).(k) intertwines 1C;.(Z, t) and (1C;')k(z, t) = 1C;.(kz, t). We verify this 
for A. > O. Indeed, 

-\ -\-\ n).(k)(1C;.(k z, t)f)(w) = 1C;.(k z, t)f(k w) 
= e -i;'t+;'(2(k- 1w ,k- 1 z}_lk- 1 Z12) f(k -\w _ k -\ z) 

= e- i;.t+;'(2(W,Z}-IZI2)n).(k)f(w - z) 

= (1C;.(Z, t)n).(k)f)(w) , 
and hence 

(4.5) 

as claimed. That is, U(n) is the stabilizer of the equivalence class of 1C;. E 
fin under the action of U(n) and n).: H).(o) ----> H).(o) is the intertwining 
representation as in (3.4). (We remark that up to a factor of det(k)!, n). 
lifts to the oscillator representation on the double cover M U (n) of U (n) (cf. 
[Tal).) It follows that for any compact subgroup K ~ U(n), K1[ = K, and the 

). 

intertwining representation of K is given by the restriction of n). to K. 
Given a compact, connected subgroup K ~ U(n), we denote its complex-

ification by Kc' The action of K on en yields a representation of Kc on 
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en , and one can view Kc as a subgroup of GI(n, C). (A discussion of the 
complexification construction can be found in [BtD].) 

A finite dimensional representation p: G ---+ GI (V) in a complex vector space 
V is said to be multiplicity free if each irreducible G-module occurs at most 
once in the associated representation on the polynomial ring C[V] (given by 
(x· p)(z) = p(p(x-I)z». 

Theorem 4.6. Let K be a compact, connected subgroup of U (n) acting irre-
duciblyon en . The following are equivalent: (i) (K, Hn) is a Gelfand pair. (ii) 
The representation of Kc on en is multiplicity free. (iii) The representation of 
Kc on en is equivalent to one of the representations in the following table: 

Multiplicity Free Representations 

Group Acting On Subject To 

S/(n, C) cn n~2 

G/(n, C) cn n ~ 1 

Sp(k, C) cn n = 2k 

c· x Sp(k, C) cn n = 2k 

c· x SO(n, C) cn n~2 

G/(k, C) S2(Ck)::: cn n=k(k+l)j2, k~2 

S/(k, C) A2(Ck)::: cn n = m and k is odd 

G/(k, C) A2(Ck)::: Cn n=m 

Sl(k, C) x Sl(l, C) Ck®C' :::Cn n = kl, k f. I 

Gl(k, C) x Sl(l , C) Ck®C' :::Cn n = kl 

GI(2, C) x Sp(k , C) C2 ®C2k ::: Cn n = 4k 

SI(3, C) x Sp(k , C) C3 ®C2k ::: Cn n = 6k 

G/(3, C) x Sp(k , C) C3 ® C2k ::: Cn n = 6k 

G/(4, C) x Sp(4, C) C4 ®C8 ::: Cn n = 32 

Sl(k, C) x Sp(4, C) Ck ®C8 :::Cn n = 8k, k>4 

Gl(k, C) x Sp(4, C) Ck ®C8 :::Cn n = 8k, k>4 

C· x Spin(7, C) Cn n=8 

C· x Spin(9 , C) Cn n = 16 

Spin(IO, C) Cn n = 16 

C· x Spin( 10, C) Cn n = 16 

C· x G2 Cn n=7 

C· x E6 Cn n = 27 
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Proof. The complexification Kc of K is connected, reductive, algebraic (cf. 
[BtD]) and acts irreducibly on en . Moreover, the representation of K on en 
is multiplicity free if, and only if, the complexified representation of Kc on 
en is multiplicity free. The multiplicity free irreducible linear representations 
of connected, reductive, algebraic groups have been classified by V. Kac. The 
table given here is taken from Theorem 3 of [Ka]. This gives the equivalence 
of (ii) and (iii). 

The equivalence of (i) and (ii) is an immediate consequence of Theorem 3.5 
once one observes that for each A t- 0, w.. is the completion of the associated 
representation of K on C[en]. 0 

Remarks. Some comments are in order regarding the table. e· denotes the 
nonzero complex numbers, S2 the symmetric 2-tensors and A 2 the alternating 
2-tensors. The group c* x Sp(k , C) acts on e2k via (A, A)· v = AvA. We can 
view e* x Sp(k, C) as the group of n x n complex matrices that transform the 
standard symplectic structure on en into a scalar multiple of itself. There are 
similar interpretations for the other groups e* x G. Spin(n, C) = Spin(n, R)c 
is a double cover of SO(n , C) and acts by the complexified half-spin representa-
tion. Spin(7, C) and Spin(9, C) are simply connected and 7r 1 (Spin( 10, C)) = 

Z2' 
Suppose now that the action of K on en is reducible, and let 

p 

(4.7) en = L fj 
j=1 

be a decomposition of en into K-irreducible (not necessarily complex) sub-
spaces. If (K, Hn) is a Gelfand pair, then the V~s are orthogonal with respect 
to the skew-symmetric form on en given by A: (z, w) 1--+ ~(z, w) . Indeed, if 
Z j E Va for i = 1 , 2 then by Theorem 1.12 there exist k l , k2 E K such that 
(zl' 0)(Z2' 0) = (k2 . z2' O)(kl . zi ,0). It follows that 

(4.8) L Zj = Lkj . Zj 

and that 
(4.9) 

Since the ~ 's are orthogonal with respect to the usual Hermitian inner product 
(.,.) on en and are K-invariant, one concludes from (4.8) that k j . Zj = Zj' 
for i = 1,2, and hence from (4.9) that A(zi ' z2) = O. It now follows that the 
Va's have complex structure, i.e. i ~ = Va' Suppose not, and let Z E Va such 
that iz tt Va' Then iz = Lp zp' and zp t- 0 for some P t- 0:. Thus, 

IzI2 = -A(z, iz) = L -A(z, zp) = -A(z, za) < IZI2. 
p 

Finally, since the Va's are invariant under multiplication by i, the skew-
symmetric form A is nondegenerate on each ~. Therefore, if m j = dime fj) , 
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HmJ ~ Tj X R. (This isomorphism is made explicit in the proof of Theorem 
5.12.) 

Let K j denote the subgroup of U(Tj), the group of unitary transformations 
on Tj obtained by the restriction of K to Tj, and let 

00 

(4.10) C[V] = "P. J ~ J,D 
n=O 

be the decomposition of the polynomial ring over Tj into Kj-irreducible sub-
spaces, with the convention that Pj,o = {O}. For each p-tuple (n l , ... , np) E 

(Z+)p, let pOI' ... , n" = PI 0 0··· 0 Pp 0 . If W;. . denotes the intertwining 
, I ' p , J 

representation associated to the pair (K., H ) as above, then for each k E K , J mJ 

the restriction of W, to pOI'"'' Dp is given by W, I 0 ... 0 W, . Thus, if 
A )I., A,P 

(K, Hn) is a Gelfand pair, Theorem 4.6 implies that (K, Hm) is a Gelfand 
J J 

pair for each j = 1, ... ,p. But it also implies the stronger condition that 
the subrepresentations of K on pnl , ... ,np , as (nl' ... , np) ranges over (z+l, 
are distinct. This establishes the necessity of the condition in the following 
theorem. The sufficiency is an immediate consequence of Theorem 4.6 and the 
observation that 

pOI"" ,Dp. 

