On Generalizations of the Hadamard Inequality for (α, m) Convex Functions

Erhan Set*
Department of Mathematics, Faculty of Science and Arts, Düzce University, Düzce, Turkey
e-mail: erhanset@yahoo.com
Maryam Sardari
Institute for Advanced Studies in Basic Sciences, P. O. Box 45195-1159, Zanjan, Iran
e-mail: m_sardari@iasbs.ac.ir
Muhamet Emin Ozdemir
Atatürk University, K. K. Education Faculty, Department of Mathematics, 25240, Campus, Erzurum, Turkey
e-mail : emos@atauni.edu.tr
Jamal Rooin
Institute for Advanced Studies in Basic Sciences, P. O. Box 45195-1159, Zanjan, Iran
e-mail: rooin@iasbs.ac.ir

AbStract. In this paper we establish several Hadamard-type integral inequalities for (α, m) -convex functions.

1. Introduction

One of the most important integral inequalities for convex functions is the Hadamard inequality (or the Hermite-Hadamard inequality). The following double inequality is well known as the Hadamard inequality in the literature.

Theorem 1. If f is convex function on $[a, b]$, then

$$
\begin{equation*}
f\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a} \int_{a}^{b} f(x) d x \leq \frac{f(a)+f(b)}{2} \tag{1.1}
\end{equation*}
$$

[^0]Proof. See [1].
If the function f is concave, (1.1) can be written as following:

$$
\frac{f(a)+f(b)}{2} \leq \frac{1}{b-a} \int_{a}^{b} f(x) d x \leq f\left(\frac{a+b}{2}\right)
$$

For recent results related to the Hadamard inequality are given in [9], [10] and [17].

In the literature, the concepts of m-convexity and (α, m)-convexity are well known. The concept of m-convexity was first introduced by G. Toader in [18] (see also [5], [6]) and it is defined as follows:

The function $f:[0, b] \rightarrow \mathbb{R}$ is said to be m-convex, where $m \in[0,1]$, if for every $x, y \in[0, b]$ and $t \in[0,1]$, we have:

$$
\begin{equation*}
f(t x+m(1-t) y) \leq t f(x)+m(1-t) f(y) \tag{1.2}
\end{equation*}
$$

The class of (α, m)-convex functions was also first introduced in [8] and it is defined as follows:

The function $f:[0, b] \rightarrow \mathbb{R}, b>0$, is said to be (α, m)-convex, where $(\alpha, m) \in[0,1]^{2}$, if we have

$$
\begin{equation*}
f(t x+m(1-t) y) \leq t^{\alpha} f(x)+m\left(1-t^{\alpha}\right) f(y) \tag{1.3}
\end{equation*}
$$

for all $x, y \in[0, b]$ and $t \in[0,1]$.
It can be easily seen that for $(\alpha, m) \in\{(0,0),(1,1)(1, m)\}$ one obtains the following classes of functions: increasing, convex and m-convex functions respectively. The interested reader can find more about partial ordering of convexity in [15, P. 8,280]. For many papers connected with m-convex and (α, m) -convex functions see ([2], [3], [6], [11], [12], [13], [14], [19]) and the references therein. There are similar inequalities for s-convex and h-convex functions in [7] and [16], respectively.

In [6], S. S. Dragomir and G. Toader proved the following Hadamard type inequality for $m-$ convex functions.

Theorem 2. Let $f:[0, \infty) \rightarrow \mathbb{R}$ be a m-convex function with $m \in(0,1]$. If $0 \leq a<b<\infty$ and $f \in L_{1}[a, b]$, then the following inequality holds:

$$
\begin{equation*}
\frac{1}{b-a} \int_{a}^{b} f(x) d x \leq \min \left\{\frac{f(a)+m f\left(\frac{b}{m}\right)}{2}, \frac{f(b)+m f\left(\frac{a}{m}\right)}{2}\right\} \tag{1.4}
\end{equation*}
$$

Some generalizations of this result can be found in [2], [3].
In [4] S. S. Dragomir established two new Hadamard-type inequalities for m-convex functions. They are given in the following Theorems.

