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ON GENERALIZED HARMONIC ANALYSIS
BY

KA-SING LAU1 AND JONATHAN K. LEE2

Abstract. Motivated by Wiener's work on generalized harmonic analysis, we
consider the Marcinkiewicz space €Hy(R) of functions of bounded upper average/)
power and the space 'ViR) of functions of bounded upper p variation. By
identifying functions whose difference has norm zero, we show that ^(R), 1 <p
< oo, is a Banach space. The proof depends on the result that each equivalence
class in ^(R) contains a representative in LP(R). This result, in turn, is based on
Masani's work on helixes in Banach spaces.

Wiener defined an integrated Fourier transformation and proved that this
transformation is an isometry from the nonlinear subspace ^(R) of <3H2(R)
consisting of functions of bounded average quadratic power, into the nonlinear
subspace %2(R) of ^(R) consisting of functions of bounded quadratic variation.
By using two generalized Tauberian theorems, we prove that Wiener's transforma-
tion W is actually an isomorphism from 9H2(R) onto ^(R). We also show by
counterexamples that W is not an isometry on the closed subspace generated by
^(R).

1. Introduction. The purpose of this paper is to find out how Wiener's generalized
harmonic analysis [18] fits into the framework of contemporary functional analysis.

For a complex valued Borel measurable function / on R such that
]imT_aB(2T)~lj7iT\f(x)\2dx exists, Wiener [18] defined the integrated Fourier
transformation g = W(f) of /as

1     I r-\        /-oo e~iux r\ e-iux _ 1        \

We call W the Wiener transformation. By using a deep Tauberian theorem, he then
proved that the mean square modulus of the above function / equals the quadratic
variation of its transformation g, i.e.

lim   i  fT\f(x)\2dx=  lim   ¿  [X\g(u + h)-g(u-h)\2du.  (1.1)
r->oo  II  J-t a-»o+   In J-oo

Now, for all/ G L^JR), let

11/11 = 11/11«? = ^[if J ri/(*)i <**) o-2)
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7 G K.-S. LAU AND J. K. LEE

and

gH2(R)={/:/GL12oc(R),||/||<oo}.

Note that the set of functions ^(R) for which the limit on the left-hand side of
(1.1) exists and is finite is a nonlinear subspace of the linear space <uïl}(R).

Next, for all Borel measurable g on R, let

11*11 = ||g||.v. =   Hm (¿ /Jg(u + h) - g(u - h)\2duy (1.3)

and

^(R) = {g: gis Borel measurable and|| g\\ < oo}.
Then the set of functions for which the limit on the right-hand side of (1.1) exists
and is finite is a nonlinear subspace of the linear space ^(R).

Similarly, we can define the classes of functions 917/(R) and ^(R). Both 91?/(R)
and ^(R) are normed linear spaces when two functions in any one of the spaces
whose differences have norm zero are identified. Marcinkiewicz [13] and indepen-
dently Bohr and Folner [3] showed that 917/(R) is complete, but the question of the
completeness of ^ÇR) has been open.

In §3, we show that ^(R) is complete for 1 <p < oo. For this, we find that all
usual methods of proving completeness (cf. e.g. [5], [12]) fail. We have to appeal to
the theory of helixes in a Banach space X, i.e. continuous functions jc(-) on R to X
such that for all a, b, t G R, U,{xb — xa} = xb+t — xa+t, where {t/,},eR is a
strongly continuous group of isometries [8], [14]. Using results from the theory of
helixes, we are able to show that each equivalence class in ^(R), 1 <p < oo,
contains a function in 7/(R). This enables us to get hold of a limit for any Cauchy
sequence in Víll), 1 <p < oo.

The case p = 1 has been considered by Nelson recently [17]; he showed that
V(R) is isometric isomorphic to the space of countably additive, Borel measures
on R with finite variation. Hence 'Y1 (R) is also complete.

Equation (1.1) shows that the Wiener transformation W is an isometry on the
nonlinear subspace ^(R) of 'Dlt^R). In §5, we show that W is an isomorphism
from 91t2(R) onto ^(R) with

\\W\\ = Í j™ h(x)dx\        and    || W~l\\ = (max xh(x))~l/2        (1.4)

where h(x) = (2sin2x)/irx2, x > 0, and h(x) = sup/>JC h(t), x > 0 (i.e., h is the
smallest decreasing function which dominates h). The proof depends on two special
types of Tauberian theorems which we will develop in §4 (Theorems 4.5 and 4.6).

It follows from (1.4) that

»-»=(/;^-r>(/;^4/!->
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ON GENERALIZED HARMONIC ANALYSIS 77

and

2sin2x\-'/2inr-iii     / 2sin2x\-,/^ ,\W       =   max -1        > 1.
\ x>o     trx   )

(Numerically, || W\\ ?» 1.05 and || W~x\\ « 1.49.) In view of (1.1), it is natural to ask
whether W restricted on (^(R)), the closed linear subspace generated by ^(R),
is an isometry. We answer this question negatively and thereby disprove a conjec-
ture by Masani [16].

Finally, we observe that the Wiener transformation W is also a bounded linear
operator from 91?/(R) into ^'(R), 1 <p < 2, \/p + \/p' = 1.

Acknowledgement. The proof of the completeness of the space ^(R) and of
the fact that W is an isomorphism on 9H2(R) onto ^(R), the definition of h and
the proof of the result

t>/2 , ,-1/2||»1 < (f°° h(x) dx)        and    ||If_1|| < (max xh(x))

were given by Lee in his Indiana University doctoral dissertation in 1971 (unpub-
lished) (cf. [10], [11]). The equality (1.4) and the Tauberian results are due to Lau.
Both authors would like to express their gratitude to Professor Masani for his
supervision and comments on this work. Their thanks are also due to the referee
for many helpful suggestions in simplifying the paper.

2. The space 91?/(R). Throughout, we assume that/ is a complex valued, Borel
measurable function on R. Let w be a positive Borel measurable function. We will
use Z/(R, w(x) dx) to denote the Banach space of functions/such that

-(/:
y/?

\f(x)\pw(x) dx)      < oo.

