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ON GENERALIZED BISECTION OF n–SIMPLICES

REINER HORST

Abstract. A generalized procedure of bisection of n–simplices is introduced,
where the bisection point can be an (almost) arbitrary point at one of the
longest edges. It is shown that nested sequences of simplices generated by
successive generalized bisection converge to a singleton, and an exact bound
of the convergence speed in terms of diameter reduction is given. For regular
simplices, which mark the worst case, the edge lengths of each worst and best
simplex generated by successive bisection are given up to depth n. For n = 2
and 3, the sequence of worst case diameters is provided until it is halved.

1. Introduction

The convex hull S = [v1, . . . , vn+1] of n+ 1 affinely independent vectors v1, . . . ,
vn+1 in Rn is called an n–simplex with vertices v1, . . . , vn+1 (more exactly “the
vertex representation of an n–simplex”). A family {Si : i ∈ I}, I finite set of
indices, of n–simplices satisfying

S =
⋃
i∈I

Si and intSi ∩ intSj = ∅ ∀ i, j ∈ I, i 6= j,(1)

is said to be a (full–dimensional) simplicial partition of S.
Nested sequences of n–simplices, where each element of the sequence is a member

of a simplicial partition of its predecessor, are of crucial interest in several fields of
computational applied mathematics, where—to a certain extent—the research in
each field has been developed independently of the other fields. Usually, one seeks
partitioning rules which ensure convergence of each such sequence to a singleton
at a fast convergence rate which is often measured by means of the corresponding
sequence of diameters in the Euclidean norm. However, the speed in which the
diameters converge to zero is not always the determining factor, since often we
are interested in the behavior of a certain sequence of functions associated to the
sequence of simplices.

One of these fields comprises triangulation methods, in particular piecewise–
linear homotopy methods, for finding roots of mappings and related problems,
where, however, variable dimension simplicial partitions seem to be even more
important than the full–dimensional ones we are interested in here. Among the
many excellent books and surveys of this field, see, e.g. [4, 2, 3] and references
therein.

A second field, where in particular, the case n = 2 is of interest (triangulation in
the literal sense with some generalizations for n = 3 (meshes of tetrahedra)), deals
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with adaptive and multilevel finite element methods for elliptic boundary value
problems (e.g., [2, 12, 13, 14] and references therein).

A third field which has recently received much attention comprises branch and
bound methods and related techniques for certain broad classes of multiextremal
global optimization problems such as minimization of a concave function over a
compact convex set, and even the more general problem of minimizing differences
of convex functions (for recent books which include abundant relevant references,
see [8, 9]). Here, one is usually interested in the case of dimensions n considerably
larger than three.

In [6] (see also [7]) it was shown that the following “radial” subdivision of
an n–simplex S = [v1, . . . , vn+1] generates a simplicial partition: let w ∈ S \
{v1, . . . , vn+1}, which is uniquely represented by

w =
n+1∑
i=1

λivi, λi ≥ 0, i = 1, . . . , n+ 1,
n+1∑
i=1

λi = 1,(2)

and, for each i such that λi > 0, form the simplex S(i, w) obtained from S by re-
placing the vertex vi by w, i.e., S(i, w) = [v1, . . . , vi−1, w, vi+1, . . . , vn+1].

When w is the midpoint of one of the longest edges of S, we obtain the important
bisection of simplices which was independently introduced in [6, 7, 10, 17]; see also
[5, 16]. Consider a sequence of n–simplices Sk = [vk,1, . . . , vk,n+1], k = 1, 2, . . . ,
with longest edges [vk,1, vk,2], where Sk+1 is constructed from Sk by bisection at
wk = (vk,1 + vk,2)/2. Let δ(Sk) = max{||x− y|| : x, y ∈ Sk} = ||vk,1 − vk,2|| be the
diameter of Sk, k = 1, 2, . . . . Then it was shown in [7, 10, 17] that δ(Sk) → 0 as
k →∞. Kearfott [10] proved that

δ(Sk+p) ≤ (
√

3/2)bp/nc δ(Sk) ∀ k, p ∈ N,(3)

where bp/nc is the largest integer less than or equal to p/n. This is equivalent to

δ(Sk+n) ≤
√

3/2 δ(Sk) ∀ k ∈ N,(4)

which has been reproved by somewhat different arguments in [12] and [9, Proposi-
tion IV.2]. Sharper bounds and a number of additional results regarding conformal
triangular meshes and similarity classes are known for the two–dimensional case of
triangles [1, 15, 17, 18] and for some special three–dimensional simplices [5, 11, 16].

