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We develop a new and further generalized form of the fractional kinetic equation involving generalized Bessel function of the 	rst
kind.�emanifold generality of the generalized Bessel function of the 	rst kind is discussed in terms of the solution of the fractional
kinetic equation in the paper. �e results obtained here are quite general in nature and capable of yielding a very large number of
known and (presumably) new results.

1. Introduction and Preliminaries

Bessel functions are playing the important role in studying
solutions of di
erential equations, and they are associated
with a wide range of problems in important areas of math-
ematical physics, like problems of acoustics, radiophysics,
hydrodynamics, and atomic and nuclear physics. �ese con-
siderations have led various workers in the 	eld of special
functions to explore the possible extensions and applications
of the Bessel functions. Among many properties of Bessel
functions, they also have investigated some possible exten-
sions of the Bessel functions.

�e generalized Bessel function of the 	rst kind ��(�) is
de	ned for � ∈ C \ {0} and �, �, � ∈ C(R(�) > −1) by the
following series [1, page 10, (1.15)] (for recent work, see also
[2–6]):

��,�,� (�) = �� (�) =
∞∑
�=0

(−1)� ��
	!Γ (� + (� + 1) /2 + 	) (

�
2)
2�+� ,

(1)

where C denotes the set of complex numbers and Γ(�) is the
familiar Gamma function.

�e special cases of series (1) can be obtained as follows.

(i) If we put � = � = 1 in (1), then we obtain the familiar
Bessel function of the 	rst kind [7] of order � for�, � ∈ C withR(�) > −1 de	ned and represented by
the following expressions (see also [1, 8]):

�� (�) =
∞∑
�=0

(−1)�
	!Γ (� + 	 + 1) (

�
2)
2�+� , � ∈ C. (2)

(ii) Putting � = 1 and � = −1 in series (1), we get the
modi	ed Bessel function of the 	rst kind of order �
de	ned by (see [1, 7])

�� (�) =
∞∑
�=0

1
	!Γ (� + 	 + 1) (

�
2)
2�+� , � ∈ C; (3)

the series given by (3) is also a special case of Galué’s
generalized modi	ed Bessel function [9] depending
on parameters � = 0, 1, 2, . . . and � > −1, given as
follows:

��� (�) =
∞∑
�=0

(�/2)2�+�
	!Γ (� + �	 + 1) , � ∈ C. (4)
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(iii) Letting � = 2 and � = 1 in series (1), we have the
spherical Bessel function of the 	rst kind of order �
de	ned by (see [1])

�� (�) = √�
2
∞∑
�=0

(−1)�
	!Γ (� + 	 + 3/2) (

�
2)
2�+� , � ∈ C.

(5)

Furthermore, Deniz et al. [10] considered the function��,�,�(�), de	ned in terms of the generalized Bessel function��(�), by the transformation

��,�,� (�) = 2�Γ(� + � + 1
2 ) �1−�/2�� (√�)

= � + ∞∑
�=1

(−�)�
4� (])�

��+1
	! ,

(6)

where ] = �+ (�+ 1)/2 ∉ �−0 := {0, −1, −2, . . .} and (�)� is the
Pochhammer symbol de	ned (for � ∈ C) by

(�)� := {{{
1 (	 = 0)
� (� + 1) ⋅ ⋅ ⋅ (� + 	 − 1) (	 ∈ � := {1, 2, 3, . . .})

= Γ (� + 	)
Γ (�) (� ∈ C \ �−0 ) .

(7)

Fractional di
erential equations appear more and more
frequently for modeling of relevant systems in several 	elds
of applied sciences.�ese equations play important roles, not
only in mathematics, but also in physics, dynamical systems,
control systems, and engineering, to create the mathematical
model ofmany physical phenomena. In particular, the kinetic
equations describe the continuity of motion of substance and
are the basic equations of mathematical physics and natural
science. �erefore, in literature we found several papers that
analyze extensions and generalizations of these equations
involving various fractional calculus operators. One may, for
instance, refer to such type of works by [11–23].

