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Abstract

Let X be a smooth manifold with a (smooth) involution σ : X → X such that Fix(σ) �

∅. We call the space P(m, X) := Sm × X/ ∼ where (v, x) ∼ (−v, σ(x)) a generalized Dold

manifold. When X is an almost complex manifold and the differential Tσ : T X → T X is

conjugate complex linear on each fibre, we obtain a formula for the Stiefel-Whitney polynomial

of P(m, X) when H1(X;Z2) = 0. We obtain results on stable parallelizability of P(m, X) and

a very general criterion for the (non) vanishing of the unoriented cobordism class [P(m, X)] in

terms of the corresponding properties for X. These results are applied to the case when X is a

complex flag manifold.

1. Introduction

1. Introduction
Let P(m, n) denote the space obtained as the quotient by the cyclic group Z2-action on the

product Sm × CPn generated by the involution (u, L) �→ (−u, L̄), u ∈ Sm, L ∈ CPn where L̄

denotes the complex conjugation. The spaces P(m, n), which seem to have first appeared in

the work of Wu, are called Dold manifolds, after it was shown by Dold [6] that, for suitable

values of m, n, the cobordism classes of P(m, n) serve as generators in odd degrees for the

unoriented cobordism algebra N. Dold manifolds have been extensively studied and have

received renewed attention in recent years; see [9], [15] and also [14], [20], and [4].

The construction of Dold manifolds suggests, among others, the following generalization.

Consider an involution on a Hausdorff topological space σ : X → X with non-empty fixed

point set and consider the space P(m, X, σ) obtained as the quotient of Sm×X by the action of

Z2 defined by the fixed point free involution (v, x) �→ (−v, σ(x)). We obtain a locally trivial

fibre bundle with projection π : P(m, X, σ)→ RPm and fibre space X. If x0 is a fixed point of

σ, then the bundle admits a cross-section s : RPm → P(m, X, σ) defined as s([v]) = [v, x0].

If X is a smooth manifold and if σ is smooth, then the above bundle and the cross-section

are smooth.

In this paper we study certain manifold-properties of P(m, X, σ) (or more briefly P(m, X))

where X is a closed connected smooth manifold with an almost complex structure J : T X →
T X and σ is a conjugation, that is, the differential Tσ : T X → T X and J anti-commute:

Tσ ◦ J = −J ◦ Tσ. We give a description of the tangent bundle of P(m, X). Assuming

that Fix(σ) � ∅ and H1(X;Z2) = 0, we obtain a formula for the Stiefel-Whitney classes of
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P(m, X) (Theorem 3.1) and a necessary and sufficient condition for P(m, X) to admit a spin

structure (Theorem 3.2). We also obtain results on the stable parallelizability of the P(m, X)

(Theorem 3.3) and the vanishing of their (unoriented) cobordism class in the cobordism ring

N (Theorem 3.7).

Recall that a smooth manifold M is said to be parallelizable (resp. stably parallelizable)

if its tangent bundle τM (resp. ǫR ⊕ τM) is trivial.

By the celebrated work of Adams [1] on the vector field problem for spheres, one knows

that the (additive) order of the element ([ζ]−1) ∈ KO(RPm) equals 2ϕ(m) where ζ is the Hopf

line bundle over RPm and ϕ(m) is the number of positive integers j ≤ m such that j ≡ 0, 1, 2,

or 4 mod 8.

The complex flag manifold CG(n1, . . . , nr) is the homogeneous space U(n)/(U(n1)×· · ·×
U(nr)), where the n j ≥ 1 are positive integers and n =

∑
1≤ j≤r n j. These manifolds are

well-known to be complex projective varieties. We denote by P(m; n1, . . . , nr) the space

P(m,CG(n1, . . . , nr)). The complete flag manifold CG(1, . . . , 1) is denoted Flag(Cn). Note

that CG(n1, n2) is the complex Grassmann manifold CGn,n1
of n1-dimensional vector sub-

spaces of Cn.

We highlight here the results on stable parallelizability and cobordism for a restricted

classes of generalized Dold manifolds as in these cases the results are nearly complete.

Theorem 1.1. Let m ≥ 1 and r ≥ 2.

(i) The manifold P(m; n1, . . . , nr) is stably parallelizable if and only if n j = 1 for all j and

2ϕ(m) divides
(
m + 1 +

(
n

2

))
.

(ii) Suppose that P := P(m; 1, . . . , 1) is stably parallelizable. Then it is parallelizable if

ρ(m + 1) > ρ(m + 1 + n(n − 1)). If m is even, then P is not parallelizable.

The case when the flag manifold is a complex projective space corresponds to the classical

Dold manifold P(m, n − 1). In this special case the above result is due to J. Korbaš [9]. See

also [21] in which J. Ucci characterized classical Dold manifolds which admit codimension-

one embeddings in the Euclidean space.

Theorem 1.2. Let 1 ≤ k ≤ n/2 and let m ≥ 1.

(i) If ν2(k) < ν2(n), then [P(m,CGn,k)] = 0 in N.

(ii) If m ≡ 0 mod 2 and if ν2(k) ≥ ν2(n), then [P(m,CGn,k)] � 0.

The above theorem leaves out the case when m ≥ 1 is odd and ν2(k) ≥ ν2(n). See Remark

3.8 for results on the vanishing of [P(m; n1, . . . , nr)].

Our proofs make use of basic concepts in the theory of vector bundles and characteristic

classes. We first introduce, in §2, the notion of a σ-conjugate complex vector bundle over

X where σ is an involution on X and associate to each such complex vector bundle ω a real

vector bundle over ω̂. We establish a splitting principle to obtain a formula for the Stiefel-

Whitney classes of ω̂ in terms of certain ‘cohomology extensions’ of Stiefel-Whitney classes

of ω, assuming that H1(X;Z2) = 0. This leads to a formula for the Stiefel-Whitney classes

of P(m, X) when X is a smooth almost complex manifold and σ is a complex conjugation.

Proof of Theorem 1.1 uses the main result of [18], the Bredon-Kosiński’s theorem [3], and

a certain functor µ2 introduced by Lam [11] to study immersions of flag manifolds. Proof

of Theorem 1.2 uses basic facts from the theory of Clifford algebras, a result of Conner and

Floyd [5, Theorem 30.1] concerning cobordism of manifolds admitting stationary point free
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action of elementary abelian 2-group, and the main theorem of [17].

2. Vector bundles over P(m, X, σ)

2. Vector bundles over P(m, X, σ)
Let σ : X → X be an involution of a path connected paracompact Hausdorff topological

space and let ω be a complex vector bundle over X. Denote by ω∨ the dual vector bundle

HomC(ω, ǫC). Here ǫF denotes the the trivial F-line bundle over X where F = R,C. Note

that, since X is paracompact, ω admits a Hermitian metric and so ω∨ is isomorphic to the

conjugate bundle ω̄. The following definition generalises the notion of a conjugation of an

almost complex manifold in the sense of Conner and Floyd [5, §24].

D 2.1. Let σ : X → X be an involution and let ω be a complex vector bundle

over X. A σ-conjugation on ω is an involutive bundle map σ̂ : E(ω) → E(ω) that covers σ

which is conjugate complex linear on the fibres of ω. If such a σ̂ exists, we say that (ω, σ̂)

(or more briefly ω) is a σ-conjugate bundle.

Note that if ω is a σ-conjugate bundle, then ω̄ � σ∗(ω).

E 2.2. (i) Let σ be any involution on X. When ω = nǫC, the trivial complex vector

bundle of rank n, we have E(ω) = X × Cn. The standard σ-conjugation on ω is defined as

σ̂(x,
∑

z je j) = (σ(x),
∑

z̄ je j). Here {e j}1≤ j≤n is the standard basis of Cn. Thus (nǫC, σ̂) is

σ-conjugate bundle.

