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INTRODUCTION

Let us consider a deformable body under the action of prescribed body forces. Its
equilibrium state is governed by the well-known (geometrically linear) conditions
of equilibrium and strain-displacement relations. These conditions and relations have
to be completed by two different types of other relations:

1° the constitutive law (i.e. a relation between the stress tensor and the strain
tensor in the interior of the body);

2° the boundary conditions (i.e. a system of relations between the stress vector
and the displacement vector along the edge of the body; these relations describe the
interaction of the body with its neighbourhood).

It is the purpose of the present paper to give a detailed discussion of the boundary
conditions. The point of view that we are going to develop, consists in considering
the relation between the stress vector and the displacement vector along the boundary
as an independent, self-consistent “law of interaction” which can be expressed in
terms of a subgradient relation. This relation will include the known classical,
unilateral and bilateral boundary conditions as special cases. However, the main
intention of our discussion is the establishing of the complete equivalence of the
boundary value problem (in its generalized setting), the principle of virtual work and
the principle of minimum potential energy on the one hand, and in bringing more
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light into the relationship between the principle of minimum potential energy and
its dual problem (principle of minimum complementary energy) on the other one.
Although our approach can be extended to more general types of constitutive laws,
in the present paper we restrict ourselves for the sake of simplicity to Hooke’s
law (with the standard assumptions on the elastic coefficients).

A very compreheusive discussion of mechanical systems (static case and quasi-
static evolution case) in the context of variational statements, convex functionals
and duality with respect to paired topological vector spaces may be found in Moreau
[10]—[13] and Nayroles [14]—[16]. In these papersa great variety of constitutive
laws and phenomena (e.g. friction) are expressed in terms of a subgradient relation.
Special constitutive laws of this type are also studied in Lené [9]. Let us finally refer
to [5] where nonlinear problems involving Hencky type laws are studied.

General classical boundary conditions (in linear elasticity) are discussed in Hla-
vatek [6] and Hlavdcek, Necas [7]. A profound investigation of boundary con-
ditions involving unilateral constraints, in particular the Signorini problem, may be
found in Fichera [3], {4] (cf. also Duvaut, Lions [2]). Boundary conditions of
friction type are studied in the book of Duvaut, Lions [2]

The present Part 1 of our paper is arranged as follows. In Section 1 we summarize
first of all some known facts concerning traces of Sobolev space functions. Then we
introduce the concept of the trace of a stress tensor and prove some auxiliary results
which are also of interest by themselves. In particular, the advantage of this concept
is that the traces of the stress tensors belong to the dual of the space of traces of the
displacement vectors. Finally, we discuss in this section some properties of convex
functionals. The following section presents the (generalized) formulation of our
boundary value problem (Problem I) and several equivalent versions and special
cases. Section 3 is devoted to a detailed discussion of a number of examples of
our abstract formulation of the boundary conditions. In Section 4 we introduce the
principle of virtual displacements (Problem 1I) and the principle of minimum poten-
tial energy (Problem III) and make clear the relationships between all problems
stated.

In Part II of our paper we prove first of all some existence theorems for Problem I11.
Then we present a detailed discussion of the dual problem to Problem IIT and of the

" relationships between the both problems.

1. NOTATION. PRELIMINARIES

1° Let Q be a bounded domain in R® with boundary I'. We suppose that Q
belongs to the class C%' ). Then the unit outer normal n = {ny, ny, ny} exists

1) The bounded domain < R3 is said to belong to the class CF# (k= 0,1,2...;0 < =1
if (i) to each x € I' there exists an open ball B, centred at x such that the intersection B, N I”
can be described by a C*#-function, and (i) B, N I” divides B, into an exterior and an interior
part with respect to 2; cf. [17] for further details.
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a.e.onl (with respect to the surface measure), and its components are measurable
and bounded (cf. [17]).
We introduce the Hilbert spaces

# =[QP, v =[wi)]

with the scalar products and norms
(u,v) = J- uw;dx 2), Ju] = (u,u)''?,
o
(o) = [ e [ wons %)l = (),

respectively (W3(Q) denotes the usual Sobolev space; cf. [17]).
Setting
e = ei{w) = Yui; +uy), ue?,

R ={ue?V :Jgaij(u) &;;(u) dx = 0}
we have (cf. [2], [7]).

Lemma 1.1. Let Q € C%*. Then:

(i) There exists a positive constant ¢, such that
j eif{u) e{u) dx + |u]* 2 ¢u®> Vuev .
0

(i) (Korn’s inequality). Let 4" be any closed subspace of " with ¥y 0 & = {0}.
Then there exists a positive constant c5 such that

J‘Qe,»j(u) Bij(u) dx = czHqu Yue?,.

(i) # ={ue¥ :u=a+ b xx,a,b = const, xeQ}.
The functions in £ are called rigid displacements. Maintaining the assumption
Q e C°! we introduce further the Hilbert spaces

H =[N, v=[W()] 7).
Let (h, g)u = [r hig; dS denote the scalar product on H, while let

Il = (Z Il

be the norm on V. The imbedding V = H is compact and dense (cf. [17]).
2) Throughout the whole paper, unless otherwise stated, Latin subscripts take the values
1, 2, 3. Further, we use the convention that a repeated subscript means summation over 1, 2, 3,
and the notation u; = du/dx;.
3) Let us refer to [17] for the definition, norm etc. of the spaces LP(I") (1 < p << +o) and
W;(F) (s > 0, real).
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Further, let V* denote the dual of V, v« the dual norm on V* and {h*, h>, the
dual pairing between h* € V* and h € V. Identifying H with its dual one obtains the
confinuous and dense imbedding H — V*, and in the case he H and g e V the
dual pairing between h and g coincides with their scalar product in H.

