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1 Introduction

Recently Lewkowycz and Maldacena (LM) [1] have proposed a derivation of the Ryu-

Takayangi (RT) prescription [2] for computing entanglement entropy (EE) [3, 4] in holog-

raphy [5, 6]. A generalization of black hole entropy is proposed in the context where there

is no U(1) symmetry in the bulk. In the Euclidean theory, although there is no U(1) sym-

metry, one imposes a periodicity condition of 2πn with n being an integer on the Euclidean

time direction at the boundary. This time direction shrinks to zero at the boundary. By

suitably choosing boundary conditions on the fields, LM propose to identify the on-shell

Euclidean action with a generalized gravitational entropy.

In calculations of entanglement entropy in quantum field theories, one frequently uses

the replica trick which entails introducing a conical singularity in the theory.1 An earlier

1The only example where a derivation of EE exists without using the replica trick is for the spherical

entangling surface [7–9] although in [10] it has been explained how this procedure is connected with the

replica trick. A proposal has been made in [11–13] for the equation for the entangling surface which does

not depend on the replica trick.
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attempt to prove the Ryu-Takayanagi formula was made by Fursaev [14]. In recent times,

in the context of AdS3/CFT2 there have been further developments in [15, 16] towards a

proof. In the context of holography, this corresponds to taking the n → 1 limit. In this

case, LM suggest that the time direction shrinks to zero on a special surface. The equation

for this surface is derived in Einstein gravity by showing that there is no singularity in the

bulk equations of motion. This surface has vanishing trace of the extrinsic curvature and

corresponds to a minimal surface — which is precisely what comes from minimizing the

Ryu-Takayanagi area functional.

The identification of the entanglement entropy with the generalized gravitational en-

tropy opens the avenue for systematically generalizing holographic entanglement entropy

for more general bulk theories of gravity other than Einstein gravity. This understanding is

crucial in order to understand systematics of how finite coupling effects in the field theory

modify entanglement entropy. There are two kinds of corrections: a) those which arise

from “classical” and local higher derivative corrections to the bulk theory and b) those

which arise from “quantum” or loop corrections to the effective action which would include

non-local effects [17–19]. In this paper we will focus on the former.

In [13] (see also [20]) we extended the LM method for deriving the entangling surface

equation to four derivative gravity. We found that in order for the method to be applicable

we needed the extrinsic curvature to be small and in this regime, the surface equations for

Gauss-Bonnet gravity coincided with that in the literature. In particular it coincided with

what arises from the Jacobson-Myers (JM) entropy functional [21] which differs from the

Wald entropy functional [22, 23] in terms quadratic in the extrinsic curvature [24, 25]. For

a more general four derivative action, we could not find a suitable entropy functional.

In a parallel development, Fursaev et al. [26] proposed an extension of the regulariza-

tion of conical singularities [27] to surfaces having extrinsic curvature — which they call

squashed cones. In that paper, they proposed an entropy functional which is supposed to

be applicable for an arbitrary four derivative theory. As a check, their functional coincides

with the JM entropy functional for the Gauss-Bonnet case. In this paper we will show that

indeed their entropy functional gives the expected [28] universal terms for spherical and

cylindrical entangling surfaces in arbitrary four derivative theories. This motivates us into

looking at the following questions:

• Does the new regularization give the correct universal terms when calculated using

the generalized gravitational entropy? In order to answer this question we will need

to compute the bulk metric using the Fefferman-Graham metric.

• Is there a relation between entanglement entropy and Wald entropy?

• Can this lead to the expected equation for the entangling surface in Gauss-Bonnet

gravity without needing to resort to a weak extrinsic curvature limit? What light

does this shed on the LM method?

Let us summarize our findings to the questions above. Indeed we find that the new

regularization of Fursaev et al. leads to the expected universal terms in the EE for spherical

and cylindrical entangling surfaces. In order to do the computation using the generalized
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gravitational entropy approach, we need to start with the boundary metric in the form given

in [26]. Then we compute the Fefferman-Graham expansion to leading order. In effect we

are computing (upto an order) the bulk metric with a dual which corresponds to field theory

living in the entangling region. The resulting bulk metric will be singular. However, in the

language of [1] these singularities are mild. In particular in the n → 1 limit, they will not

show up in the on-shell action. Furthermore for Gauss-Bonnet gravity as we will explain,

this new regularization indeed leads to the surface equation being the same as that coming

from the JM entropy functional. We will explain that a modification to the order of limits

needs to be done to the use of the LM method in [13] for deriving the surface equation.

We also address the connection of EE with Wald entropy [22, 23]. As is by now well

known, in an arbitrary theory of gravity, taking the Wald entropy functional in AdS space

will give rise to the wrong universal terms in EE [24, 25]. In Gauss-Bonnet gravity, the

correct entropy functional is the JM one. This was obtained using a Hamiltonian approach.

Unfortunately, this makes it really hard to guess a suitable entropy functional for an arbi-

trary theory of gravity. The approach of [26] may be a way around this problem. However,

for an arbitrary higher derivative theory of gravity, it entails first working out the entropy

functional and then working with it — currently, this has been possible only at the four

derivative level. The advantage of the Wald formula in the context of black holes was that

it was applicable for any theory of gravity with arbitrary higher derivative corrections. Un-

fortunately, in the Noether charge method which leads to the Wald entropy, there are am-

biguities which can only be resolved for bifurcate horizons [29, 30]. Iyer and Wald [30] had

proposed a prescription that generalizes the Wald entropy to dynamical horizons which are

not bifurcate. The prescription is to construct a new bulk spacetime in which the dynamical

horizon becomes a bifurcate Killing horizon for which the extrinsic curvatures vanish. Then

one computes the usual Wald entropy in this spacetime. The resulting entropy functional

for Lovelock theory coincides with JM. The key feature that made this possible was the con-

struction of the new spacetime in which the extrinsic curvatures of the original surface van-

ish. We will find that the Fefferman-Graham metric, for the cases where the boundary met-

rics are given by the regularized metrics proposed in [26], has some similarities with the Iyer-

Wald construction. In particular, in the order of limits proposed in [26], the extrinsic curva-

tures for the entangling surface vanish. This leads to the expectation that the Wald entropy

in the bulk spacetime will lead to the correct universal terms. We show that this expectation

is indeed true, provided we choose a particular regularization.2 This regularization will turn

out to be surface dependent but theory independent. At the onset, we should clarify that

there is no contradiction with the statement above that the Wald entropy functional in AdS

space does not lead to the correct universal terms in EE. In the calculation we do, the Wald

entropy is computed in the Fefferman-Graham metric which is that of a spacetime which

is only asymptotically AdS and with the boundary that of a regularized squashed cone.

The paper is organized as follows. In section 2, we show that the entropy functional

in [26] leads to the expected universal terms for cylindrical and spherical entangling sur-

face. In section 3, we compute the generalized gravitational entropy in various higher

2Various consistency checks are performed in section 4.
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derivative gravity theories. In section 4, we show that the Wald entropy evaluated in the

bulk constructed using the Fefferman-Graham expansion leads to the expected universal

terms for both the spherical and cylindrical entangling surfaces. In section 5, we revisit

the derivation of the entangling surface following [1] in light of the regularization proposed

in [26]. We conclude in section 6. We have used the same curvature convention as in [56]

throughout our paper.

2 Entropy functional for general R2 theory

We will first consider the recently proposed entropy functional for a general four derivative

gravity theory [26] for a four dimensional CFT. We will write the bulk AdS metric as

ds2 =
L̃2

z2
(dz2 + dτ2 + hijdx

idxj) (2.1)

where, L̃ is the AdS radius and hij is a three dimensional metric given below. We will

use Greek letters for the bulk indices and Latin letters for the three dimensional indices.

For the calculation of EE for a spherical‘ entangling surface we write the boundary hij in

spherical polar coordinates as,

spherehijdx
idxj = dρ2 + ρ2dΩ2

2 , (2.2)

where dΩ2
2 = dθ2+sin2 θdφ2 is the metric of a unit two-sphere and θ ∈ [0, π] and φ ∈ [0, 2π].

For a cylindrical entangling surface,

cylinderhijdx
idxj = du2 + dρ2 + ρ2dφ2 . (2.3)

u is the coordinate along the direction of the length of the cylinder. For a cylinder of length

H, u ∈ [0, H]. Here L̃ = L√
f∞
.

The lagrangian for a general R2 theory,

S = − 1

2ℓ3P

∫

d5x
√
g

[

R+
12

L2
+
L2

2
(λ1RαβµνR

αβµν + λ2RαβR
αβ + λ3R

2)

]

. (2.4)

In this case, f∞ satisfies 1 − f∞ + 1
3f

2
∞(λ1 + 2λ2 + 10λ3) = 0. The entropy functional

proposed for this action is [26]

SEE=
2π

ℓ3P

∫

d3x
√
h

(

1+
L2

2

(

2λ3R+λ2

(

Rµνn
ν
i n

µ
i−

1

2
KiKi

)

+2λ1(Rµνρσn
µ
i n

ν
jn

ρ
in

σ
j−Ki

abKab
i )

))

.

(2.5)

Here i denotes the two transverse directions ρ = f(z) and τ = 0 and Ki’s are the two

extrinsic curvatures along these two directions pulled back to the surface. The extrinsic

curvature for nτ is zero. We have to minimize this entropy functional to determine how

the entangling surface probes the bulk spacetime. We put ρ = f(z), τ = 0 in the metric

and minimize (2.5) on this codimension 2 surface and find the Euler-Lagrange equation for

f(z). Using the solution for f(z) we evaluate (2.5) to get the EE.
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For the sphere, we get f(z) =
√

f20 − z2 which gives the universal log term,

SEE = −4a ln

(

f0
δ

)

. (2.6)

For the cylinder, f(z) = f0 − z2

4f0
+ . . . which gives,

SEE = −cH
2R

ln

(

f0
δ

)

. (2.7)

a =
π2L3

f
3/2
∞ ℓ3P

(1− 2f∞(λ1 +2λ2 +10λ3)) and c =
π2L3

f
3/2
∞ ℓ3P

(1 + 2f∞(λ1 − 2λ2 − 10λ3)) . (2.8)

and δ is the UV cut-off comes from the lower limit of the z integral. f0 is the radius of the

entangling surface. These are the expected results [24, 31, 32].