Theorem 3. Let $f:[0, \infty) \rightarrow \mathbb{R}$ be a m-convex function with $m \in(0,1]$. If $0 \leq a<b<\infty$ and $f \in L_{1}[a, b] \cap L_{1}\left[\frac{a}{m}, \frac{b}{m}\right]$, then the following inequality holds:

$$
\begin{equation*}
f\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a} \int_{a}^{b} \frac{f(x)+m f\left(\frac{x}{m}\right)}{2} d x . \tag{1.5}
\end{equation*}
$$

Theorem 4. Let $f:[0, \infty) \rightarrow \mathbb{R}$ be a m-convex function with $m \in(0,1]$. If $f \in L_{1}[a m, b]$ where $0 \leq a<b$, then the following inequality holds:

$$
\begin{equation*}
\frac{1}{m+1}\left[\frac{1}{m b-a} \int_{a}^{m b} f(x) d x+\frac{1}{b-m a} \int_{m a}^{b} f(x) d x\right] \leq \frac{f(a)+f(b)}{2} \tag{1.6}
\end{equation*}
$$

The goal of this paper is to obtain new inequalities like those given in Theorems $1,2,3,4$, but now for the class of (α, m)-convex functions.

2. Inequalities for (α, m)-convex functions

The following theorem is a generalization of the Hadamard inequality.
Theorem 5. Let $f:[0, \infty) \rightarrow \mathbb{R}$ be an (α, m)-convex function with $0 \leq a<b$ and $(\alpha, m) \in[0,1] \times(0,1]$. If $f \in L_{1}\left[m^{2} a,(2-m) b\right] \cap L_{1}\left[m a, \frac{(2-m) b}{m}\right]$, then the following inequalities hold:

$$
\begin{align*}
& f\left(\frac{2-m}{2} b+\frac{m}{2}(m a)\right) \\
& \leq \frac{1}{2^{\alpha}} \frac{1}{b(2-m)-m^{2} a}\left\{\int _ { m ^ { 2 } a } ^ { (2 - m) b } \left[f(x)+\left(2^{\alpha}-1\right) m\right.\right. \\
& \left.\left.\times f\left(\frac{(2-m) b}{m}\left(1-\frac{x-m^{2} a}{2 b-m b-m^{2} a}\right)+m \frac{x-m^{2} a}{2 b-m b-m^{2} a} a\right)\right] d x\right\} \tag{2.1}\\
& \leq \frac{1}{2^{\alpha}(\alpha+1)}[f((2-m) b) \\
& \left.+\left(\alpha+\left(2^{\alpha}-1\right)\right) m f(a m)+\left(2^{\alpha}-1\right) \alpha m^{2} f\left(\frac{(2-m) b}{m^{2}}\right)\right] .
\end{align*}
$$

Proof. Let $U_{1}=t(2-m) b+(1-t) m^{2} a$ and $U_{2}=(1-t)(2-m) b+t m^{2} a$, where $t \in[0,1]$ is arbitrary. Then we get

$$
f\left(\frac{U_{1}+U_{2}}{2}\right)=f\left(\frac{2-m}{2} b+\frac{m}{2}(m a)\right) .
$$

By the (α, m) - convexity of f we can write the following inequality:

$$
\begin{aligned}
f\left(\frac{2-m}{2} b+\frac{m}{2}(m a)\right) & =f\left(\frac{U_{1}+U_{2}}{2}\right) \\
& \leq \frac{1}{2^{\alpha}} f\left(U_{1}\right)+\left(1-\frac{1}{2^{\alpha}}\right) m f\left(\frac{U_{2}}{m}\right) \\
& =\frac{1}{2^{\alpha}}\left[f\left(U_{1}\right)+\left(2^{\alpha}-1\right) m f\left(\frac{U_{2}}{m}\right)\right]
\end{aligned}
$$

or

$$
\begin{aligned}
f\left(\frac{2-m}{2} b+\frac{m}{2}(m a)\right) \leq & \frac{1}{2^{\alpha}}\left[f\left(t(2-m) b+(1-t) m^{2} a\right)\right. \\
& \left.+\left(2^{\alpha}-1\right) m f\left(\frac{(1-t)(2-m) b}{m}+t m a\right)\right]
\end{aligned}
$$