For the elements in ¥ one can introduce the concept of trace (cf. [17]).

Lemma 1.2. Let Q € C°''. Then:
(i) There exists a uniquely determined mapping y e £(¥", V) such that
(u) = ulp Vue[CHQ)].

(ii) For each h € Vthere exists a u € ¥ such that

y(u) =k Jul = cfrly

(c = const > 0).
2° Now we introduce the spaces of tensor fields
S ={t:1;e Q)1 = 1;},
T={reS:1 eLZ(Q)}

It is easily verified that S and T are Hilbert spaces with respect to the scalar products

ij.j

(o, 7)s =J o,t;dx, o,7€8§,
o

(0,7)r = J (o4t + 04 tun)dx, o,7eT,
o

respectively. Using the arguments of [17, Théoréme 2.3.1] it can be shown that
[C*(Q)]° is dense in T. For the elements in T we have the following concept of
trace.

Lemma 1.3. Let Q e C%!. Then:
(i) There exists a uniquely determined mapping n e L(T, V¥*) such that

(@) = wylen;  vee[C(@T %)
ii) (Generalized Green’s formula) For any 1€ T and any u e ¥ it holds
y

j T ,de+J Ty, dx = <a(n), y(u)dy -
o

(iii) For each h* € V* there exists a t € T such that

n(1) = b el = ey
(c = const > 0).

n ;) Ni;)r;;reciscly, it holds
<n(r), hyy, = J‘ T;nh;dS Vre [C""(Q)]9 , YheV.
r

However, we use the above notation for the sake of simplicity.
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Proof. The assertions (i) and (ii} are readily obtained when starting from the
(classical) Green formula and using the density of [C*(2)]° in T.

Let us prove (iii). To this end, let h* € V'* be arbitrarily given. We have then
[<h*, v(e)>y| £ c4|e| for all g € %. With regard to the fact that £ is a closed subspace
of 5#, the Hahn-Banach theorem yields the existence of an element f € # such that

—<h* ey = (o) Yee#, [f] £ e]h*|y..

Hence, by virtue of Lemma 1.1 (ii) one obtains exactly one ue ¥ © % such that

(1.1) J;;Sij(u) e (v)dx = (f, 0) + <h*, y(v)>), Voe¥ .

Set 7;; = £;;(u). Then 1;; € I>(Q), and |t|s < ¢,|h*|,+ which is immediately seen
when setting » = u in (1.1). On the other hand, (1.1) implies ;; ; = —f; (in the sense
of 2'(Q)). Therefore teT and |[t]; < c3]|h*|y.. Finally, using the generalized
Green formula we find

0:0) + G50y = [ el o) s -

= J 7,;0; 5 dx = (n(7), p(0))y + J- fiv;dx
0 o

for allve ¥". By Lemma 1.2 (ii), h* = n(z).
3° For the discussion of the mixed boundary conditions (see Section 3) the fol-
lowing lemma will be useful.

Lemma 1.4. Let Qe C°' and suppose that I' = I'y W T, UN where I';, I';, are
disjoint open subsets of I and N has measure zero.

(i) Let pe[I*(I',)]’. Then for each & > 0 there exists an h, e V such that
h,=0 a.eon I, J lp - h)dS < e.
I
(i1) Let pe[LX(I'y)]? such that

J ph;dS=0 VheVwithh=0aeonly.
ra

Then p =0a.e. onT,.
(iii) Let h* € V* admit the decomposition
i =+ 54(0) )
where
hfeV*, <hi,h)y, =0 VheVwithh=0aeonl;,
peH with p=0a.e.onl,.

Then this decomposition is uniquely determined.
5) For the sake of clarity, we indicate here explicitly the adjoint j* : H — V'* of the injection
j: V— H (recall that H is identified with its dual).
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Proof. Assertion (i) can be proved by using a system of local charts and a standard
argument (cf. [17, Théoréme 2.4.9]).

Assertion (ii) is an immediate consequence of (i).
To prove (iii), let h* € V* have two decompositions
h* = hY + j*(p) = kT + j*(q)

where hY, p and k7, g satisfy the corresponding conditions in (iii). Then we have

Jr (pi - ‘L‘) h;ds = <]*(p - Q)y hy =0

forall h e Vwith h = Oa.e.on I';. Hence by (ii), p = g a. e. on I',, therefore p = ¢
and h¥ = k¥,
4% Let h e H. Then we have the decomposition
h=hn+h,, h,=hn;, h,=h—hpn.
Obviously, h, € I*(I'), h, € H, where
H,={keH:kn;,=0a.e onl}.
It is readily seen that I*(I') x H, is a Hilbert space with respect to the scalar product

(-»)e2ay + (- )u- Thus, the mapping h 1— {h,, h,} is an isometry from H onto
IXT') x H,; in particular, it holds

(h, K)yy = f hk,ds + f hok,dS Yh keH.
r r

Under stronger assumptions upon the boundary I' we have a similar situation
with respct to V. In order to make this precise we note first of all

Lemma 1.5. Let Qe C'''. Then the mapping h \= hn; is linear and continuous
from W3(I) into itself.