3 Generalized gravitational entropy

Following [1], the generalized gravitational entropy is defined as,

S = −n∂n(ln[Z(n)]− n ln[Z(1)])n=1 , (3.1)

where ln[Z(1)] is identified with the Euclidean gravitational action for which the period of

the Euclidean time is 2π and the boundary condition for other fields collectively denoted

as φ present in the action is φ(0) = φ(2π) . ln[Z(n)] is identified with the Euclidean grav-

itational action In for which the period of the Euclidean time is 2πn and the boundary

condition for φ is still φ(0) = φ(2π) . This is the usual replica trick. Translating this fact for

the holographic case we can define In for a regularized geometry on a cone whose opening

angle is 2π/n. We can analytically continue this for non integer n and then can compute the

entropy. Also while evaluating ln[Z(n)] we can perform the time τ integral from 0 to 2π and

multiply it by n so that ln[Z(n)] = n ln[Z]2π . The entropy calculated using this method is

equal to the area of some codimension 2 surface where the time circle shrinks to zero which

can be shown to be the minimal surface in Einstein gravity [1]. In this section we will show

that this procedure also gives the correct entanglement entropy for higher curvature gravity

theories. To compute the EE we have to start with some specific boundary geometry for

the nth solution. Then we can construct our bulk spacetime using the Fefferman-Graham

expansion. We will consider the following two 4-dimensional metrics following [26],

ds2cylinder = f(r, b)dr2 + r2dτ2 + (f0 + rnd1−n cos(τ))2dφ2 + dz2

ds2sphere = f(r, b)dr2 + r2dτ2 + (f0 + rnd1−n cos(τ))2(dθ2 + sin2 θdφ2)
(3.2)

where, f(r, b) = r2+b2n2

r2+b2
. For b → 0 and n → 1 limit these two metrics reduce to the

cylinder and the sphere. The key point in eq. (3.2) as compared to earlier regularizations

e.g., [1] is the introduction of a regulator in the extrinsic curvature terms. This is needed

since otherwise the Ricci scalar would go like (n − 1)/r and would be singular. Another

important point is that b is a regulator which at this stage does not have an restriction
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except that f(0, b) = n2. In AdS/CFT we do not expect an arbitrary parameter to appear

in the metric. b is here a dimensionful quantity having the dimension of r . So b must be

proportional to f0(n− 1)α>0 such that it goes to zero as n → 1. We can take the metrics

in eq. (3.2) as boundary metrics and construct the bulk spacetime using the Fefferman-

Graham expansion. Notice that our starting point is a smooth metric. At the end of the

calculation, when we remove the regulators and compute EE, we will separately check what

the contribution from the singularities is going to be. In the best case scenario, although

the boundary metric will be singular once the regulator is removed, the bulk metric will

at most be mildly singular, namely the on-shell bulk action will not be singular, following

the terminology used in [1]. As in [1] we could have done a conformal transformation to

pull out a factor of r2 such that the r, τ part of the metric looks like dτ2+ dr2

r2
which would

make the time-circle non-shrinking. We can use this form of the metric with a suitable reg-

ularization and do the calculation after verifying that there are no singularities in the bulk.

Since this is a conformal transformation of a smooth metric, the results for the universal

part of the EE will remain unchanged. One can write the bulk metric as,

ds2 = L̃2dρ
2

4ρ2
+

(g
(0)
ij + ρg

(2)
ij + . . . . . .)

ρ
dxidxj . (3.3)

To evaluate the log term we will need the g
(2)
ij coefficient and here we will use eq. (3.2) as

g
(0)
ij . We will consider here a 5 dimensional bulk lagrangian. In this case,

g
(2)
ij = − L̃

2

2

(

R
(0)
ij − 1

6
g
(0)
ij R

(0)

)

,

where R
(0)
ij and R(0) are constructed using g

(0)
ij . Note that in all subsequent calculations g

(2)
ij

will play an important role. The structure of g
(2)
ij is independent of the form of the higher

derivative terms present in the action. Only terms proportional to n − 1 in the on-shell

bulk action contributes to the SEE. The calculation is similar in spirit to the way that Weyl

anomaly is extracted in AdS/CFT, e.g., [31, 32] except that the n − 1 dependence comes

from the neighbourhood of r = 0 in the bulk action. In the next section we proceed to give

details of this.

Regularization procedure. To illustrate the regularization procedure in some detail,

we start with some simple examples involving curvature polynomials.3 We calculate g
(2)
ij

and evaluate the following integral ,

I1 =

∫

d5x
√
g RµνR

µν . (3.4)

Following4 [26], in the integrand, we put r = bx then expand around b = 0 and pick out

the O(b0) term. The r integral is between 0 < r < r0. This makes the upper limit of the

3We thank Sasha Patrushev for discussions on this topic.
4Alternatively we could have done the expansion around x = 0 first, since it was assumed in [26] that

the metric is valid between 0 < r < b ≪ f0. Then we could have integrated x in the neighbourhood of

x = 0. The results are identical.
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x integral to be r0/b which goes to infinity. We will be interested in the log term so we

extract first the coefficient of 1
ρ term which has the following form,

I1 = b

∫

dρ

ρ
dτ d2y

∫ ∞

0
dx (n− 1)2ζ(x, n)(bx)2n−3 +O((n− 1)3) . (3.5)

We have here shown only the leading term. Note that at this stage the integrand is

proportional to (n − 1)2 whereas we need get something proportional to (n − 1). The

integral over x will give a factor of 1/(n − 1). We will now expand ζ(x, n) around n = 1

and then carry out the integral over x. After expanding around n = 1 this leads to

I1 = (n− 1)ζ1 +O(n− 1)2 + · · · . (3.6)

Note that the rn factor in the cylindrical and the spherical parts in (3.2) were crucial in

reaching this point. ζ1 is just a quantity independent of the regularization parameters b, d,

ǫ, ǫ′. The same procedure is applied for other curvature polynomial integrals. For example,

I2 =

∫ √
g d5xRµνρσR

µνρσ = (n− 1)ζ2 +O(n− 1)2 + · · · ,

I3 =

∫ √
g d5xR2 = O(n− 1)2 + · · · .

(3.7)

3.1 Four derivative theory

Let us now consider the general R2 theory lagrangian action given in eq. (2.4) . Also we

will henceforth consider only a 5 dimensional bulk spacetime unless mentioned otherwise.

The boundary of this spacetime is at ρ = 0 . We then evaluate the total action and extract

the 1
ρ term and carry out the τ integral. We put r = b x and expand (2.4) around b = 0 .

Then we pick out the O(b0) term.

S = − 1

2ℓ3P

∫

dρ

ρ
dx d2y (n− 1)2a1

(bx)2n

x3
+O((n− 1)3) , (3.8)

where

a1 =
A(x)

18 b2f
5/2
∞ f0 (1 + x2)4

. (3.9)

A(x) is a function of x . For the cylinder we get,

A(x)=πL
3
(

f
2

∞

(

λ1

(

4x8+16x6+43x4+36x2+9
)

−2
(

20x8+80x6+161x4+108x2+27
)

(λ2+5λ3)
)

+ 6f∞
(

5x8 + 20x6 + 38x4 + 24x2 + 6
)

− 3
(

8x8 + 32x6 + 59x4 + 36x2 + 9
) )

.
(3.10)

We then carry out the x integral.

S = − 1

2ℓ3P

∫

dρ

ρ
d2y

A1(x, n)

36 b2 f
5/2
∞ (n2 − 1) f0 x2

∣

∣

∣

∣

∞

0

, (3.11)

where

A1(x, n)=πL
3(n−1)2(bx)2n

[

(n−1)x4

2F1

(

2, n+1;n+2;−x
2
) (

f
2

∞
(5λ1−14(λ2+5λ3))+6f∞−3

)

+ 2(n− 1)x4

2F1

(

3, n+ 1;n+ 2;−x
2
) (

f
2

∞
(5λ1 − 14(λ2 + 5λ3)) + 6f∞ − 3

)
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+ 2F1

(

4, n+ 1;n+ 2;−x
2
) (

4f2

∞
λ1x

4(1− n)− 40f2

∞
λ2x

4(1− n)− 200f2

∞
λ3x

4(1− n)

+ 30f∞x
4(1− n)− 24x4(1− n)

)

− 9f2

∞
λ1(1 + n) + 54f2

∞
λ2(1 + n) + 270f2

∞
λ3(1 + n)

− 36f∞(1 + n) + 27(1 + n)

]

. (3.12)

For the cylinder after doing the expansion around n = 1 and the remaining integrals (note

that ρ = z2 in the coordinates used in [24] and so ln δρ = 2 ln δ),

SEE = −cH
2R

ln

(

f0
δ

)

. (3.13)

Here we have used 1 = f∞ − 1
3f

2
∞(λ1 + 2λ2 + 10λ3) and c is given in eq. (2.8). For the

sphere we proceed similarly. In this case, expanding (2.4) around b = 0 we get ,

S = · · · − 1

2ℓ3P

∫

dρ

ρ
dx d2y (n− 1)2a1

(bx)2n

x3
+O((n− 1)3) , (3.14)

where

a1 =
A(x)

72 b2f
5/2
∞ f40 (1 + x2)4

. (3.15)

A(x) is a function of x . For the sphere we get,

A(x) = −πL
3 sin(θ)

[

300 b4λ3x
10
f
2

∞
− 45 b4x10

f∞ + 600 b4λ3x
8
f
2

∞
− 90 b4x8

f∞ + 300 b4λ3x
6
f
2

∞

− 45 b4x6
f∞ + 36 b4x10 + 72 b4x8 + 36 b4x6 − 680 b2λ3R

2
x
10
f
2

∞
+ 84 b2R2

x
10
f∞

− 1920 b2λ3R
2
x
8
f
2

∞
+ 216 b2R2

x
8
f∞ − 120 b2λ3R

2
x
6
f
2

∞
+ 36 b2R2

x
6
f∞ + 1120 b2λ3R

2
x
4
f
2

∞

− 96 b2R2
x
4
f∞−60 b2R2

x
10−144 b2R2

x
8−36 b2R2

x
6+48 b2R2

x
4+2λ1f

2

∞

(

− 3b4
(

x
2+1

)2

x
6

+ 2b2R2
(

7x6 + 24x4 − 3x2 − 20
)

x
4 + 4R4

(

x
8 − 73x6 + 242x4 + 361x2 + 54

) )

+ 4λ2f
2

∞

(

15b4
(

x
2 + 1

)2

x
6 − 2b2R2

(

17x6 + 48x4 + 3x2 − 28
)

x
4 + 4R4

(

13x8 − 13x6

+ 230x4 + 301x2 + 54
))

+ 4320λ3R
4
f
2

∞
+ 1040λ3R

4
x
8
f
2

∞
− 192R4

x
8
f∞ − 1040λ3R

4
x
6
f
2

∞

− 168R4
x
6
f∞+18400λ3R

4
x
4
f
2

∞
−2760R4

x
4
f∞+24080λ3R

4
x
2
f
2

∞
−3144R4

x
2
f∞−576R4

f∞

+ 168R4
x
8 + 264R4

x
6 + 2208R4

x
4 + 2328R4

x
2 + 432R4)

]

.