Integrating over $t \in[0,1]$, we get

$$
\begin{align*}
& f\left(\frac{2-m}{2} b+\frac{m}{2}(m a)\right) \\
& \leq \frac{1}{2^{\alpha}} \int_{0}^{1}\left[f\left(t(2-m) b+(1-t) m^{2} a\right)\right. \\
& \left.+\left(2^{\alpha}-1\right) m f\left(\frac{(1-t)(2-m) b}{m}+t m a\right)\right] d t \tag{2.2}\\
& =\frac{1}{2^{\alpha}} \frac{1}{b(2-m)-m^{2} a}\left\{\int _ { m ^ { 2 } a } ^ { (2 - m) b } \left[f(x)+\left(2^{\alpha}-1\right) m\right.\right. \\
& \left.\left.\times f\left(\frac{(2-m) b}{m}\left(1-\frac{x-m^{2} a}{2 b-m b-m^{2} a}\right)+m \frac{x-m^{2} a}{2 b-m b-m^{2} a} a\right)\right] d x\right\},
\end{align*}
$$

where we used the change of the variable $x=t(2-m) b+(1-t) m^{2} a$ or $t=$ $\frac{x-m^{2} a}{2 b-m b-m^{2} a}$ and so

$$
\int_{0}^{1} f\left(t(2-m) b+(1-t) m^{2} a\right) d t=\frac{1}{(2-m) b-m^{2} a} \int_{m^{2} a}^{(2-m) b} f(x) d x
$$

and

$$
\begin{aligned}
& \int_{0}^{1} f\left(\frac{(1-t)(2-m) b}{m}+t m a\right) d t \\
& =\frac{1}{(2-m) b-m^{2} a} \\
& \times \int_{m^{2} a}^{(2-m) b} f\left(\frac{(2-m) b}{m}\left(1-\frac{x-m^{2} a}{2 b-m b-m^{2} a}\right)+m \frac{x-m^{2} a}{2 b-m b-m^{2} a} a\right) d x
\end{aligned}
$$

This completes the proof of the first inequality in (2.1).
Next, by the (α, m)-convexity of f, we also have

$$
\begin{aligned}
f\left(t(2-m) b+(1-t) m^{2} a\right) & =f(t(2-m) b+m(1-t) m a) \\
& \leq t^{\alpha} f((2-m) b)+m\left(1-t^{\alpha}\right) f(m a)
\end{aligned}
$$

and

$$
\begin{aligned}
f\left(\frac{(1-t)(2-m) b}{m}+t m a\right) & =f\left(t(m a)+m(1-t)\left(\frac{(2-m) b}{m^{2}}\right)\right) \\
& \leq t^{\alpha} f(m a)+m\left(1-t^{\alpha}\right) f\left(\frac{(2-m) b}{m^{2}}\right)
\end{aligned}
$$

So

$$
\begin{align*}
& \frac{1}{2^{\alpha}}\left[f\left(t(2-m) b+(1-t) m^{2} a\right)+\left(2^{\alpha}-1\right) m f\left(\frac{(1-t)(2-m) b}{m}+t m a\right)\right] \\
& \leq \frac{1}{2^{\alpha}}\left\{t^{\alpha} f((2-m) b)+m\left(1-t^{\alpha}\right) f(m a)\right. \tag{2.3}\\
& \left.+\left(2^{\alpha}-1\right) m\left[t^{\alpha} f(m a)+m\left(1-t^{\alpha}\right) f\left(\frac{(2-m) b}{m^{2}}\right)\right]\right\} .
\end{align*}
$$