Proof. Let {S,, a,} (r = 1, ..., m) be any system of local charts for I' in the sense
of [17]. The hypothesis Q € C'*" implies that each component #,; of the unit outer
* normal (with respect to the local chart under consideration) is Lipschitzian. Our
assertion follows now from [17, Lemme 2.5.5].

Let Qe C''. We have then h, € W3'*(I') and h, € V, for any h € V, where
Vi=1{keV:ikn,=0a eonl}.

The norm H'”W;/Z(r) + H”V turns W;’z(F) x V, into a Banach space. Then the
mapping h |- {h,, h,} is an algebraic and topological isomorphism from ¥V onto
WY*(I) x V,. Indeed, the continuity of this mapping follows from Lemma 1.5,
while its bijectivity is seen at once. The assertion is now a consequence of the Open
Mapping Theorem (cf. [8]).
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Passing to the dual spaces one obtains that the mapping h* |- {h}, hy} where
k¥ and hY are uniquely determined by

¥ by = by hdwiPay + < by, ©) YheV,

is an algebraic and topological isomorphism from V* onto W3 V*(I') x V¥.

Let us finally note that V, is continuously and densely imbedded into H,. Thus,
identifying H, with its dual one obtains the continuous and dense imbedding H, < V7.

Collecting the above results we get

Lemma 1.6. Let Qe C'!. Then:

(i) There exists uniquely determined mappings

e LV, WYHI)), v, eZL(V, V)
such that
Vn(“) = “f‘r ni, 7’:1(“) = ”j]r - ?n(“) n;
for allu e [C*(R)]?, and
Yu) = p(u)n + p(u) Vuer .
For each pair {h, k} € WY*(I') x V, there exists a u € ¥ such that
w(u) =h, yu)=k,
lul < ei(|alwyary + Klv)

(¢; = const > 0).

(ii) There exists uniquely determined mappings

n,€ L(T, W;VA(I)), =ne2(T, V)
such that
n,,(‘c) = tylrnn;, (1) = tylrn; — ) n;
forallte[C™(2)]°, a
<75(T) h>y = (m, (T) hn/Wz oy + <75z(T), h:>V‘,

for all €T and all heV. For each pair {h*, k*} e W5 /*(I') x V¥ there exists

a 1€T such that
(’L‘) = h*, n,(z) = k*,

Il = calB*]ws Py + 1k*]v2)

(c, = const > 0).

(iii) For any teT and any u e ¥ it holds

I T, U ,,dx+j T4 dx =
o}

= (m,(2), 2w ey + (1) 7))y, -
6) The parentheses on the right hand side mean the dual pairings between the respective spaces,
Further, W3 Y2(I") = dual of Wi/3(I"}, V; = dual of V.
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5° Let ¢ : V- (— o0, + 0] be a proper, convex and lower semi-continuous func-
tional. We denote by D(g) its effective domain, i.e.

D(¢) = {heV:o(h) < + o}
Next, for any proper functional ¢ : ¥ — (—oo, +o0] we introduce the conjugate

functional
@*(h*) = sup [<h*, h)y — o(h)]

heV
with the effective domain

D(g*) = {h* e V¥ : p*(h*) < + o0} .
Obviously,
(1.2) o(h) + ¢*(h*) = <h*, hy, VheV, Vh*eV*.

The functional ¢* is proper, convex and lower semi-continuous if ¢ does (cf. [8],
[10]). Further, by a result of Brondsted and Rockafellar (cf. [1]),

(1.3) dhoeV, 3hyeV*:plhy) + @*(hy) = {hy, hody -

We introduce the following

Definition. Let Q € C'>'. The proper functional ¢ : V — (— o0, + 0] is said to be
decomposable if there exist functionals ¢, : Wy/*(I') - (= o0, +o0] and ¢, : V, -
= (-0, +00] such that

o(h) = @, (h,) + o{h) VheV
where h = h,n + h,.
Obviously, the functionals ¢, and ¢, are proper. Let us note two properties of
proper, decomposable functionals.

Lemma 1.7. Let Qe C''! and let ¢ : V- (— o0, + 0] be a proper, decomposable
Sfunctional. ‘

Then the following two conditions are equivalent:

(i) @ is convex (resp. lower semi-continuous),

(ii) both @, and ¢, are convex (resp. lower semi-continuous).

Proof. (i) = (ii). The convexity of both ¢, and ¢, is easily deduced from the
convexity of ¢.

Let {h'} = W}*(I') (s = 1,2,...) be any sequence such that h* — h strongly in
W3A(I') as s > . Fix ko €V, with §(k,) < + o0, and set h° = h'n + ko, h =
= hn + ko. By Lemma 1.5, i* — h strongly in Vas s — 00, and therefore

ouh) = o(h) — @,(ko) < lim inf o(h*) — @ (ko)
= lim inf ¢,(h°) .
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The Jower semi-continuity of ¢, is deduced from the lower semi-continuity of ¢
by an analogous argument.