(nl , ... , np)E(Z+)P 

Theorem 4.11. (K, Hn) is a Gelfand pair if, and only if, the subrepresentations 
of W;. on pOI'''' ,Dp are distinct as (n l , ... ,np) ranges over (z+)P. 

We consider two examples. For the first, let K be the subgroup of matrices of 
determinant one in U(2)x U(I) s;:; U(3), i.e. K = {(A, det(A))IA E U(2)}. The 
decomposition of C3 corresponding to (4.7) is C3 = c2 EB C, in the obvious 
sense, and corresponding to (4.10) one has that C[C2] = L::IPI,D' where 
PI 0 is the space of homogeneous polynomials in Z I ' Z 2 of degree n, and 
C[C] = L::I P2,D' where P2,D = Cz~. The intertwining representation of K 
on pD I ,D2 is equivalent to the representation A 1--+ (det(A) )n2 W;. (A) of U(2) on 
PI D' These representations are clearly irreducible and inequivalent for distinct 
(n; , n2 ). Thus (K, H 3 ) is a Gelfand pair. 

For the second example, let K be the subgroup of U ( 1) x U ( 1) consisting of 
all matrices of determinant one. In this case, both (KI' HI) and (K2' HI) are 
Gelfand pairs, and in fact, the subrepresentations of the intertwining represen-
tations of KI and K2 on C[C] are distinct (corresponding to Z+ for KI ' and 
Z- for K 2 ). However, the intertwining representation on pO, 0 is the identity 
for each n, and thus (K, H 2 ) is not a Gelfand pair. 

We conclude this section with an immediate corollary to Theorem 4.11. 
Corollary 4.12. Let Kj be a compact subgroup of U(n j ) for 1 ~ j ~ P. K = 
I1 Kj • and let n = L: n j' Then (K, Hn) is a Gelfand pair if, and only if 
(Kj' Hn) is a Gelfand pair for I ~ j ~ p. 

J 
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spaces, with the convention that Pj,o = {O}. For each p-tuple (n l , ... , np) E 

(Z+)p, let pOI' ... , n" = PI 0 0··· 0 Pp 0 . If W;. . denotes the intertwining 
, I ' p , J 

representation associated to the pair (K., H ) as above, then for each k E K , J mJ 

the restriction of W, to pOI'"'' Dp is given by W, I 0 ... 0 W, . Thus, if 
A )I., A,P 

(K, Hn) is a Gelfand pair, Theorem 4.6 implies that (K, Hm) is a Gelfand 
J J 

pair for each j = 1, ... ,p. But it also implies the stronger condition that 
the subrepresentations of K on pnl , ... ,np , as (nl' ... , np) ranges over (z+l, 
are distinct. This establishes the necessity of the condition in the following 
theorem. The sufficiency is an immediate consequence of Theorem 4.6 and the 
observation that 

pOI"" ,Dp. 

(nl , ... , np)E(Z+)P 

Theorem 4.11. (K, Hn) is a Gelfand pair if, and only if, the subrepresentations 
of W;. on pOI'''' ,Dp are distinct as (n l , ... ,np) ranges over (z+)P. 

We consider two examples. For the first, let K be the subgroup of matrices of 
determinant one in U(2)x U(I) s;:; U(3), i.e. K = {(A, det(A))IA E U(2)}. The 
decomposition of C3 corresponding to (4.7) is C3 = c2 EB C, in the obvious 
sense, and corresponding to (4.10) one has that C[C2] = L::IPI,D' where 
PI 0 is the space of homogeneous polynomials in Z I ' Z 2 of degree n, and 
C[C] = L::I P2,D' where P2,D = Cz~. The intertwining representation of K 
on pD I ,D2 is equivalent to the representation A 1--+ (det(A) )n2 W;. (A) of U(2) on 
PI D' These representations are clearly irreducible and inequivalent for distinct 
(n; , n2 ). Thus (K, H 3 ) is a Gelfand pair. 

For the second example, let K be the subgroup of U ( 1) x U ( 1) consisting of 
all matrices of determinant one. In this case, both (KI' HI) and (K2' HI) are 
Gelfand pairs, and in fact, the subrepresentations of the intertwining represen-
tations of KI and K2 on C[C] are distinct (corresponding to Z+ for KI ' and 
Z- for K 2 ). However, the intertwining representation on pO, 0 is the identity 
for each n, and thus (K, H 2 ) is not a Gelfand pair. 

We conclude this section with an immediate corollary to Theorem 4.11. 
Corollary 4.12. Let Kj be a compact subgroup of U(n j ) for 1 ~ j ~ P. K = 
I1 Kj • and let n = L: n j' Then (K, Hn) is a Gelfand pair if, and only if 
(Kj' Hn) is a Gelfand pair for I ~ j ~ p. 

J 
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FREE GROUPS 

In this section we turn our attention to the free, two-step nilpotent Lie group 
on n-generators, F(n). We realize its Lie algebra, 7(n), as RnEBl:n , where Rn 
is viewed as 1 x n real matrices, l:n is the space of real n x n skew symmetric 
matrices, and the Lie bracket is given by 

(5.1 ) [(u, V), (v, V)] = (0, ulv - vtu). 

The group law is thus 

(5.2) (u, V)(v, V) = (u + v, V + V + !(ulv - vlu». 

Lemma 5.3. There is a bijection between Aut(F(n» ~ Aut(7(n» and the set 
G/(n, R) x Hom(Rn , l:n) . 
Proof. The exponential map establishes the isomorphism 

Aut(F(n» ~ Aut(7(n». 

For (A, v) E G/(n, R) x Hom(Rn, l:n), define ¢(A,v): 7(n) ---+7(n) by 

(5.4) ¢(A,v/U, V) = (uA, ALVA + v(u». 

It is easy to check that ¢(A, v) is a Lie algebra automorphism. On the other 
hand, if ¢: 7(n) ---+ 7(n) is any given automorphism, then ¢ = ¢(A,v)' where 
A and v are the composites 

Rn ......... 7(n) L 7(n) ---+ Rn 

and 

respectively. 0 

Note that the correspondence in Lemma 5.3 becomes a group isomorphism 
if the set G/(n, R) x Hom(Rn , l:n) is given the group structure 

(5.4) (A,v)(B,fl)=(AB,A·fl+vB), 

with G/(n, R) acting on l:n by A· V = ALVA. In particular, we see that 
a maximal compact subgroup of Aut(F(n» can be identified with O(n), the 
group of real orthogonal matrices. This acts on 7(n) by 

(5.5) A· (u, V) = (uA, A· V) = (uA, ALVA), 

and preserves the inner product 

(5.6) ((u, V), (v, V») = uv t + !tr(VV I ). 