(ii) Let X = CGn,k and let σ : X → X be the involution L �→ L̄. Then the standard σ-

conjugation on nǫC defines, by restriction, a σ-conjugation of the canonical k-plane bundle

γn,k. Explicitly, v �→ v̄, v ∈ L ∈ CGn,k, is the required involutive bundle map σ̂ : E(γn,k) →
E(γn,k) that covers σ. Similarly the orthogonal complement βn,k := γ⊥

n,k
is also a σ-conjugate

bundle.

(iii) If X ⊂ CPN is a complex projective manifold defined over R and σ : X → X is

the restriction of complex conjugation [z] �→ [z̄], then the tangent bundle τX of X is a σ-

conjugate bundle. Indeed the differential of σ, namely Tσ : T X → T X is the required

bundle map σ̂ of τX that covers σ. As mentioned above, this classical case was generalized

by Conner and Floyd [5, §24] to the case when X is an almost complex manifold.

(iv) If ω, η are σ-conjugate vector bundles over X, then so are Λr(ω),HomC(ω, η), ω ⊗ η,
andω⊕η. For example, if σ̂ and σ̃ areσ-conjugations onω and η respectively, both covering

σ, then HomC(ω, η) ∋ f �→ σ̃ ◦ f ◦ σ̂ ∈ HomC(ω, η) is verified to be a conjugate complex

linear bundle involution of HomC(ω, η) that covers σ.

(v) Any subbundle η of aσ-conjugate complex vector bundleω over X is alsoσ-conjugate

provided σ̂ : E(ω)→ E(ω) satisfies σ̂(E(η)) = E(η).

2.1. Vector bundle associated to (η, σ̂).
2.1. Vector bundle associated to (η, σ̂). Let η be a real vector bundle over X with projec-

tion pη : E(η)→ X and let σ̂ : E(η)→ E(η) be an involutive bundle isomorphism that covers

σ. We obtain a real vector bundle, denoted η̂, over P(m, X, σ) as follows: (v, e) �→ (−v, σ̂(e))

defines a fixed point free involution of Sm × E(η) with orbit space P(m, E(η), σ̂). The map

pη̂ : P(m, E(η), σ̂) → P(m, X, σ) defined as [v, e] �→ [v, pη(e)] is the projection of the re-

quired bundle η̂.

This construction is applicable when η = ρ(ω), the underlying real vector bundle of a σ-
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conjugate complex vector bundle (ω, σ̂). If β is a (real) subbundle of η such that σ̂(E(β)) =

E(β), then the restriction of σ̂ to E(β) defines a bundle β̂ which is evidently a subbundle of

η̂.

We shall denote by ξ the real line bundle over P(m, X, σ), often referred to as the Hopf

bundle, associated to the double cover Sm × X → P(m, X, σ). Its total space has the descrip-

tion Sm × X ×Z2
R consisting of elements [v, x, t] = {(v, x, t), (−v, σ(x),−t)}, v ∈ Sm, x ∈ X, t ∈

R. Denote by π : P(m, X, σ)→ RPm the map [v, x] �→ [v]. Then π is the projection of a fibre

bundle with fibre X. The map E(ξ) → E(ζ) defined as [v, x, t] �→ [v, t] is a bundle map that

covers the projection π : P(m, X, σ)→ RPm and so ξ � π∗(ζ).

If σ(x0) = x0 ∈ X, then we have a cross-section s : RPm → P(m, X) defined as [v] �→
[v, x0]. Note that s∗(ξ) = ζ.

2.2. Dependence of ω̂ on σ̂.
2.2. Dependence of ω̂ on σ̂. It should be noted that the definition of η̂ depends not only

on the real vector bundle η but also on the bundle map σ̂ that covers σ. For example, on the

trivial line bundle ǫR, if σ̂(x, t) = (σ(x), t), then ǫ̂R � ǫR, whereas if σ̂(x, t) = (σ(x),−t), then

ǫ̂R is isomorphic to ξ.

When ω = τX is the tangent bundle over an almost complex manifold (X, J) and σ̂ = Tσ

where σ is a conjugation on X, (i.e., satisfies Jσ(x) ◦ Txσ = −Txσ ◦ Jx ∀x ∈ X), the vector

bundle τ̂X is understood to be defined with respect to the pair (τX, Tσ).

Let k, l ≥ 0 be integers and let n = k + l ≥ 1 and let s1, . . . , sn be everywhere linearly

independent sections of the trivial bundle nǫR. Denote by εk,l : X × Rn → X × Rn the in-

volutive bundle map nǫR covering σ defined as εk,l(x,
∑

j t js j(x)) = (σ(x),−∑1≤ j≤k t js j(x) +∑
k< j≤n t js j(x)). Then the bundle over P(m, X, σ) associated to (nǫR, εk,l) is isomorphic to

kξ ⊕ lǫR. When n = 2d, k = l = d, nǫR = ρ(dǫC) then the standard conjugation on dǫC equals

εd,d (for an obvious choice of s j, 1 ≤ j ≤ n).

Let (ω, σ̂) be a σ-conjugate complex vector bundle and let η be a real vector bundle which

is isomorphic to the real vector bundle ρ(ω) underlying ω. Suppose that f : ρ(ω) → η is a

bundle isomorphism that covers the identity map of X. Set σ̃ := f ◦ σ̂ ◦ f −1. Then σ̃ is an

involution of η that covers σ and hence defines a vector bundle η̂ over P(m, X, σ).

Lemma 2.3. We keep the above notations. (i) The real vector bundles ω̂ and η̂ over

P(m, X, σ) associated to the pairs (ω, σ̂) and (η, σ̃) are isomorphic. In particular ω̂ � ˆ̄ω.

(ii) Suppose that ρ(ω) = η0 ⊕ η1 where η j, j = 0, 1 are real vector bundles. Suppose that

σ̂(E(η j)) = E(η j), then ω̂ is isomorphic to η̂0 ⊕ η̂1 where η̂ j is defined with respect to the

pair (η j, σ̂|E(η j)), j = 0, 1.

(iii) Let n = k + l ≥ 1. Suppose that ρ(ω) ⊕ nǫR � NǫR, where N := 2d + n, and that εd+k,d+l

on NǫR restricts to σ̂ on ρ(ω) and to εk,l on nǫR. Then ω̂ ⊕ kξ ⊕ lǫR � (d + k)ξ ⊕ (d + l)ǫl.

Proof. We will only prove (i); the proofs of remaining parts are likewise straightforward.

Consider the map φ : Sm×E(ω)→ Sm×E(η) defined as φ(v, e) = (v, f (e)) ∀v ∈ Sm, e ∈ E(ω).

The φ((−v, σ(e))) = (−v, f (σ̂(e))) = (−v, σ̃( f (e))). Thus φ is Z2-equivariant and so induces

a vector bundle homomorphism φ̄ : P(m, E(ω), σ̂) → P(m, E(η), σ̃) that covers the identity

map of P(m, X, σ). Restricted to each fibre, the map φ̄ is an R-linear isomorphism since this

is true of f . Therefore ω̂ and η̂ are isomorphic vector bundles. Finally, let η = ω̄, σ̃ = σ̂ and

f = id. Then ω̂ � ˆ̄ω. �



G DM 79

E 2.4. (i) Consider the Riemann sphere S2
= CP1. Let γ ⊂ 2ǫC be the tautological

(complex) line bundle over CP1 and let β be its orthogonal complement. As complex line

bundles one has the isomorphism β � γ̄. It follows that from the above lemma that 2γ̂ �

2β̂ � 2ξ ⊕ 2ǫR.

(ii) Suppose that X = CGn,k and let σ : X → X be the conjugation L → L̄. As seen

in Example 2.2(ii), v �→ v̄ define conjugations of γn,k, βn,k that cover σ. Note that γn,k ⊕
βn,k = nǫC. By the above lemma we obtain that γ̂n,k ⊕ β̂n,k � dǫ̂C � dǫR ⊕ dξ. Also,

the conjugations on γn,k, βn,k induce an involution, denoted σ̂, on ω := Hom(γn,k, βn,k); see

Example 2.2(iv). One has the isomorphism τCGn,k � ω of complex vector bundles ([11]).

