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Abstract. We prove beyond-birthday-bound security for most of the
well-known types of generalized Feistel networks: (1) unbalanced Feistel
networks, where the n-bit to m-bit round functions may have n �= m;
(2) alternating Feistel networks, where the round functions alternate be-
tween contracting and expanding; (3) type-1, type-2, and type-3 Feistel
networks, where n-bit to n-bit round functions are used to encipher kn-
bit strings for some k ≥ 2; and (4) numeric variants of any of the above,
where one enciphers numbers in some given range rather than strings of
some given size. Using a unified analytic framework, we show that, in
any of these settings, for any ε > 0, with enough rounds, the subject
scheme can tolerate CCA attacks of up to q ∼ N1−ε adversarial queries,
where N is the size of the round functions’ domain (the larger domain for
alternating Feistel). Prior analyses for most generalized Feistel networks
established security to only q ∼ N0.5 queries.

Keywords: Block ciphers, coupling, Feistel networks, generalized Feistel
networks, modes of operation, provable security, symmetric techniques.

1 Introduction

Background. Feistel-like ciphers come in several flavors beyond the “clas-
sical” one used in DES [31,7]. In speaking of generalized Feistel networks we
mean to encompass most all of them; see Fig. 1. In particular, we include: un-
balanced Feistel networks with either expanding or contracting round functions,
as described by Schneier and Kelsey [30]; alternating Feistel networks, where
the rounds alternate between contracting and expanding steps, as described by
Anderson and Biham [1] and by Lucks [11]; type-1, type-2, and type-3 Feistel
networks, as described by Zheng, Matsumoto, and Imai [35], each of which uses
an n-bit to n-bit round function to create a kn-bit blockcipher for some k ≥ 2;
and numeric variants of any of the above, where one enciphers numbers in ZN ,
for some N ∈ N, instead of enciphering binary strings. Well-known blockciphers
that use generalized Feistel networks include Skipjack (an unbalanced Feistel
network), BEAR/LION (alternating), CAST-256 (type-1), RC6 (type-2), and
MARS (type-3).

The provable-security analysis of Feistel networks begins with the seminal work
of Luby and Rackoff [10]. The � round functions used are assumed to be selected
uniformly and independently at random (� = 3 or � = 4 in [10]). One then con-
siders how close to a random permutation the constructed cipher is. Subsequent
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Fig. 1. Generalized Feistel networks. The superscript � is the number of rounds.
The illustrations show a single round � = 1 except for the alternating schemes, where
� = 2 rounds are shown. Scheme FEISTEL is the classical balanced-Feistel scheme; all
remaining schemes are generalizations of it. Schemes Feistel� and FeIsTeL� are numeric
variants of Feistel (unbalanced Feistel) and FeIsTeL (alternating Feistel); they encipher
a number x = aN + b ∈ ZMN (a ∈ ZM , b ∈ ZN) instead of a string X ∈ {0, 1}m+n.
Schemes Feistel1, Feistel2, and Feistel3 are the so-called type-1, type-2, and type-3
Feistel networks. They are used in modern blockciphers like CAST-256, RC6, and
MARS, respectively. Variable k refers to the number of n-bit input blocks B1, . . . , Bk.
The illustrations are for k = 4.
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Fig. 2. Summary of CCA bounds in this paper. The rows correspond to the
generalized Feistel networks pictured in Fig. 1. Unbalanced schemes are distinguished
by their using contracting (n > m) or expanding (n ≤ m) round functions. Parameters
k, m, n, M, N describe the scheme and r ≥ 1 determines the number of rounds � . The
specified results appear as Theorems 6–10.

work in this information-theoretic framework (still analyzing the classical Feistel
construction) includes Maurer [12], Naor and Reingold [19], Vaudenay [33], Mau-
rer and Pietrzak [13], and a sequence of papers by Patarin [26,21,23,24,22]. The
last culminates with the claim that six rounds of (classical) Feistel on a 2n-bit
string is enough to defeat (meaning the advantage goes to 0 as n→∞) adaptive
chosen-ciphertext attacks of 2n(1−ε) queries, for any ε > 0.

Information-theoretic analysis of generalized Feistel schemes is less mature.
We postpone describing the known results except to say that they are either ab-
sent (alternating Feistel with highly-imbalanced round functions), quantitatively
weak (birthday bounds that generalize Luby and Rackoff’s 25-year-old work),
or highly specialized (unbalanced Feistel networks with maximally unbalanced
contracting round functions).

Contributions. Our CCA-security bounds for generalized Feistel networks
are described in Fig. 2. Proofs omitted due to lack of space appear in the full
version of this paper [8]. Let us briefly describe each result and how it compares
with prior work.

For the classical Feistel network on 2n bits, our results are comparable to
those of Maurer and Pietrzak (henceforth “MP”) [13]. As with that work, the
bounds get better as one increases the number of rounds � . Asymptotically,
for any ε > 0, there is a corresponding number of rounds � (about 6/ε) such
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that any CCA-adversary has vanishing advantage if it asks at most q = 2n(1−ε)

forwards or backwards queries. Our actual results are concrete, and are a little
sharper than MP’s bounds; see Fig. 3 for a graphical comparison. Our proof
is much simpler than those of MP or Patarin. One reason for this is just that
we employ the lovely result of Maurer, Pietrzak, and Renner for passing from
NCPA-security to CCA-security [14]. The more important reason stems from
our use of coupling, a well-known technique from the theory of Markov chains.

Next we look at unbalanced Feistel networks; the round functions are maps
Fi : {0, 1}n → {0, 1}m. For the contracting case (n>m) we prove CCA-security
to 2n(1−ε) queries. Earlier work by Naor and Reingold provided bounds that
topped out at 2n/2 adversarial queries. Interpreting our result, if one holds fixed
the block length � = m + n, bounds improve with increasing imbalance, the
best bounds at m = 1, the setting earlier studied by Morris, Rogaway, and
Stegers (“MRS”) [17]. In effect, we “connect up” MP’s bounds on balanced
Feistel with MRS’s bounds on maximally unbalanced Feistel, demonstrating a
smooth increase in security with increasing imbalance. This behavior is not an
artifact of the analysis; corresponding information-theoretic attacks exist [22,27].