(i) = (1) The convexity of ¢ is obvious, while the lower semi-continuity is obtained
easily when taking into account the algebraic and topological isomorphy between V'
and W;3(I') x V,.

Lemma 1.8. Let Qe C'*',and let ¢ : V — (— o, + 0] be a proper, decomposable
functional.
Then

@*(h*) = @y (hy) + @i (hf) Vh*eV*
where (h*, by, = <hy, hn>W;/2(r) + <hE by for all he V.

Proof. In virtue of the algebraic and topological isomorphy between V and
W;/Z([v) X V,, .

@*(h*)

sup [<h* B>y ~ o(h)]

sup [(h:, h>W1”1(I‘} - q)n(h)] +

heW1/2(I)

+ sup [(hE, byt — o(k)]

keV ¢

= ¢a(hy) + 7 (h7)

I

for any h* e V*.

2. SETTING OF THE BOUNDARY VALUE PROBLEM

1° In what follows, we consider the following situation. Suppose that a deformable
body occupies a bounded domain Q < R3 which is assumed to belong to the class
C%!. We look for the displacement vector u € 4" and the stress tensor ¢ € T in the
equilibrium state of the body under the action of the given body force f e #.

To make this situation precise, let us assume that the strain-displacement relations

e = eif{u) = Huy; + uy)
hold a.e. in ©, and that the conditions of equilibrium
a;;+fi=0

are satisfied a.e. in Q. Further, we suppose that in Q the stress-strain relations
(Hooke’s law)

G;; = Qi
hold where the elastic coefficients a,;, are assumed to satisfy the following con-
ditions:

a;ju; is measurable and bounded on Q,
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— — £
Aijeg = Qjigg = Qgy; foraa. xeQ,
;€8 = Aoe e for all symmetric
tensors g;; and all xe Q; a, = const > 0.

To complete the formulation of our problem we introduce a general relation
between the stress vector and the displacement vector along the boundary I'. This
relation will include a number of known classical boundary conditions as well as
conditions involving unilateral or bilateral constraints. On the other hand, the general
setting that we are going to introduce enables us to present a transparent approach
to the dual problems.

In all what follows, let ¢ denote a proper, convex and lower semi-continuous func-
tional from Vinto (— o0, + ], ¢* its conjugate functional.

Definition. The displacement vector u € ¥~ and the stress tensor 6 € T are said to
satisfy the boundary conditions (associated with the pair {¢, ¢*}) if

o(y(w)) + ¢*(=n(0)) + {n(o), y(u)>, = 0.

In view of (1.3) and the surjectivity of both y and = (cf. Lemmas 1.2 and 1.3), the
set of all {u, 6} € ¥~ x T which satisfy the boundary condition (associated with the
pair {¢, *}) is non-void.

Now we state the following

Problem 1. Find ue v" and o €T such that

(2.1) 0i;;+/i=0 ae inQ,
(2.2) 0i; = aiueg(u) ae.in Q,
(23) o(() + ¢*(=n(0)) + <{n(o), y(u))y = 0.

Let us note two equivalent formulations of the boundary condition (2.3). Firstly,
{u,0} € ¥"x T satisfies (2.3) if and only if

‘ (2.3) o(h) — o(y(u)) + <n(c), h — y(u)yy, = 0 Vhe D(¢)
| or, equivalently,
Wu)e Do), —n(o)edp(y(u)). 7)
Secondly, {u, 6} € ¥~ x T satisfies (2.3) if and only if
(2.3M) o*(h*) — o*(—n(0)) — <h* + n(0), y(u)>y = 0 Vh* € D(p*)
7) Let X be a normed linear space, {.,.> the dual pairing between the dual X* and X. The:

subdifferential mapping 0@ of a proper functional @ : X — (—oc, +oc] is defined to be o0d(x) =
= {x* EX*:P(y) = D)+ (x*,y— a)>Vye X}.
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or, equivalently,
—n(o) e D(¢*), y(u)edp*(~n(0)) *)

(cf. e.g. [8]).
2° The boundary condition (2.3) may be equivalently replaced by other relations

when imposing certain additional conditions upon ¢.
Lemma 2.1. Let Q € C%'. Suppose that ¢ is positively homogeneous, i.e
o(0) =0, o(th)y=1t¢(h) Vt>0, VheV.

Then {u, o} € ¥" x T satisfies (2.3) if and only if
(2.34) o(y(u)) + <n(0), y(u)yy =0, —n(o)e dp(0).

Proof. First of all, it holds
D(¢p*) = d¢(0), ¢*(h*) =0 Vh*e D(p*)

(cf. [8, §§ 4.1, 4.2]). Let {u, o} € ¥"x T satisfy (2.3). Since —n(0) € D(¢*), we have
¢*(—n(0)) = 0 and (2.3) turns into (2.3,).

Conversely, let {u, 6} € #"x T fulfil the conditions (2.3;). The first one means
7(u) € D(¢), while the second one is equivalent to ¢(h) + <{n(c), hD; = 0 for all

y € V. Hence {u, o} satisfies (2.3").
Lemma 2.2. Let Qe C%'. Suppose we are given a proper, convex functional

Y :H > (—o0, +00] such that D(y) = {heH :y(h) < +oo} is open. Further,

let y be continuous at some point of D().
Let * denote the conjugate functional of :
v*(h) = sup [{(h, ) = ¥(0)]
Set ¢ =Y oj°). Then {u, 6} € ¥ x T satisfies (2.3) if and only if
n(o) = j*(p) with peH,

W(j y(u) + ¥*(=p) + (p,j y(u))a = 0.
Proof. Observing that Im(j) n D(y) # @ and that j* is injective we conclude

from [8, § 3.4, Theorem 3] that
(2.4) D(¢*) = {h*eV*:h* = j*g), g D(¥Y*)},

@*(h*) = y*((j*)"" h*) Vh*e D(p*).
The assertion is now seen at once.