(3.16)

After doing the x integral,

S = − 1

2ℓ3P

∫

dρ

ρ
d2y

A1(x, n)

144 b2 f
5/2
∞ n (n+ 1) f40 x

2

∣

∣

∣

∣

∞

0

, (3.17)

where A1(x, n) is a function of x and n .

A1(x, n) = πL
3(n− 1) sin(θ)(bx)2n

[

− 8(n+ 1)R4
(

f
2

∞
(λ1(145x

2(n− 1) + 54n) + 2(λ2 + 5λ3)

(85x2(n− 1) + 54n))− 3f∞(n(35x2 + 24)− 35x2) + n
(

75x2 + 54
)

− 75x2
)

+ 2F1

(

4, n+ 1;n+ 2;−x
2
)

(−72(n− 1)nR4
x
4
(

(λ1 + 2 (λ2 + 5λ3)) f
2

∞
− 3f∞ + 3

)

)

+ 2F1

(

3, n+ 1;n+ 2;−x
2
)

(8(n− 1)nR2
x
4(f2

∞
(λ1(15b

2 + 328R2)− 2 (λ2 + 5λ3)
(

21b2 − 232R2
)

) + 6
(

3b2 − 46R2
)

f∞ − 9b2 + 192R2)) + 2F1

(

1, n+ 1;n+ 2;−x
2
)

((n− 1)nx4(−36b4 + 60b2R2 + f∞(45b4 − 84b2R2 + 2f∞(λ1(3b
4 − 14b2R2 + 580R4)

− 2(λ2 + 5λ3)(15b
4 − 34b2R2 − 340R4))− 840R4) + 600R4)) + 2F1

(

2, n+ 1;n+ 2;−x
2
)

(−3(n− 1)nx4(2f2

∞
(λ1(b

4 + 2b2R2 − 264R4)− 2(λ2 + 5λ3)(5b
4 − 2b2R2 + 168R4))

+ 3(5b4 − 4b2R2 + 136R4)f∞ − 12(b4 − b
2
R

2 + 24R4)))

]

.

(3.18)
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For the sphere after doing the expansion around n = 1 and the remaining integrals ,

SEE = −4 a ln

(

f0
δ

)

, (3.19)

where we have used 1 = f∞ − 1
3f

2
∞(λ1 + 2λ2 + 10λ3) and a is given in eq. (2.8). Thus we

get the expected universal terms using the regularization proposed in [26].

3.2 New massive gravity

As an example for a calculation of generalized gravitational entropy in other dimensions,

we consider the New Massive Gravity action in three dimensions [33] and use the notation

in [34]

S = − 1

2ℓP

∫

d3x
√
g

[

R+
2

L2
+ 4λL2

(

RabR
ab − 3

8
R2

)]

.

Here 1 − f∞ + f2∞λ = 0. The entropy functional for this is not intrinsic as compared to

the three dimensional Einstein gravity and is given by

SEE =
2π

ℓP

∫

dx
√
gxx

[

1 + 4λL2

([

Rµνn
µ
i n

ν
i −

1

2
KiKi

]

− 3

4
R

)]

. (3.20)

The integral is over the one dimensional entangling region. We calculate the generalized

gravitational entropy following the same procedure as used above. The two dimensional

squashed cone metric is given by

ds2 = f(r, b)dr2 + r2dτ2 .

f0 in this case also corresponds to the radius of the entangling surface.

In 3 dimensions [35, 36]

g
(2)
ij = − L̃

2

2
R(0)g

(0)
ij + tij (3.21)

Only divergence and trace of tij are known.

g
(0)
ij t

ij = R(0) , ∇itij = 0 .

R(0) = −2b2
(

n2 − 1
)

(b2n2 + r2)2
. (3.22)

Using 1− f∞ + f2∞λ = 0 and we get,

S = · · ·+ 1

2ℓP

∫

dρ

ρ

∫ 2π

0
dτ

∫ r=f0

r=0
dr

L(rb2(n2 − 1)(1 + 2f∞λ)

f
1/2
∞

√
b2 + r2(b2n2 + r2)3/2

+ · · · . (3.23)

Note that tij does not enter in the calculation of the universal term. After doing the

integrals we get

S = · · ·+
∫

dρ

ρ

[

πL (1 + 2f∞λ)

ℓP
√
f∞





1

n
−
√

b2 + f0
2

b2n2 + f0
2





]

+ · · · . (3.24)

Then expanding around b = 0 and n = 1 we get the correct universal term

SEE =
c

3
ln

(

f0
δ

)

, (3.25)

where, c
3 = 2πL(1+2f∞λ)

f
1/2
∞ ℓP

.
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3.3 Quasi-topological gravity

The six-derivative action for quasi-topological gravity is given below [37, 38],

S = − 1

2ℓ3P

∫

d5x
√
g

[

R+
12

L2
+
L2λ

2
GB +

L47µ

4
Z5

]

(3.26)

where,

GB=RµνρσR
µνρσ − 4RµνR

µν +R2 and

Z5=Rµ
ν
ρ
σRν

α
σ
βRα

µ
β
ρ+

3

8
RµνρσR

µνρσR− 9

7
RµνρσR

µνρ
αR

σα+
15

7
RµνρσR

µρRνσ

+
18

7
RµσR

σαRµ
α − 33

14
RαβR

αβR+
15

56
R3 .

(3.27)

Following exactly the same procedure we can derive the holographic entanglement entropy

for this six derivative gravity theory.

For the sphere we get,

SEE = − 4π2L3

f
3/2
∞ ℓ3P

(1− 6f∞λ+ 9f2∞µ) ln

(

f0
δ

)

. (3.28)

For the cylinder

SEE = − π2L3H

2f
3/2
∞ ℓ3PR

(1− 2f∞λ− 3f2∞µ) ln

(

f0
δ

)

. (3.29)

These are the correct universal terms.

3.4 α
′3 IIB supergravity

The action for this follows from [39–46]

S = − 1

2ℓ3P

∫

d5x
√
g

[

R+
12

L2
+ L6γκ5

]

(3.30)

where,

κ5 = CαβµνC
ρβµσCαδγ

ρC
ν
δγσ − 1

4
CαβµνC

αβ
ρσC

µρ
δγC

νσδγ .

Cαβµν is the Weyl tensor in 5 dimensions. In the context of IIB string theory, γ =
1
8ζ(3)α

′3/L6. For this theory we find that the universal parts of EE do not get corrected

compared to the Einstein case. This is expected since from the perspective of the AdS/CFT

correspondence, the C4 correction correspond to 1/λ corrections and the anomalies are not

expected to receive such corrections. Recently the effect of the C4 correction on Renyi

entropy was analysed in [47].

3.5 Comment about singularities in the metric

There are singularities in the five dimensional metric coming entirely from g
(2)
ij .We expand

the metric around r = 0 . Upto the leading order the metric is shown below.
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For the sphere (diagonal components are gρρ, grr, gττ , gθθ, gφφ ),



















L2

4f∞ρ2
0 0 0 0

0 (n−1) cos(τ)L2

f0 rf∞
+ 1

ρ 0 0 0

0 0 r2

ρ − L2(n−1) r cos(τ)
f0f∞

0 0

0 0 0 f0
2

ρ 0

0 0 0 0 f0
2 sin2(θ)

ρ



















. (3.31)

For the cylinder,


















L2

4f∞ρ2
0 0 0 0

0 (n−1) cos(τ)L2

2f0 rf∞
+ 1

ρ 0 0 0

0 0 r2

ρ − L2(n−1) r cos(τ)
2f0f∞

0 0

0 0 0 f0
2

ρ 0

0 0 0 0 1
ρ



















. (3.32)

The grr component is singular in r. The other components are non singular. However it

is easy to see that the determinant does not have a singularity at r = 0. The singularity

in the metric gives rise to singularities in the components of the Riemann tensor. We

have explicitly checked that these singularities do not enter in the higher derivative actions

considered in this paper. Hence these are mild singularities in the sense used in [1]. Note

that in order to calculate the universal part of EE in four dimensions only g
(2)
ij is important.

4 Wald entropy

In this section we turn to the computation of Wald entropy for the higher derivative theories

considered above. We will compute the Wald entropy on the surface r = 0 = τ . The reason

for this will become clear shortly.