In the next section we introduce a new kind of generalized bisection of n–
simplices, n ≥ 2, where now bisection at an arbitrary point wk ∈ [(vk,1 + vk,2)/2,
vk,2) is admitted provided that there is some 0 < c ≤ 1

2 such that 0 < c <
||wk − vk,2||/||vk,2 − vk,1|| holds for all simplices Sk in a nested sequence. An exact
bound for the radius of the smallest ball centered at wk and containing Sk+1 is
given, from which δ(Sk)→ 0 and a bound which generalizes (4) is derived. For the
special case of midpoint bisection we obtain a new proof of (4).

The bound (4) and its generalization to nonmidpoint bisection are exact for
regular initial simplices. Therefore, Section 3 presents a closer look at successive
bisection of regular simplices. For depths k, 1 ≤ k ≤ n, the lengths of all edges
of each “worst” simplex will be given, and it will be shown that at depth n, the
“best” simplex will be regular with edge lengths one half of the edge lengths of the
initial simplex. For n = 2 (triangles) and n = 3 (tetrahedra) it is shown how many
further bisections are necessary to reduce the diameter of each simplex to one half
of the initial one.
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2. Nonmidpoint bisection

Theorem 1. For a sequence of n–simplices Sk = [vk,1, . . . , vk,n+1], n ≥ 2, k =
1, 2, . . . , with longest edges [vk,1, vk,2], where each simplex Sk+1 is constructed from
its predecessor Sk by (generalized) bisection at a point

wk = λkvk,1 + (1− λk)vk,2, 0 < c ≤ λk ≤
1

2
,(5)

for some fixed number 0 < c <
1

2
, there holds

(i) δ(wk, Sk) := max{||wk − vk,i|| : i = 1, . . . , n+ 1} ≤ δ(Sk)
√

1 + λ2
k − λk,

(ii) lim δ(Sk) = 0 as k →∞,

(iii) if, for all k, λk = c, 0 < c ≤ 1

2
, then

δ(Sk+n) ≤
√

1 + c2 − c δ(Sk) ∀ k ∈ N.

Proof. (i): Let ||wk− vk,j || = max{||wk− vk,i|| : i = 3, . . . , n+ 1} and consider the
triangle [vk,1, vk,2, vk,j ] with vertices vk,1, vk,2, vk,j . From the definition of δ(Sk) it
follows that

||vk,i − vk,j || ≤ δ(Sk), i = 1, 2, . . . .(6)

Geometrically, the inequality (6) states that vk,j can neither lie outside the circle
C1 centered at vk,1 with radius δ(Sk), nor outside the circle C2 centered at vk,2
with radius δ(Sk) (Fig. 1).

α

vwv

C

v

C

k,j

k

k

Skδ(   )

2 1

k, k,21

Figure 1

Since in (5) we consider λk ≤ 1
2 , i.e., wk ∈ [(vk,2 + vk,1)/2, vk,2], it is easy to

see that the largest allowed δ(wk, Sk) occurs when vk,j lies on the boundary of C2.
Consider the triangle [wk, vk,2, vk,j ] and let, in this triangle, αk be the angle at vk,2
(Fig. 1). We must have 0 ≤ αk ≤ π/3 because αk > π/3 and vk,j on the boundary
of C2 would imply that vk,j lies outside C1 (the two circles intersect at αk = π/3).

We know from elementary geometry (law of cosine) that

||wk − vk,j ||2 = ||vk,2 − vk,j ||2 + ||vk,2 − wk||2

−2||vk,2 − vk,j || · ||vk,2 − wk|| cosαk.
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Inserting (5) at the right-hand side, we obtain

||wk − vk,j ||2 = ||vk,2 − vk,j ||2 + λ2
k||vk,2 − vk,1||2

−2λk||vk,2 − vk,j || ||vk,2 − vk,1|| cosαk

≤ δ2(Sk)(1 + λ2
k − λk),

where the last inequality follows from (6) and cosαk ≥ cosπ/3 = 1/2. Taking into
acocunt the distance from wk to vk,2 and to vk,1, respectively, we see that

δ(wk, Sk) ≤ max{λk; 1− λk;
√

1 + λ2
k − λk} δ(Sk) = δ(Sk)

√
1 + λ2

k − λk

(7)

since λk ≤
1

2
.