Let MP(R), 1 < p < oo, denote the set of locally/j-integrable functions/such that

11/11=    sup    i^-  fT\f(x)\pdx)   "<oo.
KT<co\¿1    J-T !

Let IP(R) be the subspace of / in MP(R) such that

Urn"   ±   (T \f(x)\» dx = 0.
r-«>  ll  J-T

Let 91?/(R) be the Marcinkiewicz space defined as in the introduction and let
WÇR.) be the set off in 91/(R) such that

hm   ^-  fT\f(x)\pdx
r-»oo    Z.1    J—T

exists.

Proposition 2.1. Let 1 < p < oo and ¡et a > 0. Then

Mp(R) C L"[r, -^— 1
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78 K.-S. LAU AND J. K. LEE

Proof. For any T > 1,

•>-r 1 + |x|,+a J-tI + \x\í+"    Wo '        '       /

+ (i + a)fT-^—2{fx I/OOI' ¿y) dx
J°    (1 + xl+a)2\J-x '

2T 1     rT

+2(1 + <TT^(¿/->)r*)&-
This imphes

where

r 77^ * < ̂ (ii/ii-r
•/ — oo    It \X\

k = 2(1 + a) i"3 -^—.
•>o     1 + xi+a

Hence

M"(R) C L'Ír, -1——\

The strict inclusion follows from the fact that f(x) = (log JO'^Xri,»/*) is i11
Z/(R, 1/(1 + |x|1+a)) but is not in MP(R).   Q

Proposition 2.2. Let 1 < p < oo. 77te/i
(i) A/^ÍR) is a Banach space,
(ii) 9R/(R) w isometric isomorphic to the quotient space MP(R)/ IP(R) under the

natural identification.

Proof. We leave the simple proof of (i) to the reader. To prove (ii), we identify
functions in 91?/(R) whose differences have zero norm. We will still use/ to denote
the equivalence class of /in 91?/(R). The map t: Mp(R) -» 91?/(R) with t(/) = /is
clearly a contraction. It is also a surjection, for if/is in 91?/(R), we let

[ 0, \x\ < 1.
Then/' G M'(R) and ||/ - f'\\w = 0. Hence r(f') = /' = / in 917/(R). Also note
that t-1(0) = Ip(R). This induces a bijection f: Af'(R)/7'(R)-> 91/(11) and ||f||
< 1. To show that f is an isometry, we need only show that

«e/'(R) r->oo\Z7   •'-r /
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ON GENERALIZED HARMONIC ANALYSIS 79

But this follows directly from

sup(¿ /j/W -/xi-a>„](*)!'¿*)

< sup( 27 /rr!-rt*)F **)  v a > L  D

In the following, we will give an example that W(R) is not a linear subspace in
91Z(R): Let E„ = [(2n)l, (2n + 1)!], n > 0,and let/ = Xu„£„,

Xu.e.(x) "i    * > 0,    „,,    £.■* - f ï'    * > °>g(x) =    *«A^'     2'    *•"*    and   A(x) =
10, x < 0, I 0,     x < 0.

It is clear that/ = g + h,

1 V+1lim   4-  [T\g\pdx=  lim   -i-   f^ifíic = (t\r^oo  2T J_Tl6i t^oo  2T J0 \2) \2)

1     fT i \\p+i

lerve also that

ä sé? o» - & ¿5, r'"w
In - 1
2(2«)

and

1 V+1
7"->oo    ¿I    J-T

Hence g, h G <¥P(R). Observe also that

<lim q»-o»,q

and

to   _    ̂  /(—>' !/r = ^   _> f(—)'|/r
•'-(2/1+1)! "-00   2(2« + 1)!  70»-»   2(2« +  1)!   J-(2n + iy.

(2w + l)!-(2ii)l = 1
-™ 2(2« +1)! 2 '

This shows that/ G ^(R) and ^(R) is not a linear subspace of 917/(R).
We remark that in [9], we prove that for 1 <p < oo, each / G ^(R) with

11/11 = 1 is an extreme point of the unit sphere S(91?/(R)). The set of such /
however, does not exhaust all extreme points of 5(91/(11)). For p = 1, 5(911'(R))
does not contain any extreme points. The nonlinear subspace ^(R) has also been
studied by Masani in [15] where he introduced vector graph theory and conditional
Banach spaces. For other properties of 91/(R) and its subspaces, the reader may
refer to [1], [3] and [9].

3. The spaces ^(R) and their completeness. For each « G R, we define ta and AA
as

(rj)(x) = f(x + A)    and   AJ=(r„-l)f
where x G R and/ is a Borel measurable function on R. Let ^(R) be defined as in
the introduction; it follows directly from the definition that for/ G ^(R),
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80 K.-S. LAU AND J. K. LEE

=   ton (¿ /_ J(ta - t_a)/í*)|' dx)

=   hm   [j-f    \(rh - l)f(x)\» dx)     .
h-*0+   V   •'-oo /

By identifying functions whose differences have zero norm, it is easy to prove that
(^(R), || • ||) is a normed linear space. In the following, we will show that each
/ G ^(R), 1 <p < oo, is equivalent to a g G 7_/(R), i.e., ||/ - g\\^ = 0. This fact
will be useful in proving the completeness of ^(R), 1 <p < oo (Theorem 3.6) and
the surjectivity of the Wiener transformation from 9lt2(R) onto ^(R) (Theorem
5.2).

Let A be a subset in a Banach space X; we will use {A > to denote the closed
linear subspace generated by A. Let x^ be a continuous function on R to X; we
call §>x = {{xb — xa: a, b G R}> the chordal subspace of the curve x(.}. The
function x(.) is a helix in A" if there exists a strongly continuous group of isometries
{ ̂ i}ier on S* onto Sx such that, for any t in R,

"t\xb — Xa) = xb + t ~ xa + t>

{ ̂ i}ie» is called the shift group of the helix x^.y

Theorem 3.1 (Masani [14]). Let x^ be a helix in X with shift group {t/,},eR.
77ie«

JfOO       _
e~'(x0 - x,) dt

o
(Bochner integral) exists and is in Sx. Moreover,

x„ - xa = ( Ub - Ua - JT* Ut di)(«x)    Va, b G R.