Under this isomorphism, the bundle involution σ̂ corresponds to Tσ : TCGn,k → TCGn,k.

Therefore ω̂ � τ̂CGn,k.

2.3. Splitting principle.
2.3. Splitting principle. Denote by Flag(Cr) the complete flag manifold CG(1, . . . , 1).

Let ω be a complex vector bundle over X of rank r ≥ 1 endowed with a Hermitian metric

and let q : Flag(ω) → X be the Flag(Cr)-bundle associated to ω. Thus the fibre over an

x ∈ X is the space {(L1, . . . , Lr) | L1 + · · · + Lr = p−1
ω (x), L j ⊥ Lk, 1 ≤ j < k ≤ r, dimC L j =

1} � Flag(Cr) of complete flags in p−1
ω (x) ⊂ E(ω). The vector bundle q∗(ω) splits as a

Whitney sum q∗(ω) = ⊕1≤ j≤rω j of complex line bundles ω j over Flag(ω) with projection

p j : E(ω j)→ Flag(ω). The fibre over a point L = (L1, . . . , Lr) ∈ Flag(ω) of the bundle ω j is

the vector space L j ⊂ p−1
ω (q(L)).

Suppose that σ : X → X is an involution and that σ̂ : E(ω) → E(ω) is a σ-conjugation

on ω. We shall write ē for σ̂(e), e ∈ E(ω). One has the involution θ : Flag(ω) → Flag(ω)

defined as L = (L1, . . . , Lr) �→ (L̄1, . . . , L̄r) =: L̄. Here V̄ denotes the subspace σ̂(V) ⊂
p−1
ω (σ(x)) when V ⊂ p−1

ω (x). Then θ̂ : E(q∗(ω)) → E(q∗(ω)) defined as θ̂(L, e) = (L̄, ē) is a

θ-conjugation on q∗(ω). Moreover, it restricts to a θ-conjugation θ̂ j on the subbundle ω j for

each j ≤ r.

Recall from §2.1 that ω̂ is the real vector bundle with projection pω̂ : P(m, E(ω), ω̂) →
P(m, X, σ). Likewise, we have the real 2-plane bundle ω̂ j over P(m, Flag(ω), θ) with projec-

tion pω̂ j
: P(m, E(ω j), θ̂ j) → P(m, Flag(ω), θ). Since q ◦ θ = σ ◦ q, we have the induced

map q̂ : P(m, Flag(ω), θ) → P(m, X, σ) defined as [v,L] �→ [v, q(L)]. The map q̂ is in fact

the projection of a fibre bundle with fibre the flag manifold Flag(Cr). Since θ̂ = (θ̂1, . . . , θ̂r),

applying Lemma 2.3 (ii) we see that q̂∗(ω̂) � ⊕1≤ j≤rω̂ j.

Recall that the first Chern classes mod 2 of the canonical complex line bundles ξ j over

Flag(Cr), 1 ≤ j ≤ r, generate the Z2-cohomology algebra H∗(Flag(Cr);Z2). In fact

H∗(Flag(Cr);Z) � Z[c1, . . . , cr]/I where I is the ideal generated by the elementary symmet-

ric polynomials in c1, . . . , cr. Here the generators c j + I may be identified with the (integral)

Chern class c1(ξ j). In particular H∗(Flag(Cr);Z)S r = H0(Flag(Cr);Z) � Z and so a similar

isomorphism holds for mod 2 cohomology.

Since ω̂ j restricts to the (real) 2-plane bundle ρ(ξ j), we have c1(ξ j) = i∗(w2(ω j)) where i :

Flag(Cr) � q̂−1([v, x])→ P(m, Flag(ω), θ) is fibre inclusion, we see that the Flag(Cr)-bundle

(P(m, Flag(ω), θ), P(m, X, σ), q̂) admits a Z2-cohomology extension of the fibre. By Leray-

Hirsch theorem [19, §7, Ch.V], we have H∗(P(m, Flag(ω), θ);Z2) � H∗(P(m, X, σ);Z2) ⊗
H∗(Flag(Cr);Z2). Thus H∗(P(m, Flag(ω), θ);Z2) is a free module over the algebra

H∗(P(m, X, σ);Z2) of rank dimZ2
H∗(Flag(Cr);Z2) = r!. In particular, it follows that q̂ in-

duces a monomorphism in mod 2 cohomology.
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The symmetric group S r operates on Flag(ω) by permuting the components of each

flag L = (L1, . . . , Lr) and the projection q : Flag(ω) → X is constant on the S r-orbits.

Moreover, θ ◦ λ = λ ◦ θ for each λ ∈ S r. This implies that the S r action on Flag(ω)

extends to an action on P(m, Flag(ω), θ) where λ([v,L]) = [v, λ(L)]. The projection q̂ :

P(m, Flag(ω), θ) → P(m, X, σ) is constant on S r-orbits. It follows that the image of the

ring homomorphism q̂∗ : H∗(P(m, X, σ);Z2) → H∗(P(m, Flag(ω), θ);Z2) is contained in

the subring H∗(P(m, Flag(ω), θ);Z2)S r of elements fixed by the induced action of S r on

H∗(P(m, Flag(ω), θ);Z2). As the S r-action induces the identity map of P(m, X, σ) we see

that it acts as H∗(P(m, X, σ);Z2)-module automorphisms on H∗(P(m, Flag(ω), θ);Z2). Since

H∗(Flag(Cr);Z2)S r = H0(Flag(Cr);Z2) � Z2, we have H∗(P(m, Flag(ω), θ);Z2)S r �

H∗(P(m, X, σ);Z2)⊗H∗(Flag(Cr);Z2)S r = H∗(P(m, X, σ);Z2)⊗H0(Flag(Cr;Z2) � H∗(P(m,

X, σ);Z2).

We summarise the above discussion in the proposition below.

Proposition 2.5 (Splitting principle). Let ω be a σ-conjugate complex vector bundle of

rank r and let q : Flag(ω) → X be the associated Flag(Cr)-bundle over X. Then, with the

above notations,

(i) the ω j are θ-conjugate line bundles for 1 ≤ j ≤ r, and, q̂∗(ω̂) = ⊕1≤ j≤rω̂ j.

(ii) q̂ : P(m,Flag(ω), θ) → P(m, X, σ) induces a monomorphism in cohomology, moreover,

H∗(P(m,Flag(ω), θ);Z2) is isomorphic, as an H∗(P(m, X, σ);Z2)-module, to a free module

with basis a Z2-basis of H∗(Flag(Cr);Z2).

(iii) The image of q̂∗ equals the subalgebra invariant under the action of the symmetric group

S r on H∗(P(m,Flag(ω), θ);Z2). �

We end this section with the following lemma which will be used in the sequel.

Lemma 2.6. We keep the above notations. Let ω be a σ-conjugate complex vector

bundle over X. Suppose that Fix(σ) � ∅ and that H1(X;Z2) = 0. Then Fix(θ) � ∅ and

H1(P(m,Flag(ω), θ);Z2) � H1(P(m, X, σ);Z2) � H1(RPm;Z2) � Z2.

Proof. Let σ(x) = x ∈ X and set V := p−1
ω (x). Then σ̂ restricts to a conjugate complex

isomorphism σ̂x of V onto itself. Thus V � V̄ . Then, setting Fix(σ̂x) =: U ⊂ V , we see

that V is the C-linear extension of U, that is, V = U ⊗R C. The Hermitian product on V

restricts to a (real) inner product on U. Let (K1, . . . ,Kr) be a complete real flag in U and

define L j := K j ⊗R C ⊂ V . Then it is readily seen that L = (L1, . . . , Lr) belongs to Flag(ω)

and is fixed by θ.