For unbalanced Feistel networks with expanding random round functions our
concrete-security results (again see Fig. 2) can similarly be interpreted asymp-
totically to show CCA security to 2n(1−ε) queries. But note that as imbalance
increases in an expanding round functions the value of n goes down, so provable
security is effectively vanishing. Again this is no artifact; there are corresponding
information-theoretic attacks [22,28].

We next treat unbalanced Feistel networks that acts on numbers instead of
strings, the blockcipher we denote Feistel�� [M, N ]. This situation is seen in the
card-shuffling technique of Thorp [32] (where M = 2) and is defined explicitly in
the work of Bellare et al. [4]. While one might expect unbalanced Feistel schemes
to behave similarly in the number-based and string-based settings, being able
to show this is something else: the number-based setting is considerably more
complex. We note that MRS only managed to deal with the case M = 2 and
N = 2n, leaving the generalization open. We show security to q ∼ N1−ε queries.

Unbalanced Feistel networks are unpleasant in requiring a “repartitioning”
of each round’s output before it can be treated as the next round’s input. An
alternative is suggested by the “ladder” way of drawing DES (the way that
avoids wire-crossings, as in our illustration of FeIsTeL). Information-theoretic
security bounds for alternating Feistel networks [1,3,4,11] were weak in two ways:
quantitatively, they top out at the birthday-bound; qualitatively, they depend
on the domain size of the round function with smaller domain, leading to a non-
result for the highly imbalanced setting. We overcome both issues. Our results
cover the numeric as well as the string-based settings.

Finally, we consider type-1, type-2, and type-3 Feistel networks [35], as used in
several modern blockciphers. We prove information-theoretically optimal bounds
(as the number of rounds becomes large). The proofs here are straightforward
compared to those for unbalanced and alternating Feistel, highlighting a strength
of the coupling-based approach.
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Unmentioned in all of the above is that our string-based results also work
when the alphabet is non-binary. This turns out to be useful; for example, one
could encipher a 16-digit credit card number (CCN) (the ciphertext again being
a 16-digit number) using a scheme FEISTEL�10[8] just like FEISTEL� [8] but over
the decimal alphabet instead of the binary one [2] (re-interpret the xor operator
as, say, modular addition). Our security bounds for schemes with non-binary
alphabets are as given in Fig. 2 but with 2n replaced by dn, where d is the radix
of the alphabet.

In general, finding a unified framework with which to analyze Feistel-like
schemes—one that gives concrete, asymptotically optimal, humanly-verifiable
bounds—is a contribution we see as being at least as important as all the im-
proved bounds.

Additional related work. In work just subsequent to our own, Patarin pro-
vides a concrete security bound for the classical Feistel construction FEISTEL6[n]
[25]. He goes on to claim beyond-birthday-bound security for the unbalanced
scheme Feistel8[n, 2n]. Earlier versions of our paper confessed an inability to
extract concrete security bounds from Patarin’s body of work.

Nachef attacks a Feistel variant that she calls an alternating unbalanced Feistel
scheme [18], but the scheme is different from the more classical one that we study
here. The specific rotation operation used in Nachef’s scheme makes this Feistel
variant highly insecure.

The first use of a coupling argument in cryptography that we know is due
to Mirinov, who used the technique to gave a lovely (even if slightly heuristic)
analysis of RC4 [15]. As mentioned earlier, Morris, Rogaway, and Stegers go on
to use coupling to analyze the security of a maximally-unbalanced (contract-
ing round function) Feistel network. Our work builds on theirs, but our use of
coupling becomes considerably more complex.

Beyond their use in making conventional blockciphers, generalized Feistel
networks have been proposed as blockcipher modes-of-operation for format-
preserving encryption (FPE) [5,3,4]. Here one usually aims to encipher points
within some arbitrary string-valued domain Σn, or within some arbitrary nu-
meric domain ZN . Commercial interest in doing this has been spurred by PCI
regulations [29] that require vendors to encipher CCNs they store; an architec-
turally clean way to do this is to encipher a column in a database without making
any modification to the database’s schema. There is now a NIST proposal for
an FPE-providing mode of operation, FFX [2], that employs an unbalanced or
alternating Feistel network over a possibly non-binary alphabet.

2 Preliminaries

Notation. For finite nonempty sets A and B, let Func(A, B) be the set of all
functions from A to B and let Perm(A) be the set of all permutations on A. For
numbers a, b ≥ 1, let Func(a, b) be the set of all functions from {0, 1}a to {0, 1}b.
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Blockciphers. Let E : K ×M → M be a blockcipher, meaning that each
EK(·) = E(K, ·) is a permutation on the finite nonempty setM. We emphasize
thatM (and also K) need not consist of binary strings of some particular length,
as is often assumed to be the case. For any blockcipher E, we let E−1 be its
inverse blockcipher. For blockcipher E : K×M→M and adversary A the advan-
tage of A in carrying out an (adaptive) chosen-ciphertext attack (CCA) on E is
Advcca

E (A)=Pr[K $←K: AEK(·),E−1
K (·) ⇒ 1]−Pr[π $← Perm(M): Aπ(·),π−1(·) ⇒ 1].

We say that A carries out an (adaptive) chosen-plaintext attack (CPA) if it
asks no queries to its second oracle. Adversary A is non-adaptive if it asks the
same queries on every run. Let Advcca

E (q) be the maximum advantage of any
(adaptive) CCA adversary against E subject to the adversary asking at most q
total oracle queries. Similarly define Advncpa

E (q) for nonadaptive CPA attacks
(NCPA).

For blockciphers F, G : K × M → M let F ◦ G denote their cascade, with
F ’s output fed into G’s input; formally, F ◦ G : K2 ×M → M is defined by
(F ◦G)(K,K′) = GK′(FK(X)). To be consistent with this left-to-right convention
for composing blockciphers we define composition of permutations by (f◦g)(x) =
g(f(x)). (This won’t be used often and should not cause confusion for those used
to the opposite convention.)