We call ax the average vector of the helix x^.y

Lemma 3.2. Let 1 < p < oo and let f G ^(R). If x, = rj - f, then *0 is a helix
in 7_/(R) with shift group {t,},sR and the average vector is given by

C e-'(f--vJ)dtG%xQLp(R).
Jo

Proof. Since/ G ^(R), x, = (t, - 1)/ G LP(R) and

hm+   f" \(r„ - l)f(X)\p dX = 0.

It follows that for any t G R,

lim    C \xl+h(X) - x,(X)\» dX =   lim    f°° |(t,+a - t,)/(A)|' dX
A-*0T   ^ — oo n-»0T   ^ — oo

=  lim    f°° |(ta - 1)/(a)|'d\ = 0.
A—►O'*     J — nr,
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ON GENERALIZED HARMONIC ANALYSIS 81

Hence x^: R -> 7_/(R) is continuous. By definition, we can show that, for any a, b
and t G R, r,(xb - xa) = xb+l - xa+l. This implies that {t,},£R is a strongly
continuous group of isometries from Sx (Ç LP(R)) onto Sx and xw is a helix in
LP(R) with shift group {t,},er. Finally, by Theorem 3.1, there is a g G Sx Ç Z/(R)
such that

g= C e"(x0 - x,) dt = C e-'(f - rj) dt.   □
•'o •'o

Theorem 3.3. Let f G ^(R), 1 <p < oo. TAe« /«ere exwij ¿/ g G ¿'(R) ¿kcA
that \\f - g\\^ = 0.

Proof. Let g = f¡?e~'(x0 — x¡) dt be as in Lemma 3.2. For any h > 0, we have
(Theorem 3.1)

(rh-r_k)(g-f)= f"  r.gdt

and ([8, p. 82])

f" r,gdt\\   < rA||T/g||/)di<2A||g|
J-h Wn J-h

Hence

11/ gll^ =  lim
A-»0

-   /   1   V/p <i-*-.X* -/)»,- o. a
The theorem is not true for/» = 1 as ^(R) is isometric isomorphic to the space

of countably additive Borel measures on R with finite variation [17].
In the following, we will consider the completeness of ^(R), 1 <p < oo. The

case/» = 1 follows directly from the above isometric characterization of ^(R).
Let B(LP(R)) denote the space of bounded linear operators on Z/(R). For any

a, « in R with a < b, we let

1        r°^"T^TiL T'dt'

the integral being a Riemann integral in the strong operator topology in B(LP(R))
([8, pp. 62-67]). We note the following facts:

Vs GR,

V/ G Z/(R),
TJa,b - Ia,bTs>

hm   70jA(/)=/   inZ/(R),
h—*0

VA >0, '0,Al <   1,
Va, A G R, a < ¿>    and   V/ G 7/(R),       Ia¡b(f) G fyA,

(3.1)
(3.2)

(3.3)
(3.4)

where fyA is the domain of the infinitesimal generator A of the translation group
{ta}Aer on 7/(R) ([8, p. 307]). It is well known that A is the restriction of the
differential operator on fyA and fyA = {/ G 7_/(R): /is absolutely continuous and
/' G Z/(R)}. Let g G fyA ; then
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82 K.-S. LAU AND J. K. LEE

lim (¿ f" Kt4 - r_A)g|")   ' =  hm   (2h)^^p
h-M* \¿n   •'-oo / A->0+

= 0 • 11,4*11, = 0.
2* (Ta " T-*)g

Therefore, we have

Proposition 3.4. For 1 <p < oo, let f G 7_/(R) Ae absolutely continuous and
f G Z/(R). 7Ae« ||/||v = 0.

Let a <b; then (3.4) and Proposition 3.4 imply that \\Ia,b(f)\\«p = 0 for all
/ G 7_/(R), 1 <p < oo. From this, we immediately draw the following conclusion:

Lemma   3.5.   Let   1 <p < oo,  /e/ f,fx, . . . ,fk G LP(R)  and  let  ax,...,ak,
6„ . . . , bk G R with a„ < b„. Then

f- 2 W/»)    -ll/Hv-
n-l h»

Theorem 3.6. 7<br I <p < co, the normed linear space ^(R) is complete.

Proof. For convenience, we let 70 b = Ib. Let {/„} be a Cauchy sequence in
^(R); it suffices to show that {/„} has a convergent subsequence. Without loss of
generality, we assume that

mu-aii* < i/2n+1.
Also, by Theorem 3.3, we may assume that /„ G 7_/(R). For « > 1, select a
decreasing sequence of positive numbers {A„} in (0, 1) such that lim„_>00An = 0 and
for 0 < A < A„,

(l/2h)l/p\\(rh - r_h)(fn+x-f„)\\p < 1/2".
Define ex = 1 and e„, « > 2 satisfying

{en}^0   as « —»oo,

ll(A. - O/.ll, < (2Ä„)1/72n,

(3.5)

(3.6)

(3.7)
IKA. - OO, - //)ll„ < (2AJ1/72n,   m = «,«-l    and   /=l,...,m-l.

(3.8)

((3.7) and (3.8) follow from (3.2).) For any positive integers/ < k,

n-j
< 2.(n(^+l-i)a-/.)

n-y

+u(A,-i)a-/i)iu
+ii(a.+.-0aii,+ii(a.-0aii,)

< l/2>-4   (by (3.7) and (3.8)).
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Therefore, the sequence

/.,(/,) + ¿(C.-AJC/J
is Cauchy in LP(R) and converges to, say, / G 7_/(R), i.e.,

/ = /„(/,) + I (/^, - /J/„   in L'(R). (3.9)
n— 1

Note that for each g G 7_/(R), by (3.2) and the telescoping of the terms,

g = /.,(*) + f¡ (C - A>   in L'(R). (3.10)
n — 1

We will estimate the term ||/ - /k||cy>:

||/-/Jv =  hm (¿)1/;,|I(t* - r_h)(f-fk)\\p

=   Um" (¿),/1(ta - r_„)(lti(fx-fk) +  f (^+1 - ¡M -/*))!

