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\S 1. Introduction.

In the investigation of solutions of partial differential equations with con-
stant coefficients, it is very useful to study the algebraic variety defined by
the corresponding polynomials. In this direction, L. Garding characterized the
hyperbolic equations (see [1]) and L. H\"ormander the hypoelliptic equations (see

[2]). The algebraic-geometric stand-point clarifies the situation and makes it
possible to study the equations without any preliminary reduction to canonical
forms. In this connection, real points or real parts of complex points of the
variety play an essential role. A deep result of this kind is the theorem of
C. Lech (see [6]) which made it possible for Hormander to characterize the
hypoelliptic systems (see [4]).

In the present paper, we investigate points at infinity of the variety and
construct null solutions corresponding to each characteristic direction for the
most general system of partial differential operators with constant coefficients
and prove a fundamental theorem which asserts the equivalence of the various
definitions of regularity of solutions in the case of constant coefficients. These
facts were, so far, known only when the matrix (1) in \S 2 was square. The
main idea is to consider a characteristic direction as a real point at infinity of
the variety in complex projective space and to use the homogeneity of the space.

I thank here my colleague M. Matsumura, who suggested to me to con-
struct null solutions. I am indebted to S. Suzuki, and H. Matsumura for many
helpful discussions and to K. Balagangadharan for his critical reading of the
manuscript.
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\S 2. Partial differential operators with constant coefficients, of general type.

Consider a matrix of polynomial coefficients with m rows and n columns

(1) $P(X)=\left(\begin{array}{llll}P_{11}(X) & \cdots & \cdots & P_{1n}(X)\\P & 1(X) & \cdots & (PX)\end{array}\right)$

where $P_{jk}(X)$ is a polynomial of 1 variables $X=(X_{1}, $\cdots$ $,$ X_{l})$ . As a trick for
making the following discussions uniform, we put $P_{jk}(X)=0$ (j $>m;$ k $=1, $\cdots ,$ $n)

and allow the matrix to have infinitely many rows with coefficients all zero
except for a finite number. Without this convention, we would be obliged to
distinguish between the two cases m $\geqq n$ and m $<n$ . Replacing the variables

$X=$ $(X_{1}, $\cdots$ $,$ X_{l})$ by the differential operators $\div-\partial^{\partial}\overline{x}=(\div\frac{\partial}{\partial x_{1}}$ $\div\frac{\partial}{\partial x_{\iota}}$ )
we get a matrix of partial differential operators with constant coefficients of
the most general type. Here i denotes the imaginary unit.

Consider the following system of homogentous partial differential equations

\langle 2) $P(\div\frac{\partial}{\partial x})U=0$ ,

where $U(x)=\left(\begin{array}{l}u_{1}(x)\\\vdots\\ u_{n}(x)\end{array}\right)$ is an unknown vector function of $l$ variables $x=(x_{1}, \cdots , x_{l})$ .

The operation of differentiation should be understood in the sense of distri-
bution of L. Schwartz [10], and unknown functions are distributions. In the
investigation of solutions of the equation (2), an essential role is played by
the ideal $\mathfrak{a}$ generated by all the $(n, n)$-minors of the polynomial matrix $P(X)$ .
It is easy to see that the equation

(3) $Q(\div\frac{\partial}{\partial x})u_{k}=0$

holds for any $k$ and for any $Q(X)\in \mathfrak{a}$ . In fact, by eliminating all the unknown
functions other than $u_{k}$ , it is seen that (3) holds when $Q$ is one of the $(n, n)-$

minors; and, since these minors generate the ideal, (3) is true for any $Q(X)\in \mathfrak{a}$ .

\S 3. Algebraic-geometric preliminaries.

The notations defined in this paragraph will be of constant use in the sequel.
Let $C$ be the complex number field and $\mathfrak{a}$ an ideal of the polynomial ring

$C[X_{1}, \cdots, X_{l}]$ . Let $\mathfrak{a}^{*}$ be the homogeneous ideal canonically constructed from $t\ddagger$