4.1 Four derivative theory

The Wald entropy calculated from eq. (2.4) is given by

Swald =

∫

dd−2x
√
h

∂L

∂Rαβγδ
ǫ̂αβ ǫ̂γδ . (4.1)

This expression is evaluated on a codimension-2 surface. Here ǫ̂αβ = n1αn
2
β − n2αn

1
β is the

binormal corresponding to the two transverse directions 1, 2 . For the four derivative theory,

∂L

∂Rαβγδ
=
1

2
(gαγgβδ−gαδgβγ)+L2

[

λ1R
αβγδ+

1

4
λ2

(

gβδRαγ−gβγRαδ − gαδRβγ+gαγRβδ
)

+
1

2
λ3R

(

gαγgβδ − gαδgβγ
)

]

. (4.2)

Then after some simplifications we get,

Swald =
2π

ℓ3P

∫

d3x
√
h

(

1 +
L2

2
(2λ3R+ λ2Rµνn

ν
i n

µ
i + 2λ1Rµνρσn

µ
i n

ν
jn

ρ
in

σ
j )

)

. (4.3)
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In this section we will show that starting with the boundary metrics in eq. (3.2) we can

construct a bulk spacetime on which Swald will produce the expected universal parts for

the entanglement entropy for both cylinder and sphere. Note that (4.3) differs from (2.5)

by the O(K2) terms.

Cylinder. As we will show, a particular form of the regularization b = α(n−1)1/2, where

α is some number which we will determine later (it will turn out to be surface dependent

but theory independent), is needed to get the correct universal term. Recall that the only

restriction on b was that f(r, b) has to be n2 in the r = 0 limit. However, in holographic

calculations we expect that the bulk metrics will only depend on the AdS radius, the radius

of the entangling region and n. As such we can expect that the only way that b→ 0 would

arise in holographic calculations is such that b is some positive power of (n− 1). Now we

will evaluate eq. (4.3) using eq. (3.3) using the cylinder metric to be its boundary. Then we

extract the coefficient of the 1
ρ term. We set τ = 0 . There is no integral over r in the Wald

entropy as the entangling surface is located at r = 0, τ = 0 . We put r = b x . After that we

expand around x = 0 and then expand around n = 1 . We retain only the n independent

part as other terms vanish in n → 1 limit. Below we quote some intermediate steps after

expanding in ρ, r and n respectively. It is important to take the limits in r, n in that

particular in order to get the correct result [26]. After doing the ρ expansion we pick out

the 1
ρ term of (4.3) which is shown below.

Swald = · · ·+ 2π

ℓ3P

∫

dρdφdz
A(x, n)

ρ
+O(ρ) + · · · , (4.4)

where

A(x, n)=
L3

(

n2−1
)

d−n ((4λ2+20λ3−2λ1) f∞−1)
(

2f0d
n − d

(

n2+n+x2−2
)

(bx)n
)

24b2f
3/2
∞ (n2 + x2)2

.

Then expanding A(x, n) around x = 0 we get,

A(x, n) =
L3

(

n2 − 1
)

f0 ((4λ2 + 20λ3 − 2λ1) f∞ − 1)

12 b2n4f
3/2
∞

+ · · · . (4.5)

If

b =
2f0√
3

√

n2 − 1β(n) ,

where β(1) = 1 we get upon further expanding A(x, n) around n = 1

A(x, n) = −L
3 (1 + 2 (λ1 − 2 (λ2 + 5λ3)) f∞)

16f0f
3/2
∞

+O(n− 1) + · · · . (4.6)

Notice that the choice for b was independent of the theory, i.e., in this case of λi’s. Finally

we get,

Swald = −π
2L3H(1 + 2f∞(λ1 − 2λ2 − 10λ3))

2f
3/2
∞ ℓ3P f0

ln

(

f0
δ

)

. (4.7)

This is precisely what is expected.
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Sphere. We proceed similarly for the sphere case. First we expand in ρ and pick out the
1
ρ term.

Swald = · · ·+ 2π

ℓ3P

∫

dρdθdφ
A(x, n)

ρ
+O(ρ) + · · · . (4.8)

Here

A(x, n)=
L3d−2n sin(θ)

12b2f3/2x2(n2+x2)2
[

4λ1f∞(b2x2
d
2n(n2+x

2)2−d
2 (n4−n

3
x
2+3n2

x
2+nx

2+x
4−x

2)(bx)2n

+ d (n2−1)Rx
2(n2+n+x

2−2)(b dx)n−(n2−1)R2
x
2
d
2n)−(2(λ1+2(λ2+5λ3))f∞−1)

(−2b2x2
d
2n (n2 + x

2)2 + d
2(n4(3x2 + 2) + n

3
x
2 + 3n2

x
4 − nx

2 − x
4 + x

2)(bx)2n

+ d (n2 − 1)Rx
2(n2 + n+ x

2 − 2)(b d x)n − (n2 − 1)R2
x
2
d
2n)

]

(4.9)

Then expanding A(x, n) around x = 0 we get,5

A(x, n)=
L3 sin(θ)

(

2b2n4 (4 (λ1+λ2+5λ3) f∞−1)+
(

n2−1
)

f0
2 ((−2λ1+4λ2+20λ3) f∞−1)

)

12b2f
3/2
∞ n4

. (4.10)

Only the x independent term is shown. If (for consistency checks see below)

b = f0
√

n2 − 1β(n) (4.11)

where β(1) = 1, expanding around n = 1 we get,

A(x, n) = −L
3 sin(θ) (1− 2 (λ1 + 2 (λ2 + 5λ3)) f∞)

4f
3/2
∞

+O(n− 1) + · · · . (4.12)

As in the cylinder case, notice that the choice for b is theory independent. Finally we get,

Swald = −4π2L3(1− 2f∞(λ1 + 2λ2 + 10λ3))

f
3/2
∞ ℓ3P

ln

(

f0
δ

)

(4.13)

We have fixed b for both the cylinder and the sphere case. In all the subsequent calculations

of Wald entropy we will use these same values for b.

4.2 Quasi-topological gravity

The Wald entropy is calculated for (3.26) using (4.1) . For this case,
∂L

∂Rαβγδ
=

1

2
(gαγ

g
βδ − g

αδ
g
βγ) + L

2

[

λ1R
αβγδ +

1

4
λ2

(

g
βδ
R

αγ − g
βγ

R
αδ − g

αδ
R

βγ + g
αγ

R
βδ
)

+
1

2
λ3R

(

g
αγ

g
βδ−g

αδ
g
βγ

)

]

+
7µL4

4

[

(3µ1(R
αργσ

R
β δ
ρ σ−R

αρδσ
R

β γ
ρ σ))+

µ2

2
[(gαγ

g
βδ − g

αδ
g
βγ)RµνρσR

µνρσ

+ 4RR
αβγδ] +

µ3

4
[gβδRαρσµ

R
γ
ρσµ − g

βγ
R

αρσµ
R

δ
ρσµ − g

αδ
R

βρσµ
R

γ
ρσµ + g

αγ
R

βρσµ
R

δ
ρσµ

− 2Rγρ
R

αβδ
ρ + 2Rδρ

R
αβγ

ρ + 2Rβρ
R

α
ρ
γδ − 2Rαρ

R
β
ρ
γδ] +

µ4

2
(Rρσ[gβδRα

ρ
γ
σ − g

βγ
R

α
ρ
δ
σ

− g
αδ
R

β
ρ
γ
σ + g

αγ
R

β
ρ
δ
σ] + [Rαγ

R
βδ −R

αδ
R

βγ ]) +
3µ5

4
[gβδRασ

R
γ
σ − g

βγ
R

ασ
R

δ
σ

− g
αδ
R

βσ
R

γ
σ + g

αγ
R

βσ
R

δ
σ] +

µ6

2

[

R
(

g
βδ
R

αγ − g
βγ

R
αδ + g

αγ
R

βδ − g
αδ
R

βγ
)

+ (gαγ
g
βδ − g

αδ
g
βγ)RµνR

µν

]

+
3

2
µ7(R

2[gαγ
g
βδ − g

αδ
g
βγ ])

]

. (4.14)

5Remember that at this stage n = 1 + ǫ. Thus we will drop x2n compared to x2.
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Now the coefficients are,

µ1 = 1 , µ2 =
3

8
, µ3 = −9

7
, µ4 =

15

7
, µ5 =

18

7
, µ6 = −33

14
, µ7 =

15

56
,

and λ2 = −4λ1, λ3 = λ1 = λ. Proceeding similarly as mentioned for the R2 theory we get

the expected universal terms.

For the cylinder,6

Swald = − π2L3H

2f
3/2
∞ ℓ3PR

(1− 2f∞λ− 3f2∞µ) ln

(

f0
δ

)

. (4.15)

For the sphere,

Swald = − 4π2L3

f
3/2
∞ ℓ3P

(1− 6f∞λ+ 9f2∞µ) ln

(

f0
δ

)

. (4.16)

Again note that the choice for α did not depend on the theory.

4.3 α
′3 IIB supergravity

The Wald entropy is calculated for (3.30) using (4.1) . For this case,

∂L

∂Rαβγδ
=

1

2
(gαγ

g
βδ − g

αδ
g
βγ) + L

6
γ

[

1

3
(gβγCαµδν

CνρσηCµ
ρση − g

βδ
C

αµγν
CνρσηCµ

ρση

+ g
αδ
C

βµγν
CνρσηCµ

ρση − g
αγ

C
βµδν

CνρσηCµ
ρση) +

1

6
(gαγ

g
βδ − g

αδ
g
βγ)(Cσ

µ
ν
ρ
C

σηνζ
Cηρζµ

−
1

2
Cµν

ρσ
C

µνηζ
Cηρζσ)+

1

6
(gβδCαρζσ

CρσµνC
γ
ζ
µν − g

αδ
C

βρζσ
CρσµνC

γ
ζ
µν − g

βγ
C

αρζσ
CρσµνC

δ
ζ
µν

+g
αγ

C
βρζσ

CρσµνC
δ
ζ
µν)+

1

6
(gβδCαρζσ

C
γµ

ρ
ν
Cζσµν−g

αδ
C

βρζσ
C

γµ
ρ
ν
Cζσµν−g

βγ
C

αρζσ
C

δµ
ρ
ν
Cζσµν

+ g
αγ

C
βρζσ

C
δµ

ρ
ν
Cζσµν) + (Cαρ

µ
σ
C

βµδη
C

γ
ρησ − C

βρ
µ
σ
C

αµδη
C

γ
ρησ − C

αρ
µ
σ
C

βµγη
C

δ
ρησ

+ C
βρ

µ
σ
C

αµγη
C

δ
ρησ)−

1

2
(Cγδσζ

C
β
ζµρC

α
σ
µρ + C

αβσζ
C

δ
ζµρC

γ
σ
µρ) +

2

3
(gαδ

C
βρζν

CρσνµC
γµ

ζ
σ

− g
βδ
C

αρζν
CρσνµC

γµ
ζ
σ + g

βγ
C

αρζν
CρσνµC

δµ
ζ
σ − g

αγ
C

βρζν
CρσνµC

δµ
ζ
σ)

]

. (4.17)

Proceeding similarly as mentioned for the R2 theory we get the expected universal terms.