Since H1(X;Z2) = 0, we have H1(P(m, X, σ);Z2) � H1(RPm;Z2) � Z2, using the

Serre spectral sequence of the X-bundle with projection π : P(m, X, σ) → RPm. The

same argument applied to the Flag(Cr)-bundle with projection q : Flag(ω) → X yields

that H1(Flag(ω);Z2) � H1(X;Z2) = 0. Now using the Flag(ω)-bundle with projection

q̂ : P(m, Flag(ω), θ) → P(m, X, σ), we obtain that H1(P(m, Flag(ω), θ);Z2) � H1(P(m, X,

σ);Z2) � Z2. �

We shall identify H1(P(m, Flag(ω), θ);Z2),H1(P(m, X, σ);Z2),H1(RPm;Z2) and denote

the generator of any one of them by x. 1

1This should however cause no confusion with the notation for a typical point of X.
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2.4. A formula for Stiefel-Whitney classes of ω̂.
2.4. A formula for Stiefel-Whitney classes of ω̂. Denote the Stiefel-Whitney polyno-

mial
∑

0≤i≤q wi(η)t
i of a rank q real vector bundle η by w(η; t) and similarly the Chern poly-

nomial
∑

0≤i≤q c j(α)t j of a complex vector bundle α of rank q by c(α; t). Recall that when α

is regarded as a real vector bundle, we have w(α; t) = c(α; t2) mod 2. (See [13].)

We shall make no notational distinction between c j(α) ∈ H2 j(X;Z) and its reduction mod

2 in H2 j(X;Z2). In fact, we will mostly be working with Z2-coefficients.

Since ω̂ restricted to any fibre of π : P(m, X, σ) → RPm is isomorphic to ω (regarded

as a real vector bundle), we obtain that, the total Stiefel-Whitney polynomial j∗(w(ω̂; t)) =

w(ω; t) = c(ω, t2) where j : X → P(m, X, σ) is the fibre inclusion.

The following proposition yields the Stiefel-Whitney classes of ω̂ when ω is a complex

line bundle. Using this and the splitting principle, we will obtain a formula for the Stiefel-

Whitney classes when ω is of arbitrary rank. The proposition was obtained in the special

case of Dold manifolds in [21, Prop. 1.4]. Recall that ξ is the line bundle associated to the

double cover Sm × X → P(m, X, σ) and is isomorphic to π∗(ζ).

Lemma 2.7. Let σ : X → X be an involution with non-empty fixed point set and let ω be

a complex vector bundle of rank r over X. With the above notations, we have ω̂ � ξ ⊗ ω̂.

Proof. The total space of the bundle ξ ⊗ ω̂ has the description E(ξ ⊗ ω̂) = {[v, x; t ⊗ e] |
[v, x] ∈ P(m, X;σ), t ∈ R, e ∈ p−1

ω (x)} where [v, x; t ⊗ e] = {(v, x; t ⊗ e), (−v, σ(x);−t ⊗
σ̂(e))}; here σ̂ : E(ω) → E(ω) is an involutive bundle map that covers σ and is conjugate

linear isomorphism on each fibre. Thus we have the equality σ̂(
√
−1te) = −

√
−1tσ̂(e).

Observe that [v, x;
√
−1te] = [−v, σ(x); σ̂(

√
−1te)] = [−v, σ(x),−

√
−1tσ̂(e)] and so the map

h : E(ξ ⊗ ω̂)→ E(ω̂), [v, x; t ⊗ e] �→ [v, x;
√
−1te] = [−v, σ(x);−

√
−1tσ̂(e)] is a well-defined

isomorphism of real vector bundles. �

Simplifying assumptions. We shall make the following simplifying assumptions.

(a) σ : X → X has a fixed point. As observed already, the X-bundle π : P(m, X, σ) →
RPm admits a cross-section s : RPm → P(m, X, σ). It follows that π∗ : H∗(RPm;Z2) →
H∗(P(m, X, σ);Z2) is a monomorphism. We shall identify H∗(RPm;Z2) with its image under

π∗.

(b) H1(X;Z2) = 0. This implies that H2(X;Z) → H2(X;Z2) induced by the homomorphism

Z→ Z2 of the coefficient rings is surjective.

E 2.8. (i) Let X be the complex flag manifold CG(n1, . . . , nr) and let σ : X → X be

defined by the complex conjugation on Cn, n =
∑

n j. Then Fix(σ) is the real flag manifold

RG(n1, . . . , nr) = O(n)/(O(n1) × · · · × O(nr)) so assumption (a) holds. Since X is simply

connected, (b) also holds.

(ii) Let ω be a σ-conjugate complex vector bundle of rank r. Suppose that Fix(σ) � ∅
and that H1(X;Z2) = 0. Let θ : Flag(ω) → Flag(ω) be the associated involution of the

Flag(Cr)-manifold bundle over X. (See §2.3.) Then Fix(θ) � ∅ and H1(Flag(ω);Z2) = 0.

In the Serre spectral sequence of the bundle (P(m, X),RPm, X, π), we have E
0,k
2
=

H0(RPm;k(X;Z2)) where 
k(X;Z2) denotes the local coefficient system on RPm. The

action of the fundamental group of RPm on H∗(X;Z2) is generated by the involution σ∗ :

H∗(X;Z2) → H∗(X;Z2). Hence E
0,2
2
= H2(X;Z2)Z2 = Fix(σ∗). In order to emphasise the
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dimension, we shall write H2(σ;Z2) instead of σ∗. Also (b) implies that E
0,2
3
= E

0,2
2

and

(a) implies that the transgression E
0,2
3
= Fix(H2(σ;Z2)) → E

3,0
3
= H3(RP3;Z2) is zero.

It follows that E
0,2
3
= E

0,2
∞ and that the image j∗ : H2(P(m, X);Z2) → H2(X;Z2) equals

Fix(H2(σ;Z2)), where j : X ֒→ P(m, X) is the fibre inclusion. We have the exact sequence:

(1) 0→ H2(RPm;Z2)
π∗→ H2(P(m, X, σ);Z2)

j∗

→ Fix(H2(σ;Z2))→ 0.

The homomorphism s∗ : H2(P(m, X, σ);Z2)→ H2(RPm;Z2) yields a splitting and allows

us to identify Fix(H2(σ;Z2)) as a subspace of H2(P(m, X, σ);Z2), namely the kernel of s∗.

We shall denote the image of an element u ∈ Fix(H2(σ;Z2)) by ũ.

Lemma 2.9. Suppose that σ(x0) = x0 and H1(X;Z2) = 0. Let s : RPm → P(m, X, σ)

be defined as v �→ [v, x0] and let ω be a σ-conjugate complex vector bundle over X of rank

r. Then (i) s∗(ω̂) � rǫR ⊕ rζ, (ii) ck(ω) ∈ Fix(H2k(σ;Z2)), k ≤ r, and (iii) if r = 1, then

w(ω̂) = 1 + x + c̃1(ω).

Proof. (i) Since σ(x0) = x0, σ̂ restricts to a conjugate complex linear automorphism σ̂0

of V := p−1
ω (x0). Let U ⊂ V is the eigenspace of σ̂0 corresponding to eigenvalue 1 of σ̂0.

Then
√
−1U is the −1 eigenspace. The vector bundle s∗(ω̂) is isomorphic to the Whitney

sum of the bundles Sm ×Z2
U → RPm and Sm ×Z2

√
−1U → RPm. Evidently these bundles

are isomorphic to rǫR and rξ respectively.

(ii) Since σ̂ : E(ω) → E(ω) is a conjugate complex linear bundle map covering σ, we

have σ∗(ω) � ω̄. So σ∗(ck(ω)) = ck(σ∗(ω)) = (ck(ω̄)) = (−1)kc1(ω) ∈ H2k(X;Z). Therefore

ck(ω) ∈ Fix(H2k(σ;Z2)), k ≤ r.

(iii) Using the isomorphism s∗ : H1(P(m, X);Z2) � H1(RPm;Z2), it follows from (i) that

w1(ω̂) = w1(ξ) = x. Since c1(ω) ∈ Fix(H2(σ;Z2)), the element c̃1(ω) is meaningful. It

remains to show that w2(ω̂) = c̃1(ω). Since j∗(ω̂) = ω, we see that j∗(w2(ω̂)) = w2(ω) =

c1(ω) ∈ Fix(H2(σ;Z2)). On the other hand, w2(s∗(ω̂)) = 0. So, under our identification of

Fix(H2(σ;Z2)) with the kernel of s∗, we have w2(ω̂) = c̃1(ω). �

R 2.10. The above lemma shows that the element c̃1(ω) ∈ H2(P(m, X);Z2) is inde-

pendent of the choice of the fixed point x0 ∈ X (used in the definition of s∗) since it equals

w2(ω̂).