(by (3.9), (3.10))

- ̂  (¿f'h - t-a) I ,'cC - ou -/*)
For abbreviation, for any positive integers r < I and h > 0, let

(by Lemma 3.5)

4w = (¿),/'|(T* " T-*}(nÍ+1(/^' " 7vK/» -/*))

Fix h G (0, A¿) and let q > k be the unique integer such that hq < h < hq_x. For
/ > q, we have Ahkl < ^4AjA:j9 + Ahq!. Observe that

a,*,?-(¿ri \'/(t*-t_j  2  (A..,-O 2 (/,-i-,)
n-Jt+l 7->t+l

= (¿) %-t-jJJK.>-W-//-.)
(changing order of summation and adding up telescoping terms)

1 \1/l'   ■£(1  \ l'P    *
2ä)     ._|+i ll(/e,+1 - /,)K - r_fc)(/, - /,_,)ll,

< 2(¿)1/' .2+1IKT* - T-*)U - ^-i)ii/- (bv (3-3))

<l/2*-2   (by (3.5))
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8 1 K.-S. LAU AND J. K. LEE

and

A,,., <     2    (4û)l/P\\(^-r-h)(l^-lJ(fn-fk)\\p

<2 2 (¿-j'^iK^.-Oi/--/*)"!. (by(3-3))

<2 2 (¿-),j,(ii(a.+,-ou-/*)»,+ iiK-oa-/*)U
<l/2*-2   (by (3.8)).

We have shown that for any integer k, for any A G (0, AA), and for large integer /
(i.e., / > q as defined previously), Ahkl < 1/2*-3. This implies that

ll/-/*1h>< 1/2*-3
and hence {/*} converges to/in VfR).   □

We conclude this section by considering a related space, ^(C), C = [0, 2ir\,
which consists of those Borel measurable functions on R with period 2it and

-  / 1     r2-r Wp
11/11 =   lim    - j   \àj\>        < oo.

By identifying functions whose differences have zero norm, it is easy to show that
^(C) is a normed linear space. If we consider functions on C as 27r-periodic
functions on R, we can prove the following (compare this to Theorem 3.3):

Theorem 3.7. For 1 <p < oo, V(C) C LP(C).

Remark. In [6], Hardy and Littlewood proved that ^(C) n Ll(C) C L"(C), 1
<p < oo.

The proof depends on two results due to Carroll [4] and Boas [2]: Let Ai/(C)
denote the set of functions / (not necessary measurable) on C such that A^ = (ta
- l)/is in LP(C). Carroll proved that if / G AL'(C), 1 < p < oo, then /admits a
decomposition/ = g + 77 + S where g G LP(C),

77(A) = f2" A,J(x) dx,

which is additive on C, and AhS(x) = 0 for almost all x. Moreover, Boas proved
that if the above S is measurable, then 5 is constant a.e.

Proof of Theorem 3.7. Let/ G ^(C). Then AJ G LP(C). Let g, H and S be
defined as above. Since / is measurable and AJ is integrable on C, Tonelh's
theorem applied to (A,J)+ and (AJ)' shows that 77 is measurable. In addition, the
expression for 77 shows that 77 is additive and periodic on R, so that it is identically
zero. This implies that S is measurable and hence S is a constant a.e. Therefore
/ = g + C a.e. and/ G LP(R).   □

By using Theorem 3.7 and the same argument as in Theorem 3.6, we obtain

Theorem 3.8. For 1 </> < oo, ^(C) is a Banach space.
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4. Tauberian theorems. In proving the identity (1.1), Wiener introduced a fairly
general form of Tauberian theorem which applies to functions in ^(R). In this
section, we will consider two similar types of theorems which apply to functions in
91/(R).

Let g be a function of bounded variation on [a, A]. For all x G (a, A], let
pg(a, x] = g(x + ) — g(a + ). Then it is well known that pg has a unique countably
additive, regular extension to the a-algebra of Borel subsets of [a, A]. The following
integration by parts holds.

Lemma 4.1. Let f, g be measurable functions on [a, A] such that fis integrable and g
is of bounded variation. Then

/o*/(*)g(*) dx = (/JVO) dx)g(A) - J[*(j[*/W *) dng(x).

Proof. The result follows by applying the Fubini theorem to the right-hand side
of the identity

jT*/0)*(*) dx = /*/(*)(/* dpg(t) + g(a + )) dx.    U

Let S + denote the set of positive Borel measurable functions on [0, oo] such that

sup —  f  f(x) dx < 1.
1< T    l    J0

For any T, a > 0 and for any/ G S +, the substitution x = t/Tshows that

foaf(Tx)dx = *(±foaTf(t)dt)<«.

Proposition 4.2. Let A Ae a positive decreasing integrable function on [0, oo). 77te«
(i) ¡%f(Tx)h(x) dx < /o°A(x) dxforallfGS+,T>l,
(Ü) linv^ f~f(Tx)h(x) dx = 0 uniformly for allfGS+,T> 1.

Proof, (i) Note that because A is a decreasing function, the corresponding
measure ph is negative. Hence for any ß > 0,f G S+,

foßf(Tx)h(x) dx = (foßÄTx) dx^h(ß) - fo\foXf(Tt) di) dph(x)

< ßh(ß)- ¡ß xdph= [Ph(x)dx.

Letting ß -» oo, we obtain (i). To prove (ii), we observe that by (i), for each
/ G S+, T > 0, Sôf(Tx)h(x) dx < oo; hence

Jim   j°° f(Tx)h(x) dx = 0.