Integrating (2.3) over t on $[0,1]$, we get

$$
\begin{aligned}
& \frac{1}{2^{\alpha}} \frac{1}{(2-m) b-m^{2} a}\left\{\int _ { m ^ { 2 } a } ^ { (2 - m) b } \left[f(x)+\left(2^{\alpha}-1\right) m\right.\right. \\
& \left.\left.\times f\left(\frac{(2-m) b}{m}\left(1-\frac{x-m^{2} a}{2 b-m b-m^{2} a}\right)+m \frac{x-m^{2} a}{2 b-m b-m^{2} a} a\right)\right] d x\right\} \\
& \leq \frac{1}{2^{\alpha}(\alpha+1)}\{f((2-m) b) \\
& \left.+\left(\alpha+\left(2^{\alpha}-1\right)\right) m f(a m)+\left(2^{\alpha}-1\right) \alpha m^{2} f\left(\frac{(2-m) b}{m^{2}}\right)\right\} .
\end{aligned}
$$

This completes the proof of the second inequality in (2.1).
Remark 1. Choosing $(\alpha, m)=(1,1)$ in (2.1), from the first and the second inequalities of (2.1), respectively, we obtain

$$
\begin{aligned}
f\left(\frac{a+b}{2}\right) & \leq \frac{1}{2} \frac{1}{b-a}\left[\int_{a}^{b}[f(x)+f(a+b-x)] d x\right] \\
& =\frac{1}{2} \frac{1}{b-a}\left[\int_{a}^{b} f(x) d x+\int_{a}^{b} f(x) d x\right] \\
& =\frac{1}{b-a} \int_{a}^{b} f(x) d x
\end{aligned}
$$

and

$$
\begin{aligned}
\frac{1}{b-a} \int_{a}^{b} f(x) d x & \leq \frac{1}{4}[f(b)+2 f(a)+f(b)] \\
& =\frac{f(a)+f(b)}{2}
\end{aligned}
$$

Note that, we used

$$
\int_{a}^{b} f(x) d x=\int_{a}^{b} f(a+b-x) d x
$$

and so

$$
\int_{a}^{b}[f(x)+f(a+b-x)] d x=2 \int_{a}^{b} f(x) d x
$$

Clearly, we can drop the assumption $f \in L_{1}\left[m^{2} a,(2-m) b\right] \cap L_{1}\left[m a, \frac{(2-m) b}{m}\right]=$ $L_{1}[a, b]$, and in this case (2.1) exactly becomes the Hermite-Hadamard inequalities for $(\alpha, m)=(1,1)$.

Theorem 6. Let $f:[0, \infty) \rightarrow \mathbb{R}$ be an (α, m)-convex function with $(\alpha, m) \in$ $(0,1]^{2}$. If $0 \leq a<b<\infty$ and $f \in L_{1}[a, b]$, then the following inequality holds:

$$
\begin{equation*}
\frac{1}{b-a} \int_{a}^{b} f(x) d x \leq \min \left\{\frac{f(a)+\alpha m f\left(\frac{b}{m}\right)}{\alpha+1}, \frac{f(b)+\alpha m f\left(\frac{a}{m}\right)}{\alpha+1}\right\} \tag{2.4}
\end{equation*}
$$

Proof. Since f is (α, m)-convex, we have

$$
f(t x+m(1-t) y) \leq t^{\alpha} f(x)+m\left(1-t^{\alpha}\right) f(y)
$$

for all $x, y \geq 0$, which gives:

$$
f(t a+(1-t) b) \leq t^{\alpha} f(a)+m\left(1-t^{\alpha}\right) f\left(\frac{b}{m}\right)
$$

and

$$
f(t b+(1-t) a) \leq t^{\alpha} f(b)+m\left(1-t^{\alpha}\right) f\left(\frac{a}{m}\right)
$$

for all $t \in[0,1]$. Integrating on $[0,1]$, we obtain

$$
\int_{0}^{1} f(t a+(1-t) b) d t \leq \frac{f(a)+\alpha m f\left(\frac{b}{m}\right)}{\alpha+1}
$$

and

$$
\int_{0}^{1} f(t b+(1-t) a) d t \leq \frac{f(b)+\alpha m f\left(\frac{a}{m}\right)}{\alpha+1}
$$