(see [2]). This means that if $\varphi:C[X_{0}, X_{1}, \cdot.. X_{l}]\rightarrow C[X_{1}$ , $\cdot$ .. $X_{\iota}]$ is the homo-
morphism carrying each polynomial $F(X_{0}, X_{1}, \cdots, X_{l})\in C[X_{0}, X_{1}, \cdots, X_{l}]$ into
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$F(1, X_{1}, X_{l})\in C[X_{1}, X_{\iota}]$ , and if $H$ is the set of all the homogeneous ele-
ments of $C[X_{0}, X_{1}, \cdots, X_{l}]$ , then $\mathfrak{a}^{*}=\varphi^{-1}(\mathfrak{a})\cap H$. Let $C^{\iota}$ be the complex affine
space of $l$ dimensions and $P^{\iota}$ the complex projective space of $l$ dimensions that
contains $C^{\iota}$ canonically, $i$ . $e$ . a point in $C^{\iota}$ with coordinates $(\zeta_{1}, \cdots, \zeta_{l})$ is con-
sidered as a point in $P^{l}$ with homogeneous coordinates $(1, \zeta_{1}, \cdots, \zeta_{l})$ .

Let $V$ be the affine variety defined by $a,$
$V^{*}$ the projective variety $defin_{\vee}^{Q}d$

by $\mathfrak{a}^{*}$ . A point $p\in P^{f}$ is called a point at infinity of $V$ if $p$ is in $V^{*}$ but not
in $V$. In later applications, we shall only be concerned with real points at in-
finity, that is, points whose homogeneous coordinates are all real except for a
common multiplier. But until the last step, no special treatment is necessary
(see the condition (7) in \S 4).

Let $p_{0}$ be a point at infinity of $V^{1)},$ $V_{0^{*}}$ an irreducible component of $V^{*}$

which contains $p_{0}$ and $V_{0}$ the affine part of $V_{0^{*}},$ $i$ . $e$ . $V_{0}=V_{0^{*}}\cap C^{\iota}$ .
We shall use the following propositions which are elementary facts from

algebraic geometry.
PROPOSITION 1. $V_{0}$ is not empty.
PROOF. This follows from the fact that the decomposition of $\mathfrak{a}^{*}$ which is

carried over by $\varphi^{-1}$ from a primary decomposition of $\mathfrak{a}$ is also a primary de-
composition.

PROPOSITION 2. In projective space, any pair of points on an irreducible alge-

braic variety can be connected by an irreducible algebraic curve on the variety.
This may be obtained by taking generic hypersurface sections successively

and using Bertini’s theorem (see [11, \S 47], and also [8]).

PROPOSITION 3. (Reduction theorem of algebraic curves). For any irreduci-
ble algebraic curve $\Gamma$ , there exists a normalization $\tilde{\Gamma},$ $i$ . $e.\tilde{\Gamma}$ is a non-singular
algebraic curve and there exists a mapping $ f:\tilde{\Gamma}\rightarrow\Gamma$ which is birational and re-
gular.

As for proof, see for instance [2, III, p. 157, Th. V].

\S 4. Characteristic directions.

The aim of this paragraph is to establish Theorem 1 which plays an es-
sential role in \S 5.

Since $V_{0}$ is not empty, we can take $p_{1}\in V_{0}$ and a curve $\Gamma$ which passes
through $p_{0}$ and $p_{1}$ . Obviously $\Gamma$ intersects the hyperplane at infinity at only
a finite number of points. Let $q_{0}$ be a point in $f^{-1}(p_{0})(\subseteqq\tilde{\Gamma}$ ; see Proposition

1) If a is the ideal stated in \S 2, and if the corresponding $V$ has no point at in-

finity, then the operator $P(\div\frac{\partial}{\partial x})$ is elliptic (see \S 6). We assume in this paragraph

the existence of $p_{0}$ .
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3 in \S 3) and parametrize a neighbourhood of $q_{0}$ (relative to 7’) by a regular
algebraic function defined in a neighbourhood of the origin in the complex
plane. Such a parametrization is possible because $\tilde{\Gamma}$ is non-singular. Carrying
the parametrization over into a neighbourhood of $p_{0}$ by $f$, we get a parametri-
zation of a neighbourhood of $p_{0}$ in a branch of $\Gamma$ . Let $p_{0}=$ $(0, \zeta_{1}^{0}, \cdots , \zeta_{l}^{0})$ , where
we may assume $\zeta_{I}^{0}\neq 0$ without loss of generality. Then we can take a neigh-
bourhood $N$ in which the homogeneous coordinates of each point can be put