Suppose that :z is a subspace of l:n. We define a Lie algebra ./V:Z := Rn x:Z 
with bracket 

(5.7) t t [(u, V), (v, V)1:z = (0, P:z(u v - v u», 

where Pz is the orthogonal projection of l:n onto :z . 
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We now describe the coadjoint orbits in g-(n)* and ./Y;. First, using the 
inner product (5.6) we identify g-(n)* with g-(n) and ./Y; with ./Yz. This 
gives an inclusion ./Y; '--> g-(n) * dual to the projection P z. For B E l:n ' 
define a map 

(5.8) 

by (JB(u) , v) = (B, utv - vtu). Similarly, if BE % define a map 

(5.9) 
z z by (JB (u), v) = (B, [(u, 0), (v, 0)1:z) . In fact, though, for BE %, JB = JB 

since 
Z (JB (u), v) = (B, Pz[(u, 0), (v, 0)]) 

= (B, [(u, 0), (v, 0)]) = (JB(U) , v). 

Accordingly, we denote both maps by JB • One computes 

(JB(U) , v) = (B, [(u, 0), (v, 0)]) 

= !- tr(B(utv - vtu)t) = (uB, v) 

to conclude that 

(5.10) JB(u)=uB. 

The coadjoint orbit through (b, B) E g-(n)* (:;: g-(n)) is 

~b.B) = Ad*(F(n))(b, B). 

For (u, U), (v, V) E g-(n) one has 

(Ad* exp(u, U)(b, B), (v, V)) = (b, B), (v, V) + [(u, U), (v, V)]) 

= bv t + !- tr(BVt) + !- tr(B(utv _ vtu)t) 

= (b, B), (v, V)) + (JB(U) , v) 

= (b + JB(u) , B), (v, V)). 

Thus, 

(5.11 ) ~b.B) = (b, B) + (Image(JB) , 0) = (b + RnB, B). 

The same reasoning shows that when B E % the orbit ~f. B) through 
(b, B) E./Y; is also given by (b + Rn B, B), i.e. the inclusion ./Y; '--> g-(n)* 
maps ~f. B) diffeomorphically to ~b. B) • Accordingly, we denote both of these 
orbits by ~b. B) , and will write &'B for ~o. B) . 

For n even, the orbits &'B := ~O.B) = Rn x {B} with B nondegenerate 
provide a generic set of orbits in g-(n) * , while for n odd, the orbits ~b. B) 

with bERn and B of rank (n - 1) form a generic set. (Note that these orbits 
are not distinct since ~bl' B) = ~b2 • B) , provided b l - b2 E Rn B .) 
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Theorem 5.12. (SO(n), F(n)) is a Gelfand pair for all n ~ 2. 
Proof. The proof is an application of Theorem 3.5. Since the generic orbits in 
Y(n)* depend on the parity of n, we consider the cases separately. 

Suppose first that n = 2k and let B E ~n be nondegenerate. We may also 
assume that B has distinct eigenvalues which we denote ±iA I , ... , ±iAk ' with 
Aj > O. The orbits &'B = Rn x {B} for such B form a generic set in Y(n)* . 

Let ~ denote the Lie algebra defined in (5.7) with Y = RB. B is central 
in ~ and for u, vERn one has 

(5.13) [(u, O)(v, 0)] = (JB(u), v)B = WB(U, v)B, 

where wB(u, v) = uBv t is the skew symmetric bilinear form on Rn with matrix 
B. Nondegeneracy of B implies that ~ is isomorphic to the Heisenberg 
algebra /lk. We can make this isomorphism explicit by changing the basis 
on Rn • Suppose B has eigenvectors °1 , ••• , ok in Ck corresponding to the 
eigenvalues iA I , ... , iAk . Writing OJ = Vj + iu j , one has ujB = AjVj and 
vjB = -AjUj . The matrix of B in the basis {u I ' VI' ... , uk' vk} is 

B= (Y A~J ~ ) 

o 0 AkJ 

(5.14) 

where 

J = (~1 ~.) 
By scaling the o/s we can ensure that {u I , VI' ... , Uk' vk} is an orthonor-
mal basis. Writing X; = (U j , 0), Y; = (V j , 0), and Z = (0, B) in ~ we 
obtain a basis in which the Lie bracket in (5.7) becomes [X;, Y;] = AjZ 
with other brackets vanishing. Replacing X; by Xj = (llJl~)x;, and Y; 
by Yj = (l/JI;)Y; one obtains a basis {XI' YI , ... , Xk ' Yk , Z} for ~ in 
which the nonzero brackets are determined by [Xj ' Yj ] = Z . 

Let Sp(wB) = {A E G/(n, R)IABA t = B}. This is the group of linear trans-
formations preserving the symplectic form W B . The stabilizer of &'B under the 
action of S O( n) is 

(5.15) KB = SO(n) n Sp(wB) = {A E SO(n)IAB = BA}. 

K B also acts on ~ and stabilizes &'B regarded as an orbit in ~* . In view of 
k (5.14), KB acts on ~ as U(l) on Span(XI , YI , •.• , Xk ' Yk ). Here each 

factor U( 1) = SO(2)nSp( 1 , R) = {A E SO(2) IAJ = J A} acts on Span(Xj , Y) 
in the usual fashion. The representations of HB = exp(~) and F(n) given 
by &'B coincide under the orthogonal projection Y(n) -+ ~ and hence have 
the same intertwining representations. In view of Corollary 4.12, this must 
satisfy the conditions of Theorem 3.5, and we conclude that (SO(n) , F(n)) IS 

a Gelfand pair. 
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Now consider the case n = 2k + 1. Let bERn and let B E l:n have rank 
n - 1 = 2k and distinct eigenvalues 0, ±iA t ' ••• ,±iAk with Aj > O. We 
obtain a generic set of orbits &(b, B) in !T (n) * from such pairs (b, B) . 

Let ~ be defined as in (5.7) with % = RB, and let X be any nonzero 
vector in ker(B). From (5.10) one concludes that the center of ~ is given by 
Span(B, X) and that ~ = ~ xR (as Lie algebras) where ~ = ~/RX ~ 7Ik . 

In view of (5.5), the stabilizer of &(b,B) under the action of SO(n) is given 
by 

( 5.16) 
K(b,B) = {A E SO(n)lbA = band AB = BA} 

= {A E SO(2k)IAB = BA}, 

where we are regarding SO(2k) as the stabilizer of bERn under the action of 
SO(n) . 