8) Here we have identified y() with its canonical image in V**.

%) Cf. footnote 5.
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Lemma 2.3. Let Q € C'! and let ¢ be decomposable (cf. Section 1.5°).
Then {u, o} € ¥"x T satisfies (2.3) if and only if
ea) [P0 ) ¢ om0
- (Pr('}"r(u)) + (P:k(‘nt(a)) + <7tt(0'), V,(u))>v, =0.

Proof. Let {u, 0} € ¥"x T satisfy (2.3'). Given arbitrary he W}'*(I') and ke V,,
we set i = hn + k. Lemma 1.5 implies & € V, and by Lemma 1.6 (ii)

@uh) = o)) + <) b — 3D wiry
+ @k) = @yw) + <nf0), k — y(u)y, 2 0.
Setting k = y,(u) (resp. h = y,(u)) in the last inequality one finds
@u(h) — @) + (T0), b = 9 (1)t ) 2 0,
k) = ovu)) + <{mlo) k = y(u)y, 2 0
for all h e W3*(I') and all k € V,, respectively. This system is equivalent to (2.3,).

The converse assertion is obvious.

3. EXAMPLES

We now illustrate that (2.3) includes a number of classical boundary conditions
as well as conditions involving unilateral or bilateral constraints along the boundary.
Existence theorems which apply to the examples discussed below may be found in
Part 11, Section 5.

1° Let us begin with considering some classical boundary conditions. In Examples
1—4 the domain Q is assumed to belong to the class C%'.

Example 1 (displacement boundary condition). Let u, € V be given. We consider
the condition

(3.1) 3’(“) = Ug -
Let ¢ denote the indicator function of the closed convex set {u,}, i.e.

LY for h=u, ae onl,
o(h) = {+oo for heV, h+u,.

The functional ¢ is proper, convex and lower semi-continuous. Tt is easy to sce that
o*(h*) = (h*,upyy, Vh*eV*.
The equivalence of (2.3) and (3.1) is immediate.

Example 2 (traction boundary condition). Given g* € V* we subject the stress
tensor ¢ to the condition

(3.2) (o) = g*.
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Set
o(h) = —<g*, by YheV.
Then

*(h*) L for h* = —g* |
¢ T )+ otherwise .

As above, the equivalence of (2.3) and (3.2) is seen at once.

Example 3 (generalized support condition). Let A : H — H be a monotone gra-
dient mapping (cf. [5]). Then u and ¢ are required to satisfy the condition

(3.3) () = —j* o A = j(y(u))
(recall that j denotes the injection from Vinto H).

The mapping A maps strongly convergent sequences into weakly convergent
sequences; further, 4 is the Gateaux derivative of the convex, continuous functional

y(h) = JI(A(lh), h)gdt, heH
(cf. [5]). Therefore, (3.3) is equivalent to each of the following conditions:
(3.3)) w(jh) — (i y(u)) + <n(o), h — y(u)yy = 0 VheV,
(33,) { o) € Im(?),
V(i 7)) + @*(=(*)7" 2l0)) + <{a(a). vy = 0.
Set ¢ = Yo j. By (2.4),
o*(h*) = {W*«j*)” h*) for (j*)7' h* e D(y*),

+ oo otherwise ,

and the equivalence of (2.3) and (3.3) is an immediate consequence of Lemma 2.2.
Suppose additionally that A4 is bijective. Then A~ ! is also a monotone gradient
mapping, and it holds

1 1
y*(h) = J. (A7 (th),h )y dt — j (A(tA™7(0)), A7 '(0))y dt
0 0
forany heH (cf. [5]).
As a special case of (3.3) we consider the elastic support condition

n(o) = j*(p) with p= —ay(u)+g aeonTl

where a € L”(F), a = a, = const > 0 a.e. on I" and g € H. In the present case, the
functionals ¢ and ¢@* take the form

o(h) = %f ahf? dS—jgihidS,he v,
r

r
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11 .

o= o] Hlo a9 por it =) qen,
= a

+ 0o otherwise .

Example 4 (mixed boundary conditions). Let I'; (s = 1, 2, 3) be mutually disjoint
3

open subsets of I' such that I' \ v I' has measure zero.

s=1
Suppose we are given the following data:
us eV,
ge[lX(r,uTy)]?, ael”(I, uTs) where
a=0 aeonl,, az=ay=const>0 ae onT;.

Let us consider the following boundary conditions:

(34) Wu) =uy ae on Iy,

(3.5) Crlo), hyy = f (—aydu) + g.) hydS

rzuls
VheV with h=0 ae onTl,.