However,

$$
\int_{0}^{1} f(t a+(1-t) b) d t=\int_{0}^{1} f(t b+(1-t) a) d t=\frac{1}{b-a} \int_{a}^{b} f(x) d x
$$

and the inequality (2.4) is obtained.
Remark 2. The inequality (2.4) yields inequality (1.4) for $\alpha=1$.
Theorem 7. Let $f:[0, \infty) \rightarrow \mathbb{R}$ be an (α, m)-convex function with $(\alpha, m) \in$
$(0,1]^{2}$. If $0 \leq a<b<\infty$ and $f \in L_{1}[a, b] \cap L_{1}\left[\frac{a}{m}, \frac{b}{m}\right]$, then the following inequalities hold:

$$
\begin{align*}
f\left(\frac{a+b}{2}\right) & \leq \frac{1}{2^{\alpha}(b-a)} \int_{a}^{b}\left[f(x)+m\left(2^{\alpha}-1\right) f\left(\frac{x}{m}\right)\right] d x \\
& \leq \frac{1}{2^{\alpha+1}(\alpha+1)}[(f(a)+f(b)) \tag{2.5}\\
& +m\left(\alpha+2^{\alpha}-1\right)\left(f\left(\frac{a}{m}\right)+f\left(\frac{b}{m}\right)\right) \\
& \left.+\alpha m^{2}\left(2^{\alpha}-1\right)\left(f\left(\frac{a}{m^{2}}\right)+f\left(\frac{b}{m^{2}}\right)\right)\right] .
\end{align*}
$$

Proof. By the (α, m)-convexity of f, we have

$$
\begin{aligned}
f\left(\frac{x+y}{2}\right) & =f\left(\frac{x}{2}+m \frac{y}{2 m}\right) \\
& \leq \frac{1}{2^{\alpha}} f(x)+m\left(1-\frac{1}{2^{\alpha}}\right) f\left(\frac{y}{m}\right) \\
& =\frac{1}{2^{\alpha}}\left[f(x)-m f\left(\frac{y}{m}\right)\right]+m f\left(\frac{y}{m}\right)
\end{aligned}
$$

for all $x, y \in[0, \infty)$.
Now, if we choose $x=t a+(1-t) b$ and $y=(1-t) a+t b$, we deduce

$$
\begin{aligned}
f\left(\frac{a+b}{2}\right) & \leq \frac{1}{2^{\alpha}}\left[f(t a+(1-t) b)-m f\left(\frac{(1-t) a+t b}{m}\right)\right]+m f\left(\frac{(1-t) a+t b}{m}\right) \\
& =\frac{1}{2^{\alpha}}\left[f(t a+(1-t) b)+m\left(2^{\alpha}-1\right) f\left((1-t) \frac{a}{m}+t \frac{b}{m}\right)\right]
\end{aligned}
$$

for all $t \in[0,1]$.
Integrating over $t \in[0,1]$, we get

$$
\begin{align*}
f\left(\frac{a+b}{2}\right) \leq & \frac{1}{2^{\alpha}}\left[\int_{0}^{1} f(t a+(1-t) b) d t\right. \tag{2.6}\\
& \left.+m\left(2^{\alpha}-1\right) \int_{0}^{1} f\left((1-t) \frac{a}{m}+t \frac{b}{m}\right) d t\right]
\end{align*}
$$