Suppose that ω is a σ-conjugate complex vector bundle of rank r over X. Since q∗(ω)

splits as a Whitney sum q∗(ω) = ⊕1≤ j≤rω j, where q : Flag(ω) → X is the Flag(Cr)-bundle,

in view of Example 2.8, we have c1(ω j) ∈ Fix(H2(θ;Z2)). Therefore we obtain their ‘lifts’

c̃1(ω j) ∈ H2(P(m, Flag(ω); θ);Z2). The bundle q̂∗(ω̂) splits as q̂∗(ω̂) = ⊕1≤ j≤rω̂ j (see Propo-

sition 2.5(i)), where q̂ : P(m, Flag(ω), θ) → P(m, X, σ) is the projection of the Flag(Cr)-

bundle. Therefore e j(c̃1(ω1), . . . , c̃1(ωr)) = e j(w2(ω̂1), . . . , w2(ω̂r)) is in H2 j(P(m, X, σ);Z2).

Here e j stands for the j-th elementary symmetric polynomial.

N. Set c̃ j(ω) := e j(w2(ω̂1), . . . , w2(ω̂r)) ∈ H2 j(P(m, X, σ);Z2), 1 ≤ j ≤ r.

When j > r, c̃ j = 0. Observe that c̃ j(ω) restricts to c j(ω) ∈ H2 j(X;Z2) on any fibre of

π : P(m, X, σ);Z2)→ RPm.

We have the following formula for the Stiefel-Whitney classes of ω̂.
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Proposition 2.11. We keep the above notations. Let ω be a σ-conjugate complex vector

bundle over X. Suppose that H1(X;Z2) = 0 and that Fix(σ) � ∅. Then,

(2) w(ω̂; t) =
∑

0≤ j≤r

(1 + xt)r− jc̃ j(ω)t2 j.

Proof. The case when ω is a line bundle was settled in Lemma 2.9. In the more general

case, we apply the splitting principle, Proposition 2.5(i). The bundle isomorphism q̂∗(ω̂) =

ω̂1 ⊕ · · · ω̂r given in Proposition 2.5(i) leads to the formula

w(ω̂; t) =
∏

1≤ j≤r

(1 + xt + c̃1(ω j)t
2).

The proposition follows from Lemma 2.9 and the definition of c̃ j(ω) since w2(ω̂ j) = c̃1(ω j).

�

3. The tangent bundle of P(m, X)

3. The tangent bundle of P(m, X)
Let X be a connected almost complex manifold and let σ : X → X be a complex

conjugation. Thus σ̂ = Tσ is a σ-conjugation. The manifold P(m, X, σ) will be more

briefly denoted P(m, X). The bundle τ̂X restricts to the tangent bundle along any fibre of

π : P(m, X)→ RPm and so is a subbundle of τP(m, X). Clearly τ̂X is contained in the kernel

of Tπ : T P(m, X)→ TRPm. In fact τ̂X = ker(Tπ) since their ranks are equal. Therefore we

have a Whitney sum decomposition

(3) τP(m, X) = π∗(τRPm) ⊕ τ̂X.

We assume that Fix(σ) is non-empty and hence a smooth manifold of dimension d =

(1/2) dim X. Also we assume that H1(X;Z2) = 0. Using the fact that w(RPm) = (1 + x)m+1,

and applying Proposition 2.11, we have

Theorem 3.1. Let X be a connected compact almost complex manifold with complex

conjugation σ. Suppose that Fix(σ) � ∅ and that H1(X;Z2) = 0. Then:

(4) w(P(m, X); t) = (1 + xt)m+1 ·
∑

0≤ j≤d

(1 + xt)d− jc̃ j(X)t2 j. �

As an application of the above theorem we obtain

Corollary 3.2. (i) P(m, X) is orientable if and only if m + d is odd.

(ii) P(m, X) admits a spin structure if and only if X admits a spin structure and m + 1 ≡ d

mod 4.

Proof. Since P(m, X) = (Sm×X)/Z2, it is readily seen that P(m, X) is orientable if and only

if the antipodal map of Sm and the conjugation involution σ on X are simultaneously either

orientation preserving or orientation reversing. The latter condition is equivalent to m+1 ≡ d

mod 2. Alternatively, from Theorem 3.1, we obtain that w1(P(m, X)) = (m + 1 + d)x, which

is zero precisely if m + d is odd.

Using the same formula, we have w2(P(m, X)) =
((

m+1
2

)
+

(
d

2

))
x2
+ c̃1(X). The existence

of a spin structure being equivalent to vanishing of the first and the second Stiefel-Whitney

classes, we see that P(m, X) admits a spin structure if and only if X admits a spin structure
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and
(

m+1
2

)
≡
(

d

2

)
mod 2 with m + d odd. The latter condition is equivalent to m + 1 ≡ d

mod 4. �

The notions of stable parallelizability and parallelizability were recalled in the Introduc-

tion. Recall from §2.2 the σ-conjugation εk,n−k : X × Rn → X × Rn, defined with respect to

a set of everywhere linearly independent sections s1, . . . , sn.

Theorem 3.3. Let σ be a conjugation on a connected almost complex manifold X and let

dimR X = 2d. Suppose that Fix(σ) � ∅. Then:

(i) If P(m, X) is stably parallelizable, then X is stably parallelizable and 2ϕ(m)|(m + 1 + d).

(ii) Suppose that ρ(τX) ⊕ nǫR � (2d + n)ǫR as real vector bundle. Suppose that the bundle

map εd+k,d+n−k of (2d + n)ǫR covering σ restricts to σ̂ = Tσ on T X and to εk,n−k on nǫR. If

2ϕ(m)|(m + 1 + d), then P(m, X) is stably parallelizable.

(iii) Suppose that m is even and that P(m, X) is stably parallelizable. Then P(m, X) is paral-

lelizable if and only if χ(X) = 0.

Proof. (i) If E → B is any smooth fibre bundle with fibre X, the normal bundle to the

fibre inclusion X ֒→ E is trivial. So if E is stably parallelizable, then so is X. It follows that

stable parallelizability of P(m, X) implies that of X.

Let x0 ∈ Fix(σ) and let s : RPm → P(m, X) be the corresponding cross-section de-

fined as [v] �→ [v, x0]. In view of Lemma 2.9 and the bundle isomorphism (3), we see that

s∗(τP(m, X)) = s∗(π∗τRPm ⊕ τ̂X) = τRPm ⊕ dǫR ⊕ dζ � (m + 1 + d)ζ ⊕ (d − 1)ǫR. Thus the

stable parallelizability of P(m, X) implies that (m + 1 + d)([ζ] − 1) = 0 in KO(RPm). By the

result of Adams [1] (recalled in §1) it follows that 2ϕ(m)|(m + 1 + d).

(ii) Our hypothesis implies, using Lemma 2.3, that τ̂X ⊕ (kξ ⊕ (n − k)ǫR) � (d + n −
k)ǫR ⊕ (d + k)ξ. Therefore, using the isomorphism (3), τP(m, X) ⊕ kξ ⊕ (n − k + 1)ǫR �

kξ⊕(n−k+1)ǫR⊕π∗(τRPm)⊕τ̂X � (m+1)ξ⊕τ̂X⊕kξ⊕(n−k)ǫR � (m+1)ξ⊕(d+k)ξ⊕(d+n−k)ǫR.

Since dim P(m, X) = 2d+m < 2d+n+1+m, we may cancel the factor kξ⊕ (n−k)ǫR on both

sides [7, Theorem 1.1, Ch. 9], leading to an isomorphism τP(m, X)⊕ǫR � (d+m+1)ξ⊕dǫR.