in the form $p=(\frac{\zeta_{0}}{\zeta_{1}}$ , 1, $\frac{\zeta_{2}}{\zeta_{1}},$

$\cdots,$
$\frac{\zeta_{l}}{\zeta_{1}}$). And so $(-\frac{\zeta_{2}}{\zeta_{1}}\zeta_{1}^{\underline{0}}\zeta\ldots$ , $\frac{\zeta_{l}}{\zeta_{1}})$ can be con-

sidered as local affine coordinates in $N$. By the above parametrization, there
are regular algebraic functions $f_{0}(t),f_{2}(t),$ $\cdots,f(t)$ defined in a neighbourhood of
the origin of the complex t-plane such that every point in $N$, which has the

local affine coordinates $-\zeta_{1}^{\underline{0}}\zeta=f_{0}(t),$ $\frac{\zeta_{2}}{\zeta_{1}}=f_{2}(t),$ $\cdots$

$,$

$-\zeta_{\underline{l_{1}}}\zeta=f_{l}(t)$ , lies on $\Gamma$ . Since $\Gamma$

intersects the hyperplane at infinity at only a finite number of points, we can
assume that
(4) $f_{0}(0)=0$ and $f_{0}(t)\neq 0$ for $ 0<|t|\leqq\epsilon$ ,

if we take a sufficiently small positive constant $\epsilon$ . The second relation in (4)

shows that all the points corresponding to $t(0<|t|\leqq\epsilon)$ lie on the affine variety
$V$ And so, returning to the canonical affine coordinates (see \S 3), the points
can be represented by vectors

(5) $\zeta(t)=(\frac{1}{f_{0}(t)}\frac{f_{2}(t)}{f_{0}(t)}$ $- f_{0}^{l}(t)^{-)}f(t)$ , $ 0<|t|\leqq\epsilon$ .

Now, we change the parameter $t$ into a new one $s$ by inverting the algebraic

function: $\frac{1}{s\zeta_{1}^{0}}=f_{0}(t)$ . The inverse function might be, in general, multivalued

and so we take as the domain $\Delta$ of the variable $s$ the exterior of a disc with
centre at the origin, slit along the negative imaginary axis. Taking a certain
branch, $t=g(s)$ is a regular algebraic function of $ s\in\Delta$ . Equation (5) assumes
the form
(6) $\zeta(s)=(s\zeta_{1}^{0}, sg_{2}(s),$

$\cdots,$
$sg_{l}(s))$ $ s\in\Delta$ ,

where $g_{2}$ . $\cdots$ , $g_{l}$ are regular algebraic functions of $ s\in\Delta$ with $g_{k}(\infty)=\zeta_{k}^{0},$ $(k=$

$2,$
$\cdots,$

$l$). We can rewrite it in the from $\zeta(s)=s\zeta^{0}+\eta(s)$ , with $\zeta^{0}=(\zeta_{1}^{0}, \cdots, \zeta_{l}^{0})$ and

$\lim_{s\in\Delta}\frac{\eta(s)}{s}s\rightarrow\infty=0$ . Each component of $\eta(s)=(\eta_{1}(s), \cdots, \eta_{l}(s))$ being a regular algebraic

function of $ s\in\Delta$ , we have the Puiseux expansions around $ s=\infty$ of the form

$\frac{\eta_{k}(s)}{s}=s^{-)_{k}}\sum_{\nu=0}^{\infty}c_{k,\nu}s^{\frac{\nu}{\mu_{k}}}$, $\mu_{k}>0$ , $(k=1, \cdots, l)$ .

Here, all $\lambda_{k}$ being positive, we can take a real constant $\rho$ such that ${\rm Max}(1-\lambda_{1}$ ,
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$1-\lambda_{\iota}$ ; $0$) $<\rho<1$ , and so $\lim_{s\rightarrow\infty}\frac{1}{s^{0}}\eta(s)=0$ . Now we cannot transform, in gener-
$ s\in\Delta$

al, the parameter $s$ so that $\zeta^{0}$ and $\eta(s)$ become orthogonal in the sense that
$\sum_{k=1}^{\iota}\zeta_{k}^{0}\eta(s)=0$ . But, if the condition

(7) $(\zeta_{1}^{0})^{2}+\cdots+(\zeta_{l}^{0})^{2}\neq 0$

holds, then there exists a complex orthogonal transformation $T$ by which $\zeta^{0}$

goes over into $\zeta^{\sim_{0}}=(\alpha, 0, \cdots, 0)$ with $\alpha^{2}=(\zeta_{1}^{0})^{2}+\cdots+(\zeta_{l}^{0})^{2}$ . In this coordinate sys-

tem the parametrization (6) takes the form $\zeta(s)=\sim(s\alpha, s\tilde{g}_{2}(s),$
$\cdots$ , $s\tilde{g}_{l}(s))=s(\alpha,$ $0$ ,