Coupling arguments. The high-level idea for a coupling argument can be
explained like this. We have a Markov chain Xt that we want to analyze. For
example, the Markov chain may consist of the image of the distinct, fixed strings
(x1, . . . , xq) ∈ ({0, 1}2n)q as each point is enciphered for t rounds according to
the classical Feistel network on 2n bits. We would like to show that, after t = �

rounds, the tuple of points Xt is pretty close to being uniformly distributed. For
this purpose, we introduce a second Markov chain Ut that, after any number of
rounds t, is indisputably uniform. We arrange so that Xt and Ut can be viewed
as co-evolving on a common probability space; formally, we create a joint dis-
tribution that yields the correct marginal distributions. We try to arrange our
joint distribution so that, usually, Xt and Ut quickly couple: for most random
choices, it does not take long until Xt = Ut. After Xt and Ut come together, they
should remain so. The basic observation underlying coupling is that the statisti-
cal distance between the distributions associated to Xt and Ut is upperbounded
by the probability that Xt 
= Ut.

More formally, let μ and ν be probability distributions on a finite event
space Ω. The total variation distance between distributions μ and ν is defined
as ‖μ− ν‖ = 1

2

∑
x∈Ω | μ(x) − ν(x) | = maxS⊂Ω{μ(S)− ν(S)}. A coupling of μ

and ν is a pair of random variables X, Y : Ω → R (the set R is arbitrary) such
that X ∼ μ and Y ∼ ν, that is, variables X and Y have marginal distributions μ
and ν, respectively. The coupling lemma we will use is as follows.

Lemma 1 (Coupling lemma). Let μ and ν be probability distributions on a
finite event space Ω and let (X, Y ) be a coupling of μ and ν. Then ‖μ − ν‖ ≤
Pr[X 
= Y ].
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From coupling to ncpa-security. Suppose that an adversary asks some
non-adaptive distinct queries. The adversary’s NCPA advantage cannot exceed
the total variation distance between the distribution of the outputs from her
queries and the uniform distribution. The uniform distribution itself can be
viewed as the distribution of outputs from a uniformly random choice of distinct
queries. Think of a coupling argument as a computer program that accepts as
its input either the actual adversarial queries or a pool of uniformly random,
distinct queries. On each input, the program implements a Feistel network and
gives a random output. The program tries to produce the same output on its two
possible inputs. Hence the total variation distance between the distributions of
the program’s outputs is upperbounded by the program’s probability of failure
(that is, its failure to produce the same output in the two cases).

To ease the design of such a program, a hybrid argument is employed and a
chain of inputs is created—the first being the adversarial queries and the last
being the pool of uniformly random, distinct ones. The purpose of this hybrid
argument is to reduce the difference between any pair of adjacent inputs in the
chain. Given an arbitrary pair of adjacent inputs, our goal now is to design
a coupling program that produces identical output on those two inputs with
high probability. The program runs both inputs, one after another. When the
program starts running the second input, it has finished the operations on the
first input and now knows all the random choices of the first Feistel network.
It then uses this knowledge in implementing the second Feistel network. For
example, if at some step the second network needs a uniformly random string
then the program may reuse the corresponding string from the first network.
The random choices in the second network are geared toward the first output,
but they are subject to the restriction that the round functions in the second
network must be independent and uniformly random.

From ncpa to cca-security. We bound the CCA-security of a Feistel net-
work from its NCPA-security by using the following result of Maurer, Pietrzak,
and Renner [14, Corollary 5]. It is key to our approach, effectively letting us as-
sume that our adversaries are of the simple, NCPA breed. Recall that in writing
F ◦G, the blockciphers are, in effect, independently keyed.

Lemma 2 (Maurer-Pietrzak-Renner). If F and G are blockciphers on the
same message space then, for any q, Advcca

F◦G−1(q) ≤ Advncpa
F (q)+Advncpa

G (q).

3 Classical Feistel

This section provides a strong, concrete security bound for conventional, balanced
Feistel networks. It also serves as a pedagogical example for proving security of a
Feistel network using coupling; some later examples get much more complex.

Defining the scheme. Fix n ≥ 1 and let F : {0, 1}n → {0, 1}n be a
function. Define from F the permutation ΨF : {0, 1}2n → {0, 1}2n by way of
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ΨF (A, B) = (B, A⊕F (B)) where |A| = |B| = n, and ⊕ denotes xor. Blockcipher
FEISTEL� [n] : K × {0, 1}2n → {0, 1}2n has key space K = (Func(n, n))� and a
key (F1, . . . , F� ) ∈ K names the permutation ΨF1 ◦ · · · ◦ ΨF� on {0, 1}2n. Each
Fi is called the round function at round i. For an illustration, see Fig. 1.

Initial notation. Given a query X to E = FEISTEL� [n], define its round-0
output to be X itself, while the round-t output is (ΨF1 ◦ · · · ◦ ΨFt)(X). The coin
of the query X at round t is the string A⊕F (B), where F is the round function
at round t and (A, B) is the round-(t − 1) output, with |A| = |B| = n. Two
queries collide at time t if their round-t outputs have the same final n bits.

NCPA-security. We will now prove the NCPA-security of E by way of cou-
pling, afterwards lifting this to show CCA-security using the result of [14] from
Lemma 2. The lemma below will help us bound the probability that we fail to
couple.

Lemma 3. For the blockcipher E = FEISTEL� [n], the chance that two distinct
non-adaptive queries collide at time t ≥ 1 is at most 2−n.

Proof. Suppose that the Feistel network receives distinct nonadaptive queries
X1 and X2. For each i ∈ {1, 2}, let (Ai, Bi) be the output at round t− 1 of Xi,
where |Ai| = |Bi| = n. The queries X1 and X2 collide at time t if and only if
A1 ⊕ F (B1) = A2 ⊕ F (B2), with F being the round function at round t. This
occurs with probability 2−n if B1 and B2 differ, because F is uniformly random.
If B1 = B2 then so are A1 and A2, which contradicts the hypothesis that X1

and X2 are distinct. ��
Theorem 4. Let E = FEISTEL� [n], � = 3r. Then Advncpa

E (q)≤ q
r+1 (4q/2n)r.