&(b, B) can be viewed as an orbit in ~ and also as an orbit in ~. The 
action of K(b, B) on ~ descends to ~ since each A E K(b, B) preserves 
ker(B) . Just as in the case where n is even, one shows that this corresponds to 
the action of U (l)k on 7Ik and completes the proof using Corollary 4.12 and 
Theorem 3.5. 0 

Theorem 5.17. If K is a proper, closed (not necessarily connected) subgroup of 
SO(n) then (K, F(n» is not a Gelfand pair. 
Proof. As in the proof of Theorem 5 .12, one must consider separately the cases 
n even and n odd. Here we present the argument for the case n = 2k. We 
assume at first that K is connected. The stabilizer of a generic orbit &B can be 
viewed as a compact subgroup AB of KB ~ U(I)k (see equation (5.15». We 
regard AB as acting on a Heisenberg group Hk and conclude that if (K, F(n» 
is a Gelfand pair then so is (AB' H k ), as in the proof of Theorem 5.12. 

For a suitable choice of B, A B is a proper subgroup of K B' Indeed, let 
C E SO(n)\K and let T be a maximal torus in SO(n) that contains C. 
Choose a basis for Ck ~ Rn which transforms T into the usual U(I)k and let 
B be given in this basis by 

( 5.18) (
J 0 .. . 

~ 2:J .... : 

o 0 .. . 
One has KB = T so that AB = K n KB is a proper subgroup of K B . 

A = A B is a proper connected subgroup of U ( l)k and hence is a torus. One 
can decompose Ck into a sum of weight spaces for the action of A, 

(5.19) Ck = L Va' 
aEP 

Here 0: E sf * , where sf is the Lie algebra of A, 
k 21tia(X) (5.20) Va = {v Eel exp(X)· v = e V for all X E sf}, 
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and P denotes the set of weights: P = {a E ~ * I ~ ::J {O}}. Each a E P is 
an integral form, that is a(L) ~ Z, where L = ker(exp: ~ - A). There is a 
corresponding decomposition of the polynomial functions on Ck : 

(5.21 ) 

The A-action on qck ] preserves each q~] and acts via the character 

(5.22) ( (X)) 2nia(X) Xa exp = e . 

There are two cases to consider: 
(i) Some weight space ~ has dimd~) > 1. 
(ii) dimdVa) = 1 for all a E P. 
Suppose (i). Any decomposition Va = U 67 W into nontrivial subspaces U 

and W will be preserved by the A-action. Moreover, A will act on the invariant 
subspaces qU] and qW] of qck ] via the character Xa' This shows that 
the action of A on Ck is not multiplicity free and hence that (K, F(n)) is not 
a Gelfand pair. 

Next assume that dimdVa) = 1 for all a E P. In this case, P consists of k 
weights {aI' ... ,ak } and we obtain a basis {VI' .•• , vk } of Ck by choosing 
V j E Va. with V j ::J O. Note that any monomial V{I Vi2 ... V£k generates an 

J 

A-invariant subspace in qck ]. 

As dim(~) < k, the weights aI' ... ,ak must satisfy some nontrivial linear 
dependence relation: 

(5.23) 

In fact, one can find an integer solution (cI ' c2 ' ••• ,ck ) to this equation, since 
the forms a j are integral. Suppose cI ' ... , c, are nonnegative and that C'+I' 
... ,ck are negative (after rearranging the weights). Consider the monomials 

(5.24) 

One has 
exp(X)p = e2ni(Clal+",+clal)(X)p and exp(X)q = e-2ni(CI+lal+I+",+ckak)(X)q 

for X E ~ . One concludes that the A-irreducible subspaces of qck ] spanned 
by p and q are equivalent. As in case (i), the action of A on Ck is not 
multiplicity free and (K, F(n)) fails to be a Gelfand pair. 

Finally, consider a nonconnected, proper subgroup K ~ SO(n). The stabi-
lizer A' = A~ of a generic orbit &'B now has the form A' = A x F , where 
A is a torus with dim(A) < k and F is a finite abelian group. As before, we 
decompose Ck into weight spaces ~ for the action of A. Note that the action 
of F and A commute so that each Va is F -invariant. As before, we consider 
two cases: 
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(i) Suppose dim(~) > 1. Choose two linearly independent vectors u, v E 

~. The actions of A' on the monomials u lFI and v lFI agree and hence the 
representation of A' on CK is not multiplicity free. 

(ii) Suppose dime V,.) = 1 for all 0:. In this case, the actions of A' on plFI 
and qlFl agree, where p and q are given by (5.24). 0 

TWO-STEP GROUPS 

In this section we do not assume that K is a connected group. Suppose now 
that a two-step N is given with [A', A'] = % , where % is the center of A' . 
If this condition is not satisfied, then A' = A; EB.w" where A; is a K -invariant, 
nilpotent Lie algebra with [A;, A;] spanning the center of A; , and .w" is 
commutative. Thus, N = NI X A and L I (N) = L I (NI) ® L I (A). It is now easy 
to show that LiCN) is commutative if, and only if, Li(NI) is commutative. 
Thus there is no loss in assuming that [A', A'] = :z . 

Given a compact subgroup K ~ Aut(N), we fix a K-invariant inner prod-
uct (.,.) on A' , and denote by A; the orthogonal complement to % in A' . 
Let XI' ... ,Xn be an orthonormal basis for A; . Define the homomorphism 
A: Yen) ~ A' by setting A(ej) = Xj (where e l , ••• ,en is the standard basis 
for RR), and A(Ej ,) = [Xj , X), (where E j ,j = [(e j , 0), (ej , 0)] E Yen) ). 
Let % denote the kernel of A (~ l:n). Note that A.: RR ~ A; is an isom-
etry (where Yen) is equipped with the inner product (u, U), (v, V)) = 
(0, uv t + -!tr(UVt))). Given k E K, we define k E Aut(Y(n)) by k(e) = 

I ~ ~ ~ ~ ~ r (k·(A(e j ))) and k(E j ,) = [k·ei'k.e),andset K={klkEK}. Note that 
K~K. 

Lemma 6.1. Let K be a compact subgroup of Aut(N). For any choice of or-
thonormal basis of A;, K is a compact subgroup of O( n). If K ,K' are con-

~ t~1 

structed using different orthonormal bases of A; then K = A K A for some 
A E O(n). K is a maximal compact subgroup of Aut(N) if, and only if, 
K = O%(n):= {A E O(n)IA·% (:= At% A) = %}. 

Proof. Given k E K, keRn) ~ Rn. Thus, there is an Ak E Gl(n, R) such 
that k· (u, U) = (uAk' Ak · U). Since A: Rn ~ A; is an isometry and the 
inner product on A' is K-invariant, Ak E O(n). Finally note that Ak = kA. 
It follows that % = ker(A) is k-invariant, and hence that K ~ O%(n). 