For the cylinder,

Swald = −π
2L3H

2ℓ3PR
ln

(

f0
δ

)

. (4.18)

For the sphere,

Swald = −4π2L3

ℓ3P
ln

(

f0
δ

)

. (4.19)

As expected, for this case the universal terms are independent of the higher derivative

correction.

6The c and a coefficients for an arbitrary higher derivative theory can be easily calculated using the

short-cut mentioned in the appendix of [48].
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4.4 Connection with Ryu-Takayanagi

The Ryu-Takayanagi calculation involves the minimization of an entropy functional.7 For

both the sphere and the cylinder, one can check that minimizing the Wald area functional

in the Fefferman-Graham background for squashed cones leads to the correct universal

terms provided we choose b as mentioned above. Recall that the Wald entropy functional

in AdS spacetime was not the correct one [24, 25]. However, our background is not AdS

and it turns out that the Wald entropy functional leads to the correct universal terms. We

show this for the cylinder, the sphere case working similarly. Putting r = R(ρ) = r0+r1ρ
α

around ρ = 0 leads to r0 = 0 and the equation

cnrn1ρ
αn+1 − 4r21Rc

nα(α− 2)ρ2α = 0 ,

where we have shown the leading terms which would contribute around n = 1. If we set

n = 1 we recover the result α = 1, r1 = −1/(4f0) for a cylinder — this is expected. The

n = 1 boundary geometry is just flat space with the dual bulk being AdS. Hence we expect

to recover the RT result. However if n = 1 + ǫ, then it is easy to see that either r1 = 0 or

α = 2 or r1 = −1/(4f0) and α = 1 + ǫ. As in the RT case, only the linear term in R(ρ)

would have affected the universal term — since α 6= 1 if n = 1 + ǫ we find that there is

no linear term. For n 6= 1 the minimal surface is at r = 0 = τ. This is the reason why

the Wald entropy on the r = 0 = τ surface and the RT entropy functional approach give

the same result for the universal terms in the squashed cone background. We now point

out a direct comparison between the calculation done in AdS spacetime and that in the

squashed cone background for the sphere in what follows.

The Ryu-Takayanagi prescription was implemented in the following way for a spher-

ical entangling surface. Consider the AdS5 metric with the boundary written in spherical

coordinates

ds2 =
L̃2

z2
(dz2 + dt2 + dr̂2 + r̂2dθ2 + r̂2 sin2 θdφ2) . (4.20)

Now put r̂ = f(z) = f0+f2z
2+ · · · and t = 0 and minimize the relevant entropy functional.

Implicitly our analysis says that this surface and the r = 0 = τ surface in the coordinate

system we have been using are related. Since in both cases the extrinsic curvatures vanish

we can attempt to make a direct comparison. In order to do this we make a coordinate

transformation:
dz

z

√

1 + f ′(z)2 =
dρ

2ρ
. (4.21)

Around ρ = 0 we will find z2 = ρ−2f22ρ
2+· · · and f(z)2/z2 = f0

2/ρ+2f0f2(1+f0f2)+· · · .
Now around ρ = 0, the metric on the r = 0 = τ surface takes the form

ds2 = L̃2

[

dρ2

4ρ2
+K(ρ)(dθ2 + sin2 θdφ2)

]

, (4.22)

where

K(ρ) =
f0

2

ρ
− L̃2

6b2n4
(2b2n4 + (n2 − 1)f0

2) .

7We thank Rob Myers for discussions on this section.
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This also shows that for n 6= 1 minimal surface is at r = 0 = τ . Now choosing b as in

eq. (4.11), expanding upto O((n − 1)0) and comparing with the RT calculation we find

f2 = −1/(2f0). This is exactly what we would have got if we minimized the RT area

functional (or the relevant higher derivative entropy functional) in AdS space. This also

serves as a consistency check for the choice of b.

4.5 Comments on the connection with the Iyer-Wald prescription

Why does the Wald entropy functional lead to the correct result in our case? Wald’s

formula in eq. (4.1) is valid for a surface which is a local bifurcation surface on which

the Killing field vanishes. For a bifurcation surface, the extrinsic curvatures vanish. SEE
mentioned in (2.5) differs from Swald only by the extrinsic curvature terms. The Noether

charge method of [22, 23] needs a bifurcation surface to remove various ambiguities [29, 30].

According to the prescription of Iyer and Wald [30], in order to compute the entropy for

horizons which are not bifurcate, e.g., dynamical horizons, the curvature terms in ∂L
∂Rabcd

are

replaced by their boost invariant counterparts [30]. To do this we have to construct a boost

invariant metric from our original metric. Let gab be our starting d dimensional metric with

the two normals n1a, n
2
b . The boost invariant part of gab will only have terms with the same

number of n1, n2. We then consider a d− 2 dimensional surface and find a neighbourhood

of it O such that for any points x belonging to this neighbourhood, we can find a point

P which lies on a unit affine distance on a geodesic with a tangent vector va on the d− 2

dimensional plane perpendicular to this surface under consideration. Now we assign a

coordinate system U, V, x1, . . . xd−2 for the point x where U, V are the components of va

along n1a and n2a. A change of normals under the boosts na1 → αna1, n
b
2 → α−1na2 will change

the coordinates as follows U → αU, V → α−1V . Now we Taylor expand gab around Uand V ,

gab = g
(0)
ab + U∂g + V ∂g + UV ∂∂g + . . . . . . . . . . . . . (4.23)

We have shown the expansion schematically. Under boosts, the terms linear in U, V do

not remain invariant. The prescription in [30] is to drop these terms. The UV term is

invariant under the boost. One important point to note is that , ψa = U( ∂
∂U )

a − V ( ∂
∂V )a

is a Killing field of the metric. This means that Lie derivative of gab with respect to ψ

is zero. Effectively, we have constructed a new spacetime in which the original dynamical

horizon becomes a bifurcate Killing horizon.

The evidence for the existence of this bifurcation surface would be that extrinsic cur-

vatures for this surface in the bulk background vanishes. Our entangling surface is a

codimension-2 surface. Now we calculate the extrinsic curvatures for this surface in the

bulk Fefferman-Graham metric. There will be two of them — one along the direction of

the normal (τ)n for τ = 0 and the other one along the normal (r)n for r = 0. We start with

the 5 dimensional metrics given in eq. (3.3). The non-zero components of the normals are

(τ)nτ =
1√
gττ

, (r)nr =
1√
grr

.

With these we calculate the two extrinsic curvatures (τ)Kµν and (r)Kµν . Then we put

r = b x and τ = 0 as before. As the entangling surface is located at r = 0, τ = 0 we
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further do an expansion around x followed by an expansion in n. Now (τ)Kab = 0 whereas
(r)Kab = A(x, n, ρ) is some function of x , n and ρ . First we expand it around x = 0 and

then we do an expansion around n = 1 . We find that (r)Kab = 0 .

Thus effectively the Fefferman-Graham construction is the same as the Iyer-Wald pre-

scription, provided we take the limits in the manner prescribed in [26]. The replacement

of rKijdx
idxj by rnKijdx

idxj plays a key role in this construction. Recall that this was

needed to keep the boundary Ricci scalar finite. Also another important point to notice that

for the squashed cone metric there is no time like killing vector as the metric components

are dependent on τ . The Wald-Iyer prescription calls for calculating the Wald functional

in the context of black hole entropy where there exists a time like killing vector. But in the

metric (3.2) the cos(τ) factor which breaks the time translational symmetry is accompanied

by a factor of rn . In our calculation we have taken the r → 0 limit first and then the n→ 1

limit. Thus the cos(τ) multiplied by rn is suppressed in this way of taking limits. For this

reason we have an approximate time-translational symmetry in our new space time.

Upto this point the discussion is independent of the choice of b. Now when one wants to

evaluate the Wald entropy functional with this squashed cone metric one needs to specify b

as mentioned in the previous sections for the sphere and the cylinder to obtain the correct

universal terms. As there is no integral over r in the Wald entropy functional, the final result

obtained will be b dependent as we have found and hence we have to choose b accordingly.

4.6 Universality in Renyi entropy

In [10, 47, 49, 50] it was shown that for spherical entangling surfaces in four dimensions

the Renyi entropy has a universal feature. Namely

∂nSn|n=1 ∝ cT .

In four dimensions cT ∝ c, the Weyl anomaly. If we use eq. (4.10) and identify it as the

expression for Sn with the choice for b given below it,8 then we indeed find that this is true!

This also works for the six and eight derivative examples. Thus this approach enables us to

check some information away from n = 1. Further, as a bonus, we can predict what hap-

pens in the case of a cylindrical entangling surface where holographic results for the Renyi

entropy are not available. If we use eq. (4.5) or its analog for the six and eight derivative

examples, we find that ∂nSn|n=1 ∝ cT still holds. It will be interesting to explicitly verify

this in field theory.

5 Equation for the entangling surface

In this section we turn to the derivation of the equation for the entangling surface follow-

ing [1]. Until now, we were interested in the leading order solution since this captured the

universal term in EE. However, following the method proposed by LM, it is possible to

derive the equation for the entangling surface which will carry information about how the

surface extends into the bulk. The essential idea is to look at the singular components of

8In order to get the proportionality constant to work out, we will need to adjust ∂nβ(n)|n=1 in b.
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the equations of motion arising due to the conical singularity and set them to zero. This

was considered in [13, 20] in the context of four derivative gravity. We briefly review the

necessary results below.9 We start with the following metric,

ds2 = e2ρ(dr2 + r2dτ2) + (hij + r cos(τ) (r)Kij + r sin(τ) (τ)Kij)dx
idxj , (5.1)

where, ρ = −ǫ ln r and n = 1 + ǫ . The entangling surface is located at r = 0, τ = 0 .