Proof. Suppose that E receives non-adaptive distinct queries X1, . . . , Xq. For
each � ≤ q, consider a vector of queries (Z1, . . . , Zq) such that Zi is Xi if i ≤ �
and Zi is chosen uniformly from {0, 1}2n\{Z1, . . . , Zi−1} otherwise. Let μ� be
the distribution of the vector of q outputs when E receives queries Z1, . . . , Zq.
We will show in a moment that the total variation distance between μ� and μ�+1

is at most (4� / 2n)r for every � ≤ q − 1. Assuming this, we have, by hybrid
argument,

Advncpa
E (q) ≤

q−1∑

�=0

‖μ� − μ�+1‖ ≤
q−1∑

�=0

(4� / 2n)r ≤ 2r(2−n)

∫ q

0

xrdx,

which is q
r+1 (4q / 2n)r. Now we show the claim. Fix a value � ≤ q − 1. We

must bound the total variation distance between μ� and μ�+1, each of them is a
distribution of a vector of q outputs. However, only the first � + 1 components
of the vector matter, because of the uniform sampling of the other. Consider a
3r-round balanced Feistel network on n bits that receives queries X1, . . . , X�+1.
Let Xi(t) be the output at round t from the query Xi.
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The coupling. We construct another 3r-round balanced Feistel network on n
bits with its non-adaptive distinct queries U1, . . . , U�+1. Let Ui(t) be the output
at round t of the new Feistel network on input Ui. The construction of the new
Feistel network will satisfy the following conditions:

• Query Uj equals to Xj for every j ≤ �, and U�+1 is uniformly chosen over
{0, 1}2n\{U1, . . . , U�}.
• If for all i ≤ � + 1, the outputs at round t of Xi and Ui are identical then so

are their outputs in any subsequent round.

Let T be the smallest round for which Xi and Ui have identical outputs for every
i ≤ � + 1. From the second condition above and from Lemma 1, we have that

‖μ� − μ�+1‖ ≤ Pr[Xi(3r) 
= Ui(3r) for some i ≤ � + 1] = Pr[T > 3r] .

The first condition above describes how to initialize U1(0), . . . , U�+1(0). As the
coin of Ui at round t + 1 dictates how to update Ui(t + 1) from Ui(t), it suffices
to show how to construct just that coin.

• If Ui collides with some previous query Uj at time t then the coin at round
t + 1 of Ui is defined so as to ensure consistency with the earlier query.
• Suppose that, in the new Feistel network, Ui does not collide with any previ-

ous query at time t. If the query Xi collides with some previous query Xj at
time t then we choose a string uniformly from {0, 1}n to be the coin of Ui at
round t+1. Otherwise, the coin of Xi at round t+1 is uniformly distributed
over {0, 1}n and Ui will use exactly the same coin at round t + 1.

Note that Ui and Xi always have the same output at round t, for every i ≤ � and
every t. Consider the event Coll that in either Feistel networks, the (�+1)-th query
collides with some previous query at some time t ∈ {1, 2}. From Corollary 3,
each such collision occurs with probability at most 2−n. Summing over the two
Feistel networks, two rounds, and � previous queries shows that the probability
Coll occurs is at most 4� / 2n. Unless Coll occurs, U�+1 and X�+1 will share the
coins at the second and third rounds, and then have identical outputs at the
third round. Hence Pr[T > 3] ≤ Pr[Coll], which is at most 4� / 2n.

Now imagine that we run a sequence of trials. In each trial, we observe the out-
puts of X�+1 and U�+1 for an additional three rounds. The probability that X�+1

and U�+1 have different outputs after the first trial is at most 4� / 2n. Since the
round functions of both Feistel networks in each trial are independent with those
in previous trials, the conditional probability that X�+1 and U�+1 have different
outputs after the r-th trial, given that their outputs remain different after the
first r − 1 trials, is again at most 4� / 2n. Hence Pr[T > 3r] ≤ (4� / 2n)r. ��
CCA-security. Let Rev denote the permutation on {0, 1}2n where Rev(A, B) =
(B, A), for |A| = |B| = n. The following observation is standard; see [13] for
proof.
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Fig. 3. Proven CCA-security for the classical Feistel network: our own
bounds and MP’s. The x-axis gives the log base-2 of the number of adversarial
queries and the y-axis gives upper bounds on an adversary’s CCA advantage. In the
left-hand plot (64-bit inputs), the dashed lines depict MP’s bounds for FEISTEL

24[32]
(left) and FEISTEL

96[32] (right); the solid lines depict our own bounds. In the right-hand
plot (128-bit inputs), the dashed lines likewise depict MP’s bounds for FEISTEL

24[64]
(left) and FEISTEL

96[64] (right); the solid lines depict our own bounds.

Lemma 5. If F and G are the blockcipher FEISTEL� [n] then F ◦G−1 ◦ Rev is
the blockcipher FEISTEL2�−1[n]. ��
Employing Lemma 2 we conclude the following.

Theorem 6. Let E=FEISTEL� [n], �=6r−1. Then Advcca
E (q)≤ 2q

r+1 (4q/2n)r.

Asymptotic interpretation. For an asymptotic interpretation of Theo-
rem 6, fix r > 0. Suppose that q = 2n(1−1/r). Let En be the blockcipher
FEISTEL6r−1[n]. Then

Advcca
En

(q) ≤ 2q

r + 1
(4q / 2n)r =

22r+1

r + 1
/ 2n/r,

which goes to 0 as n→∞. Translating into English, CCA security is guaranteed
to about q = 2n(1−ε) adversarial queries as long as one employs � ≥ 6/ε − 1
rounds. At a higher level still, ignoring the 1− ε multiplier in the exponent, an
appropriate number of rounds lets one tolerate nearly q = 2n adversarial queries.

Comparisons. Maurer and Pietrzak’s earlier work proves a security bound of
Advcca

E (q) ≤ 4q2 / 22n + 2q (8q / 2n)r for E = FEISTEL6r−1[n]. Our own bound
is always tighter than this; see Fig. 3 for a comparison of Theorem 6 and MP’s
bound. Earlier versions of our paper explained that we were unable to plot
Patarin’s latest bounds [26] due to the absence of a concrete security statement.
In very recent work [25] (subsequent to our own), Patarin bounds the security of
E = FEISTEL6[n] by Advcca

E (q) ≤ 8q / 2n +q2 / 22n+1 (assuming q ≤ 2n / 128n).

4 Unbalanced Feistel

Defining the scheme. Fix n, m ≥ 1 and let F : {0, 1}n → {0, 1}m be a
function. Define from F the permutation ΨF : {0, 1}m+n → {0, 1}m+n by way
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of ΨF (A, B) = (B, A ⊕ F (B)) where |A| = m and |B| = n, and ⊕ denotes xor.
We call ΨF a Feistel (m, n)-permutation and F its round function. Blockcipher
Feistel� [m, n] : K × {0, 1}m+n → {0, 1}m+n has key space K = (Func(m, n))�

and a key (F1, . . . , F� ) ∈ K names the permutation ΨF1 ◦· · ·◦ΨF� on {0, 1}m+n.
For an illustration, see Fig. 1.