In order to obtain the uniform convergence for/ G S + and T > 1, we let

h (r\ = Í *(«)>    if * <«.
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86 K.-S. LAU AND J. K. LEE

By applying (i) to ha, we have for/ G S +, T > 1,

¡" f(Tx)h(x) dx <  r f(Tx)ha(x) dx

< Í°° K(x) dx = ah(a) + [°° h(x) dx.
J0 Ja

Note that because A is decreasing,
« /-a
— h(a) < j      A(;c)dx:-»0   as a-» oo.
2 •'a/2

Also,

I     *O)dx->0   as a-» oo.
-'a

This implies that

lim    f   f(Tx)h(x) dx = 0   uniformly for all/ G 5+, 71 > 1.   □

Lemma 4.3. Ler h be a positive continuous function on [0, oo) and let h(x) =
supf>xA(f). Suppose that A G 7_.'[0, oo) and suppose there exist disjoint intervals
(¿j,, A,), i = 1, . . . , k, in [0, oo) such that for each x G (a¡, A,), h(x) < h(b¡). Let

V=Î[h(bi)(bi-ai)-fih(x)dx)j.

Then

sup I Tim    f°° f(Tx)h(x) dx) > f °° h(x) dx + n.
/es+ V r-»oo •'o /      •'o

Proof. It suffices to show that for any 0 < e < n, there exists an / G S+ such
that

lim    f°° f(Tx)h(x) dx > [°° h(x) dx + (tj - e). (4.1)
r .„  ^n •'n

We will consider the case k = 1 only. The case k > 1 follows from the same idea
of proof. We write ax = a and A, = A and without loss of generality assume that
a > 0. Otherwise, let {¿j„} \ 0 and let

7,„ = A(A)(A - än) - {" h(x) dx;

then {t)„} -» i). We can prove (4.1) for (¿j„, A) and t>„.
Since A is continuous, for e > 0, we can find 0 < e„ 0 < S < e/8 such that

\x - b\ < 8 implies that \h(x) - h(b)\ < e, and

7, - | < (A(A) - e,)(A + S - a) - f""' h(x) dx. (4.2)
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Since A is decreasing and integrable, Proposition 4.2(h) implies that there exists an
a > A + 8 such that

f °° p(Tx)h(x) dx < f °° p(Tx)h(x) dx <8       V/> G S+, T > 1.

In particular,

P AO)dc <8.
•'a

Let {8n} be a sequence of positive numbers such that S"_!Ô„ < 8 and let M be the
upper bound of A. Let Tx > 1 and let

/,0) = 1,    0 < x < aTx,
0,     aTx < x.

Suppose we have chosen Tn_„/„_,. Select T„ such that

r„ > max] - r„_„ -y- r„_,

and define

/-(') =

0,
1,
o,
A + 8 - a

8
1,
0,

0 < x < aTn_x,
aT„_x <x <aT„,
aTn < x < bTn,

bTn < x < (b + 8)Tn,

(b + 8)Tn <x <aTn,
aT„ < x.

Note that the functions {/„} have disjoint supports. Let/ = 2"_i/„. It is easy to
show that

1    rT-  f   fix) dx=\    for T G[l, oo) \ (J (aT„, (b + 8)Tn)1    J0 „-2

and

±   fTf(x) dx<\   for T G (J K (A + 8)2;).
n-2

Hence/ G 5 + . We will show that

hm    f* fiT„x)hix) dx > f°° A(x) dx + (tj - e).
n->oo   ^0 •'0
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+ 8

i" fiTnx)hix) dx - i"/„(7»A0) dx
Jo Jo

<   (af(Tnx)h(x) dx - (a f„iTnx)hix) dx
Jo Jo

<2    (" f,iTmx)hix) dx +    f      i" ftiTnx)hix) dx + 8
i-1    J0 i-n+l   J0

< 2 £ f r7,<*) a + o + s
i-l     '„   •'O

1-1 M n_1
< 2    T-aí) + í< 2   8i+x + 8<28

l-l      -»n z-1

and

f fniT„x)hix) dx

= /"" *0) dx+ fb s (b + SJ- a h,x) ax+ f"   *0)dx
•/«r„_,/r„ •'fc ° •/a+«

> f" AO) dx - JV/-^ + (A + 5 - a)(A(A) - e.) + f   A(x) dx
Jo M Jb+S

> jf* AO) dx - 8n + (t, - |)    (by (4.2))

> f° A(x) dx + t, - (25 + |).

Combining the above two estimations we have, for « > 1,

C fiTnx)hix) dx > [°° hix) dx + iV - e).    □
•'o •'o

Proposition 4.4. Let h be a positive continuous function on [0, oo). Let hix) =
sup(>;tA(x) and assume that A is integrable. Then

sup ( hm    f °°/(7x)A(x) dx) = (°° A~(x)
/es* V r-»oo ■'o /      •'0

dx.

Proof. Since A is decreasing, by Proposition 4.2(i),

sup ( hm    r°0/(7x)A(x)¿¿c| <   sup ( hm    f°°/(7x)A~(x) dx)
/es+Vr-»« •'o /     /es+Vr-M» Jo l

<  r°°A'0)dx.
•'o

We will prove the reverse inequality. That A is integrable yields an a > 0 such that
/™A(x) dx < e. Since A is continuous, so is A; hence the set {x G (0, a): hix) >
hix)} is the union of a (finite or infinite) sequence of disjoint open intervals
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{ia,, A,)} in (0, a). Let 1 < r < oo be the number of such intervals. Note that A is
constant on each (¿j„ A,). It follows that

fa h\x) dx = (a hix) dx + ¿ (a(A,)(A,. - a,) - fh hix) dx).
J0 J0 i-l V Ja¡ I

Lemma 4.3 implies that for any integer k, 0 < k < r,

sup ( lim    (°° fiTx)hix) dx)
fes* \ r-»oo •'o /

> £ hix) dx + 2 (mm - *t) - £' Hx) dx).

Hence,

sup j  hm    f°°/(7x)A(x)dx) > f" hix) dx
/es+Vr-^oo •'o /     •'o

and the proof is completed by observing that /~A(x) dx < e.   fj
Let 91t+ denote the class of positive Borel measurable functions/on [0, oo) such

that hm7._>00(l/7,)/J/(x) dx < oo. The following is the first main result of this
section.

Theorem 4.5. Let h be a positive, continuous function on [0, oo). Assume that (i)
A(x) = sup/>xA(r) is integrable and Cx = /"A(x) dx, and (ii)/ G 9H+. 77te«

lim    f00 fiTx)hix) dx < C, lim   ^  Ç fix) dx.