Haubold and Mathai [13] have established a functional
di
erential equation between rate of change of reaction, the
destruction rate, and the production rate as follows:

 �
 " = − (��) + � (��) , (8)

where � = �(") is the rate of reaction,  =  (�) is the rate
of destruction, � = �(�) is the rate of production, and ��
denotes the function de	ned by��("∗) = �(" − "∗), "∗ > 0.

Haubold and Mathai studied a special case of (8), when
spatial �uctuations or inhomogeneities in the quantity �(")
are neglected, is given by the equation

 �
 " = −�
�
 (") , (9)

together with the initial condition that �
(" = 0) = �0, is
the number of density of species # at time " = 0, �
 > 0. If we

decline the index # and integrate the standard kinetic equation
(9), we have

�(") − �0 = −� 0$−1� �(") , (10)

where 0$−1� is the special case of the Riemann-Liouville

integral operator 0$−]� de	ned as

0$−]� % (") = 1
Γ (]) ∫

�

0
(" − ')]−1 % (')  ', " > 0, R (]) > 0.

(11)

Haubold and Mathai [13] have given the fractional general-
ization of the standard kinetic equation (10) as

�(") − �0 = −�] 0$−]� �(") (12)

and have provided the solution of (12) as follows:

�(") = �0
∞∑
�=0

(−1)�
Γ (]	 + 1) (�")]� . (13)

Further, Saxena and Kalla [17] considered the following
fractional kinetic equation:

�(") − �0% (") = −�] ( 0$−]� �) (") , (R (]) > 0) ,
(14)

where�(") denotes the number density of a given species at
time ", �0 = �(0) is the number density of that species at
time " = 0, � is a constant, and % ∈ *(0,∞).

By applying the Laplace transform to (14), we have

* [� (")] (�)
= �0 6 (�)

1 + �]�−]
= �0 (

∞∑
�=0

(−�])� �−�])6 (�) (9 ∈ �0,
<<<<<<<<
�
�
<<<<<<<< < 1) ,

(15)

where the Laplace transform [24] is de	ned by

6 (�) = * [% (")] = ∫∞
0

B−��% (")  ", R (�) > 0. (16)

�e aim of this paper is to develop a new and further
generalized form of the fractional kinetic equation involving
generalized Bessel function of the 	rst kind. �e manifold
generality of the generalized Bessel function of the 	rst kind
is discussed in terms of the solution of the above fractional
kinetic equation. Moreover, the results obtained here are
quite capable of yielding a very large number of known and
(presumably) new results.

2. Solution of Generalized Fractional
Kinetic Equations

In this section, we will investigate the solution of the general-
ized fractional kinetic equations. �e results are as follows.
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�eorem 1. If  > 0, ] > 0, �, �, C, " ∈ C, andR(C) > −1, then
for the solution of the equation

�(") − �0��,�,� (") = − ] 0$−]� �(") , (17)

there holds the formula:

�(") = �0
∞∑
�=0

(−�)� Γ (2	 + C + 1)
	!Γ (C + 	 + (� + 1) /2) (

"
2)
2�+�

× D
],2�+�+1 (− ]"]) ,

(18)

where D
],2�+�+1(⋅) is the generalized Mittag-Le�er function

[25].

Proof. �e Laplace transform of the Riemann-Liouville frac-
tional integral operator is given by [26, 27]

* { 0$−]� % (") ; �} = �−]6 (�) , (19)

where 6(�) is de	ned in (16). Now, applying the Laplace
transform to both sides of (17), we get

* [� (") ; �]
= �0* [��,�,� (") ; �] −  ]* [ 0$−]� �(") ; �] ,

� (�)
= �0 ∫

∞

0
B−�� ∞∑
�=0

(−�)�
	!Γ (C + 	 + (� + 1) /2) (

"
2)
2�+�

−  ]�−]�(�) ,
� (�) [1 +  ]�−]]

= �0
∞∑
�=0

(−�)� 2−(2�+�)
	!Γ (C + 	 + (� + 1) /2) ∫

∞

0
B−��"2�+� "

= �0
∞∑
�=0

(−�)� 2−(2�+�)
	!Γ (C + 	 + (� + 1) /2)

Γ (2	 + C + 1)
�2�+�+1 ,

� (�)
= �0
∞∑
�=0

(−�)� 2−(2�+�)Γ (2	 + C + 1)
	!Γ (C + 	 + (� + 1) /2)

× {{{
�−(2�+�+1) ∞∑


=0

(1)
 [− (�/ )−]]

(I)!