Suppose that A E l?%(n). Define kA E Aut(N) by requiring that 
kA . A«U, U)) = A(A . (u, U)). It is clear that A ~ kA: O%(n) ~ Aut(N) is 
a 1-1 homomorphism, and hence, since O( n) is a maximal compact subgroup 
of Gl(n, R), that K is a maximal compact subgroup of Aut(N) if, and only 
if, K = 0% (n). 0 

Let % denote the orthogonal complement in l:n of %, and let A'y = 
Rn x % be the Lie algebra defined as in (5.7), i.e. with Lie bracket defined by 
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[(u, U), (V, V)lz = P.z(UIV - v1u), where P.z is the orthogonal projection 
of Ln onto .%. Let A: Y (n) / % -+ fl be the canonical isomorphism, define 
i: fl.z -+ Y(n)/% by i(X) = X + %, and let ~ = A 0 i. Then ~ is a Lie 
algebra isomorphism. Since K c; 0.% (n), by restriction we may consider K c; 
Aut(Nz ) , where Nz = exp(fl.z). One can easily check that k· A(X) = ~(k. X) 
and thus prove 

Lemma 6.2. (K, N) is a Gelfand pair if, and only if, (K, Nz ) is a Gelfand 
pair. 

Pick a nonzero B E .%. Let ffe denote the Lie algebra defined as in 
(5.7) with .% = RB. ffe is a concrete realization of the quotient Lie alge-
bra fl.z / Yo ' where Yo is the orthogonal complement in .% of RB. Let ~ 
denote the subset of ffe given by Rn B x RB , and define a Lie bracket as in 
(5.7). Let NB and HB denote the corresponding simply connected Lie groups. 
Since the bilinear form defined on Rn by B is nondegenerate on its range, one 
has as in the proof of Theorem 5.12 (see equation (5.13)) that HB is isomorphic 
to a Heisenberg group. 

Given b E (Rn B).L , the orthogonal complement in Rn of the range of B, 
set 

(6.3) K(b,B) = {k E K I k· B = B, and k· b = b}. 

By restriction, we may consider K(b,B) as a subgroup of Aut(HB). 

Theorem 6.4. If (K ,N) is a Gelfand pair then (K(b, B) , H B) is a Gelfand pair 
for all B in .%, and all bE (Rn B).L. Conversely, if (K(b,B) ' HB) is a Gelfand 
pair for (b, B) in a set of full Plancherel measure, then (K, N) is a Gelfand 
pair. 

Proof. Recall that we identify Lie algebras and their duals using the selected 
inner products. Given BE.% and b E (Rn B).L we let ~b, B) denote the orbit 
in.Al"z (3:.AI"z*) through (b,B). By (5.11), ~b,B) = (b+RnB,B). Thus, 
K(b, B) is the subgroup of K that preserves the equivalence class of n(b, B) , the 
representation of N z corresponding to ~b, B) • 

As above, let Yo be the orthogonal complement in .% of RB. Then Yo 
is the subset of .% on which the functional B vanishes. Thus, n(b, B) factors 
through a representation of NB = Nz / exp(Yo) . 

Note that for u E Rn and v E (RnB).L ,equation (5.10) implies that 

[(u, 0), (v, O)]RB = PRB([(U, 0), (v, 0)]) = (B, [(u, 0), (v, O)])B 
= (JB(U), v)B = (uB, v)B = O. 
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Thus, ffo is the direct sum of the Heisenberg Lie algebra ~ = Rn B x RB 
and the commutative algebra (RnB)..l (= (Rn B)..l x {O}). Writing NB = HB X 

n..l l" f ~ (R B) , 7t(b,B) lactors as 7tB ® Xb' where 7tB is the element 0 HB corre-
sponding to Band Xb is the unitary character defined on (RnB)..l by Xb(v) = 
e271i(b, v) • 

The intertwining representation of K(b, B) fixes the factor Xb' and thus is 
multiplicity free if, and only if, the representation of K(b, B) on the space of 
7t B is multiplicity free. This proves the theorem. 0 

Remark. If K is a maximal compact, connected subgroup of Aut(N) then 
~ ( n n .1. f K(b,B) = ORB) x 0b((R B) ), where 0v(V) denotes the group 0 all orthogo-

nal transformations of V that fix v E V. We consider two applications of The-
orem 6.4. in the first, let /Y be the Lie algebra with basis X, Y, ' Y2 , Z, ' Z2 ' 
and with all nonzero brackets determined by [X, Y) = Zj for j = 1, 2. 
Let K be a maximal compact subgroup of Aut(/Y), and fix a K -invariant 
inner product on /Y. Pick an orthonormal basis Xi' i = 1, 2, 3, for Z..l , 
and define A: 3'(3) ---+ /Y by requiring that A(e) = Xi' i = 1,2,3. Then, 
dim(% = ker A) = 1. Thus, if Z is the orthogonal complement to % in ~3' 
dim(Z) = 2. Hence, if B E Z, B =f. 0, and b E R3 , one easily sees that 
K(b, B) = {e}. Thus there are no compact subgroups K' of Aut(/Y) such that 
(K' , N) is a Gelfand pair. 

The next application of Theorem 6.4 will be to offer a short proof of a theorem 
due to H. Leptin, [Le]. We assume, as always, that /Y is the nilpotent Lie 
algebra of a simply connected group N with [/Y, /Y] = Z , the center of /Y . 

Theorem (Leptin). Suppose that K is the k-torus contained in Aut(N). Then 
(K, N) is a Gelfand pair if, and only if, N is the quotient of the direct product 
of k-copies of the 3-dimensional Heisenberg group H" w.ith K acting trivially 
on the center of N and lifting to the product of the usual U ( 1) action on each 
factor H,. 

Proof. Let A: 3'(n) ---+ /Y , and K ~ Aut(F(n)) be defined as above. Let 

be the decomposition into K -root spaces. First note that if X E V , i = 1 , 2, 
0i 0., 

and 0, =f. °2 , then [X ,X ] = O. Indeed, since (K, Nz ) is a Gelfand pair, 0., 0:2 

there exist k; E K, i = 1 , 2 , such that 

X + X + -2' [X ,X ] = k, . X + k2 . X + -2' [k2 • X ,k,· X ]. 
at (}2 0 1 °2 Q) 0'2 0'2 0 1 

From the K -invariance of each V"' one concludes that k;· X" = X" , and thus 
I I 

that [X ,X ] = O. 
"1 "'2 
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Next observe that for n E {ni lIS i S k}, dim(V"J = 2. For this note 
that if f{, is the action of K on ~ := Va EEl.%' , considered as a subalgebra 
of ./Y:z' then (Ka' exp(~)) is a Gelfand pair. dim(~) > 1, since for each 
nonzero X E ~ there is aYE ~ such that [X, Y] =I 0, and since Ka acts 
as a subgroup of T on ~ , one concludes as in the proof of Theorem 5.17 that 
dim(Va) = 2, and so n = 2k. 