Analogously as above, we introduce the functionals

(h) = 0 for h=u, ae onl,,
P =Y Lo for heV, h<+u, ae onTl,,

Y(k) = lj a{h!z dS—f gh;dS for heH
2 I3 rurs

and
Q=0 + ¢, where @, =Yoj,
The conjugate functionals of ¢, and ¥ can be calculated (with minor changes) as
above:
h*, ugyy for h* € V* such that <h*, h), =0
oT(h*) = forany heV with h =0 a.e.on I'y,
+ oo otherwise ;

L
IJ. f|q+g[2d$ Jor qe H with q =0
r;4

2
Y*(q) = ae.onl, q= —g
I ae. on Iy,
[ + otherwise .

Further, (2.4) implies ¢3(h*) = ¥*(q) for h* e V* such that h* = j*(q) with
g € D(y*).
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In order to calculate explicitly the functional ¢* we note first of all that ¢, is

defined and continuous on the whole V. Then
e*(h*) = inf [@}(h]) + ¢3(h3)]
Rt

(cf. [8], [10], [18]). Let now hi € D(¢F) and h} e D(¢3) be arbitrary. Setting h* =
= I + h} it holds @*(h*) < +o0; i.e. h* e D(¢p*). Conversely, let h* € D(¢*) be
arbitrary. Then there exists a decomposition h* = hY + h3 with hf e D(¢7) and
h3 e D(¢3%) (i.e. 1% = j*(q) with g e D(*)) such that @*(h*) = @T(hT) + @3(h}).
By Lemma 1.4 (iii), the elements h} and % arc uniquely determined by h*, and there-
fore

1 1
(,0*(11*) - [(/1,1,{0-)‘, + EJ\ ; 19 + QI2 dsS for h*e D((p*) ,

s
+ o0 otherwise ,

where
D(¢*) = {h* e V*: h* = hY + j*(q) where hi € V* such that
ChY, Yy =0 forany heV with h =0 ae only,
qeH such that q =0 ae.only, q= —g ae onl,}.

1t is now readily verified that with the above choice of ¢ the boundary conditions
(3.4), (3.5) can be equivalently written in the form (2.3).

Example 5. Let Qe C''*, and let ko € V, and A} e W3 1/2(F) be given. We consider
the boundary conditions

- (3.6) y,(u) = k¢, 71,,(0') = h¥.
Let us introduce the functionals
@(h) = —<hg, hyy 2 () for he Wi(I),
0 if k=ko,
odk) = {Jroo if keV,, k=+k
and define
o(h) = o.(h,) + @h,) for heV
where = h,n + h,. The functional ¢ is proper, convex, lower semi-continuous and
decomposable. It holds
0 if h*= —n}
* *) 0>
o (h*) {-{-oo otherwise ,
oy (k*) = <k*, koyy, for k*eV¥.
By Lemma 1.8,
ChEs kody, if hy = —h,
+oo  otherwise ,

o*(h*) = {

where <h*, by, = (h¥, by oyl* oy + <h¥, by, for any he V.

2
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The equivalence of (3.6) with (2.3,) is obvious.
Preserving the assumption € € C**!, we can verify analogously that the boundary
conditions

(3.7) y(u) = ho, mo) = kj
where hy e W3'3(I), k§ e V5 (e.g., hy = 0, k = 0 in the case of a contact support)
are also included in (2.3,) as a special case when setting
foif h=h,
oulh) = {-l-oo if he Wé/z(F). h =+ hy,

odk) = —<kg, k)yy,. for keV,.

Finally, when choosing appropriately the functionals ¢@,, ¢, and using similar
arguments as those of Example 4, the general mixed boundary conditions discussed
in [6], [7] can also be expressed in the form (2.3,). Further, let us note that our
approach does not require o € [ W3(2)]° (cf. [6]). The disadvantage of this require-
ment consists in the fact that Problem I and Problem II are no more equivalent
(cf. Theorem 4.1 below). Moreover, this requirement seems to be less convenient
with regard to the general duality (cf. Part II, Section 6).

2° We pass to a discussion of some boundary conditions that involve unilateral
and bilateral constraints.

Example 6 (Signorini problem; cf. |3], [4]). Let kg € V] be given. We consider
the boundary conditions

(3 ) y,,(u) <0 geonl, <7rn(a), y,,(u));,,;/z(r) =0,
(m(6), W'y 20 Vhe W), h£0 aeonl,

(3.9) - nfo) = ky .
Let us set o(h) = @,(h,) + @h,) for any h e V, where

0 for he W;’Z(F) , hZ0 geonl,
o fh) =S+ for heWy*I), h>0 onasubset
of positive measure,

olk) = —<k§, kdy, for keV,.
The conjugate functional of ¢, and ¢,, respectively, becomes

0 for h* e Wi VA(T) with {h*, By 7y, £ 0
or(h*) = for any he WY(I') with h <0 a.e.on T,
+o00  otherwise ;

0 for k* = —k§
*(p %) 0’
?y (k ) {+ o  otherwise .
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It is easily seen that the boundary conditions (3.8), (3.9) are a special case of (2.3,)
with the above choice of ¢, and ¢,.
Further, the boundary condition (3.9) may be obviously replaced by

(3.9 ydu) = ko
where k, € V; is given (for the choice of the functional ¢, we refer to Example 5).