Since ξ = π∗(ζ), again using Adams’ result it follows that P(m, X) is stably parallelizable if

2ϕ(m) divides (m + d + 1).

(iii) Since m is even, P(m, X) is even dimensional. By Bredon-Kosiński’s theorem [3], it

follows that P(m, X) is parallelizable if and only if its span is at least 1. By Hopf’s theorem,

span P(m, X) ≥ 1 if and only if χ(P(m, X)) vanishes. Since χ(P(m, X)) = χ(RPm) · χ(X) =

χ(X) as m is even, the assertion follows. �

The stable span of a smooth manifold M is the largest number s ≥ 0 such that τM ⊕ ǫR �
(s + 1)ǫR ⊕ η for some real vector bundle η. We extend the notion of span and stable span

to a (real) vector bundle γ over a base space B in an obvious mannner; thus span(α) is the

largest number r ≥ 0 so that γ � α⊕ rǫR for some vector bundle α. If rank of γ equals n and

if B is a CW complex of dimension d ≤ n, then span(γ) ≥ n − d. See [7, Theorem 1.1, Ch.

9]. It follows that if n > d, then span(γ) = stable span(γ).

R 3.4. (i) Suppose that P(m, X) is stably parallelizable. If m is odd, then χ(P(m, X))

= 0 as χ(RPm) = 0. Consequently we obtain no information about χ(X) from the equality

χ(P(m, X)) = χ(RPm)χ(X). Let us suppose that χ(X) � 0. Since span(RPm) = span(Sm),
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we obtain the lower bound span(P(m, X)) ≥ span(Sm) = ρ(m + 1) − 1, where ρ(m + 1) is

the Hurwitz-Radon function defined as ρ(24a+b(2c + 1)) = 8a + 2b, 0 ≤ b < 4, a, c ≥ 0.

From Bredon-Kosiński’s theorem [3], we obtain that P(m, X) is parallelizable if ρ(m + 1) >

ρ(m + 2d + 1). For example if m = (2c + 1)2r − 1 and d = 2s(2k + 1) with s < r − 1 then

m+1+2d = ((2c+1)2r−1−s
+2k+1)2s+1 and so ρ(m+1) = ρ(2r) > ρ(2s+1) = ρ(m+2d+1);

consequently P(m, X) is parallelizable.

(ii) The following bounds for the span and stable span of P(m, X) are easily obtained.

• stable span(P(m, X)) ≤ min{d + span(m + d + 1)ζ,m + stable span(X)},
• span(P(m, X)) ≥ span(RPm).

If m is even and χ(X) = 0, then χ(P(m, X)) = 0. Since dim P(m, X) is even, it follows by [10,

Theorem 20.1], that span(P(m, X)) = stable span(P(m, X)).

We illustrate Theorem 3.3 in the case when X is the complex flag manifoldCG(n1, . . . , nr),

where the n j ≥ 1 are positive integers and n =
∑

1≤ j≤r n j, with its usual differentiable struc-

ture. It admits an U(n)-invariant complex structure and the smooth involution σ : X → X

defined by the complex conjugation on Cn is a conjugation, as remarked in Example 2.8(i).

We assume, without loss of generality, that n1 ≥ · · · ≥ nr. We denote by P(m; n1, . . . , nr) the

space P(m,CG(n1, . . . , nr)). Note that CG(1, . . . , 1) is the complete flag manifold Flag(Cn).

The classical Dold manifold corresponds to r = 2 and n1 ≥ n2 = 1. Theorem 1.1 in this

special case is due to J. Korbaš [9]. (Cf. [21], [12].)

Proof of Theorem 1.1. When n j > 1 for some j, the flag manifold X = CG(n1, . . . , nr)

is well-known to be not stably parallelizable; see, for example, [18]. (Cf. [8].) So, by

Theorem 3.3, the non-trivial part of theorem concerns the case when the flag manifold is

stably parallelizable, namely, n j = 1 for all j. It remains to determine the values of m for

which P = P(m; 1, . . . , 1) is stably parallelizable. This is done in Proposition 3.5 below.

The manifold X = CG(1, . . . , 1) has non-vanishing Euler characteristic; in fact, χ(X) = n!,

the order of the Weyl group of U(n). When m is even, it follows that χ(P) = n! and so

span(P) = 0.

Suppose that ρ(m + 1) > ρ
(
m + 1 +

(
n

2

))
. Then span(P) ≥ span(RPm) ≥ ρ(m + 1) − 1

whereas the span of the sphere of dimension dim P = m + 2d = m + n(n − 1) equals ρ(m +

1 + n(n − 1)) − 1. So, by Bredon-Kosiński theorem [3], P is parallelizable if it is stably

parallelizable and ρ(m + 1) > ρ(m + 1 + n(n − 1)). �

It is known that Flag(Cn) is stably parallelizable, but not parallelizable, as a real manifold

(Cf. [11, p.313].) (The non-parallelizability of Flag(Cn) follows immediately from the fact

that χ(Flag(Cn)) � 0.)

As a preparation for the proof of Proposition 3.5 we recall a certain functor µ2 introduced

by Lam [11, §§4-5]. This allows us to apply Lemma 2.3(iii).

The functor µ2
= µ2

C
associates a real vector bundle to a complex vector bundle.2 We as-

sume the base space to be paracompact so that every complex vector bundle over it admits a

Hermitian metric. If V is any complex vector space µ2(V) is defined as µ2(V) = V̄⊗CV/Fix(θ)

where θ : V̄ ⊗ V → V̄ ⊗ V is the conjugate complex linear automorphism defined as

θ(u ⊗ v) = −v ⊗ u. As with any continuous functor ([13, §3(f)]), µ2 is determined by its

2Lam defined µ2 in a more general setting that includes (left) vector bundles over quaternions as well.
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restriction to the category of finite dimensional complex vector spaces and their isomor-

phisms. The functor µ2 has the following properties where ω,ω1, ω2 are all complex vector

bundles over a base space X. The first three were established by Lam.

(i) rank(µ2(ω)) = n2 where n is the rank of ω as a complex vector bundle.

(ii) µ2(ω) � ǫR if ω is a complex line bundle. Indeed, choosing a positive Hermitian metric

on ω, the map E(µ2(ω)) ∋ [u ⊗ zu] �→ (pω(u),Re(z)||u||2) ∈ X × R, z ∈ C is a well-defined

real vector bundle homomorphism. It is clearly non-zero and since the ranks agree, it is an

isomorphism.

(iii) µ2(ω1 ⊕ ω2) = µ2(ω1) ⊕ (ω̄1 ⊗C ω2) ⊕ µ2(ω2).

(iv) If σ̂ : E(ω) → E(ω) is a conjugation of ω covering an involution σ : X → X, then

µ2(σ̂) : E(µ2(ω))→ E(µ2(ω)) is a bundle map covering σ. In particular µ2(ω̄) � µ2(ω).

(v) If σ̂ is a conjugation of a complex line bundle ω with a Hermitian metric 〈., .〉 cover-

ing an involution σ such that 〈u, v〉x = 〈σ̂(u), σ̂(v)〉σ(x), u, v ∈ p−1
ω (x), x ∈ X, then µ2(σ̂) :

µ2(ω) → µ2(ω) is the identity on each fibre under the isomorphism µ2(ω) � ǫR of (ii) since

||σ̂(u)|| = ||u||.

Proposition 3.5. The manifold P(m; 1, . . . , 1) = P(m,Flag(Cn)) is stably parallelizable if

and only if 2ϕ(m) divides (m + 1 +
(

n

2

)
).

Proof. Recall ([11, Corollary 1.2]) that τCG(n1, . . . , nr) � ⊕1≤i< j≤rγ̄i ⊗ γ j where γ j is

the j-th canonical bundle of rank n j whose fibre over (L1, . . . , Lr) ∈ CG(n1, . . . , nr) is the

complex vector space L j. We have

γ1 ⊕ · · · ⊕ γr � nǫC.