Let {e2i - l , e2J be an orthonormal basis for Va' and let 
I 

n = span{E2i_ 1 ,2; lIS is k}. 
We will show that if BE.%', the orthogonal complement to % := ker(A.) in 
L2k , then BEn. Given such a B, let Rn B = I:~=I v: be the decomposition 
corresponding to the standard form of the skew-symmetric B. Since B is 
nondegenerate on its range, for each nonzero X E Rn B there is a Yx E Rn B 
such that [X, Yx ] =I O. Since (KB' HB) is a Gelfand pair, one concludes as 
before, that if X E V:' then Yx E V:. It then follows that v: = span{KB . X} 
for any nonzero X E V:. This amounts to showing that if K B • X = X for some 
X E V:' then X = O. But this is clear, for otherwise, by Theorem 1.12, there 
exist k E K B such that 

X + Y x + ! [X, Yx ] = X + k . Yx + H k . Yx ' X]. 
This forces the contradiction that [X, Yx ] = O. It now follows that each v: 
equals some V ,and hence that BEn. Therefore, % contains the orthogo-a j 

nal complement to n in L 2k , and F(n)j exp(%) is the quotient of the direct 
product of k-copies of HI . Finally, since K fixes each element of n, K acts 
trivially on the center of N. 0 

SOLVABLE GROUPS 

We now consider a simply connected solvable Lie group S with Lie algebra 
Y. We denote by ./Y,7' or more simply by ./Y, the nilradical of Y. Given a 
compact subgroup K ~ Aut(Y), we set 

~={XEYlk·X=X, VkEK}. 
The following theorem and proof was communicated to the authors by H. Lep-
tin. 
Theorem (Leptin). If K is connected, then ~7' = ~ +./Y . 
Proof. Let Yc = Y ®R C be the complexification of Y. Then K ~ Aut(Yc), 
(~)c = (Yc)o' and ./Yg; = (./Y,7)c' Thus, we may assume that Y is complex. 

c 
Now, if K is abelian and 

~={XEYlk.X=X(k)X, VkEK}, 
then 
(7.1 ) 
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SOLVABLE GROUPS 

We now consider a simply connected solvable Lie group S with Lie algebra 
Y. We denote by ./Y,7' or more simply by ./Y, the nilradical of Y. Given a 
compact subgroup K ~ Aut(Y), we set 

~={XEYlk·X=X, VkEK}. 
The following theorem and proof was communicated to the authors by H. Lep-
tin. 
Theorem (Leptin). If K is connected, then ~7' = ~ +./Y . 
Proof. Let Yc = Y ®R C be the complexification of Y. Then K ~ Aut(Yc), 
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c 
Now, if K is abelian and 

~={XEYlk.X=X(k)X, VkEK}, 
then 
(7.1 ) 
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If X E ~, X =I 0, and A is an eigenvalue of ad X , then there is a nonzero 
Y E.9 such that [X, Y] = AY . For k E K, 

k· (AY) = [k . X, k· Y] = X(k)[X , k· Y]. 

Thus, X(k)A is also an eigenvalue of adX for all k E K. But if X =I e, the 
identity, X(K) = T, and thus, At is an eigenvalue of adX for all t E T. It 
follows that A = 0, and so ad X is nilpotent. Therefore, ~ ~ ./Y for all 
X =I e , i.e . .9 = Yo +./Y . 

We turn now to the general case. Let t E T ~ K, and X E .9. Since 
.9 = Y'6 +./Y, where Y'6 = {X E.9 It· X = X, Vt E T}, by the argument 
above, t· X == X (mod./Y). But every element of K is in a torus, and so for 
all k E K, k· X == X (mod./Y). It follows that 

Xo:= tk.Xdk==X (mod./Y). 

Since Xo E Yo ' the theorem is proven. 0 

Given X E .9 , we define i x E Aut(S) by i x(Y) = exp(X)y exp( - X). Con-
sider the following condition: 

(7.2) ForeachXEYo, YES, 3kEK 3 ix(y)=k·y. 

Theorem 7.3. Suppose K is connected. Then (K, S) is a Gelfand pair if, and 
only if, (K, N) is a Gelfand pair, and condition (7.2) is satisfied. 
Proof. Suppose (K, S) is a Gelfand pair. By Theorem 1.12, for all x, YEN, 
xy E (K· y)(K ·x) , which implies that (K, N) is a Gelfand pair. Furthermore, 
if X E Yo and YES, then exp(X)y E (K . y)(K . exp(X)) = (K . y) exp(X). 
This proves the necessity of the conditions. 

Suppose now the converse. Note that S = exp(Yo)N. Given X, Y E Yo ' 
and x, yEN we compute 

(K . exp(X)x)(K . exp(Y)y) = exp(X)(K . x) exp(Y)(K . y) 

= exp(X) exp(Y)(exp( -Y)(K . x) exp(Y))(K· y) 
= exp(X) exp(Y)(K . x)(K . y) 

= exp(X) exp(Y)(K . y)(K . x) 

= (exp(X)(K· exp(Y)y) exp( -X))(K· (exp(X)x) 
= (K . exp(Y)y)(K . exp(X)x). 

Theorem 1.12 implies that (K, S) is a Gelfand pair. 0 

Recall that a connected Lie group G is said to be type-R if the eigenvalues of 
adX, as a linear operator on :§, are pure imaginary. Note that ix(exp(Y)) = 
exp(Ad(exp(X)) . Y) = exp(exp(adX) . Y). Thus, if (7.2) is satisfied, and 
II· II is a K invariant norm on .9, then for all X E Yo, II exp(adX) . YII = 
II i x . YII = II Y II· This implies that the eigenvalues of ad X are pure imaginary 
for all X E Yo. The same holds true for X E ./Y , since ad X is nilpotent as a 
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linear operator on g. Thus 

Corollary 7.4. If (K, S) is a Gelfand pair, then S is type-R. 

A very simple example of a Gelfand pair (K, S) involving a non-nilpotent 
group is given by letting S = R ex C, with R acting on C by t: Z f--+ e it Z , and 
K = U ( I) acting as usual on C. 

SPHERICAL FUNCTIONS 

In this section we identify a moduli space for the K -spherical functions asso-
ciated to a Gelfand pair (K, S) . Recall that a K-spherical function associated 
to such a pair is a continuous, complex-valued function, ¢>, defined on S, 
satisfying 

(8.1 ) ¢>(e) = I and L ¢>(xk· y) dk = ¢>(x)¢>(y) 

for all x, YES. It easily follows that a K -spherical function is K -invariant. 
One also has that integration against a K -spherical function, ¢>, defines a 
complex-valued homomorphism on Li(N) , that this homomorphism is con-
tinuous if ¢> is bounded, and that all continuous homomorphisms of Li(N) 
are given in this manner (cf. [He]). We first consider K-spherical functions 
associated to a Gelfand pair (K, N). 

Lemma 8.2. Suppose ¢> is a bounded K -spherical function on N. Then there is 
a 7r E N and a unit vector ~ E Hn: such that 

¢>(x) = L (7r(k . x)~ , ~) dk, 

for each x EN. 
Proof. Let A¢: Li(N) -> C be given by integration against ¢>. 