Example 7 (friction along any tangential direction; cf. [2]). Let hy e W5 '*(I)
and ke L°°(F) be given where k > 0 a.e. on I'. Let us introduce the conditions

(3.10) (o) = h5,
n(o) = jf(p) with peH,'°) and

lpl <k aeonl, where:

3.11
( ) Ip[<k:yt(u)=0,

lp| = k=322 0:y(u) = —Ap.

U -

Note that (3.11) is equivalent to
nlo) = ji(p) with peH, and
|p] =k, k[y,(u)‘ + pive{u) =0 aeonl.

(.11,

We define
¥lq) = j klg|dS for qeH,.
r

The functional , is convex, continuous and positively homogeneous on H,. A simple
calculation yields

*(q) = 0 for qeH, with Iq[ék ae.onl
vila) = +0o0  otherwise .

The equivalence of (3.11;) to
{n,(a) e Im(j}),
Viliovw) + (=08 mdo)) + <o), vu)y, = 0
is casily verified.
Finally, setting ¢, = ¥, - j, we have
[0 for k*eV} with k* = ji(q),
o7 (k*) = geH,, |g| sk aeonl,
1+ 0

(3.11,)

otherwise

(cf. (2.4)) and (3.11,) is obviously equivalent to the second condition in (2.3,).

10) We denote by j,, j, the injections from ¥, into H, and from W%’Z(F) into LZ(I") respectively,
and by j’,",j’,‘,‘ the adjoint mappings. Recall thatj:" andj;" are injections, too.
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As in the preceding example, (3.10) may be replaced by the condition
(310’) Vn(“) = hO

where hy € W32(I) is given (let us refer to Example 5 for the choice of the func-
tional ¢,,).

Example 8 (friction along the normal direction; ¢f. [2]). Suppose we are given
ke Vi and ke L*(I') (i = 1,2) where k; < 0 < k, a. e. on . We consider the

boundary conditions
n(o) = jy(p) with peIX(I') and
ki =p <k, aeonl, where:
(3.12) { ki <p<ky,=y,u)=0,
p = k; ﬁyn(u) =20,
|p=ke=m(u) 20,
(3.13) nfo) = kg .

A straightforward calculation shows that (3.12) is equivalent to

(3.12,) n(o) = jx(p) with pel*(I') and k; < p =k,,
o —ky )" + kyyu)” + pyu) =0 ae.onl.
Setting

oa) = J (—kig* + kyq7)dS for qelXI),
r
we have

¥a(q) = 0 if qelX(I) with ki £ —q<k, aeonl,
T otherwise ,

and the system of conditions (34121) is equivalent to the conditions
(.12 {nn@elmo:‘), -
Yl 2a(0)) + (= () ™! (@) + <o), vl wi = 0
Analogously as in the preceding example, set ¢, =, o j,. Then
jo for h*e WiVA(I) with h* = ji(q),

on(h*) = qe(I'), ky £ —q=<k, aeonl,
l+ o otherwise ,

and the equivalence of (3.12,) to the first relation in (2.3,) is evident.
As in Example 6, the boundary condition (3.13) may be replaced by

(3.13) Pdu) = ko

where kq € V, 1s given.
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In the end let us note that we may consider mixed boundary conditions of all
foregoing types (e.g. classical, Signorini and friction type conditions on the respective

parts of the boundary) when adopting the arguments of Example 4. However, we
omit the details.

3° We conclude this section by considering the relationships between some of our
above examples.

Lemma 3.1. Let Qe C®', and let h}y € V* be fixed. Further, let ¢o:V -~ R be

a convex, lower semi-continuous functional that fulfils the following additional
conditions:

oo(h) 20 VYheV,
Dy ={heV:pyh) =0} +90.
Set
ou(h) = m @o(h) — <hg, by for heV, m=1,2,....
Then it holds:
(i) lim @,(h) = y(h) for any heV, where
. —(hE, by, if heDg,
o(h) = {4— o] otherwise .

(i) Let {u,,0,}€¥ x T (m =1,2,...) satisfy the boundary conditions (2.3)
associated with the pair {¢,, ¢}, and let {u,, 0,,} = {u,c} in ¥" x T as m — co.
Then the pair {u, o} satisfies the boundary condition associated with the pair
{(p, q)"‘}.

Proof. Assertion (i) is immediate (note also that D is convex).

For proving (ii) we conclude first of all from the inequality

(3.14) Pul(h) = @ulr(u) + (n(@,), B = 3(14,)>y 2 0
which holds for any e Vand m = 1, 2, ... that
(3.15) m @o(y(u,) < c|h — y(um)“V Yhe Dy, m=1,2,...

(¢ = const > 0). Therefore po(y(u)) < lim inf @o(y(un)) = 0, ie. y(u) e Dy = D(¢)
Next, inserting h = y(u) in (3.15) one obtains lim ¢,(y(u.)) = —<hg, y(u))y =
= ¢(y(u)). Letting now m — oo in (3.14) we get (2.3).

Let Qe C'. Setforhe Vand m = 1,2, ...

(Pm(h) =m lhrl ds — <h:, hn>W;/2(f) ’
r

.
on(h) = m | |h,] dS = <kS, hodv, s

~
Ou(h) = m | hS dS — Ckgs ey,

JI
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where hge W3YA(I), ki e VY are fixed. The first functional corresponds to the
boundary conditions (3.10), (3.11) with k = m, while the second and third one cor-
respond to (3.12), (3.13) with —k; = k, = m and —k, = m, k, = 0, respectively.
Passing to the limit m — oo we get the functionals which correspond to the boundary,
conditions (3.6) with k, = 0, (3.7) with h, = 0 and (3.8), (3.9), respectively.