Taking into account that

$$
\int_{0}^{1} f(t a+(1-t) b) d t=\frac{1}{b-a} \int_{a}^{b} f(x) d x
$$

and

$$
\int_{0}^{1} f\left((1-t) \frac{a}{m}+t \frac{b}{m}\right) d t=\frac{1}{b-a} \int_{a}^{b} f\left(\frac{x}{m}\right) d x
$$

we deduce from (2.6) the first inequality in (2.5).
Next, by the (α, m)-convexity of f, we also have

$$
\begin{align*}
& \frac{1}{2^{\alpha}}\left[f(t a+(1-t) b)+m\left(2^{\alpha}-1\right) f\left(t \frac{b}{m}+(1-t) \frac{a}{m}\right)\right] \tag{2.7}\\
\leq & \frac{1}{2^{\alpha}}\left[t^{\alpha} f(a)+m\left(1-t^{\alpha}\right) f\left(\frac{b}{m}\right)\right. \\
& \left.+m\left(2^{\alpha}-1\right)\left(t^{\alpha} f\left(\frac{b}{m}\right)+m\left(1-t^{\alpha}\right) f\left(\frac{a}{m^{2}}\right)\right)\right] .
\end{align*}
$$

Integrating over t on $[0,1]$, we get

$$
\begin{align*}
& \frac{1}{2^{\alpha}(b-a)} \int_{a}^{b}\left(f(x)+m\left(2^{\alpha}-1\right) f\left(\frac{x}{m}\right)\right) d x \tag{2.8}\\
\leq & \frac{1}{2^{\alpha}}\left[f(a) \int_{0}^{1} t^{\alpha} d t+m f\left(\frac{b}{m}\right) \int_{0}^{1}\left(1-t^{\alpha}\right) d t+\right. \\
& +m\left(2^{\alpha}-1\right) f\left(\frac{b}{m}\right) \int_{0}^{1} t^{\alpha} d t \\
& \left.+m^{2}\left(2^{\alpha}-1\right) f\left(\frac{a}{m^{2}}\right) \int_{0}^{1}\left(1-t^{\alpha}\right) d t\right] \\
= & \frac{1}{2^{\alpha}(\alpha+1)}\left[f(a)+m\left(\alpha+2^{\alpha}-1\right) f\left(\frac{b}{m}\right)+\alpha m^{2}\left(2^{\alpha}-1\right) f\left(\frac{a}{m^{2}}\right)\right] .
\end{align*}
$$

Similarly, changing the roles of a and b, we get

$$
\begin{align*}
& \frac{1}{2^{\alpha}(b-a)} \int_{a}^{b}\left(f(x)+m\left(2^{\alpha}-1\right) f\left(\frac{x}{m}\right)\right) d x \tag{2.9}\\
\leq & \frac{1}{2^{\alpha}(\alpha+1)}\left[f(b)+m\left(\alpha+2^{\alpha}-1\right) f\left(\frac{a}{m}\right)+\alpha m^{2}\left(2^{\alpha}-1\right) f\left(\frac{b}{m^{2}}\right)\right] .
\end{align*}
$$

Now adding (2.8) and (2.9) with each other, we obtain the second inequality in (2.5).

Remark 3. Choosing $\alpha=1$ in the first part of (2.5), we get (1.5).
Remark 4. The inequality (2.5) yields the Hadamard inequality (1.1) for $\alpha=1$ and $m=1$.

Theorem 8. Let $f:[0, \infty) \rightarrow \mathbb{R}$ be an (α, m)-convex function with $(\alpha, m) \in$ $(0,1]^{2}$. If $0 \leq a<b<\infty$ and $f \in L_{1}[a, b]$, then the following inequality holds:

$$
\begin{equation*}
\frac{1}{b-a} \int_{a}^{b} f(x) d x \leq \frac{1}{2}\left[\frac{f(a)+f(b)+\alpha m\left(f\left(\frac{a}{m}\right)+f\left(\frac{b}{m}\right)\right)}{\alpha+1}\right] . \tag{2.10}
\end{equation*}
$$

Proof. By the (α, m)-convexity of f, we can write

$$
f(t a+(1-t) b) \leq t^{\alpha} f(a)+m\left(1-t^{\alpha}\right) f\left(\frac{b}{m}\right)
$$

and

$$
f(t b+(1-t) a) \leq t^{\alpha} f(b)+m\left(1-t^{\alpha}\right) f\left(\frac{a}{m}\right)
$$

for all $t \in[0,1]$.
Adding the above inequalities, we get

$$
\begin{aligned}
& f(t a+(1-t) b)+f(t b+(1-t) a) \\
\leq & t^{\alpha} f(a)+m\left(1-t^{\alpha}\right) f\left(\frac{b}{m}\right)+t^{\alpha} f(b)+m\left(1-t^{\alpha}\right) f\left(\frac{a}{m}\right) .
\end{aligned}
$$