Security of unbalanced feistel schemes. The theorem below shows the
CCA-security of Feistel� [m, n]. The proof can be found in Appendix A. Inter-
preted asymptotically, the result says that, with an adequate number of rounds,
CCA security is guaranteed to about 2n adversarial queries. Note that for ex-
panding round functions this guarantee eventually becomes meaningless. This
is as it should be; expanding round functions with small domains give rise to
information-theoretically insecure schemes.

Theorem 7. Fix integers m, n, r ≥ 1.

1) Let E = Feistel� [m, n] where n > m and � = r(4�n/m�+ 4).
Then Advcca

E (q) ≤ 2q
r+1

(
(3 �n/m�+ 3)q/ 2n

)r.

2) Let E = Feistel� [m, n] where n ≤ m and � = r(2�m/n�+ 4).
Then Advcca

E (q) ≤ 2q
r+1

(
4�m/n�q / 2n

)r.

Non-binary alphabets. We can replace the binary alphabet {0, 1} in an
unbalanced Feistel scheme with an arbitrary alphabet Σ where d = |Σ| ≥ 2.
Regard the characters as numbers {0, 1, . . . , d − 1} and reinterpret ⊕ either as
integer addition modulo dm or as characterwise addition modulo d. The analysis
associated to Theorem 7 is trivially lifted to this setting; for example, if E =
Feistel�d [m, n], the radix of the alphabet indicated by the subscript, with n > m
and � = r(4�n/m� + 4), then Advcca

E (q) ≤ 2q
r+1

(
(3�n/m� + 3)q / dn

)r. We
comment that our proof for part (1) of Theorem 7 works for any group operator
on Σm, but our proof for part (2) does not.

Graphical illustration. Fig. 4 illustrates our CCA-security bounds for
Feistel� [32, 96] versus Feistel� [64, 64]. Given an adequate number of rounds,
imbalance provably helps.

Unbalanced numeric feistel. We now go on to show security for the numeric
variant of the unbalanced Feistel scheme. We begin by defining this. Let M ≥ 2
and N ≥ 2 be numbers and let F have signature F : ZN → ZM . Let � : ZM ×
ZM → ZM represent addition modulo M , that is, a�b = (a+b) mod M . Consider
the permutation ΨF : ZMN → ZMN that maps Na + b to Mb + (a � F (b)) for
every (a, b) ∈ ZM×ZN . We call ΨF a numeric Feistel (M, N)-permutation and F
its round function. Blockcipher Feistel�� [M, N ] : K×ZMN → ZMN has key space
(Func(ZN , ZM ))� . A key (F1, . . . , F� ) ∈ K names the permutation ΨF1◦· · ·◦ΨF�

on ZMN , permutations composing from the left. For an illustration, see Fig. 1.

Security of numeric feistel schemes. The following theorem establishes
CCA-security for Feistel�. Interpreted asymptotically, the result implies that,
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Fig. 4. Unbalanced Feistel versus classical Feistel on a 128-bit string. Proven
CCA-security of Feistel� [32, 96] (bold lines) versus Feistel� [64, 64] = FEISTEL� [64]
(dashed lines) when � is 18, 36, 72, and 144 (the curves from left to right). The x-axis
gives the log base-2 of the number of queries; the y-axis gives an upper bound on an
adversary’s CCA advantage by Theorems 6 and 7.

with an adequate number of rounds, unbalanced numeric Feistel with a ZN →
ZM round function withstands a chosen-ciphertext attack to nearly N queries.

Theorem 8. Fix M, N ≥ 2, r ≥ 1.

1) Let E = Feistel�� [M, N ] where N > M and � = r(6 �logM N�+ 4).
Then Advcca

E (q) ≤ 2q
r+1

(
(9 �logM N�+ 5)q / N

)r.
2) Let E = Feistel�� [M, N ] where N ≤M and � = r(2 �logN M�+ 6).

Then Advcca
E (q) ≤ 2q

r+1

(
(7 �logN M�+ 7)q / N

)r.

Proof ideas. Let us briefly give an overview of the proof; see the full version
of this paper [8, Appendix B] for the complete proof. We begin by extending
the concepts of coin and collision of Section 3. The coupling method in Sec-
tion 3 requires that every pair of queries share coins at each round, if possible.
But this does not work here because if M and N are relatively prime, we may
find two deterministic queries that never yield the same output under such a
coupling strategy. Instead, think of coupling as a computer program trying to
produce the same output for two different inputs by manipulating the coins.
The program first creates a rule for coin-renaming. For example, suppose that
each Feistel network is programmed to create a sequence of uniformly random,
independent coins. The rule will map each possible value of the random sequence
in the first network to a unique value of the corresponding sequence in the sec-
ond network. The program then runs the first input. Now, knowing the exact
value of the sequence of coins in the first network, it runs the second input and
uses the rule above to specify how the coins of the second network are created.
The uniqueness property is to ensure that the round functions in the second
network are independent and uniformly random.
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5 Alternating Feistel

Defining the schemes. Let m and n be positive integers such that m ≤ n. The
blockcipher FeIsTeL� [m, n] : K× {0, 1}m+n → {0, 1}m+n consists of � rounds in
which the odd rounds are Feistel (m, n)-permutations (contracting) and the even
rounds are Feistel (n, m)-permutations (expanding). For simplicity, we assume
that � is even. The key space of FeIsTeL� [m, n] is then K = (Func(n, m) ×
Func(m, n))�/2. Given integers M and N such that 2 ≤ M ≤ N , we define the
blockcipher FeIsTeL�� [M, N ] : K × ZMN → ZMN , with numeric Feistel (M, N)
permutations at odd rounds and numeric Feistel (N, M) permutations at even
rounds. See Fig. 1 for illustration. We comment that it does not much matter
whether one starts with a contracting or expanding round because a security
bound with respect to one notion implies the same security bound with respect
to the other after one additional round.