Moreover, C, is the best estimation of the inequality for the class of functions f in
91t+.

Proof. For any function/» which is integrable on [0, p) and vanishes on [p, oo),

lim    f°° /»(7x)A(x) dx =  lim   ^   ("pit)h(4=) dt
r->oo ^o r-»oo   i   Jo V •* /

«(ätIH'^H-0    (43)
where M = sup/>0A(f). Let/p = /xiPj00), p > 1- It follows from (4.3) that

hiñ"    r°0/(rx)A(x)dx= lim    f°°/p(7x)A(x)dx. (4.4)
r->oo •'o r-H.00 Jo

Applying Proposition 4.4 with (sup^pO/T^/J/)-1/,, G S +, we get

hm    /"*7p(7x)A(x)dx < C, sup  -  [  fix) dx,       p > 0.
r-»oo  "'O T>p    l   Jo

Hence by (4.4),

lim    r°°/(rx)A(x)dx < C, lim   -^   Cfix) dx.
r-^oo •'o r-»»   l Jo
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To prove the last assertion, it suffices to show that for any e > 0, there exists an ft
such that

hm   -^   fr/e(x)dx < 1    and     hm    f °°/e(7x)A(x) dx < (C, - e).
T-.00     l    J0 T-.00   •'0

But this inequality is obvious from Proposition 4.4.   □
Our second main result in this section is:

Theorem 4.6. Let h be a positive continuous function on [0, oo) such that hix) =
supr>JCA(f) is integrable. Suppose (i) there is an x0 which satisfies XqAOq) =
maxx>0xA(x) = C2 and hix) > A(x0)/cv all x in [0, xj, (ii)/ G 9IL+. 7Ae«

C2hm   —  [   fix)dx< lim    r°0/(7x)A(x) dx.
r->oo   1  Jo r-^oo •'o

Moreover, C2 is the best estimation of the inequality for f G 91L+.

Proof. Let/be given as above; then

C2^T  fr*70) dx = \  fTX°fix)hix0) dx
iX0   J0 I    J0

< y loTXcfix)h[j) dx   (since Ai» > A(x0) Vy G [0, x0])

= [X°fiTx)hix)dx
Jo

< f°°/(7x)A(x)dx.
Jo

By taking limit supremum on both sides, the first part of the theorem follows.
To prove the second part, we will construct, for a given 0 < e < 1, a positive/

such that

lim   —   f   fix) dx = 1    and     lim    f   /(7x)A(x) dx <C2 + e.

We will need the following statement, where the proof depends on the uniform
continuity of A: for any a > 0,

Ä ^T1 fß<X°+S) *W * ■ <**■>*(/»*>«-o+       ö      JßXo

uniformly for 0 < ß < a.      (4.5)
For any 0 < e < 1, we choose a > x0 such that

f°°/»(Tx)A"(x)dx <|    V/» G S+andT > 1 (4.6)
J™ o8

(Proposition 4.2(h)). Since x0A(x0) = maxx>0xA(x), by (4.5), there exists 0 < 8 <
ch satisfies

*0+«      f«^«)!/.^^.«.^«       Wn^fl^«

o — x0 which satisfies

f (*0+S) A(x) dx < x0A(x0) + J    V 0 <fi < f.
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Let Tx > 1 and select Tn > T„_x so that

T„    ^  a>        Tn   ¿x    '< n

and

Let

n-\

,?,X        *<')*< ZTÏ i <47)

Sn=—*— X[x07-„,(x0+«)r„]    and   / =■  ¿.  /»•
° n —1

Note that the functions {/„} have disjoint supports. For any n,

1 /•(*<,+s )r„
7—+ ^T    I /(*)<**Oo + s)?; •'o

- ( l^A^+w+"¿1(*°+ô)7^)ix0+8)Tn\ i-i /
,      n-l i

Since (1/ 7,)/q/(x) dx has a local maximum at each (x0 + 8)Tn, we have

1    rT -    1    rTsup —   I    fix) dx < 2   and     lim   —   I    /(x) dx = 1. (4.8)
i<r   *   •'o r-»oo   ■*   ■'o

Now for any T > 1, there exists an « such that x0T„ < ar<x0Tn+1. Hence
0 < TJT < a/x0and

f °° /(7x)A(x) dx < f " /(7x)A(x) dx + ^r    (by (4.6) and (4.8))
•'0 •'0 4

= 2   f/(Tx)A(x)dx+|
i-l  •'o *

<   2      I -*- A(X) * + A

xp + fi   /•(Jt0+«)r„/r e     «    ,    %.< —«—   I *(x) dx + -    (by (4.7))
0 Jr~T IT *■

X0 + S     Ç(x0 + S)TJT

'xoTJT

< x0A(x0) + e/4 + e/2   (by (4.6))
< C2 + e.

The proof is complete by taking the limit supremum on T.   □
We remark that the function A(x) = \2sinpx/itxp\, x > 0, 1 </> < oo, satisfies

the hypotheses in Theorems 4.5 and 4.6. We leave the simple verification to the
reader. This function will be considered throughout the rest of the paper.
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5. The Wiener transformation W.
A. 77te isomorphic nature of W on 91t2(R).
Proposition 2.1 implies that M2(R) Ç L2(R, dx/(l + x2)); hence for/ G M2(R),

the integral

•'-oo       J\ X

/lili^dx
exists. This imphes that

f~\f•'-oo       J\

converges in mean square. In [18], Wiener defined the following transformation W:
for/ G M2(R), let W(f) = g where

1   / f-\       roo c-"" /-l e~iux — 1        \

We call If the Wiener transformation. Now, for A > 0,

1        /-OO e,Ajc  —  ¿-'A*
0Ag - r_hg)(u) - — /     /(x)- e-ta dx

¿IT   ^_co ÍX

2m -/_«,
Thus rAg — T_Ag is the Fourier transformation of

vr2    ,,  . sin(Ax)

and the Plancherel theorem implies

¿ IJg{u + h)~8{u "*)|3 * * i /_ J/(x)|2^*'
Hence

|| W(/)lfr = lim"   I /" |/(x)|2^ dx
A-»0+    "   y-oo 7TX

= ÜnT    f°° |/(7x)|2^ dx. (5.1)
r-»oo  •'-oo wx

Letting A(x) = (2sin2x)/7rx2, x > 0, and fix) =|(|/(x)|2 + |/(-x)|2), x > 0, / G
M2(R), Theorem 4.5 and (5.1) imply that W(f) G ^(R) and W(f) = 0 for all
/ G 72(R). Since 9H2(R) = M2(R)/72(R) (Proposition 2.2), W induces a map from
91t2(R) into ^(R).