(ii), (iii): The smallest value in (7) is
√

3/2 (attained at λk = 1
2 ), the largest one

is attained at λk = c. Therefore, we have

1/2 <
√

3/2 ≤
√

1 + λ2
k − λk ≤

√
1 + c2 − c < 1.(8)

To prove (iii) it suffices to consider the case k = 1. Assign to each vertex and
each edge of the initial simplex S1 the label “old”, and assign to each vertex and
each edge of any Si, i > 1, which is not labelled “old” the label “new”. When for
some i > 1 an “old” edge is bisected, the simplex Si+1 has one “new” vertex more
than Si. Since an n–simplex has n+ 1 vertices, we see that a “new” edge must be
bisected (i.e., be a longest edge) at some step i ≤ n+ 1. This ensures (iii) because
of (7), (8).

Property (ii) follows from (iii), (7), (8) and δ(Sk+1) ≤ δ(Sk) ∀ k.

Remark 1. Clearly, the bound in (i) is exact whenever the simplex Sk contains an
equilateral triangle with sidelength δ(Sk) and vertices in the vertex set of Sk; the
bound (iii) is exact for regular simplices.

3. Bisection of regular simplices

Returning to classical bisection (c = 1/2 in Theorem 1 (iii)), we next will have
a closer look at regular simplices which mark the worst case in Theorem 1.

In order to compare simplices with respect to their edge lengths we associate with
each simplex the

(
n+1

2

)
–vector x of its edge lengths in decreasing order such that, for

the components xi of x, we have xi ≥ xi+1, i = 1, . . . ,
(
n+1

2

)
. A simplex S will be

called “worse” than a simplex S′ when its edge lengths vector x is lexicographically
greater than the edge lengths vector x′ of S′. (S′ will be said to be “better” than
S in this case). A lexicographically greatest (smallest) of such vectors will define a
“worst” (resp. “best”) simplex in a finite set of simplices.

Proposition 1. In the process of successive bisections up to depth n of a regular
n–simplex with edge lengths 1

(i) only edge lengths 1,
√

3/2,
√

2/2, 1/2 can occur.

(ii) At depth 1 ≤ k ≤ n, each worst simplex has
(
n+1−k

2

)
edges of length 1,

k(n− k + 1)− 1 edges of length
√

3/2, k edges of length 1/2. The remaining
of its

(
n+1

2

)
edges have length

√
2/2 (where the number is 0 for k = 1, 2, and(

k−1
2

)
for k ≥ 3).
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In particular, for k = n, each worst simplex has (n−1) edges of length
√

3/2,(
n−1

2

)
edges of length

√
2/2 and n edges of length 1/2.

(iii) The best simplex at depth n is regular with edge lengths 1/2 and occurs exactly

2
(
n+1

2

) n−1∏
k=1

(n− k) times in the set of all possible simplices generated at depth

n.

Proof. Edges and vertices of the initial simplex S0 will be labelled “old”. All edges
and vertices appearing in the process which are not labelled “old” will be labelled
“new”. At level (depth) 1, all possible immediate descendants of S0 are considered,
at level 2, all possible immediate descendants of all simplices of level 1, and so forth.

Bisection of a certain simplex S at the midpoint w of an edge AB with length c,
gives rise to two immediate descendants, in each of which n new edges are generated.
One of these has length c/2, and the length m of each of the remaining (n− 1) of
these new edges can be determined from the well–known elementary formula

m2 = 1/2 (a2 + b2 − c2/2)(9)

in each of the n − 1 triangles ABC with a = AC, b = BC, where C ranges over
all vertices of S different from A,B. Notice that formula (9) holds for arbitrary
triangles.

Clearly, in each of the first n levels, an old edge is bisected, and we have seen in
the preceding section that at level n, no old edge is left in any simplex. At level 1
we have the situation of Fig. 2, all possible 2 ·

(
n+1

2

)
immediate descendants have

one new edge of length 1/2, n − 1 new edges of length
√

3/2 and
(
n
2

)
old edges.

Because of this similarity we start our investigation at one of these simplices of level
1 so that subsequently detected numbers of simplices of a certain similarity type
have to be multiplied by 2 ·

(
n+1

2

)
.