We linearize the equation of motion taking this metric gαβ and a fluctuation δgαβ of the

type δg(τ) = δg(τ + 2π) . On general grounds we will get divergences of the type ǫ
r , (

ǫ
r )

2 .

Setting these divergences to zero we get the minimal surface condition. Also following the

periodicity argument in [1] we set the contribution coming from δg which is of the type

−1
2(1 − 2f∞λ)�gαβ to zero. Below we list all the ǫ-dependent divergences that arise in

Gauss-Bonnet gravity. The equations of motion corresponding to the action (2.4) with

λ1 = λ3 = λ andλ2 = −4λ are given by,

Gαβ − 6

L2
gαβ − L2λ

2
Hαβ = Tαβ (5.2)

where,

Gαβ = Rαβ − 1

2
gαβR

and

Hαβ = 4Rδ
αRβδ − 2RRαβ − 4RδσRδαβσ − 2RασδµRβ

σδµ +
1

2
gαβGB .

Divergences in the rr component:

− ǫ

r
K − λL2ǫ

r

[

KR− 2KijRij + r2ǫ(−K3 + 3KK2 − 2K3)
]

. (5.3)

Divergences in the r i component :

−λL
2ǫ

r
r2ǫ

[

2K∇j(Kj
i )−2K∇i(K)+2Kj

i∇j(K)−2Kij∇k(Kkj)+2Kkj∇i(Kkj)−2Kjk∇j(Kk
i )
]

.

(5.4)

Divergences in the i j component:

4λL2

[

ǫ

r
r4ǫ(KijK2−2KikKklKlj+KilKl

jK−KK2hij+K3hij)+
ǫ2

r2
r4ǫ(K2hij−2KKij−K2hij+2KikKk

j )

]

.

(5.5)

R,Rij etc are made up of the metric hij , K2 = KabKab and K3 = KacKcbKa
b . Now to get the

minimal surface condition we have to set all the divergences in the equation of motion to

zero. The immediate question is how to handle the r2ǫ terms which were absent in Einstein

gravity considered in [1]. Here we can proceed in two ways. Firstly, we can take the limit

ǫ→ 0 so that r2ǫ → 1. This is what was implicitly done in [13, 20]. Then we will be left over

with divergences in all the components of the equations. In order to proceed, we could as-

sume the following as in [13] that O(K) ∼ αr/ǫ where α≪ 1, then the ij, ir components go

to zero. In that case O(K3) ≪ O(K) so the K3 terms can be dropped. Thus finally we get,

K + λL2
[

KR− 2KijRij
]

= 0 . (5.6)

9Note that only the rr component of the equations of motion was considered in [20].
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This matches with what follows from the Jacobson-Myers functional [24]. However, in or-

der to do this consistently we needed to assume a weak extrinsic curvature limit. The other

alternative is to consider the r → 0 with ǫ→ 0 limit in a way that we have a small param-

eter r2ǫ in front of all the offending terms. In detail, if we demand ǫ/r ∼ 1/ǫ̂, r2ǫ ∼ ǫ̂1+υ

with υ > 0, then taking the limit ǫ̂ → 0 and demanding that the equations are satisfied

will lead to eq. (5.6).

We could alternatively have started with the following metric which is motivated by

the regularization considered in [26],

ds2 = f(r, b)dr2 + r2dτ2 + [hij + rn cos(τ) (r)Kij + rn sin(τ) (τ)Kij ]dx
idxj . (5.7)

f(r, b) is same as before and we have put in a factor of rn in front of the extrinsic curvature

terms. As explained before, all calculations with this metric need to be done by considering

r → 0 first and then n → 1. Moreover,10 this metric is related to the metric in eq. (5.1)

around r = 0 by a coordinate transformation r → rn so would lead to the same results as

above.

We will leave the analysis for the general four derivative theory, the six and eight

derivative cases for future work.11 For the general four derivative theory, the method

in [1] cannot be applied directly since it needs the contributions from metric fluctuations

to vanish. In the CabcdC
abcd case, this does happen [13]. However, in this case the O(r2)

contributions in the gij metric become important [13]. These terms are regularization de-

pendent — for example we could have replaced r2 by r2n or left it as it is. Due to these

complications we leave this interesting case for future work.

6 Discussion

In this paper we showed the following:

• The newly proposed regularization in [26] yields the expected universal terms in the

EE in higher derivative gravity theories dual to four dimensional CFTs. We consid-

ered the Fefferman-Graham metric with the regularized metrics in [26] as the bound-

ary metric. Then we computed the generalized gravitational entropy as proposed

in [1]. The universal log terms worked out to be as expected. We showed that upto

the order we are interested in, the singularities in the metric are mild. As pointed

out in [1] we could also have done a conformal transformation of the boundary metric

with conical singularity such that it is non-singular and then done the calculation.

We expect the results to be identical.

• We computed the Wald entropy on the r = 0 = τ co-dimension 2 surface in the

Fefferman-Graham metric and found that it gives the correct universal terms for both

spherical and cylindrical surfaces. In order to get the expected results, we needed to

10We thank an anonymous referee for pointing this out.
11In spite of computer help, this appears to be extremely tedious. For the six derivative case, the gravity

equations can be found in [37, 38, 51].
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choose a surface dependent but theory independent regularization parameter. Recall

that in bulk AdS space, from the entropy functional way of computing EE in Lovelock

theories, one needed to use the JM entropy functional which differed from the Wald

entropy functional by extrinsic curvature terms. These extrinsic curvature terms are

important to get the correct universal piece for any entangling surface with extrinsic

curvature. However, the entropy functional for an arbitrary theory of gravity is not

readily available. On the other hand, the observation that the Wald entropy in the

squashed cone background as computed this paper leads to the expected universal

terms opens the way to computing EE in an arbitrary higher curvature theory in

even dimensions. Of course, in order to get the full entangling surface in the bulk,

one still needs to first derive the relevant entropy functional and then minimize it.

• We also showed that the entangling surface equations are the same as what comes

from the JM entropy functional without the small extrinsic curvature condition

needed in [13]. The essential point that enables this is to consider the r → 0, n→ 1

limits in a way that lets rn−1 → 0 rather than rn−1 → 1 as was implicitly done

in [13, 20]. The considerations of the metric in eq. (5.7) makes this somewhat clearer

since all calculations in this metric need the limits to work this way.

There are several open problems. A justification for the choice of the surface dependent

but theory independent regularization parameter in the calculation of Wald entropy has to

be found. In this paper we have considered only spherical and cylindrical surfaces. But we

expect that our method will work for any arbitrary surface. It will be nice to determine a

general form of b for an arbitrary surface. We have extracted the logarithimic term from

the Wald entropy as it requires only information about the bulk space time around the

boundary. Although we have demonstrated that the regularized squashed cones of [26] can

be used to compute EE, a naive application of this procedure would not work for Renyi

entropies [10, 52, 53] for general n although the starting metric is regular. Except near

n = 1, where we saw that the universality in Renyi entropy [10, 47, 49, 50] pertaining to

∂nSn|n=1 bears out, the result for a general n would be regularization dependent — for

instance we will need to know details about f(r, b) away from r = 0. This problem may

be interlinked with the previous one. In both cases, presumably global information of the

metric is needed to fix the regularization ambiguities. Recall that in the calculation of the

Renyi entropy for spherical entangling surface in [10] the periodicity of the time coordinate

was fixed by knowing the relevant temperature of the hyperbolic black hole. In order to

extract this information, it is necessary to know the bulk geometry everywhere. In even

dimensions the Fefferman-Graham expansion breaks down and hence a different approach

may be needed to compute Renyi entropy. In odd dimensions, in principle it is possible to

continue the expansion [54, 55] but in practice this appears very hard.

Whether EE can be thought of as a Noether charge needs further investigation. Our

findings in this paper seems to suggest that this may indeed be true. The Fefferman-

Graham metric is the analog of the Iyer-Wald metric used to compute the entropy for dy-

namical horizons. Our conjecture then is that the Wald entropy (after appropriately fixing
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the regularization) evaluated on the r = 0 = τ co-dimension two surface in the Fefferman-

Graham metric is going to capture the expected universal terms for any entangling surface.

Acknowledgments

We thank Janet Hung, Apratim Kaviraj, and especially Dmitri Fursaev, Rob Myers and

Sasha Patrushev for discussions and correspondence. We thank Rob Myers for sharing [50]

with us. AS is partially supported by a Ramanujan fellowship, Govt. of India.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] A. Lewkowycz and J. Maldacena, Generalized gravitational entropy, JHEP 08 (2013) 090

[arXiv:1304.4926] [INSPIRE].

[2] S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT,

Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].

[3] P. Calabrese and J.L. Cardy, Entanglement entropy and quantum field theory,

J. Stat. Mech. 0406 (2004) P06002 [hep-th/0405152] [INSPIRE].

[4] H. Casini and M. Huerta, Entanglement entropy in free quantum field theory,

J. Phys. A 42 (2009) 504007 [arXiv:0905.2562] [INSPIRE].

[5] S. Ryu and T. Takayanagi, Aspects of holographic entanglement entropy,

JHEP 08 (2006) 045 [hep-th/0605073] [INSPIRE].

[6] T. Nishioka, S. Ryu and T. Takayanagi, Holographic entanglement entropy: an overview,

J. Phys. A 42 (2009) 504008 [arXiv:0905.0932] [INSPIRE].

[7] H. Casini, M. Huerta and R.C. Myers, Towards a derivation of holographic entanglement

entropy, JHEP 05 (2011) 036 [arXiv:1102.0440] [INSPIRE].

[8] R.C. Myers and A. Sinha, Seeing a c-theorem with holography,

Phys. Rev. D 82 (2010) 046006 [arXiv:1006.1263] [INSPIRE].