}}}
.

(20)

Taking Laplace inverse of (20) and using *−1{�−]} = "]−1/Γ(]),
R(]) > 0, we have

*−1 {� (�)}
= �0
∞∑
�=0

(−�)� 2−(2�+�)Γ (2	 + C + 1)
	!Γ (C + 	 + (� + 1) /2)

× *−1 {∞∑

=0

(−1)
  ]
�−(2�+�+]
+1)} ,
� (")

= �0
∞∑
�=0

(−�)� 2−(2�+�)Γ (2	 + C + 1)
	!Γ (C + 	 + (� + 1) /2)

× {∞∑

=0

(−1)
  ]
 "(2�+�+]
)
Γ (]I + 2	 + C + 1)}

= �0
∞∑
�=0

(−�)� 2−(2�+�)Γ (2	 + C + 1)
	!Γ (C + 	 + (� + 1) /2) "2�+�

× {∞∑

=0

(−1)
  ]
 "]

Γ (]I + 2	 + C + 1)}

= �0
∞∑
�=0

(−�)� Γ (2	 + C + 1)
	!Γ (C + 	 + (� + 1) /2) (

"
2)
2�+�

× {∞∑

=0

(−1)
  ]
 "]

Γ (]I + 2	 + C + 1)} ,

� (")
= �0
∞∑
�=0

(−�)� Γ (2	 + C + 1)
	!Γ (C + 	 + (� + 1) /2) (

"
2)
2�+�

× D
],2�+�+1 (− ]"]) .

(21)

�is completes the proof of �eorem 1.

If we set � = � = 1 in (17), then generalized Bessel
function ��,�,�(�) reduces to Bessel function of the 	rst kind��(�) given by (2), and we arrive at the following result.

Corollary 2. If  > 0, ] > 0, C, " ∈ C, andR(C) > −1, then for
the solution of the equation

�(") − �0�� (") = − ] 0$−]� �(") , (22)

there holds the formula:

�(") = �0
∞∑
�=0

(−1)� Γ (2	 + C + 1)
	!Γ (C + 	 + 1) ( "2)

2�+�

× D
],2�+�+1 (− ]"]) .

(23)
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Further, taking � = 1 and � = −1 in (17), then we
obtain result of generalized fractional kinetic equation having
modi	ed Bessel function of the 	rst kind.

Corollary 3. If  > 0, ] > 0, C, " ∈ C, andR(C) > −1, then for
the solution of the equation

�(") − �0�� (") = − ] 0$−]� �(") , (24)

there holds the formula:

�(") = �0
∞∑
�=0

Γ (2	 + C + 1)
	!Γ (C + 	 + 1) (

"
2)
2�+�

× D
],2�+�+1 (− ]"]) .

(25)

Letting � = 2 and � = 1 in (17), then generalized Bessel
function ��,�,�(�) reduces to the spherical Bessel function of
the 	rst kind ��(�) given by (5), and we obtain the following
interesting result.

Corollary 4. If  > 0, ] > 0, C, " ∈ C, andR(C) > −1, then for
the solution of the equation

�(") − �0�� (") = − ] 0$−]� �(") , (26)

there holds the solution of (22)

�(") = �0√�
2
∞∑
�=0

(−1)� Γ (2	 + C + 1)
	!Γ (C + 	 + 3/2) ( "2)

2�+�

× D
],2�+�+1 (− ]"]) .

(27)

�eorem 5. If  > 0, ] > 0, �, �, C, " ∈ C, andR(C) > −1, then
for the solution of the equation

�(") − �0��,�,� ( ]"]) = − ] 0$−]� �(") , (28)

there holds the formula:

�(") = �0
∞∑
�=0

(−�)� Γ (2	] + ]C + 1)
	!Γ (C + 	 + (� + 1) /2) (

 ]"]
2 )2�+�

× D
],(2�+�)]+1 (− ]"]) ,

(29)

where D
],2�]+]�+1(⋅) is the generalized Mittag-Le�er function.