$0)+(0, s\tilde{g}_{2}(s),$
$\cdots,$

$s\tilde{g}_{l}(s))$ with $\tilde{g}_{k}(\infty)=0(k=2, \cdots, l)$ . Returning to the original
coordinates by $T^{-1}$ , we get a parametrization

(8) $\zeta(s)=s\zeta^{0}+\eta(s)$ with $\lim_{s\rightarrow\sim}\frac{1}{s^{p}}\eta(s)=0$ and $\langle\zeta^{0}, \eta(s)\rangle=\sum_{k\overline{-}1}^{\iota}\zeta_{k}^{\iota}\eta_{k}(s)=0$ .

The condition (7) holds whenever $\zeta^{0}$ is a non-vanishing real vector.
DEFINITION 1. A non-vanishing real vector $\xi=(\xi_{1}, \cdots, \xi_{l})$ is called a charac-

teristic direction of an ideal $\mathfrak{a}$ , if the point in $P^{\iota}$ with homogeneous coordinates
$(0, \xi_{1}, \cdots , \xi_{l})$ is a point at infinity of the variety $V$.

REMARK. When the ideal $a$ is that in \S 2, a characteristic direction is a
common real zero of the principal parts, $i$ . $e$ . the homogeneous parts of highest
degree of all the polynomials in $a$ which is generated by all the $(n, n)$-minors
of the matrix $P(X)$ . And so, this definition coincides with the usual one when
the matrix (1) is square (see [9]).

Thus we have proved the first part of the following
THEOREM 1. For a non-vanishing real vector $\xi=$ $(\xi_{1}, \cdots , \xi_{\iota})$ to be a charac-

teristic direction of an ideal $a$ , it is necessary that there exist vectors of the form
$\zeta(s)=s\xi+\eta(s)$

depending on a complex parameter $ s\in\Delta$ , with the conditions
(i) $\zeta(s)\in V$ for all $ s\in\Delta$ , and each component of $\zeta(s)$ is a regular algebraic

function of $ s\in\Delta$ ;
(ii) $\xi$ is orthogonal to $\eta(s)$ for all $s\in\Delta,$ $i$ . $e$ . $\langle\xi, \eta(s)\rangle=\sum_{k=1}^{\prime}\xi_{k}\eta_{k}(s)=0$ ;

(iii) there exists a real constant $\rho$ such that $0<\rho<1$ and $\lim_{s\rightarrow\infty,s\in\Delta}\frac{1}{s^{\rho}}\eta(s)=0$ .
And, it is suJficient that there exist a sequence of complex numbers $\{s_{\nu}\}$ and

a sequence of vectors $\{\eta^{(\nu)}\}(\nu=1,2, \cdots)$ such that
(iv) $\zeta^{()}\nu=s_{\nu}\xi+\eta^{()}\nu\in V$ for all $\nu$ ;

(v) $\lim_{\nu\rightarrow\infty}|s_{\nu}|=\infty$ and $\lim_{\nu\rightarrow\rightarrow}\frac{1}{s_{\nu}}\eta^{()}\nu=0$ .
PROOF. We have only to prove the second part. The homogeneous coordi-
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nates of $\zeta^{()}\nu$ are $(1, s_{\nu}\xi_{1}+\eta_{1}^{(\nu)}, \cdots, s_{\nu}\xi_{l}+\eta_{\iota}^{(\nu)})=(\frac{1}{s_{\nu}}$ , $\xi_{1}+\frac{\eta_{1}^{(\nu)}}{s_{\nu}},$ $\cdots$ , $\xi_{l}+\frac{\eta_{l}^{(\nu)}}{s_{\nu}})$ , and this

obviously tends to $(0, \xi_{1}, , \xi_{l})$ . Since $V^{*}$ is closed in $P^{l},$ $(0, \xi_{1}, , \xi_{l})\in V^{*}$ .
This means that $\xi$ is a characteristic direction.