[9] R.C. Myers and A. Sinha, Holographic c-theorems in arbitrary dimensions,

JHEP 01 (2011) 125 [arXiv:1011.5819] [INSPIRE].

[10] L.-Y. Hung, R.C. Myers, M. Smolkin and A. Yale, Holographic calculations of Renyi entropy,

JHEP 12 (2011) 047 [arXiv:1110.1084] [INSPIRE].

[11] A. Bhattacharyya and A. Sinha, Entanglement entropy from the holographic stress tensor,

Class. Quant. Grav. 30 (2013) 235032 [arXiv:1303.1884] [INSPIRE].

[12] A. Bhattacharyya and A. Sinha, Entanglement entropy from surface terms in general

relativity, Int. J. Mod. Phys. D 22 (2013) 1342020 [arXiv:1305.3448] [INSPIRE].

[13] A. Bhattacharyya, A. Kaviraj and A. Sinha, Entanglement entropy in higher derivative

holography, JHEP 08 (2013) 012 [arXiv:1305.6694] [INSPIRE].

[14] D.V. Fursaev, Proof of the holographic formula for entanglement entropy,

JHEP 09 (2006) 018 [hep-th/0606184] [INSPIRE].

– 21 –

http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1007/JHEP08(2013)090
http://arxiv.org/abs/1304.4926
http://inspirehep.net/search?p=find+EPRINT+arXiv:1304.4926
http://dx.doi.org/10.1103/PhysRevLett.96.181602
http://arxiv.org/abs/hep-th/0603001
http://inspirehep.net/search?p=find+EPRINT+hep-th/0603001
http://dx.doi.org/10.1088/1742-5468/2004/06/P06002
http://arxiv.org/abs/hep-th/0405152
http://inspirehep.net/search?p=find+EPRINT+hep-th/0405152
http://dx.doi.org/10.1088/1751-8113/42/50/504007
http://arxiv.org/abs/0905.2562
http://inspirehep.net/search?p=find+EPRINT+arXiv:0905.2562
http://dx.doi.org/10.1088/1126-6708/2006/08/045
http://arxiv.org/abs/hep-th/0605073
http://inspirehep.net/search?p=find+EPRINT+hep-th/0605073
http://dx.doi.org/10.1088/1751-8113/42/50/504008
http://arxiv.org/abs/0905.0932
http://inspirehep.net/search?p=find+EPRINT+arXiv:0905.0932
http://dx.doi.org/10.1007/JHEP05(2011)036
http://arxiv.org/abs/1102.0440
http://inspirehep.net/search?p=find+EPRINT+arXiv:1102.0440
http://dx.doi.org/10.1103/PhysRevD.82.046006
http://arxiv.org/abs/1006.1263
http://inspirehep.net/search?p=find+EPRINT+arXiv:1006.1263
http://dx.doi.org/10.1007/JHEP01(2011)125
http://arxiv.org/abs/1011.5819
http://inspirehep.net/search?p=find+EPRINT+arXiv:1011.5819
http://dx.doi.org/10.1007/JHEP12(2011)047
http://arxiv.org/abs/1110.1084
http://inspirehep.net/search?p=find+EPRINT+arXiv:1110.1084
http://dx.doi.org/10.1088/0264-9381/30/23/235032
http://arxiv.org/abs/1303.1884
http://inspirehep.net/search?p=find+EPRINT+arXiv:1303.1884
http://dx.doi.org/10.1142/S0218271813420200
http://arxiv.org/abs/1305.3448
http://inspirehep.net/search?p=find+EPRINT+arXiv:1305.3448
http://dx.doi.org/10.1007/JHEP08(2013)012
http://arxiv.org/abs/1305.6694
http://inspirehep.net/search?p=find+EPRINT+arXiv:1305.6694
http://dx.doi.org/10.1088/1126-6708/2006/09/018
http://arxiv.org/abs/hep-th/0606184
http://inspirehep.net/search?p=find+EPRINT+hep-th/0606184


J
H
E
P
0
1
(
2
0
1
4
)
0
2
1

[15] T. Faulkner, The entanglement Renyi entropies of disjoint intervals in AdS/CFT,

arXiv:1303.7221 [INSPIRE].

[16] T. Hartman, Entanglement entropy at large central charge, arXiv:1303.6955 [INSPIRE].

[17] T. Barrella, X. Dong, S.A. Hartnoll and V.L. Martin, Holographic entanglement beyond

classical gravity, JHEP 09 (2013) 109 [arXiv:1306.4682] [INSPIRE].

[18] T. Faulkner, A. Lewkowycz and J. Maldacena, Quantum corrections to holographic

entanglement entropy, JHEP 11 (2013) 074 [arXiv:1307.2892] [INSPIRE].

[19] B. Swingle, L. Huijse and S. Sachdev, Entanglement entropy of compressible holographic

matter: loop corrections from bulk fermions, arXiv:1308.3234 [INSPIRE].

[20] B. Chen and J.-J. Zhang, Note on generalized gravitational entropy in Lovelock gravity,

JHEP 07 (2013) 185 [arXiv:1305.6767] [INSPIRE].

[21] T. Jacobson and R.C. Myers, Black hole entropy and higher curvature interactions,

Phys. Rev. Lett. 70 (1993) 3684 [hep-th/9305016] [INSPIRE].

[22] R.M. Wald, Black hole entropy is the Noether charge, Phys. Rev. D 48 (1993) 3427

[gr-qc/9307038] [INSPIRE].

[23] V. Iyer and R.M. Wald, A comparison of Noether charge and Euclidean methods for

computing the entropy of stationary black holes, Phys. Rev. D 52 (1995) 4430

[gr-qc/9503052] [INSPIRE].

[24] L.-Y. Hung, R.C. Myers and M. Smolkin, On holographic entanglement entropy and higher

curvature gravity, JHEP 04 (2011) 025 [arXiv:1101.5813] [INSPIRE].

[25] J. de Boer, M. Kulaxizi and A. Parnachev, Holographic entanglement entropy in Lovelock

gravities, JHEP 07 (2011) 109 [arXiv:1101.5781] [INSPIRE].

[26] D.V. Fursaev, A. Patrushev and S.N. Solodukhin, Distributional geometry of squashed cones,

arXiv:1306.4000 [INSPIRE].

[27] D.V. Fursaev and S.N. Solodukhin, On the description of the Riemannian geometry in the

presence of conical defects, Phys. Rev. D 52 (1995) 2133 [hep-th/9501127] [INSPIRE].

[28] S.N. Solodukhin, Entanglement entropy, conformal invariance and extrinsic geometry,

Phys. Lett. B 665 (2008) 305 [arXiv:0802.3117] [INSPIRE].

[29] T. Jacobson, G. Kang and R.C. Myers, On black hole entropy, Phys. Rev. D 49 (1994) 6587

[gr-qc/9312023] [INSPIRE].

[30] V. Iyer and R.M. Wald, Some properties of Noether charge and a proposal for dynamical

black hole entropy, Phys. Rev. D 50 (1994) 846 [gr-qc/9403028] [INSPIRE].

[31] S. Nojiri and S.D. Odintsov, On the conformal anomaly from higher derivative gravity in

AdS/CFT correspondence, Int. J. Mod. Phys. A 15 (2000) 413 [hep-th/9903033] [INSPIRE].

[32] A. Buchel et al., Holographic GB gravity in arbitrary dimensions, JHEP 03 (2010) 111

[arXiv:0911.4257] [INSPIRE].

[33] E.A. Bergshoeff, O. Hohm and P.K. Townsend, Massive gravity in three dimensions,

Phys. Rev. Lett. 102 (2009) 201301 [arXiv:0901.1766] [INSPIRE].

[34] A. Sinha, On the new massive gravity and AdS/CFT, JHEP 06 (2010) 061

[arXiv:1003.0683] [INSPIRE].

– 22 –

http://arxiv.org/abs/1303.7221
http://inspirehep.net/search?p=find+EPRINT+arXiv:1303.7221
http://arxiv.org/abs/1303.6955
http://inspirehep.net/search?p=find+EPRINT+arXiv:1303.6955
http://dx.doi.org/10.1007/JHEP09(2013)109
http://arxiv.org/abs/1306.4682
http://inspirehep.net/search?p=find+EPRINT+arXiv:1306.4682
http://dx.doi.org/10.1007/JHEP11(2013)074
http://arxiv.org/abs/1307.2892
http://inspirehep.net/search?p=find+EPRINT+arXiv:1307.2892
http://arxiv.org/abs/1308.3234
http://inspirehep.net/search?p=find+EPRINT+arXiv:1308.3234
http://dx.doi.org/10.1007/JHEP07(2013)185
http://arxiv.org/abs/1305.6767
http://inspirehep.net/search?p=find+EPRINT+arXiv:1305.6767
http://dx.doi.org/10.1103/PhysRevLett.70.3684
http://arxiv.org/abs/hep-th/9305016
http://inspirehep.net/search?p=find+EPRINT+hep-th/9305016
http://dx.doi.org/10.1103/PhysRevD.48.R3427
http://arxiv.org/abs/gr-qc/9307038
http://inspirehep.net/search?p=find+EPRINT+gr-qc/9307038
http://dx.doi.org/10.1103/PhysRevD.52.4430
http://arxiv.org/abs/gr-qc/9503052
http://inspirehep.net/search?p=find+EPRINT+gr-qc/9503052
http://dx.doi.org/10.1007/JHEP04(2011)025
http://arxiv.org/abs/1101.5813
http://inspirehep.net/search?p=find+EPRINT+arXiv:1101.5813
http://dx.doi.org/10.1007/JHEP07(2011)109
http://arxiv.org/abs/1101.5781
http://inspirehep.net/search?p=find+EPRINT+arXiv:1101.5781
http://arxiv.org/abs/1306.4000
http://inspirehep.net/search?p=find+EPRINT+arXiv:1306.4000
http://dx.doi.org/10.1103/PhysRevD.52.2133
http://arxiv.org/abs/hep-th/9501127
http://inspirehep.net/search?p=find+EPRINT+hep-th/9501127
http://dx.doi.org/10.1016/j.physletb.2008.05.071
http://arxiv.org/abs/0802.3117
http://inspirehep.net/search?p=find+EPRINT+arXiv:0802.3117
http://dx.doi.org/10.1103/PhysRevD.49.6587
http://arxiv.org/abs/gr-qc/9312023
http://inspirehep.net/search?p=find+EPRINT+gr-qc/9312023
http://dx.doi.org/10.1103/PhysRevD.50.846
http://arxiv.org/abs/gr-qc/9403028
http://inspirehep.net/search?p=find+EPRINT+gr-qc/9403028
http://dx.doi.org/10.1142/S0217751X00000197
http://arxiv.org/abs/hep-th/9903033
http://inspirehep.net/search?p=find+EPRINT+hep-th/9903033
http://dx.doi.org/10.1007/JHEP03(2010)111
http://arxiv.org/abs/0911.4257
http://inspirehep.net/search?p=find+EPRINT+arXiv:0911.4257
http://dx.doi.org/10.1103/PhysRevLett.102.201301
http://arxiv.org/abs/0901.1766
http://inspirehep.net/search?p=find+EPRINT+arXiv:0901.1766
http://dx.doi.org/10.1007/JHEP06(2010)061
http://arxiv.org/abs/1003.0683
http://inspirehep.net/search?p=find+EPRINT+arXiv:1003.0683