4. VARIATIONAL FORMULATION

1° In this section, we present two equivalent formulations of Problem I (cf.
Section 2.1°).
Let us introduce the proper, convex and lower semi-continuous functional

F(v) = ta(v, v) + o(y(v)) — (f,v), ve¥
where
a(u, v) = J A &) eg(v) dx, w,ve v .
2
Further, we define
Vo ={ve? 1y(v)e D(o)} .

The functions in ¥7,; will be called “geometrically admissible displacement fields”;
for v e ¥, the expression F(v) represents the “potential energy™ of the body con-
sidered.

Let {u, 6} € ¥° x T satisfy (2.1), (2.2). We obtain by the generalized Green formula
(cf. Lemma 1.3 (ii))

4.1) a(u, v) = {n(a), y(v)>y + (f.v) Voe ¥ .
Now we state the following two problems:

Problem II (principle of virtual displacements).
Find ue , such that

(4.2) a(u,v — u) + o(y(v)) — e(y(u)) = (f,v — u) Yoe ¥4y

Problem I (principle of minimum potential energy).
Find u e, such that

(4.3) F(v) = F(u) VYve¥ .
The relationships between the problems stated is explained by
Theorem 4.1,

(i) If {u, a} €4 x Tisasolution to Problem I then u is a solution to ProblemII.
(ii) Let u e ¥, be a solution to Problem II. Set ¢;; = a;u;, a.e. in Q. Then
{u, o} belongs to ¥~ x T and it is a solution to Problem I.
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(iii) The function u € ¥,y is a solution to Problem 11 if and only if it is a solution
to Problem 111.

Proof. (i) Let {u, 0} € ¥" x T be a solution to Problem I. Then u € ¥",, and

o(3(v)) ~ o(3(u)) =2 —<n(0), y(v) — (u)>y VYoe ¥ .,

(cf. (2.3')). Replacing vin (4.1) by v — u and adding the result obtained to the above
inequality we get (4.2).

(ii) Let u € ¥, be a solution to Problem 1I. Inserting v = u +  in (4.2), Y €
e[ 2(Q)]’ being arbitrary, one obtains

a(u, ¥) = (£ ¥).

Hence, setting 0;; = a;;,u;,; a.€. in Q we have
j oo, dx = -[ fabids Ve [2(@Q)] .
2 2

Thusoe T and o;; ; + f; = 0 a.e. in Q (and the relation (4.1) holds).

ij.J

Replacing v in (4.1) by v — u we conclude from (4.2) that
e(1(v) — @(y(u)) + <(n(o), 9(v) = Py 2 0

for any v e ¥",,. The mapping y being surjective, this inequality is equivalent to that
in (2.3").
(iii) Let u € ¥",4 be a solution to Problem II. Then
F(v) 2 F(u) + $a(v — u, v — u)
> F(u)

for any v e ¥, i.€. u is a solution to Problem III.
Let, conversely, u € ¥, be a solution to Problem III. Let v e ¥, be arbitrary.
Then (1 — t)u + tve ¥, for any 1€ (0, 1) and

F(u) £ F((1 — t)u + tv)
F(u) + 32 a(v — u, v — u)

+ tla(u, v = u) + 9((v) = o(y(w)) = (f v = W],

A A

or, equivalently,

a(u,v — u) + qo(y(v)) - (p(y(u)) +3talv —u, v —u) = (fiv - uj.
Letting 1 — 0 we obtain (4.2).
2° We conclude this section with the following simple observation.
Let {uy, 0}, {uy,0,} € ¥ x T be two solutions to Problem I. Then

Uy —u eR, £ij(u1) = Ei,j(“z) s Otrij = Oajj -



Indeed, by Theorem 4.1 both u; and u, satisfy (4.2). This yields

0

v

a(uy — Uz, uy — uy)

aoj e(uy — uy) e (uy — uy)dx.
2

v

Consequently, s,-j(ul — uz) = 0 a.e. in 2, and the assertion is obvious.
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Souhrn

OBECNE OKRAJOVE ULOHY A DUALITA
V LINEARN[ TEORII PRUZNOSTI, 1

RoLF HUNLICH, JOACHIM NAUMANN

Rovnovdzny stav pruzného télesa, na né€z plsobi vnéjsi sily, je popsdn vieobecné
znamymi podminkami rovnovdhy, vztahy mezi posunutim a deformacemi, konstitu-
tivnimi rovnicemi linedrni teorie pruZnosti a okrajovymi podminkami. V &ldnku se
podrobné studuji okrajové podminky, pfitemZ vychodiskem je obecny vztah mezi
vektory, napéti a posunuti na hranici, jenZ mtize byt vyjddien v terminech subgra-
dientniho vztahu. Ukazuje se, Ze tento vztah zahrnuje jako specidlni pfipady vSechny
znamé klasické, oboustranné i jednostranné okrajové podminky. Déle je v ¢ldnku
ustanoven princip virtudlnich posunuti a princip minima potencidlni energie a je
dokdzdno, Ze tyto principy jsou ekvivalentni vychozi okrajové tiloze.
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