Since L 1 (N) is a symmetric Banach *-algebra, [Le2], there is a represen-
tation 7f of L 1 (N) and a one-dimensional subspace H¢ of Hn such that 
(7f/ L ,!;(N) ,H¢) is equivalent to (A¢, C). As A¢ is irreducible, the extension 7f 
is also irreducible (cf. [N a]). Using approximate identities at each point of N, 
one can show that 7f is the integrated version of some 7r EN, with Hn: = Hn' 

Choose ~ E H¢ with "~,, = 1 . Then for each f E Li(N) , 7r(f)~ = A¢(f)~ , 
so that 

(¢>, f) = A¢(f) = (7r(f)~ , ~) 

= 1 f(x)(7r(x)~ , ~) dx 

= L 1 f(k -1 • x)(7r(X)~, ~) dx dk 

since f is K -invariant 
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= L[f(x)(n(k'X)~,~)dXdk. 

Since ¢ is K -invariant, we change the order of integration and obtain 

(8.3) ¢(x) = L (n(k . x)~ , ~) dk. 0 

Notation. We denote the function defined by (8.3) as ¢n,~. 

Corollary 8.4. If ¢ is a bounded K -spherical function on N, then ¢ is positive 
definite. 

Recall from §3 that for n E N we denote by Kn the subgroup of K that 
preserves the equivalence class of n, and that Wn denotes the intertwining 
representation of Kn' 

Let Hn = I:a ~ be the decomposition of Hn into irreducible subspaces 
invariant under the action of Wn • The assumption that (K, N) is a Gelfand 
pair implies that as Kn-modules, the ~'s are inequivalent for different a's. 

Lemma 8.5. If n' = n k ' then Kn' = k~ I KnkO . 
o 

Proof. If k' E Kn" then n~, ~ n'. That is, n~,(x) = Wn,(k')n'(x)Wn*,(k') for 
each x EN. Thus 

Note that for k' E Kn' , the above calculation shows that we could choose 
Wn, so that Wn(kok'k~l) = Wn,(k'). 

Corollary 8.6. For n' = nk ' Hn and Hn' have the some decomposition into 
o 

Wn- and Wn,-irreducible subspaces respectively. 

Theorem 8.7. (i) ¢ n , ~ is a K -spherical function if, and only if, ~ E ~ for some 
a, and II~II = 1. (ii) ¢n,~ = ¢n', y/ if, and only if, there is a k E K such that 
n' = n k and ~ , 11 belong to the same ~. 

Proof. Let f E L~(N). Since f is Kn-invariant, n(f) commutes with the 
action of Wn on Hn' Since Wn is multiplicity free, n(f) preserves each ~. 
Now by Schur's lemma, the irreducibility of Wn on ~ implies that n(f) acts 
as a scalar multiple of the identity on each ~. Note that this scalar is computed 
by the formula (n(f)~,~) for any ~ E Va with II~II = 1. 

For ~ E Va with II~II = 1, ¢n,~ is clearly a continuous function on N. We 
only need to show that Aq, (with ¢ = ¢n,~ ) is a homomorphism on L~(N). 
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Note that for f E Li(N) , 

(8.8) 

(<pn ,f.' f) = L L (n(k· x)l;, I;)f(x) dk dx 

= L L (n(x)1; , I;)f(k -1 • x) dx dk 

= (n(f)1; , 1;) . 

Thus, if f, g E Li(N), 

A¢(f * g) = (n(f * g)1; , 1;) = (n(f)n(g)1; , ~) 
= (n(g)~, ~)(n(f)~, ~) = A¢(f)A¢(g). 

Conversely, suppose ~ E Hn' II~II = 1. Write ~ = 2: ta.~a. with ~a. E ~, 
lI~a.II = 1, ta. ~ 0, and 2: t~ = 1I~1I2 = 1 . Then 

(<pn,f.' f) = (n(f)~,~) = L ta.tp(n(f)~a.' ~p) = L t:(n(f)I;a.' I;a.) 
a.,p a. 

since n(f) preserves the mutually orthogonal Va.'s 

= Lt:(<Pn,f.a ' f). 
a. 

Thus, for ~ = 2:ta.~a.' ta. ~ 0, <Pn,f. = 2:a.t~<Pn,f. ' and 1I~1I2 = 1 implies 
that 2: t~ = 1 . Note that positive definite homomo~hisms are extreme points 
in the Gelfand space of Li(N), so if <Pn,f. is a positive definite K-spherical 
function, it cannot be a convex sum of positive definite K -spherical functions. 
Thus ~ = ~a. for some 0:. 

Now suppose n' = nk and ~, Yf belong to Va. ~ Hn. Then 
o 

(<pn ,f. ' f) = (n(f)~ , ~) = (n(f)Yf, Yf) 

since n(f) is constant on Va. 

Thus, <Pn ,f. = <Pn', '1. 

= LL(n(k.X)Yf, Yf)f(x)dkdx 

= L L (n(kok . x)Yf, Yf)f(x) dk dx 

= (<pn' ,'1' f) . 

For the converse of (ii), we need to understand K--;;-N via the Mackey 
machine. Let n E iii, and suppose the intertwining representation Wn of Kn 
is a a-representation, as described in §3. Let T be any a-representation of 
Kn· Then p = T ® n Wn is an irreducible representation of Kn ()( N. Let fJ 
be the representation of K ()( N induced from p. Then fJ E K--;;-N, and any 
irreducible representation of K ()( N is obtained in this manner. More precisely, 
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K-;;-N is given by pairs (1l, T), where 1l E N ,and T E k;. Another pair 
(1l' , T') yields an equivalent representation if, and only if, ll' ~ llk for some 

o 
ko and T' ~ To ik ,where ik : Kn' --. Kn = koKn,k~1 . 

o 0 
As a function on G = K 0( N , any positive definite K -spherical function is 

given as follows: Let pEG. If there is a K-fixed vector v E Hp (the space 
of K-fixed vectors has dimension at most one), then ¢(x) = (p(x)v, v). This 
yields a 1-1 correspondence between the representations in G with K-fixed 
vectors and positive definite K-spherical functions on G (cf. [HeD. 

By Frobenius reciprocity, we see that the dimension of the space of K-fixed 
vectors in Hp equals the dimension of the space of Kn-fixed vectors in Hp' 
Note that T ® Wn has Kn -fixed vectors if, and only if, T is a subrepresen-
tation of Wn , i.e. HT = Va for some Wn -irreducible component of Hn ' and 
T = W n I va' Thus there is a 1-1 correspondence between positive definite K-
spherical functions and pairs (1l, ~), where 1l E N and ~ ~ Hn is a Wn-
irreducible component. We will see that these K -spherical functions coincide 
with the formulas in the statement of the theorem. Let {VI"" ,vn } be an 
orthonormal basis for ~,and set 

1 
(8.9) v = rm LVi ® Vi ' 

regarded as an element of Hp = Va ® Hn' For k E K n , 

1 "'-p(k)v = ~~ W n(k)v i ® Wn(k)v i ym . 
I 

1 L-= ~ a· .v.®a. kVk' ym I,]] I, 
i ,j ,k 

where A = (ai ,) is the matrix corresponding to Wn(k)IV;.' But 

"'a. ·a k=(A*A). k=J· k' ~ I,] I, ],], 

Thus 

(8.10) 

so V is a Kn -fixed vector in Hp' 
To construct a corresponding K-fixed vector in H p ' define J: K 0( N --. 