J
H
E
P
0
1
(
2
0
1
4
)
0
2
1

[35] S. de Haro, S.N. Solodukhin and K. Skenderis, Holographic reconstruction of space-time and

renormalization in the AdS/CFT correspondence, Commun. Math. Phys. 217 (2001) 595

[hep-th/0002230] [INSPIRE].

[36] K. Skenderis and S.N. Solodukhin, Quantum effective action from the AdS/CFT

correspondence, Phys. Lett. B 472 (2000) 316 [hep-th/9910023] [INSPIRE].

[37] R.C. Myers and B. Robinson, Black holes in quasi-topological gravity, JHEP 08 (2010) 067

[arXiv:1003.5357] [INSPIRE].

[38] R.C. Myers, M.F. Paulos and A. Sinha, Holographic studies of quasi-topological gravity,

JHEP 08 (2010) 035 [arXiv:1004.2055] [INSPIRE].

[39] D.J. Gross and E. Witten, Superstring modifications of Einstein’s equations,

Nucl. Phys. B 277 (1986) 1 [INSPIRE].

[40] M.B. Green and C. Stahn, D3-branes on the Coulomb branch and instantons,

JHEP 09 (2003) 052 [hep-th/0308061] [INSPIRE].

[41] M.F. Paulos, Higher derivative terms including the Ramond-Ramond five-form,

JHEP 10 (2008) 047 [arXiv:0804.0763] [INSPIRE].

[42] S.S. Gubser, I.R. Klebanov and A.A. Tseytlin, Coupling constant dependence in the

thermodynamics of N = 4 supersymmetric Yang-Mills theory, Nucl. Phys. B 534 (1998) 202

[hep-th/9805156] [INSPIRE].

[43] A. Buchel, J.T. Liu and A.O. Starinets, Coupling constant dependence of the shear viscosity

in N = 4 supersymmetric Yang-Mills theory, Nucl. Phys. B 707 (2005) 56 [hep-th/0406264]

[INSPIRE].

[44] R.C. Myers, M.F. Paulos and A. Sinha, Quantum corrections to η/s,

Phys. Rev. D 79 (2009) 041901 [arXiv:0806.2156] [INSPIRE].

[45] A. Buchel, R.C. Myers, M.F. Paulos and A. Sinha, Universal holographic hydrodynamics at

finite coupling, Phys. Lett. B 669 (2008) 364 [arXiv:0808.1837] [INSPIRE].

[46] W.H. Baron and M. Schvellinger, Quantum corrections to dynamical holographic

thermalization: entanglement entropy and other non-local observables, JHEP 08 (2013) 035

[arXiv:1305.2237] [INSPIRE].

[47] D.A. Galante and R.C. Myers, Holographic Renyi entropies at finite coupling,

JHEP 08 (2013) 063 [arXiv:1305.7191] [INSPIRE].

[48] K. Sen, A. Sinha and N.V. Suryanarayana, Counterterms, critical gravity and holography,

Phys. Rev. D 85 (2012) 124017 [arXiv:1201.1288] [INSPIRE].

[49] E. Perlmutter, A universal feature of CFT Renyi entropy, arXiv:1308.1083 [INSPIRE].

[50] L.-Y. Hung, R.C. Myers and M. Smolkin, Twist operators in higher dimensions, in

preparation.

[51] A. Sinha, On higher derivative gravity, c-theorems and cosmology,

Class. Quant. Grav. 28 (2011) 085002 [arXiv:1008.4315] [INSPIRE].

[52] M. Headrick, Entanglement Renyi entropies in holographic theories,

Phys. Rev. D 82 (2010) 126010 [arXiv:1006.0047] [INSPIRE].

[53] D. Fursaev, Entanglement Renyi entropies in conformal field theories and holography,

JHEP 05 (2012) 080 [arXiv:1201.1702] [INSPIRE].

– 23 –

http://dx.doi.org/10.1007/s002200100381
http://arxiv.org/abs/hep-th/0002230
http://inspirehep.net/search?p=find+EPRINT+hep-th/0002230
http://dx.doi.org/10.1016/S0370-2693(99)01467-7
http://arxiv.org/abs/hep-th/9910023
http://inspirehep.net/search?p=find+EPRINT+hep-th/9910023
http://dx.doi.org/10.1007/JHEP08(2010)067
http://arxiv.org/abs/1003.5357
http://inspirehep.net/search?p=find+EPRINT+arXiv:1003.5357
http://dx.doi.org/10.1007/JHEP08(2010)035
http://arxiv.org/abs/1004.2055
http://inspirehep.net/search?p=find+EPRINT+arXiv:1004.2055
http://dx.doi.org/10.1016/0550-3213(86)90429-3
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B277,1
http://dx.doi.org/10.1088/1126-6708/2003/09/052
http://arxiv.org/abs/hep-th/0308061
http://inspirehep.net/search?p=find+EPRINT+hep-th/0308061
http://dx.doi.org/10.1088/1126-6708/2008/10/047
http://arxiv.org/abs/0804.0763
http://inspirehep.net/search?p=find+EPRINT+arXiv:0804.0763
http://dx.doi.org/10.1016/S0550-3213(98)00514-8
http://arxiv.org/abs/hep-th/9805156
http://inspirehep.net/search?p=find+EPRINT+hep-th/9805156
http://dx.doi.org/10.1016/j.nuclphysb.2004.11.055
http://arxiv.org/abs/hep-th/0406264
http://inspirehep.net/search?p=find+EPRINT+hep-th/0406264
http://dx.doi.org/10.1103/PhysRevD.79.041901
http://arxiv.org/abs/0806.2156
http://inspirehep.net/search?p=find+EPRINT+arXiv:0806.2156
http://dx.doi.org/10.1016/j.physletb.2008.10.003
http://arxiv.org/abs/0808.1837
http://inspirehep.net/search?p=find+EPRINT+arXiv:0808.1837
http://dx.doi.org/10.1007/JHEP08(2013)035
http://arxiv.org/abs/1305.2237
http://inspirehep.net/search?p=find+EPRINT+arXiv:1305.2237
http://dx.doi.org/10.1007/JHEP08(2013)063
http://arxiv.org/abs/1305.7191
http://inspirehep.net/search?p=find+EPRINT+arXiv:1305.7191
http://dx.doi.org/10.1103/PhysRevD.85.124017
http://arxiv.org/abs/1201.1288
http://inspirehep.net/search?p=find+EPRINT+arXiv:1201.1288
http://arxiv.org/abs/1308.1083
http://inspirehep.net/search?p=find+EPRINT+arXiv:1308.1083
http://dx.doi.org/10.1088/0264-9381/28/8/085002
http://arxiv.org/abs/1008.4315
http://inspirehep.net/search?p=find+EPRINT+arXiv:1008.4315
http://dx.doi.org/10.1103/PhysRevD.82.126010
http://arxiv.org/abs/1006.0047
http://inspirehep.net/search?p=find+EPRINT+arXiv:1006.0047
http://dx.doi.org/10.1007/JHEP05(2012)080
http://arxiv.org/abs/1201.1702
http://inspirehep.net/search?p=find+EPRINT+arXiv:1201.1702


J
H
E
P
0
1
(
2
0
1
4
)
0
2
1

[54] A. Bhattacharyya, L.-Y. Hung, K. Sen and A. Sinha, On c-theorems in arbitrary dimensions,

Phys. Rev. D 86 (2012) 106006 [arXiv:1207.2333] [INSPIRE].

[55] D.P. Jatkar and A. Sinha, New massive gravity and AdS4 counterterms,

Phys. Rev. Lett. 106 (2011) 171601 [arXiv:1101.4746] [INSPIRE].

[56] R.M. Wald, General relativity, The University of Chicago Press, Chicago U.S.A. (1984).

– 24 –

http://dx.doi.org/10.1103/PhysRevD.86.106006
http://arxiv.org/abs/1207.2333
http://inspirehep.net/search?p=find+EPRINT+arXiv:1207.2333
http://dx.doi.org/10.1103/PhysRevLett.106.171601
http://arxiv.org/abs/1101.4746
http://inspirehep.net/search?p=find+EPRINT+arXiv:1101.4746

	Introduction
	Entropy functional for general R**(2) theory
	Generalized gravitational entropy
	Four derivative theory
	New massive gravity
	Quasi-topological gravity
	alpha'**3 IIB supergravity
	Comment about singularities in the metric

	Wald entropy 
	Four derivative theory
	Quasi-topological gravity
	alpha'**3 IIB supergravity
	Connection with Ryu-Takayanagi
	Comments on the connection with the Iyer-Wald prescription
	Universality in Renyi entropy

	Equation for the entangling surface
	Discussion