Applying µ2 and using the above description of τCG(n1, . . . , nr) we obtain the following

isomorphism of real vector bundles by repeated use of property (iii) of µ2 listed above:

(5)
⊕
µ2(γ j) ⊕ τ(CG(n1, . . . , nr)) � nǫR ⊕ (

⊕

1≤i< j≤n

ǫC(ēi ⊗ e j)) � n2ǫR.

(Cf. [11, Theorem 5.1].) Specialising to the case of X = Flag(Cn) we have µ2(γ j) � ǫR. The

involution σ : X → X defined as L �→ L̄ induces a complex conjugation of σ̂ = Tσ on τX

which preserves the summands ωi j := γ̄i ⊗ γ j, i < j, yielding a conjugation σ̂i j on it. The

bundle involution εd,d (covering σ) on the summand on the right ⊕1≤i< j≤nρ(ǫC), defined with

respect to the basis ēi⊗e j, ēi⊗
√
−1e j, 1 ≤ i < j ≤ n, and ε0,n on the summand ⊕1≤i≤nǫR(ēi⊗ei)

defined with respect to ēi⊗ei, 1 ≤ i ≤ n, together define an involution, denoted ε, that covers

σ. Under the isomorphism, ε restricts to Tσ on τX and to ε0,n on ⊕1≤i≤nµ
2(γi) defined with

respect to a basis ūi ⊗ ui, 1 ≤ i ≤ n, where ui ∈ Li with ||ui|| = 1. It follows, by using (v)

above and Lemma 2.3, that

nǫR ⊕ τ̂Flag(Cn) � nǫR ⊕
(
n

2

)
(ǫR ⊕ ξ).

Therefore (n + 1)ǫR ⊕ τP � (m + 1)ξ ⊕ τ̂Flag(Cn) ⊕ nǫR �
(
m + 1 +

(
n

2

))
ξ ⊕
(

n+1
2

)
ǫR. Hence

τP is stably trivial if and only if
(
m + 1 +

(
n

2

))
ξ is stably trivial if and only if

(
m + 1 +

(
n

2

))
ζ

on RPm is stably trivial if and only if 2ϕ(m) divides
(
m + 1 +

(
n

2

))
. This completes the proof.

�
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R 3.6. It is clear that for a given n ≥ 2, there are only finitely many values m ≥ 1

for which P = P(m, Flag(Cn)) is parallelizable. In fact, since 2ϕ(m) ≥ 2m for m ≥ 8, we must

have m ≤ max
{
8,
(

n

2

)}
. However the required values of m are highly restricted. For example

when n = 2s, s ≥ 4, P is parallelizable only when m ∈ {1, 3, 7} and when n = 2s − 2, s ≥ 5,

m ∈ {2, 6}.When n = 6, P is not parallelizable for any m.

3.1. More examples of parallelizable generalized Dold manifolds.
3.1. More examples of parallelizable generalized Dold manifolds. We give examples

of parallelizable manifolds P(m, X) for some other classes of X. Specifically, we take X

to be certain (i) Hopf manifold, (ii) complex torus, and (iii) compact Clifford-Klein form

of a (non-compact) complex Lie group. In all these case, it turns out that Fix(σ) � ∅ and

τ̂X � dξ ⊕ dǫR. In particular span(P(m, X)) ≥ d. If 2ϕ(m) divides (m + 1 + d), then P(m, X) is

stably parallelizable. Furthermore, if d > ρ(m + 2d), then P(m, X) is parallelizable.

(i) Let λ > 1. The infinite cyclic subgroup 〈λ〉 of the multiplicative group R×
>0

acts on

C
d
0

:= Cd \ {0} via scalar multiplication. Consider the Hopf manifold X = Xλ := Cd
0
/〈λ〉.

Then X � S1 × S2d−1 is parallelizable. Although Xλ is defined for any complex number λ

with |λ| � 1, our hypothesis that λ is real implies that complex conjugation on Cd induces

an involution σ on X. Moreover Fix(σ) = (Rd \ {0})/〈λ〉 is non-empty. In fact Fix(σ) �

S
1 ×Sd−1. We claim that τX is isomorphic to dǫC as a complex vector bundle. Indeed, scalar

multiplication λ : Cd
0
→ Cd

0
induces multiplication by λ on the tangent space TzC

d
0

for any

z ∈ Cd
0
. Therefore T X = (Cd

0
×Cd)/〈λ〉 where 〈λ〉 acts diagonally. The required isomorphism

φ : T X → X×Cn is then obtained as [z, v] �→ ([z], v/||z||). We observe that this is well-defined

since λ is positive. Moreover, φ(Tσ([z, v])) = φ([z̄, v̄]) = ([z̄], v̄/||z||). Thus Tσ corresponds

to complex conjugation on dǫC and so τ̂X � dξ ⊕ dǫ by Theorem 3.3(ii).

(ii) Let X = XΛ � (S1)2d be the complex torus Cd/Λ where Λ � Z2d is stable under

conjugation; equivalently Λ = Λ0 +
√
−1Λ0 where Λ0 is a lattice in Rd. Then complex

conjugation on Cd induces a conjugation σ on X. It is readily seen that Fix(σ) = (Rd
+√

−1
2
Λ0)/Λ0. Also τX � dǫC as a complex vector bundle. As in (i) above, τ̂X � dξ ⊕ dǫR.

(iii) More generally, suppose that G ⊂ GL(N,C) is a connected complex linear Lie group

such that G is stable by conjugation A �→ Ā in GL(n,C). Suppose that Λ a discrete subgroup

of G such that X = G/Λ is compact; that is, Λ is a uniform lattice in G. Assume that

Λ̄ = Λ. (For example, G is the group of unipotent upper triangular matrices in GL(N,C)

with Γ the subgroup of G consisting matrices with entries in Z
[√−1

]
.) Then X = G/Λ is

holomorphically parallelizable, i.e., τX is trivial as a complex analytic vector bundle. See

[2]. In particular, τX � dǫC. Let p : G → X be the covering projection. Denoting by g the

Lie algebra of G, viewed as the space of vector fields on G invariant under right translation,

we have a bundle isomorphism f : X × g→ T X defined as (gΓ,V) �→ T pg(Vg) ∀V ∈ g. This

is well-defined since V is invariant under right-translation. Under this isomorphism, Tσ is

the standard σ-conjugation on dǫC. So τ̂X � dξ ⊕ dǫR. As the identity coset is fixed by σ,

Fix(σ) � ∅.

3.2. Unoriented cobordism.
3.2. Unoriented cobordism. Recall from the work of Thom and Pontrjagin ([13, Ch.

4]) that the (unoriented) cobordism class of a smooth closed manifold is determined by its

Stiefel-Whitney numbers. Let σ be a complex conjugation on a connected almost complex

manifold X and let dimR X = 2d. Assume that Fix(σ) � ∅ and that H1(X;Z2) = 0. Propo-

sition 2.11 allows us to compute certain Stiefel-Whitney numbers of P(m, X) in terms of
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those of X, even without the knowledge of the cohomology algebra H∗(P(m, X);Z2). Let

s : RPm → P(m, X) be the cross-section corresponding to an x0 ∈ Fix(σ).We identify RPm

with its image under s and X with the fibre over [em+1] ∈ RPm. Then X ∩RPm
= {[em+1, x0]}

and the intersection is transverse. Denoting the mod 2 Poincaré dual of a submanifold

M ֒→ P(m, X) by [M], we have [RPm]·[X] = [RPm ∩ X] = [{[em+1, x0]}], which is the

generator of Hm+2d(P(m, X);Z2) � Z2.

We claim that the class [X] ∈ Hm(P(m, X);Z2) equals xm. To see this, let S j be the sphere

S j = {v ∈ Sm | v ⊥ e j}, 1 ≤ j ≤ m. and let X j be the submanifold {[v, x] | v ∈ S j, x ∈
X} � P(m − 1, X). Let u0 = (e1 + . . . + em)/

√
m. Then C := {[cos(t)u0 + sin(t)em+1, x0] ∈

P(m, X) | 0 ≤ t ≤ π} � RP1 meets X j transversally at [em+1, x0]. So [C]·[X j] � 0. It follows

that [X j] = x, 1 ≤ j ≤ m, since H1(P(m, X);Z2) = Z2x. Also (i) ∩1≤i< jXi intersects X j

transversely for any j ≤ m, and, (ii) ∩1≤ j≤mX j = X. It follows that [X] = [X1] · · · [Xm] = xm

as claimed.