Proof. �e Laplace transform of the Riemann-Liouville frac-
tional integral operator is given by [26]

* { 0$−]� % (") ; �} = �−]6 (�) , (30)

where 6(�) is de	ned in (16). Now, applying the Laplace
transform to both sides of (28), we get

* [� (") ; �]
= �0* [��,�,� ( ]"]) ; �] −  ]* [ 0$−]� �(") ; �] , (31)

�(�)
= �0 ∫

∞

0
B−�� ∞∑
�=0

(−�)�
	!Γ (C + 	 + (� + 1) /2)

× ( ]"]2 )2�+� −  ]�−]�(�) ,
� (�) [1 +  ]�−]]
= �0
∞∑
�=0

(−�)� ( ]/2)2�+�
	!Γ (C + 	 + (� + 1) /2) ∫∞

0
B−��"2�]+]�+1−1 "

= �0
∞∑
�=0

(−�)� ( ]/2)2�+�
	!Γ (C + 	 + (� + 1) /2)

Γ (2	] + ]C + 1)
�2�]+]�+1 ,

� (�)
= �0
∞∑
�=0

(−�)� ( ]/2)2�+� Γ (2	] + ]C + 1)
	!Γ (C + 	 + (� + 1) /2)

× {{{
�−(2�]+]�+1) ∞∑


=0

(1)
 [− (�/ )−]]

(I)!

}}}
.

(32)

Taking Laplace inverse of (32) andusing*−1{�−]} = "]−1/Γ(]),
R(]) > 0, we have

*−1 {� (�)}
= �0
∞∑
�=0

(−�)� ( ]/2)2�+� Γ (2	] + ]C + 1)
	!Γ (C + 	 + (� + 1) /2)

× *−1 {∞∑

=0

(−1)
  ]
�−(2�]+]�+]
+1)} ,

� (")
= �0
∞∑
�=0

(−�)� ( ]/2)2�+� Γ (2	] + ]C + 1)
	!Γ (C + 	 + (� + 1) /2)

× {∞∑

=0

(−1)
  ]
 "](2�+�+
)
Γ (]I + 2	] + ]C + 1)}
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= �0
∞∑
�=0

(−�)� ( ]/2)2�+� Γ (2	] + ]C + 1)
	!Γ (C + 	 + (� + 1) /2) "](2�+�)

× {∞∑

=0

(−1)
  ]
 "]

Γ (]I + 2	] + ]C + 1)}

= �0
∞∑
�=0

(−�)� Γ (2	] + ]C + 1)
	!Γ (C + 	 + (� + 1) /2) (

 ]"]
2 )2�+�

× {∞∑

=0

(−1)
  ]
 "]

Γ (] (I + 2	 + C) + 1)} ,

� (")

= �0
∞∑
�=0

(−�)� Γ (2	] + ]C + 1)
	!Γ (C + 	 + (� + 1) /2) (

 ]"]
2 )2�+�

× D
],(2�+�)]+1 (− ]"]) .

(33)

�is completes the proof of �eorem 5.

If we set � = � = 1 in �eorem 5, then generalized Bessel
function ��,�,�(�) reduces to Bessel function of the 	rst kind��(�), and we arrive at the special case of (28).

Corollary 6. If  > 0, ] > 0, C, " ∈ C, andR(C) > −1, then for
the solution of the equation

�(") − �0�� ( ]"]) = − ] 0$−]� �(") , (34)

the following result holds:

�(") = �0
∞∑
�=0

(−1)� Γ (2	] + ]C + 1)
	!Γ (C + 	 + 1) ( ]"]2 )2�+�

× D
],(2�+�)]+1 (− ]"]) .

(35)

On taking � = 1 and � = −1 in (28), then generalized
Bessel function ��,�,�(�) reduces to Bessel function of the 	rst
kind ��(�), and we get the following result.