1/2

3/2

C (old)

1 1

1/2

A (old) B (old)w

Figure 2

From the proof of Theorem 1, we know that the situation of Fig. 2 can occur
only until levels k ≤ n− 2. In levels 1 < k ≤ n, in addition to Fig. 2, we can only
have the triangles depicted in Figs. 3 and 4, so that only new lengths of 1/2 and√

2/2 can occur.
Fig. 3 occurs when the currently bisected edge is adjacent to (i.e., has a common

vertex with) a previously bisected edge.
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3/2

3/2 3/2

2/2

w

1/2 1/2

w

1/21/2

1/2 1/2

old old

new

new

old old

Figure 3 Figure 4

Table 1

1
√

3/2
√

2/2 1/2

k = 1 −n +(n− 1) 0 +1

k = 2 −(n− 1) +(n− 2) 0 +1

k > 2 −(n− k + 1) +(n− k)− (k − 2) +k − 2 +1

Since in every bisection at least one new edge of length 1/2 is generated, each
simplex at level n must have at least n edges of length 1/2. Since, moreover, in
level 2 we can choose the simplex corresponding to the left triangle in Fig. 3 (with
lengths 2 × 1/2, (2n− 3) ×

√
3/2,

(
n−1

2

)
× 1); and in subsequent levels 3 ≤ k ≤ n

we can always choose the situation of Fig. 4, the simplex of level n with the least
number of edges of length 1/2 must have exactly n edges of length 1/2. Likewise,
we see, that in this way we do indeed find a worst simplex at any level 2 ≤ k ≤ n:
the number of edges of length 1 is

(
n+1−k

2

)
in each simplex at level k, and in each

transition from k to k + 1, the increase in the number of edges of length
√

3/2 is
maximal in this strategy. Table 1 shows the changes in the number of edges of the
occurring lengths for each worst simplex in every level k, where, of course, for each
n ≥ 2, the table is valid only for 1 ≤ k ≤ n.

Summing up, we see that a worst simplex at level 1 ≤ k ≤ n has
(
n+1−k

2

)
edges

of length 1, k(n− k + 1) − 1 edges of length
√

3/2, k edges of length 1/2, and the
remaining of its

(
n+1

2

)
edges of length

√
2/2 (the number is 0 for k = 1, 2, and(

k−1
2

)
for k ≥ 3). If in the number k(n − k + 1) − 1, 1 ≤ k ≤ n, we replace k by

n − k + 1, 1 ≤ k ≤ n, we obtain the same number, i.e., for n even, the sequence
{k(n − k + 1) − 1}, 1 ≤ k ≤ n, is monotonically increasing until k = n/2, and
decreasing in reverse order until k = n; for n odd, it increases until k = bn/2c+ 1
and repeats its first bn/2c values in reverse order from k = bn/2c+ 2 to k = n. At

level n, a worst simplex has (n − 1) edges of length
√

3/2,
(
n−1

2

)
edges of length√

2/2 and n edges of length 1/2.
Finally, the regular simplices of edge length 1/2 are generated by choosing at

each level the simplex corresponding to the right-hand simplex in Fig. 3 (which
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ON GENERALIZED BISECTION OF n–SIMPLICES 697

amounts to a successive bisection of all n old edges incident to one of the vertices
of the first bisected old edge).

Continuation of the above analysis for k > n is cumbersome, in particular for
n ≥ 4. We confine ourselves to the sequence of diameters of the worst simplex until
it is halved.

Corollary 1. Let S0 be a regular n–simplex of diameter δ(S0) = 1. Then, for
each nested sequence of simplices {Sk} generated from S0 by successive bisection,
we have

δ(S1) = 1, δ(S2) ≤
√

3/2, δ(S3) ≤ 1/2 if n = 2;

δ(S1) = δ(S2) = 1, δ(S3) ≤
√

3/2, δ(S4) ≤
√

3/2, δ(S5) ≤
√

2/2,

δ(S6) ≤
√

5/4, δ(S7) ≤ 1/2 if n = 3.

Proof. For k ≤ n, the assertion follows from Proposition 1. If n = 2, all sim-
plices generated after two bisections have either edge lengths

√
3/2, 1/2, 1/2 or

1/2, 1/2, 1/2, i.e., after the next bisection the diameter is brought down to 1/2. For
n = 3, the worst simplex S3 has edge lengths

√
3/2,

√
3/2,

√
2/2, 1/2, 1/2, 1/2.

From the proof of Proposition 1 it is easy to see that in S3 two edges of length√
3/2 can be adjacent, but S3 cannot have a facet of edge lengths

√
3/2,

√
3/2,√

2/2. It follows from (9) that the 4th bisection generates only one new edge of
length greater 1/2, namely the edge of length

√
5/4 resulting from the triangle of

edge lengths
√

3/2,
√

3/2, 1/2.
Therefore, the three longest edges of the worst simplex S4 have lengths

√
3/2,√

2/2,
√

5/4, whereas the remaining edges have lengths less than or equal to 1/2.
Formula (9) shows that further bisections cannot give rise to new edge lengths
greater than or equal to 1/2, which proves the last part of Corollary 1.
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