Denote by µX , µP(m,X) the mod 2 fundamental classes of X, P(m, X) respectively. Note

that w2 j(P(m, X)) is of the form w2 j(P(m, X)) = c̃ j(X) + a1x2c̃ j−1(X) + . . . + ak x2kc̃ j−k(X)

for suitable ai ∈ {0, 1}, 1 ≤ i ≤ k, where k = min{⌊m/2⌋, j}. Similarly w2 j+1(P(m, X)) =

b0xc̃ j(X) + b1x3c̃ j−1(X) + . . . + bk x2k+1c̃ j−k, bi ∈ {0, 1}, 0 ≤ i ≤ k, with k = min{⌊(m −
1)/2⌋, j}. A straightforward calculation using Theorem 3.1 reveals that b0 = m + 1 + d − j.

Let J = j1, . . . , jr be a sequence of positive integers with |J| := j1 + · · · + jr = m + 2d.

Then wJ(P(m, X)) := w j1(P(m, X)) . . . w jr (P(m, X)) is a polynomial in x over the subring

Z2[c̃1(X), . . . , c̃d(X)] ⊂ H∗(P(m, X);Z2). Since xm+1
= 0, we see that wJ(P(m, X)) = 0 if the

number of odd numbers among jk, 1 ≤ k ≤ r, exceeds m.

Suppose that I = i1, . . . , ik; J = 1m, 2I = 1m, 2i1, . . . , 2ik, (i.e., jt = 1, 1 ≤ t ≤ m)

and P(m, X) is non-orientable, so that w1(P(m, X)) = x, we have wJ(P(m, X)) = xm.c̃I(X)).

Using j∗(c̃I(X)) = cI(X) = w2I(X), we obtain that wJ[P(m, X)] := 〈wJ(P(m, X)), µP(m,X)〉 =
〈xm.w2I(P(m, X)), µP(m,X)〉 = 〈w2I(X), µX〉 = w2I[X] ∈ Z2.

Theorem 3.7. Suppose that H1(X;Z2) = 0 and that Fix(σ) � ∅.
(i) Assume that m ≡ d mod 2. If [X] � 0 in N, then [P(m, X)] � 0.

(ii) If [P(1, X)] � 0, then [X] � 0.

Proof. (i) Since m ≡ d mod 2, we have w1(P(m, X)) = x. Since the odd Stiefel-Whitney

classes w2i+1(X) vanish (as X is an almost complex manifold), [X] � 0 implies that we must

have that w2I[X] � 0 for some I with |I| = d. Then, by our above discussion wJ[P(m, X)] � 0

where J = 1m, 2I. This proves the first assertion.

(ii) Let m = 1. dim P(1, X) = 1 + 2d is odd. Using x2
= 0, we have, from the above

discussion, that w2 j(P(1, X)) = c̃ j(X) and w2 j+1(P(1, X)) = (d − j)xc̃ j(X). Suppose that

wJ[P(1, X)] � 0. Then we see that exactly one term, say jk, in J must be odd. Write

jk = 2s + 1 where s ≥ 0. If d − s is even, then wJ[P(1, X)] = 0. So d − s is odd and we

have wJ(P(1, X)) = xc̃I(X) where 2I is obtained from J by replacing jk by jk − 1. Therefore

w2I[X] = wJ[P(1, X)] � 0. This completes the proof. �

We now turn to the proof of Theorem 1.2.

Proof of Theorem 1.2. We shall use the structure of complex Clifford algebras to obtain

an action of G := Zr
2

on P(m, X) with X := CGn,k such that P(m, X) has no G-fixed points.



G DM 89

This implies, by [5, Theorem 30.1], that [P(m, X)] = 0. The required action of G on P(m, X)

arises from such an action on X via a linear representation of G on Cn. In order to ensure the

G-action on X leads to an action on P(m, X), we need ensure that the representation of G is

real, that is, it arises by extension of scalars from an action on G on Rn.

Let ν2(n) = r. It is a basic fact that there exist orthogonal transformations φ1, . . . , φr of

R
2r

such that φ2
i
= −id and φi ◦ φ j = −φ j ◦ φi, 1 ≤ i < j ≤ r. The R-subalgebra of M2r (R)

generated by these transformations is the Clifford algebra Cr associated to the quadratic

module (R2r

,−|| · ||2). See [7, Ch. 12]. We shall denote by Cc
r the complex Clifford algebra

Cr ⊗R C. Evidently R2r

is a Cr-module and C2r

is a Cc
r -module. Then Cn

= (C2r

)s is a

Cc
r -module where s := n/2r.

We denote by the same symbol φ j : C2r → C2r

the C-linear extension of φ j. We further

abuse notation by using the same symbol to denote the (diagonal) action of φ j on Cn. Since

the φ j are complexifications of real linear transformations, we have φ j(z̄) = φ j(z), ∀z ∈ Cn.

Therefore φ j(L̄) = φ j(L) for all complex vector subspaces L ⊂ Cn. It follows that [v, L] �→
[v, φ j(L)] is a well-defined smooth self-map f j : P(m, X)→ P(m, X), where X := CGn,k. We

observe that the f j, 1 ≤ j ≤ r, are pairwise commuting involutions. Therefore we obtain an

action of G = Zr
2

on P(m, X).

We claim that there are no G-fixed points for this action. Indeed f j([v, L]) = [v, φ j(L)] =

[v, L] if and only if L = φ j(L). So the G-fixed points [v, L] are in bijective correspondence

with Cc
r submodules L ⊂ Cn. But Cc

r is isomorphic to M2r (C) or to M2r (C)⊕M2r (C). See [7,

§5, Ch. 12]. It follows that any non-zero module over Cc
r has complex dimension divisible

by 2r. Our assumption that ν2(k) < ν2(n) = r implies that there is no Cc
r -submodule of Cn

having dimension (over C) equal to k. This establishes the claim and the assertion of the

lemma follows.

(ii) Suppose that ν2(k) ≥ ν2(n). Then [CGn,k] � 0 by the main theorem of [17]. (See

also [16].) Note that dimC CGn,k is even in this case. If m is also even, then it follows that

[P(m,CGn,k)] � 0 by Theorem 3.7(i). �

R 3.8. It appears to be unknown precisely which (real or complex) flag manifolds

are unoriented boundaries. Let n1, . . . , nr ≥ 1 be integers and let n =
∑

1≤ j≤r n j. Proceeding

as in the case of the P(m; n, k) it is readily seen that [CG(n1, . . . , nr)] and [P(m; n1, . . . , nr)]

in N are zero if ν2(n) > ν2(n j) for some j. Also, if ni = n j for some i � j, then X :=

CG(n1, . . . , nr) admits a fixed point free involution ti, j, which swaps the i-th and the j-

component of each flag L in X. Clearly ti, j(L̄) = ti, j(L),L ∈ X, and so we obtain an in-

volution [v,L] �→ [v, ti, j(L)] on P(m; n1, . . . , nr), which is again fixed point free. It follows

that [P(n1, . . . , nr)] = 0 in this case. If m ≡ d mod 2 where d = dimC X =
∑

1≤i< j≤r nin j

and if [X] � 0, then [P(m; n1, . . . , nr)] � 0 by Theorem 3.7. For example, it is known

that χ(X) = n!/(n1!. . . . .nr!). So if m and d are even and if n!/(n1!. . . . .nr!) is odd, then

χ(P(m; n1, . . . , nr)) is also odd and so [P(m; n1, . . . , nr)] � 0.

A. Sankaran thanks Peter Zvengrowski for bringing to his attention the

papers of Július Korbaš [9] and Peter Novotný [15].
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