Security of alternating feistel. The information-theoretic security of
blockciphers FeIsTeL and FeIsTeL� are established by the following results. Inter-
preted asymptotically, the result says that, with an adequate number of rounds,
alternating Feistel can withstand a chosen-ciphertext attack to nearly N adver-
sarial queries.

Theorem 9. Fix r > 0, 1 ≤ m ≤ n, and 2 ≤M ≤ N .

1) Let E = FeIsTeL� [m, n] where � = r (12 �n/m�+ 8).
Then Advcca

E (q) ≤ 2q
r+1

(
(6 �n/m�+ 3)q / 2n

)r.

2) Let E = FeIsTeL�� [M, N ] where � = r (12 �logM N�+ 8).
Then Advcca

E (q) ≤ 2q
r+1

(
(6 �logM N�+ 3)q / N

)r.

Proof ideas. We give an overview; see the full version of this paper for all
details [8, Appendix C]. We consider the generalization of FeIsTeL� in which the
operator � is replaced by any two group operators on ZM and ZN , regarding
FeIsTeL as a special case. While we still follow the framework of Section 3,
extending the concepts of coin and collision is tricky. Following the birthday-
bound proof of Black and Rogaway [3] and using the simple coupling method
for classical Feistel, one may be tempted to define two types of coins, one for
odd rounds and one for even rounds; and, likewise, two types of collisions. This
will indeed give rise to a bound, which however falls off with min(N, M) queries
instead of max(N, M) queries; that is, the approach is only good in the nearly-
balanced setting. Instead, we define coins only at odd rounds, and collisions only
at even rounds.

We are left with the task of coupling two pools of queries. Coins alone cannot
completely determine the outputs, because they dictate only the randomness at
odd rounds. However, if we require that the two pools use the same expand-
ing round functions (that control the randomness at even rounds), it suffices to
specify how coins evolve. While some specific choice of expanding round func-
tions may give us a poor chance of coupling, the expected value of the success
probability is good when those functions are uniformly chosen.
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6 Type-1, Type-2, and Type-3 Feistel

Defining the schemes. For illustrations, refer again to Fig. 1.

1) Fix k ≥ 2 and n ≥ 1, and let F : {0, 1}n → {0, 1}n name a permuta-
tion ΨF : {0, 1}kn → {0, 1}kn by way of setting ΨF

(
B1, · · · , Bk) = (B2 ⊕

F (B1), B3, . . . , Bk, B1

)
, where |Bi| = n. Then Feistel1� [k, n] : K×{0, 1}kn →

{0, 1}kn is the blockcipher obtained by the �-fold composition of ΨF permu-
tations, the key space being K = (Func(n, n))� .

2) Assume k ≥ 2 is even, n ≥ 1, and fi : {0, 1}n → {0, 1}n for every i ≤ k/2.
Let F = (f1, . . . , fk/2) name a permutation ΨF : {0, 1}kn → {0, 1}kn by
ΨF (B1, . . . , Bk)=

(
B2⊕f1(B1), B3, B4⊕f2(B3), B5, . . . , Bk⊕fk/2(Bk−1), B1

)

where |Bi| = n. Then the blockcipher Feistel2� [k, n] : K×{0, 1}kn → {0, 1}kn

is obtained by the � -fold composition of ΨF permutations, the key space
being K = (Func(n, n))k�/2.

3) Finally, with k ≥ 2 and n ≥ 1, consider fi : {0, 1}n → {0, 1}n for every i ≤
k − 1. Let F = (f1, . . . , fk−1) name a permutation ΨF : {0, 1}kn → {0, 1}kn

by ΨF (B1, · · · , Bk) =
(
B2⊕ f1(B1), B3⊕ f2(B2), . . . , Bk⊕ fk−1(Bk−1), B1

)
,

where |Bi| = n. Then Feistel3� [k, n] : K×{0, 1}kn → {0, 1}kn is the blockci-
pher obtained by the �-fold composition of ΨF permutations, the key space
being K = (Func(n, n))(k−1)� .

Security results. The following results show CCA-security of type-1, type-2,
type-3 Feistel variants to 2n(1−ε) queries. Of course this may be a disappointing
bound when n is small—and the type-i Feistel variants are in part motivated by
a desire to keep n small despite a long block length. But the bound is the best
possible, up to the asymptotic behavior, and substantially improves the prior
bound in the literature [35].

Theorem 10. Fix k, r ≥ 1. Then:

1) E=Feistel1� [k, n], �=r(4k − 2) ⇒ Advcca
E (q) ≤ 2q

r+1

(
2k(k − 1)q/2n

)r
.

2) E=Feistel2� [k, n], �=r(2k + 2) ⇒ Advcca
E (q)≤ 2q

r+1

(
2k(k − 1)q/2n

)r
.

3) E=Feistel3� [k, n], �=r(2k + 2) ⇒ Advcca
E (q) ≤ 2q

r+1

(
4(k − 1)2q/2n

)r
.

The proofs for the results above can be found in the full version of this paper [8,
Appendix D].

Acknowledgments

The authors gratefully acknowledge the support of NSF grant 0904380. Thanks
particuarly to program directors Richard Beigel and Lenore Zuck.



On Generalized Feistel Networks 627

References

1. Anderson, R., Biham, E.: Two practical and provably secure block ciphers: BEAR
and LION. In: Gollmann, D. (ed.) FSE 1996. LNCS, vol. 1039, pp. 113–120.
Springer, Heidelberg (1996)

2. Bellare, M., Rogaway, P., Spies, T.: The FFX mode of operation for format-
preserving encryption (draft 1.1). NIST submission (February 2010),
http://csrc.nist.gov/groups/ST/toolkit/BCM/modes_development.html

3. Black, J., Rogaway, P.: Ciphers with arbitrary finite domains. In: Preneel, B. (ed.)
CT-RSA 2002. LNCS, vol. 2271, pp. 114–130. Springer, Heidelberg (2002)

4. Bellare, M., Ristenpart, T., Rogaway, P., Stegers, T.: Format-preserving encryp-
tion. In: Jacobson Jr., M.J., Rijmen, V., Safavi-Naini, R. (eds.) SAC 2009. LNCS,
vol. 5867, pp. 295–312. Springer, Heidelberg (2009)

5. Brightwell, M., Smith, H.: Using datatype-preserving encryption to enhance data
warehouse security. In: 20th NISSC Proceedings, pp. 141–149 (1997),
http://csrc.nist.gov/nissc/1997