For a vectors $\zeta=$ $(\zeta_{1}, , \zeta_{l})\in C^{\iota}$ , the norm $\Vert\zeta\Vert$ is defined as $\Vert\zeta\Vert=(|\zeta_{1}|^{2}+$

... $+|\zeta_{l}|^{2})^{\frac{1}{2}}$ ; for a polynomial $F(X)\in C[X_{1}, \cdots , X_{\iota}]$ , the affine variety defined by
$F(\zeta)=0$ is denoted by $V_{F}$ ; and for a subset $A$ of $C^{\iota}$ the distance between $\zeta$

and $A$ is defined by $ d(\zeta, A)=\inf_{\zeta^{\prime}\in A}\Vert\zeta-\zeta^{\prime}\Vert$ . Then, Lech’s theorem (see [6]) reads
as follows.

THEOREM 2. For any given ideal $a$ , there exist a polynomial $L(X)\in \mathfrak{a}$ and a
positive constant $c$ such that for any real vector $\xi$ we have

(9) $d(\xi, V_{L})\geqq cd(\xi, V)$ .
By (9), every real point of $V_{L}$ belongs also to $V$. Futher, the following

corollary holds.
$CoROLLARY$ . Every real point at infinity of $V_{L}$ is also a real point at infinity

of $V$.
PROOF. Let $(0, \xi_{1}, \cdots, \xi_{\iota})$ be a real point at infinity of $V_{L}$ and put $\xi=(\xi_{1}$ ,

$\xi_{l})$ , then by Theorem 1, there exists $\zeta(s)\sim=s\xi+\eta(s)\sim$ with the conditions (i),

(ii), (iii) with $V_{L},$ $\zeta,$
$\eta\sim\sim$ replacing $V,$ $\zeta,$

$\eta$ . Let $s$ tend to $\infty$ along the real axis
$ s=\sigma$ in $\Delta$ . By (9), $d(\sigma\xi, V_{L})\geqq cd(\sigma\xi, V)$ and so there exists $\eta(\sigma)$ such that
$\sigma\xi+\eta(\sigma)\in V$ and $\Vert\eta(\sigma)\sim\Vert\geqq c\Vert\eta(\sigma)\Vert$ , This implies, by the second part of Theorem
1, that $\xi$ is a point at infinity of $V$

\S 5. Construction of null solutions.

In this paragraph, following the method of H\"ormander $[3]^{2)}$ , we shall con-
struct null solutions of the equation (2) for any characteristic direction $\xi$ with
the aid of Theorem 1 in the preceeding paragraph.

DEFINITION 2. Let $\xi$ be a non-vanishing real vector. By a null solution of

the differential operator $P(\div\frac{\partial}{\partial x})$ in the direction $\xi$ , we mean a vector func-

tion $U(X)=\left(\begin{array}{l}u_{1}(x)\\\vdots\\ u_{n}(x)\end{array}\right)$ which satisfies the following conditions:

(i) $U$ is a $C^{r}$-solution of (2), $i$ . $e$ . each component of $U$ is a complex-valued
indefinitely continuously differentiable function of $l$ variables $x=$ $(x_{1}, \cdots , x_{\iota})$ de-
fined in the whole real affine space $R^{\iota}$ of $l$ dimensions and $U$ satisfies the

2) In [3, p. 217], ” $\sin$ should be replaced by ”
$cos$ .
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homogeneous equation (2);
(ii) $U$ is non-trivial, $i$ . $e$ . $U$ does not vanish identically on $R^{l}$ ;
(iii) $U(x)=0$ on the half space of $R^{l}$ defined by the inequality $\langle x, \xi\rangle=$

$x_{1}\xi_{1}+$ $+x_{l}\xi_{l}>0$ .

Let $\xi$ be a characteristic direction of the ideal $a$ in \S 2 and let $\zeta(s)=$

$s\xi+\eta(s),$ $ s\in\Delta$ , be as is in Theorem 1. Put $P_{jk}(s)=P_{jk}(\zeta(s))$ and $P(s)=(P_{jk}(s))$ .
Since $\zeta(s)\in V$, the rank of $P(s)$ is always $\leqq n-1$ for $ s\in\Delta$ . Since the total
number of non-trivial minors of any order of $P(s)$ is finite and each of them
is algebraic, the totality of zero points in $\Delta$ of the non-trivial minors are finite
in number. Therefore, there exists a positive number $1\psi$ such that every point
$ s=\sigma+i\tau$ with $\tau>1\psi$ belongs to $\Delta$ and is not a zero point. Then, in the region
$D$ defined by $\tau>M$, every minor of $P(s)$ always differs from zero or vanishes
identically. Let the rank of $P(s)$ be $\gamma$ which is, by the above argument, in-
dependent of $s\in D$ . We can assume without loss of generality that

(10) $\left|\begin{array}{lll}P_{11}(s) & \cdots & P_{1r}(s)\\\cdots & \cdots & \cdots\\ P_{r1}(s) & \cdots & P_{rr}(s)\end{array}\right|\neq 0$ , for any $s\in D$ .