Theorem 5.1 (Wiener [18]). Letf G ^(R) Q 91L2(R). TAe« || W(/)lk = ||/||w.

Our main result is:
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Theorem 5.2. TAe Wiener transformation W defines an isomorphism from 917?(R)
onto ^(R) with

\\W\\ = ( f°° A"(x)dx)        and   || W~l\\ = (max x*(x))

where hix) = (2sin2x)/Vx2, x > 0,   and hix) = sup,>xA(f).

Proof. It is easy to show that A(x) = (2sin2x)/7rx2, x > 0, satisfies the hypothe-
ses in Theorems 4.5 and 4.6. By letting

/'(*) = ¿(l/0)|2 + l/(-*)|2),       * > 0,/ G 9H2(R),

the same theorems yield

C2hm"   -±-  [T\fix)\2dx<   hnT    r \fiTx)\2hix) dx
r-»»  Z1  j-t r-oo •'-<»

<C1hnT   ¿Jj/O^dx,      /G91L2(R),
T—»oo *

where C, = /¿"AO) dx and C2 = maxJC>0x*(x). By (5.1), we have

C2\\f\\%e < II WifWv < C.ll/H2*;,      / G 91L2(R).
Moreover, Theorems 4.5 and 4.6 imply that C, and C2 are the best constants to
estimate the above inequalities. Hence we conclude that W is an isomorphism from
91L2(R) into ^(R) with

\\W\\ = C\'2   and    \\W~l\\ = C2-*/2.

It remains to show that If is a surjection. Let g G ^(R); by Theorem 3.3, we
may assume that g G L2(R). Let g be the (inverse) Fourier transformation of g, i.e.

sO) = —¡=r   C giu)eiux du
V2¿    •'-oo

and let/(x) = -/V5» xg(x), x G R. We claim that (i)/ G 91t2(R) and (ii) Wif) =
g in ^(R). To prove (i), note that

K(s) - T-b(g)nx) = (*-*» - e"")g(x) = -2/(sin(Ax))g(x). (5-2)
As C2 = maxJC>0(2sin2x)/wx, Theorem 4.6 applied to fix) =5(|/(x)|2 +
|/(-x)|2), x > 0, yields

C2hm   ±-   (T\fix)\2dx<   hm    f°° |/(rx)|2^ &
T-»oo    ¿-1    J-T r->oo   y-oo 7TX

1    f00 ,   ., /=—   «/  .„sin2Ax
A-»0+ " ^-oo 7TX

— 1 f00=  lim — I      2|g(x)l sin Ax dx
k^n+ « » - 00A_>0+    "   ^-00

»  II «II2= II sIItí1   (by (5-2) and the Plancherel theorem)
< 00.
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Thus/ G 91L2(R). To prove (ii), we observe that
1   / r-\      roo »-*» f\ in/)i«)-j-[[ + f /o)^-dx+r fix)-

Z7ryy_oo     J\ —ix J_i

- 1
dx

IX

V2tt
= giu) + C   a.e.

where C = -(l/2ff)/Lig(x) dx. Since constant functions in ^(R) are equivalent
to zero, we have Wif) = g in ^(R).   □

B. 77ie nonisometric nature of W on (^(R)).
Let *(x) = (2sin2x)/7rx2, x > 0. It follows from Theorem 5.2 and elementary

calculus that

\W\\ "(/.' *«*r>(if^*r-i
and

|If-|| = (max^M)
\x>0        1TX     )

■1/2
>  1.

In view of the fact that W is an isometry on ^(R) (Theorem 5.1), Masani [16]
asked whether W is an isometry when it is restricted on {"^(R)), the closed linear
subspace generated by ^(R).

Let %2(R) be the subset of ^(R) such that for g G %2(R),

lim
A->0+

1       /•«
2A~ J_c

|g(« + *)-*(«- A)|2dU

exists. Theorems 5.1 and 5.2 imply that W is an isomorphism from (^(R)) onto
<%2(R)>. In the following, we will give two examples /, and l2 G (^(R)) with
||/,|| = ||/2|| = i and ||W(/,)|| > 1 and \\WitJ\\ < 1. Hence neither IT nor W~x can
be a contraction on <6W2(R)>, <%2(R)> respectively. These answer Masani's ques-
tion negatively. Both examples refine the functions constructed in the proof of
Lemma 4.3 and Theorem 4.6.

Example 5.3. There exists an /, in {^(R)) with H/,11^ = 1 and || WHX)\\^ > 1.
We will use the same notation as in Lemma 4.3 with *(x) = (2sin2x)/7rx2, k = 1,

and [a,, A,] = [a, A] such that A(A) = A(a) > A(x), x G (a, A). We assume further
that the 8 we choose in Lemma 4.3 satisfies (A + 8 — a)/8 = (m + l)2 for some
positive integer m. Let Tn,fn and/be as in Lemma 4.3. Define for n > 1, 1 < i <
2m + 1,

0 < x <aT„_,,

fn(X) «

0,

2>

K-i)
o,

i+i

aTn_x <x<aT„,

aTn<x< bT„,

bTn<x<ib + 8)Tn,

ib + 8)T„ <x<aT„,
crT„ < x.
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Note that (Z2Zt%ix) + {f = f„ix)- For each i, the functions {/¡}°1, have disjoint
supports. Let/' = 2"_,/¡. Then |/'| = \ and/' is in ^(R) for each i. Let

/2m+l ,\

,,.vi(i?i/+I).
Then /, G <6M2(R)> and

|/,0)|2 = 2
m+1 /    oo \ i

2m+ 1

2 fiW + j= 2

= 2AO)

where x G supp(/t)

Hence

/lift*-   i™   ¿  fr|/1(x)|2^=  um   ^/r/W^=l
r^oo    ¿y    J-T r-oo     l    J0r-»oo

and by (5.1) and (4.1),

||»U)|& =lim    f |/,(7x)|2^ dx
T->oo   "'-oo 7TX

=  Urn"    f°°2|/(7x)|2^dx

>

T-.00   •'O

/•<» 2sin2x
•'0 17X2

dx = 1.