6. Coppersmith, D.: Luby-Rackoff: four rounds is not enough. Technical Report RC
20674, IBM (December 1996)

7. Feistel, H., Notz, W., Smith, J.: Some cryptographic techniques for machine-to-
machine data communications. Proc. of the IEEE 63, 1545–1554 (1975)

8. Hoang, V., Rogaway, P.: On generalized Feistel networks. Full version of this paper.
Cryptology ePrint report 2010/301, May26 (2010)

9. Jutla, C.: Generalized birthday attacks on unbalanced Feistel networks. In:
Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 186–199. Springer, Hei-
delberg (1998)

10. Luby, M., Rackoff, C.: How to construct pseudorandom permutations from pseu-
dorandom functions. SIAM Journal on Computing 17(2), 373–386 (1988); Earlier
version in CRYPTO 1985

11. Lucks, S.: Faster Luby-Rackoff ciphers. In: Gollmann, D. (ed.) FSE 1996. LNCS,
vol. 1039, pp. 189–203. Springer, Heidelberg (1996)

12. Maurer, U.: A simplified and generalized treatment of Luby-Rackoff pseudoran-
dom permutation generator. In: Rueppel, R.A. (ed.) EUROCRYPT 1992. LNCS,
vol. 658, pp. 239–255. Springer, Heidelberg (1993)

13. Maurer, U., Pietrzak, K.: The security of many-round Luby-Rackoff pseudo-random
permutations. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 544–
561. Springer, Heidelberg (2003)

14. Maurer, U., Pietrzak, K., Renner, R.: Indistinguishability amplification. In:
Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 130–149. Springer, Heidel-
berg (2007)

15. Mirinov, I. (Not so) random shuffles of RC4. In: Yung, M. (ed.) CRYPTO 2002.
LNCS, vol. 2442, pp. 304–319. Springer, Heidelberg (2002)

16. Moriai, S., Vaudenay, S.: On the pseudorandomness of top-level schemes of block
ciphers. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 289–302.
Springer, Heidelberg (2000)

17. Morris, B., Rogaway, P., Stegers, T.: How to encipher messages on a small domain:
deterministic encryption and the Thorp shuffle. In: Halevi, S. (ed.) CRYPTO 2009.
LNCS, vol. 5677, pp. 286–302. Springer, Heidelberg (2009)

18. Nachef, V.: Generic attacks on alternating unbalanced Feistel schemes. Cryptology
ePrint report 2009/287, June 16 (2009)

http://csrc.nist.gov/groups/ST/toolkit/BCM/modes_development.html
http://csrc.nist.gov/nissc/1997


628 V.T. Hoang and P. Rogaway

19. Naor, M., Reingold, O.: On the construction of pseudo-random permutations:
Luby-Rackoff revisited. Journal of Cryptology 12(1), 29–66 (1997)

20. Nyberg, K.: Generalized Feistel networks. In: Kim, K.-c., Matsumoto, T. (eds.)
ASIACRYPT 1996. LNCS, vol. 1163, pp. 91–104. Springer, Heidelberg (1996)

21. Patarin, J.: About Feistel schemes with six (or more) rounds. In: Vaudenay, S.
(ed.) FSE 1998. LNCS, vol. 1372, pp. 103–121. Springer, Heidelberg (1998)

22. Patarin, J.: Generic attacks on Feistel schemes. In: Boyd, C. (ed.) ASIACRYPT
2001. LNCS, vol. 2248, pp. 222–238. Springer, Heidelberg (2001)

23. Patarin, J.: Luby-Rackoff: 7 Rounds are enough for 2n−ε security. In: Boneh, D.
(ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 513–529. Springer, Heidelberg (2003)

24. Patarin, J.: New results on pseudorandom permutation generators based on the
DES scheme. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 301–
312. Springer, Heidelberg (1992)

25. Patarin, J.: Security of balanced and unbalanced Feistel schemes with linear non
equalities. Cryptology ePrint report 2010/293. May 17 (2010)

26. Patarin, J.: Security of random Feistel schemes with 5 or more rounds. In: Franklin,
M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 106–122. Springer, Heidelberg (2004)

27. Patarin, J., Nachef, V., Berbain, C.: Generic attacks on unbalanced Feistel schemes
with contracting functions. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS,
vol. 4284, pp. 396–411. Springer, Heidelberg (2006)

28. Patarin, J., Nachef, V., Berbain, C.: Generic attacks on unbalanced Feistel schemes
with expanding functions. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS,
vol. 4833, pp. 325–341. Springer, Heidelberg (2007)

29. PCI Security Standards Council. Payment Card Industry (PCI) Data Security
Standard: Requirements and Security Assessment Procedures, version 1.2.1 (July
2009), www.pcisecuritystandards.org

30. Schneier, B., Kelsey, J.: Unbalanced Feistel networks and block cipher design. In:
Gollmann, D. (ed.) FSE 1996. LNCS, vol. 1039, pp. 121–144. Springer, Heidelberg
(1996)

31. Smith, J.: The design of Lucifer: a cryptographic device for data communications.
IBM Research Report RC 3326. IBM T.J. Watson Research Center, Yorktown
Heights, New York, USA (April 15, 1971)

32. Thorp, E.: Nonrandom shuffling with applications to the game of Faro. Journal of
the American Statistical Association 68, 842–847 (1973)

33. Vaudenay, S.: Provable security for block ciphers by decorrelation. In: Meinel, C.,
Morvan, M. (eds.) STACS 1998. LNCS, vol. 1373, pp. 249–275. Springer, Heidelberg
(1998)

34. Yun, A., Park, J., Lee, J.: On Lai-Massey and quasi-Feistel ciphers. In: Designs,
Codes and Cryptography, Online First (2010)

35. Zheng, Y., Matsumoto, T., Imai, H.: On the construction of block ciphers prov-
ably secure and not relying on any unproved hypotheses. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 461–480. Springer, Heidelberg (1990)

A Proof for Unbalanced Feistel — Theorem 7

Given a query X to Feistel� [m, n], its coin at round t is the string A ⊕ F (B),
where F is the round function at round t and (A, B) is the round-(t−1) output,
with |A| = m and |B| = n. We say that two queries collide at time t if their
outputs at round t have the same last n bits. We begin with the following.
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Lemma 11. In the blockcipher Feistel� [m, n], the chance that two distinct non-
adaptive queries have the same coin at round t ≥ 1 is at most 2−m.