Here always $r\leqq n-1$ . Consider the simultaneous linear equations

(11) $\sum_{k=1}^{r}P_{jk}(s)C_{k^{\prime}}(s)=P_{jr+1}(s)$ $(j=1, \cdots, r)$ .

We can solve (11) by Cram\‘er’s formula, since (10) holds. Put $C_{r+1}^{\prime}(s)==1$ ,
$C_{r+2}^{\prime}(s)=\ldots=C_{n^{\prime}}(s)=0$ . Clearly $C_{1}^{\prime}(s),$

$\cdots,$
$C_{n^{\prime}}(s)$ are all algebraic, dividing them

by $K\cdot s^{N}$ with sufficiently large $K$ and $N$, we can assume that the resulting
functions $C_{1}(s),$

$\cdots,$
$C_{n}(s)$ satisfy the following conditions:

(12) $\{k=_{\gamma}1_{+1}(s)_{jk}\sum_{C}^{C_{n^{1}}}P_{(s)\neq}|C_{k}(s)^{(}|^{s)}\leqq_{0^{1^{(s)=^{a_{0}re}}}}^{C^{C_{n}(s)}}k,regula_{k=1’,,n}ran_{1}d.\cdot a1geb_{;}raic_{s}func_{;}tionsj=s\in D^{2.’.\cdots,\in D}$

of $s\in D$ ;

There is no restriction on $j$ because of the assumption on the rank.
Now, we consider the following contour integral in $D$ :

(13) $u_{k}(x)=\int_{i\tau-\infty}^{i+\infty}\tau_{C_{k}(s)e^{i\langle x,\zeta(s)\rangle}e^{-(}ds}$Si $(k=1, \cdots, n)$ .

Here $\tau$ is fixed $(\tau>1\psi)$ and $\rho^{\prime}$ is a real constant such that $0<\rho<\rho^{\prime}<1$ where
$\rho$ is the constant in Theorem 1. Here we define $(\frac{s}{i})^{\rho^{\prime}}$ so that it is real and

positive when $s$ is on the positive imaginary axis.
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Now, we prove that the vector function $U=\left(\begin{array}{l}u_{1}\\\vdots\\ u_{n}\end{array}\right)$ , where $u_{k}$ is the func-

tion defined by (13), satisfies the three conditions in Definition 2.

CONDITION (i): Since $\mathfrak{R}\{i\langle x, s\xi+\eta(s)\rangle-(\frac{s}{i})^{\rho^{\prime}}\}=-\langle x, \tau\xi\rangle-\langle x, \eta^{\prime}(s)\rangle-$

$|s|^{\rho}\cos\theta\leqq c^{\prime}|s|^{\rho}-|s|^{0^{l}}\cos\frac{\rho^{\prime}}{2}\underline{\pi}\leqq-c|s|^{\beta^{\prime}}$ for large $|s|$ , by Theorem 1 (where $c$ ,

$c^{\prime}$ are some positive constants, $\eta^{\prime}(s)=s\propto\eta(s),$ $\theta=\rho^{\prime}\arg\frac{s}{i}$), the integral in (13) is
uniformly convergent after an arbitrary number of differentiations with respect
to $x=(x_{1}, \cdots, x_{l})$ under the integral sign. And so, $U$ is $C^{\infty}$ and differentiation
can be done under the integral sign. Further, obviously

$\sum_{k=0}^{n}P_{jk}(\div\frac{\partial}{\partial x})u_{k}=\int_{i\tau^{\tau}-\infty}^{i+\infty}\sum_{k=1}^{n}P_{jk}(\zeta(s))C_{k}(s)e^{i(x,\zeta(s)\rangle}e^{-(\frac{s}{i})^{\rho^{\prime}}}ds=0$ ,

$j=1,2,$ $\cdots$ , since (12) holds.
CONDITION (ii): Take the $(r+1)- st$ component of $U$ and put $ x=\lambda\xi$ where