Integrating over $t \in[0,1]$, we obtain

$$
\begin{align*}
& \int_{0}^{1} f(t a+(1-t) b) d t+\int_{0}^{1} f(t b+(1-t) a) d t \tag{2.11}\\
\leq & \int_{0}^{1} t^{\alpha}(f(a)+f(b)) d t+\int_{0}^{1} m\left(1-t^{\alpha}\right)\left(f\left(\frac{a}{m}\right)+f\left(\frac{b}{m}\right)\right) d t \\
= & \frac{f(a)+f(b)}{\alpha+1}+\frac{m \alpha}{\alpha+1}\left(f\left(\frac{a}{m}\right)+f\left(\frac{b}{m}\right)\right) \\
= & \frac{f(a)+f(b)+m \alpha\left(f\left(\frac{a}{m}\right)+f\left(\frac{b}{m}\right)\right)}{\alpha+1} .
\end{align*}
$$

As it is easy to see that

$$
\int_{0}^{1} f(t a+(1-t) b) d t=\int_{0}^{1} f(t b+(1-t) a) d t=\frac{1}{b-a} \int_{a}^{b} f(x) d x
$$

from (2.11) we deduce the desired result, namely, the inequality (2.10).
Remark 5. The inequality (2.10) yields the right side of the Hadamard inequality (1.1) for $\alpha=1$ and $m=1$.

Theorem 9. Let $f:[0, \infty) \rightarrow \mathbb{R}$ be an (α, m)-convex function with $(\alpha, m) \in$ $(0,1]^{2}$. If $f \in L_{1}[a m, b]$ where $0 \leq a<b$, then the following inequality holds:

$$
\begin{align*}
& \frac{1}{m b-a} \int_{a}^{m b} f(x) d x+\frac{1}{b-m a} \int_{m a}^{b} f(x) d x \tag{2.12}\\
\leq & \frac{1}{(\alpha+1)}[(f(a)+f(b))(1+m \alpha)] .
\end{align*}
$$

Proof. By (α, m)-convexity of f, for all $t \in[0,1]$, we can write:

$$
\begin{aligned}
f(t a+m(1-t) b) & \leq t^{\alpha} f(a)+m\left(1-t^{\alpha}\right) f(b), \\
f(t b+m(1-t) a) & \leq t^{\alpha} f(b)+m\left(1-t^{\alpha}\right) f(a) \\
f((1-t) a+m t b) & \leq(1-t)^{\alpha} f(a)+m\left(1-(1-t)^{\alpha}\right) f(b), \\
f((1-t) b+m t a) & \leq(1-t)^{\alpha} f(b)+m\left(1-(1-t)^{\alpha}\right) f(a) .
\end{aligned}
$$

Adding the above inequalities with each other, we get:

$$
\begin{aligned}
& f(t a+m(1-t) b)+f(t b+m(1-t) a) \\
& +f((1-t) a+m t b)+f((1-t) b+m t a) \\
& \leq\left[t^{\alpha}+m\left(1-t^{\alpha}\right)+(1-t)^{\alpha}+m\left(1-(1-t)^{\alpha}\right)\right](f(a)+f(b)) .
\end{aligned}
$$

Now integrating over $t \in[0,1]$ and taking into account that:

$$
\int_{0}^{1} f(t a+m(1-t) b) d t=\int_{0}^{1} f((1-t) a+m t b) d t=\frac{1}{m b-a} \int_{a}^{m b} f(x) d x
$$

and

$$
\int_{0}^{1} f(t b+m(1-t) a) d t=\int_{0}^{1} f((1-t) b+m t a) d t=\frac{1}{b-m a} \int_{m a}^{b} f(x) d x
$$

we obtain the inequality (2.12).
Remark 7. Choosing $\alpha=1$ in (2.12), we obtain (1.6).