Va ® Hn by J(k, n) = (1 ® ll(n))v . To ensure that J E Hp , we need J(hg) = 
p(h)J(g) , for h E Kn 0( N, g E K 0( N. (Actually it is sufficient to take 
g = (k, e) with k E K .) We have 

J((kn , n)(k, e)) = J(knk, n) = (1 ® ll(n))v. 

On the other hand, 
p(kn' n)J(k, e) = W n(kn) ® ll(n) Wn(kn)v 

= (1 ® ll(n))p(kn)v = (1 ® ll(n))v, 

ON GELFAND PAIRS ASSOCIATED WITH SOLVABLE LIE GROUPS 113 

K-;;-N is given by pairs (1l, T), where 1l E N ,and T E k;. Another pair 
(1l' , T') yields an equivalent representation if, and only if, ll' ~ llk for some 

o 
ko and T' ~ To ik ,where ik : Kn' --. Kn = koKn,k~1 . 

o 0 
As a function on G = K 0( N , any positive definite K -spherical function is 

given as follows: Let pEG. If there is a K-fixed vector v E Hp (the space 
of K-fixed vectors has dimension at most one), then ¢(x) = (p(x)v, v). This 
yields a 1-1 correspondence between the representations in G with K-fixed 
vectors and positive definite K-spherical functions on G (cf. [HeD. 

By Frobenius reciprocity, we see that the dimension of the space of K-fixed 
vectors in Hp equals the dimension of the space of Kn-fixed vectors in Hp' 
Note that T ® Wn has Kn -fixed vectors if, and only if, T is a subrepresen-
tation of Wn , i.e. HT = Va for some Wn -irreducible component of Hn ' and 
T = W n I va' Thus there is a 1-1 correspondence between positive definite K-
spherical functions and pairs (1l, ~), where 1l E N and ~ ~ Hn is a Wn-
irreducible component. We will see that these K -spherical functions coincide 
with the formulas in the statement of the theorem. Let {VI"" ,vn } be an 
orthonormal basis for ~,and set 

1 
(8.9) v = rm LVi ® Vi ' 

regarded as an element of Hp = Va ® Hn' For k E K n , 

1 "'-p(k)v = ~~ W n(k)v i ® Wn(k)v i ym . 
I 

1 L-= ~ a· .v.®a. kVk' ym I,]] I, 
i ,j ,k 

where A = (ai ,) is the matrix corresponding to Wn(k)IV;.' But 

"'a. ·a k=(A*A). k=J· k' ~ I,] I, ],], 

Thus 

(8.10) 

so V is a Kn -fixed vector in Hp' 
To construct a corresponding K-fixed vector in H p ' define J: K 0( N --. 

Va ® Hn by J(k, n) = (1 ® ll(n))v . To ensure that J E Hp , we need J(hg) = 
p(h)J(g) , for h E Kn 0( N, g E K 0( N. (Actually it is sufficient to take 
g = (k, e) with k E K .) We have 

J((kn , n)(k, e)) = J(knk, n) = (1 ® ll(n))v. 

On the other hand, 
p(kn' n)J(k, e) = W n(kn) ® ll(n) Wn(kn)v 

= (1 ® ll(n))p(kn)v = (1 ® ll(n))v, 
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as required. Thus f E Hp , and for k E K, 

fJ(k)f(k', n) = f((k', n)(k, e)) = f(k'k, n) = (1 ® n(n))v = f(k', n), 

so f is a K-fixed vector. 
We check that f is a unit vector. 

IIfl12 = r Ilf(k, n)112 dk dn 
J(KocN)/(K.OCN) 

= r 11(1 ® n(n))vI1 2 dk dn 
J(KOCN)/(K.OCN) 

= 1 IIvl12 dk = 1, 
K/K. 

since 
2 1 Lm 2 Ilvll = - Ilv ®v·11 = 1. m I I 

i=1 

The K-spherical function ¢ on G associated with f is given by ¢(g) = 
(fJ(g)f, f) . The restriction ¢ of ¢ to N is given by 

¢(n) = (fJ(n)f, f) 

= 1 (fJ(n)f(k) , f(k)) dk 
K/K. 

= 1 (f((k, e)(e, n)), f(k)) dk 
K/K. 

= 1 (f(k,k·n),f(k))dk 
K/K. 

= 1 ((I®n(k·n))v,v)dk. 
K/K. 

For k E K, 
1 

((1 ® n(k· n))v, v) = m L(v j ® n(k· n)vj , Vi ® v) 
i ,j 

For k E Kn , 

L (n(k . n)vi' Vi) = L(Wn(k)n(n) Wn(k)-I vi , Vi) 

= L(n(n)Wn(k)-l vi , Wn(k)-I vi ) 

= L(n(n)vi , v), 
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by an easy trace argument. Thus, 

¢(n) = ~ [ ~)n(k. n)v i , v) dk mJK i 

1 
= m I>1>1l v(n) = ¢1l m- 1/ 2 "v(n). 

'I '~' i 
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Thus, ¢ = ¢1l,~, where c; is any element of ~ (since any unit vector in ~ 
can be written as 1/ rm LVi for some orthonormal basis {v I ' . .. ,v n} ). 0 

Suppose now that (K, S) is a Gelfand pair. Note that if ¢ is a K-spherical 
function, X, Y E Yo, and YES, then by (8.1) 

¢(y exp X exp Y) = ¢(y )¢( exp X)¢( exp Y) . 

One also sees from (8.1) that the restriction of ¢ to N := exp(ff), where 
ff is the nilradical of Y, is a K -spherical function. This indicates how one 
constructs K -spherical functions on S. 

Let XI' . .. ,Xp be a basis for a complement of ff , the nilradical of Y , 
in Yo. Since S is simply connected, for each YES, there exist unique 
n(y) E N (= exp(ff)) and t(y) E RP such that y = n(y)IIi exp(ti(y)XJ Thus, 
if ¢ is a bounded K -spherical function on S then 

¢(y) = ¢(n(y))IIi¢(exp(ti(y))) 

for each YES. Again by (8.1), for any X E Yo, the mapping t 1-+ ¢(exp(tX)) 
is a homomorphism of R into C. Thus, there exist an a E RP such that ¢(y) = 
¢(n(y))ei(a,t(y)) . Thus one has 

Theorem 8.11. ¢ is a bounded K-spherical function on S if, and only if, there 
is a bounded K -spherical function /If on N and an a E RP such that ¢(y) = 
/If(n(y))ei(a,t(y)) . Thus tl,(K, S) = tl,(K, N) x RP • 
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