$\lambda$ is a real parameter. Then, by the condition (ii) of Theorem 1,

$u_{r\dagger 1}(\lambda\xi)=\int_{i\tau-\infty}^{t+\infty}\tau_{C_{r+1}(s)\ovalbox{\tt\small REJECT}^{||\xi||2}e^{-()^{\rho^{\prime}}}ds}tS$

$=e^{-\lambda\tau||\xi||^{2}}\int_{-\infty}^{+\infty}C_{r+1}(\sigma+i\tau)e^{i\lambda||\xi||^{2}\mathcal{O}}e^{-(\frac{\sigma+i\tau}{i})^{\rho^{\prime}}}d\sigma$

$=e^{-\lambda\tau||\xi|_{1}2}\mathfrak{F}(C_{r+1}(\sigma+i\tau)e^{-(\frac{\sigma+i\tau}{i})^{\rho^{\prime}}})(\lambda\Vert\xi\Vert^{2})$ .
Here $\mathfrak{F}$ denotes the Fourier transformation on the real line $R$ . Then, the uni-
queness theorem of Fourier transformation asserts that this last expression does
not vanish identically for $\lambda\in R$ , since the transformed function does not vanish
by (12).

CONDITION (iii): It is not difficult to see, by Cauchy’s theorem, that the
value of the integral (13) does not depend on $\tau$ . And it is obvious by (12) that

$|u_{k}(x)|\leqq e^{-\tau x,\xi\rangle}\langle\int_{-\infty}^{+\infty}e^{-cI\sigma t^{\rho^{\prime}}}d\sigma$ .

Letting $\tau\rightarrow+\infty$ we have $u_{k}(x)=0$ for any $k$ if $\langle x, \xi\rangle>0$ .
Thus we have proved the sufficiency in the following
THEOREM 3. For the existence of null-solution of a partial differential operator

$P(\div\frac{\partial}{\partial x})$ in the direction $\xi$ , it is necessary and suJficient that $\xi$ be a character-

istic direction of the ideal $\mathfrak{a}$ .
PROOF. We have only to prove the necessity. And that follows from

Holmgren’s theorem (see [5]), since the equation (3) holds for any $Q\in a$ .
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\S 6. Regularity of solutions.

For the regularity of solutions of partial differential equations, many de-
finitions are given (see Definition 4 below) and these definitions are identical
(with the only exception of hypoellipticity) if the equations have constant
coefficients. This fact is already known when the matrix (1) is square, and
we prove it here in the general case.

DEFINITION 3. We call a differential operator $P(\div\frac{\partial}{\partial x})$ elliptic if the cor-
responding ideal $a$ has no characteristic direction.

DEFINITION 4. We call a partial differential operator $P(\div\frac{\partial}{\partial x})$

(i) hypoelliptic if each component of any solution of the homogeneous equa-
tion (2) is indefinitely continuously differentiable;

(ii) analytic-hypoelliptic if each component of any solution of the homo-
geneous equation is an analytic function of the real variables $x=(x_{1}, \cdots, x_{l})$ ;

(iii) pseudoanalytic if the solutions of (2) which vanish in a non-empty open
set (however small) are identically zero.

(iv) We say that $P(\div\frac{\partial}{\partial x})$ has the unique continuation property if the

solutions of (2) which have a zero of infinite order at some point $\in R^{l}$ are
identically zero.

$T_{14EOREM}4$ . The following conditions on a partial $diJTerential$ operator with

constant coefficients $P(-i1-\frac{\partial}{\partial x})$ are equivalent:

(a) it is elliptic;
(b) it is analytic-hypoelliptic;
(c) it has the unique continuation property;
(d) it is pseudoanalytic.

PROOF. (a) implies (b). Since, by equation (3), $L(\div\frac{\partial}{\partial x})u_{k}=0$ holds for

any $k$ where $L$ is Lech’s polynomial (see \S 4). By the corollary to Theorem 2
$L(\div\frac{\partial}{\partial x})$ is a single elliptic differential operator. That implies that each $u_{k}$

is an analytic function of $x=(x_{1}, \cdots. x_{l})$ , since “ (a) implies (b) “ holds for a
single equation (see [9]).

(b) implies (c), and (c) implies (d). These two implications are trivial.
(d) implies (a). This is clear from the existence of null solutions.

A simple example of elliptic system of partial differential equations is the
so-called Cauchy-Riemann equations for the real and imaginary parts of a
holomorphic function of several complex variables.

Some other related results will be reported in [7].
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