References

[1] A. G. Azpeitia, Convex functions and the Hadamard inequality, Rev. Colombiana Math., 28(1994), 7-12.
[2] M. K. Bakula, M. E. Özdemir, J. Pečarić, Hadamard tpye inequalities for m-convex and (α, m)-convex functions, J. Inequal. Pure and Appl. Math., 9(4)(2008), Art. 96.
[3] M. K. Bakula, J. Pečarić, M. Ribičić, Companion inequalities to Jensen's inequality for m-convex and (α, m)-convex functions, J. Inequal. Pure and Appl. Math., 7(5)(2006), Art. 194.
[4] S. S. Dragomir, On some new inequalities of Hermite-Hadamard type for m-convex functions, Tamkang J. Math., 3(1)(2002).
[5] S. S. Dragomir, C. E. M. Pearce, Selected Topics on Hermite-Hadamard Inequalities and Applications, RGMIA Monographs, Victoria University, 2000. [online: http://www.staff.vu.edu.au/RGMIA/monographs/hermite-hadamard.html].
[6] S. S. Dragomir, G. Toader, Some inequalities for m-convex functions, Studia Univ. Babes-Bolyai, Mathematica, 38(1)(1993), 21-28.
[7] U. S. Kırmacı, M. K. Bakula, M. E. Özdemir, J. Pečarić, Hadamard-tpye inequalities for s-convex functions, Appl. Math. and Comp., 193(2007), 26-35.
[8] V. G. Miheşan, A generalization of the convexity, Seminar on Functial Equations, Approx. and Convex, Cluj-Napoca (Romania) 1993.
[9] D. S. Mitrinović, J. E. Pečarić, A. M. Fink, Classical and New Inequalities in Analysis, Kluwer Academic Publishers, Dordrecht, 1993.
[10] C. P. Niculescu, L. E. Persson, Convex Functions and Their Applications, A Contemporary Approach, Canadian Math. Series Books in Mathematics, Springer, New York, 2006.
[11] M. E. Özdemir, M. Avci, E. Set, On some inequalities of Hermite-Hadamard type via m-convexity, Appl. Math. Lett., 23(9)(2010) 1065-1070.
[12] M. E. Özdemir, H. Kavurmaci, E. Set, Ostrowski's type inequalities for (α, m)-convex functions, Kyungpook Math. J., 50(2010), 371-378.
[13] M. E. Özdemir, M. Avcı and H. Kavurmacı, Hermite-Hadamard-type inequalities via (α, m)-convexity, Computers and Mathematics with Applications, 61(2011), 26142620.
[14] M. E. Özdemir, E. Set and M. Z. Sarıkaya, Some new Hadamard's type inequalities for co-ordinated m-convex and (α, m-convex functions, Hacettepe J. of. Math. and Statistics, 40(2011), 219-229.
[15] J. E. Pečarić, F. Proschan, Y. L. Tong, Convex Functions, Partial Orderings, and Statistical Applications, Academic Press, INC, 1992.
[16] M. Z. Sarikaya, A. Saglam and H. Yıldırım, On some Hadamard-type inequalities for h-convex functions, J. Math. Ineq., 2(3)(2008), 335-341.
[17] A. Sağlam, H. Yıldırım and M. Z. Sarıkaya, Some new inequalities of HermiteHadamard type, Kyungpook Math. J., 50(2010) 399-410.
[18] G. Toader, Some generalizations of the convexity, Proc. Colloq. Approx. Opt. ClujNapoca, (1984), 329-338.
[19] G. Toader, The hierarchy of convexity and some classic inequalities, J. Math. Ineq., 3(3)(2009), 305-313.

[^0]: * Corresponding Author.

 Received March 10, 2010; accepted September 23, 2011.
 2010 Mathematics Subject Classification: 26A51, 26D15.
 Key words and phrases: Hadamard inequality, convex functions, (α, m)-convex function.