Example 5.4. There exists an l2 G <<¥2(R)> such that \\l2\\ye = 1 and || Wil^W^
< 1.

We use the same notation as in the proof of Theorem 4.6 with A(x) =
(2sin2x)/wx2 and C2 = max^oxAO) < 1. We assume that 0 < e < 1 — C2 and let
8 be as in Theorem 4.6 and satisfy the condition:

xn + 8
= (2m)2   for some integer m.

Let { Tn} be as in Theorem 4.6 and for « > 1, 1 < i < 2m, define

0, x<x0T„_x,

£(*) =
(-!)'>     xoTn-l<x<xoTn,
1, x0r„<x<(x0+«)7;,
0, ix0+8)T„<x.

Then

ÍV   ,iY-Xo+S
I   .^   Jnj-g X[x„T„ (x0+S)Tn)-
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Note that for each fixed /', the supports of the functions {/¡}"_! are disjoint. Let
/' - 2"_,/;'; then |f\ = 1 and/' G ^(R). Let l2 = V2 2??,/. It follows that
l2 G (^(R)) and

Uní   -Í-   rr|/2(x)|2dx= Ihn"   ±  fr/(x)dx=l
r-»oo  ¿1  j-t r-^oo   7  •'o

where/is defined in Theorem 4.6. By (5.1) and the construction off, we have

|| Wil2)\\2v =  hnT    f " 2/(7x)^m-f dx < C2 + e < 1.
T-..00   J0 1TX

C. Won 917/(R).
It is weh known that for 1 < p < 2, the Fourier transformation is a contraction

from Z/(R) into i/(R), 1//» + 1//»' = 1. Let/ G 917/(R), 1 </» < 2, and let g =
Wif). Since rAg — T_Ag is the Fourier transformation of

VF2    ,, . sin(Ax)

we have

„<   du   \1/p(Sjgiu + h)-giu-h)\p^)

\J_oo|V^ X V2¿   J

p ,V;

This implies
,1/A

||g||v =  Ihn (¿ /_ J*(« + Ä) - S(" - *)f ¿")

<hnTf-L7 r\fiX)™^U\/p
_ / r oo i ein^ I      \ xlp

=  lim    /    |/(rx)H^  dx      . (5.3)
r->oo \J-oo I mx   I      /

Theorem 5.5. For 1 <p < 2, the Wiener transformation W defines a bounded
linear operator from 917/(R) into ^'(R) with

\\W\\ < (£hix)dx}   "

where A(x) = \i2sinpx)/iTxp\, x > 0.

Proof. The result follows from Theorem 4.5 and (5.3).   □

References
1. J. Bertrandias, Espaces de fonctions bornés et continues en moyenne asymptotique d'ordre p, Bull.

Soc. Math. France S (1966).
2. R. Boas, Functions which are odd about several points, Nieuw Arch. Wisk. 1 (1953), 27-32.
3. H. Bohr and E. Fplner, On some types of functional spaces, Acta Math. 76 (1945), 31-155.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



ON generalized harmonic ANALYSIS 97

4. F. Carroll, Functions whose differences belong to L'[0, 1], Indag. Math. 26 (1964), 250-255.
5. H. Ellis and J. Halperin, Function spaces determined by a levelling length function, Cañad. J. Math.

5 (1953), 576-592.
6. G. Hardy and J. Littlewood, Some properties of fractional integrals, Math. Z. 27 (1928), 565-606.
7. E. Hewitt and K. Ross, Abstract harmonic analysis. I, II, Springer-Verlag, Berlin, 1963, 1970.
8. E. Hille and R. Phillips, Functional analysis and semi-groups, Amer. Math. Soc. Colloq. Publ., vol.

31, Amer. Math. Soc., Providence, R.I., 1957.
9. K. Lau, On the Banach spaces of functions with bounded upper means, Pacific J. Math, (to appear).

10. J. Lee, On a class of functions in generalized harmonic analysis, Notices Amer. Math. Soc. 170
(1970), 634. Abstract 674-106.

11. _, The completeness of the class of functions of bounded upper p-variation, 1 <p < oo,
Notices Amer. Math. Soc. 17 (1970), 1057. Abstract 681-B5.

12. W. Luxemburg and A. Zaanen, Notes on Banach function spaces. I, Indag. Math. 25 (1963),
135-147.

13. J. Marcinkiewicz, Une remarque sur les espaces de M. Besicovitch, C. R. Acad. Sei. Paris 208
(1939), 157-159.

14. P. Masani, On helixes in Banach spaces, Sânkhya 38 (1976), 1-27.
15. _, An outline of vector graph and conditional Banach spaces, Linear Space and Approxima-

tion (P. Butzer and B. Sz.-Nagy, eds.) Birkhäuser-Verlag, Basel, 1978, pp. 72-89.
16. _, Commentary on the mémoire on generalized harmonic analysis [30a], Norbert Wiener:

Collected Work, Vol. II, P. Masani, ed. (to appear).
17. R. Nelson, The spaces of functions of finite upper p-variation, Trans. Amer. Math. Soc. 253 (1979),

171-190.
18. N. Wiener, Generalized harmonic analysis, Acta Math. 55 (1930), 117-258.
19._, The Fourier integral and certain of its application, Dover, New York, 1959.

Department of Mathematics, University of Pittsburgh, Pittsburgh, Pennsylvania 15260

U.S. Geological Survey, NSTL Station, Mississippi 39529

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use