Corollary 7. If  > 0, ] > 0, C, " ∈ C, andR(C) > −1, then for
the solution of the equation

�(") − �0�� ( ]"]) = − ] 0$−]� �(") , (36)

the following result holds:

�(") = �0
∞∑
�=0

Γ (2	] + ]C + 1)
	!Γ (C + 	 + 1) ( ]"]2 )2�+�

× D
],(2�+�)]+1 (− ]"]) .

(37)

Further, if we put � = 2 and � = 1 in (28), then we arrive
at the following interesting result.

Corollary 8. If  > 0, ] > 0, C, " ∈ C, andR(C) > −1, then for
the solution of the equation

�(") − �0�� ( ]"]) = − ] 0$−]� �(") , (38)

the following result holds:

�(") = �0√�
2
∞∑
�=0

(−1)� Γ (2	] + ]C + 1)
	!Γ (C + 	 + 3/2) ( ]"]2 )2�+�

× D
],(2�+�)]+1 (− ]"]) ,

(39)

where ��(�) is the spherical Bessel function of the 
rst kind.

�eorem 9. If � > 0,  > 0, ] > 0, �, �, C, " ∈ C, � ̸=  , and
R(C) > −1, then for the solution of the equation

�(") − �0��,�,� ( ]"]) = −�] 0$−]� �(") , (40)

there holds the formula:

�(") = �0
∞∑
�=0

(−�)� Γ (2	] + ]C + 1)
	!Γ (C + 	 + (� + 1) /2) (

 ]"]
2 )2�+�

× D
],(2�+�)]+1 (−�]"]) .

(41)

Proof. Applying the Laplace transform to both sides of (40),
we get

* [� (") ; �]
= �0* [��,�,� ( ]"]) ; �] − �]* [ 0$−]� �(") ; �] ,

� (�) [1 + �]�−]]

= �0
∞∑
�=0

(−�)� ( ]/2)2�+�
	!Γ (C + 	 + (� + 1) /2)

Γ (2	] + ]C + 1)
�2�]+]�+1 ,

� (�)

= �0
∞∑
�=0

(−�)� ( ]/2)2�+� Γ (2	] + ]C + 1)
	!Γ (C + 	 + (� + 1) /2)

× {�−(2�]+]�+1) ∞∑

=0

(1)
 (−1)
 �−]
�]
(I)! } .
(42)
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Taking Laplace inverse of (42), we arrive at

*−1 {� (�)}

= �0
∞∑
�=0

(−�)� ( ]/2)2�+� Γ (2	] + ]C + 1)
	!Γ (C + 	 + (� + 1) /2)

× *−1 {∞∑

=0

(−1)
 �]
�−(2�]+]�+]
+1)} ,

� (")

= �0
∞∑
�=0

(−�)� Γ (2	] + ]C + 1)
	!Γ (C + 	 + (� + 1) /2) (

 ]"]
2 )2�+�

× {∞∑

=0

(−1)
 �]
 "]

Γ (] (I + 2	 + C) + 1)} ,

� (")

= �0
∞∑
�=0

(−�)� Γ (2	] + ]C + 1)
	!Γ (C + 	 + (� + 1) /2) (

 ]"]
2 )2�+�

× D
],(2�+�)]+1 (−�]"]) .

(43)

�is completes the proof of �eorem 9.

Remark 10. �e special cases for�eorem 9 can be developed
on similar lines to that of Corollaries 6–8, but we do not state
here due to lack of space.

3. Conclusion

In this paper we have studied a new fractional generalization
of the standard kinetic equation and derived solutions for it.
It is not di�cult to obtain several further analogous fractional
kinetic equations and their solutions as those exhibited here
by main results. Moreover, by the use of close relationships
of the generalized Bessel function of the 	rst kind ��(�)
with many special functions, we can easily construct various
known and new fractional kinetic equations.

Conflict of Interests

�e authors declare that there is no con�ict of interests
regarding the publication of this paper.

Acknowledgment

�e authors are thankful to the referee for the very careful
reading and the valuable suggestions.

References
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