Proof. Suppose that the Feistel network receives distinct non-adaptive queries
X1 and X2. For each i ∈ {1, 2}, let (Ai, Bi) be the output at round t− 1 of Xi,
where |Ai| = m and |Bi| = n. The queries X1 and X2 collide at time t if and
only if A1 ⊕ F (B1) = A2 ⊕ F (B2), with F being the round function at round t.
This occurs with probability 2−m if B1 and B2 differ, because F is uniformly
random. If B1 = B2 then so are A1 and A2, which contradicts the hypothesis
that the two queries are distinct. ��

Contracting round functions. We first consider the security of the block-
cipher Feistel� [m, n] with n > m (that is, the round functions are contracting).
Later we show how to deal with expanding round functions.

Lemma 12. In the blockcipher Feistel� [m, n] with n > m, the chance that two
distinct non-adaptive queries collide at time t > �n/m� is at most 3/2n+1.

Proof. Suppose that the Feistel network receives distinct non-adaptive queries
X1 and X2. We shall prove by induction on b that for any b ≤ n, the probability
that outputs at round t > �b/m� of the two queries have the same last b bits is
at most 3/2b+1. The claim of this lemma corresponds to the special case b = n.

First consider the base case b < m. For each i ∈ {1, 2}, let (Ai, Bi) be the
output at round t − 1 of Xi, where |Ai| = m and |Bi| = n. The last m-bit
substring of the round-t output of Xi is Ai ⊕ F (Bi), with F being the round
function at round t. If B1 and B2 differ then the probability that outputs at
round t of the two queries have the same last b bits is at most 2−b, because F
is uniformly random. If B1 = B2 then the two queries have the same coin at
round t − 1, which by Lemma 11 occurs with probability at most 2−m. Hence,
by union bound, the chance that the two queries have the same last b bits is at
most 2−b + 2−m ≤ 3/2b+1.

Next consider b ≥ m and assume that the chance round-(t − 1) outputs of
the two queries have the same last b−m bits is at most 3/2b−m+1. The outputs
at round t of the two queries have the same last b bits if and only if (i) they
have the same coin at round t, which by Lemma 11 occurs with probability at
most 2−m, and (ii) their output at round t − 1 have the same lat b − m bits,
which occurs with probability at most 3/2b−m+1 by induction hypothesis. As
the round functions in the network are independent, the chance that both (i)
and (ii) occur is at most 2−m · 3 / 2b−m+1 = 3/2b+1. ��
We now prove NCPA-security of Feistelr(2�n/m�+2)[m, n]. Employing Lemma 2
then yields the desired result. Let b = �n/m� + 1. Suppose that the network
receives nonadaptive distinct queries X1, . . . , Xq. We shall use a similar strategy
as in the proof of Theorem 4. Fix an integer � ≤ q − 1. For every i ≤ �, let
Ui = Xi and let U�+1 be chosen uniformly from {0, 1}n+m \{U1, . . . , U�

}
. We

shall construct another Feistel2rb[m, n] for the queries U1, . . . , U�. Let Xi(t) and
Ui(t) be the outputs at round t of Xi and Ui respectively. It suffices to define
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the coupling in the first 2b rounds, and then show that the probability that
Xi(2b) 
= Ui(2b) for some i ≤ � + 1 is at most 3b� / 2n.

The coupling. In the first b rounds, for every i ≤ �, we use the same coin to
update Xi(t) and Ui(t), and couple X�+1(t) and U�+1(t) in an arbitrary way. In
the next b rounds, we couple as follows.

• If Ui collides with some previous query Uj at time t then the coin at round
t + 1 of Ui is defined so as to ensure consistency with the earlier query.
• Suppose that, in the new Feistel network, Ui does not collide with any pre-

vious query at time t. If the query Xi collides with some previous query
Xj at time t then we choose a string uniformly from {0, 1}n+m to be the
coin of Ui at round t + 1. Otherwise, the coin of Xi at round t + 1 is uni-
formly distributed over {0, 1}n+m and Ui will use exactly the same coin at
round t + 1.

Note that Ui and Xi always have the same output at round t, for every i ≤ �
and every t. Consider the event Coll that in either Feistel networks, the (�+1)-th
query collides with some previous query at some time t ∈ {b, . . . , 2b− 1}. From
Lemma 12, each such collision occurs with probability at most 3/2n+1. Summing
over the two Feistel networks, b rounds, and � previous queries shows that the
probability Coll occurs is at most 3b� / 2n. Unless Coll occurs, U�+1 and X�+1

will share the coins at the rounds b + 1, . . . , 2b, and then have identical outputs
at the round 2b. Hence the chance that we fail to couple at round 2b cannot
exceed 3b� / 2n.

Expanding round functions. We follow the same proof as before, but
Lemma 12 is replaced by the following result.

Lemma 13. In the blockcipher Feistel� [m, n] with n ≤ m, the chance that two
distinct non-adaptive queries collide at time t ≥ �m/n� is at most �m/n� / 2n.

Proof. Suppose that the Feistel network receives distinct non-adaptive queries
X1 and X2. For each i ∈ {1, 2}, let (Ai, Bi) be the output at round t− 1 of Xi,
where |Ai| = m and |Bi| = n. The queries X1 and X2 collide at time t if and
only if the two strings A1 ⊕ F (B1) and A2 ⊕ F (B2) have the same last n bits,
with F being the round function at round t. This occurs with probability 2−n if
B1 and B2 differ, because F is uniformly random. If B1 = B2 then A1 and A2

must have the same last n bits. In other words, the round-(t− 1) outputs of the
two queries must agree at the last 2n bits. Repeating this argument leads us to
examine the case that for every j < �m/n� the round-(t− j) outputs of the two
queries must agree at the last (j + 1)n bits. When this chain of reasoning stops
at round t − �m/n�+ 1, the outputs at that round must have the same last m
bits. In other words, the queries have the same coin at that round, which by
Lemma 11 occurs with probability at most 2−m ≤ 2−n. Hence by union bound,
the chance that the two queries collide at time t is at most �m/n� / 2n. ��
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