

## STUDIA MATHEMATICA 103 (1) (1992)

## On generalized inverses in $C^*$ -algebras

by

ROBIN HARTE (Belfast) and MOSTAFA MBEKHTA (Lille)

Abstract. We investigate when a  $C^*$ -algebra element generates a closed ideal, and discuss Moore-Penrose and commuting generalized inverses.

**0.** Suppose A is a ring, with identity 1 and invertible group  $A^{-1}$ . Then we call an element  $a \in A$  regular if  $a \in aAa$ , giving it a generalized inverse  $b \in A$  for which

$$(0.1) a = aba.$$

Generalized inverses breed *idempotents*: if (0.1) holds then  $ba = p = p^2$  and  $ab = q = q^2$  satisfy aA = qA and Aa = Ap with, for each  $x \in A$ ,

$$ax = 0 \Leftrightarrow px = 0$$
 and  $xa = 0 \Leftrightarrow xq = 0$ .

The generalized inverse  $b \in A$  of (0.1) can be normalized: if c = bab then

$$a = aca$$
 and  $c = cac$ .

The passage from b to c does not alter the projections p and q; conversely, c = bab is determined by p and q:

1. THEOREM. If a = aba then

(1.1) 
$$b'a = ba \text{ and } ab' = ab \Rightarrow b'ab' = b'ab = bab,$$
 and if also  $e = e^2$  and  $f = f^2$  with  $Aa = Ae$  and  $aA = fA$  then 
$$c = ebf \Rightarrow a = aca \text{ with } ca = e \text{ and } ac = f.$$

Proof. Once stated, this is very routine.

Associated with  $a \in A$  are the multiplication operators  $L_a: x \mapsto ax$  and  $R_a: x \mapsto xa$  from A to A; when in particular A is a Hausdorff topological ring (addition and multiplication continuous) then  $L_a$  and  $R_a$  are both

<sup>1991</sup> Mathematics Subject Classification: 46L05.

continuous and each of the "kernel ideals"

$$a^{-1}(0) = L_a^{-1}(0) = \{x \in A : ax = 0\},\$$

$$a_{-1}(0) = R_a^{-1}(0) = \{x \in A : xa = 0\}$$

closed. The same is not always the case for the "range ideals":

**2.** Theorem. If  $a \in A$  is regular then so are  $L_a$  and  $R_a$ , and the range ideals  $aA = L_a(A)$  and  $Aa = R_a(A)$  are both closed.

Proof. If a = aba then  $L_a = L_a L_b L_a$  and  $R_a = R_a R_b R_a$ ; hence also  $aA = qA = (1-q)^{-1}(0)$  and  $Aa = Ap = (1-p)_{-1}(0)$ .

Much of this note is concerned with the converse of Theorem 2; we begin with an observation about "neighbouring" idempotents ([1], Proposition 19.1; [5], Theorem 26; [6], Proposition I.4.2):

3. THEOREM. If  $p = p^2$  and  $q = q^2$  then

$$p(p-q)^2 = (p-q)^2 p$$
 and  $q(p-q)^2 = (p-q)^2 q$ .

If in particular

$$1 - (p - q)^2 = r^{-1} \in A^{-1}$$

then e = qpr is idempotent, with

$$eA = qA$$
 and  $e^{-1}(0) = p^{-1}(0)$ ,

$$Ae = Ap$$
 and  $e_{-1}(0) = q_{-1}(0)$ .

Proof. This is easily checked, once the formula is given.

Kovarik [7] calls this the "poor man's path" between p and q. The product pq of idempotents p and q need not be idempotent ([3], Theorem 2.5.4):

4. THEOREM. If  $p = p^2$  and  $q = q^2$  in A satisfy

$$(1-q)(1-p)=0$$

then pq is idempotent, with

$$qA = p^{-1}(0) + pqA$$
 and  $p^{-1}(0) \cap pqA = \{0\}$ ,

$$Ap = q_{-1}(0) + Apq$$
 and  $q_{-1}(0) \cap Apq = \{0\}$ .

Proof. Again routine. .

If the ring A has an involution  $*: A \to A$  then we can introduce the concept of a "Moore-Penrose inverse", in the sense of a (normalized) generalized inverse b(=bab) for  $a=aba\in A$  for which

$$ba = (ba)^*$$
 and  $ab = (ab)^*$ ,

i.e., the induced projections are *self-adjoint*—strictly, this is implied when we call an idempotent a "projection". For example the adjoint is a Moore-Penrose inverse for a *partial isometry*,  $a \in A$  for which  $a = aa^*a$ .

When they exist, Moore-Penrose inverses are unique, and double commute with an element and its adjoint:

5. THEOREM. If  $b \in A$  and  $b' \in A$  are Moore-Penrose inverses for  $a \in A$  then b' = b. If b is the Moore-Penrose inverse of  $a \in A$  then

(5.1) 
$$ca = ac \text{ and } ca^* = a^*c \Rightarrow cb = bc.$$

Proof. With p = ba and p' = b'a, by (0.1),

$$p'p = b'aba = b'a = p'$$
 and  $pp' = bab'a = ba = p$ .

Taking adjoints gives  $p' = (p')^* = p^*(p')^* = pp' = p$ , and similarly q' = q; now use (1.1). Towards (5.1) we claim that if b is the Moore-Penrose inverse for a in A and p = ba the induced idempotent then

$$(5.2) ca = ac \Rightarrow pc = pcp$$

$$(5.3) ca^* = a^*c \Rightarrow pcp = cp.$$

For (5.2) argue

$$(5.4) pc = bac = bca = bcaba = bacba = pcp,$$

and similarly for (5.3); alternatively take adjoints in (5.2). Thus if c is in the double commutant of a and  $a^*$  then c commutes with p=ba, and similarly, or by "reversal of products", with q=ab. But now also bc=babc=bcab=bacb=cbab=cb, giving (5.1).

We shall write  $a^+$  for the Moore-Penrose inverse of  $a \in A$ . For example if  $a \in A$  has Moore-Penrose inverse  $b = a^+$  then also

$$(5.5) \exists (a^*)^+ = (a^+)^*$$

and hence the Moore–Penrose inverse of a self-adjoint element will also be self-adjoint. In general (notice for example  $a^*=a^*aa^+$ )

$$(a^+)^{-1}(0) = (a^*)^{-1}(0)$$
 and  $a^+A = a^*A$ .

The Moore-Penrose inverse exists for all regular elements when A is a  $C^*$ -algebra [1], [3], [4]:

**6.** Theorem. If a is regular in a  $C^*$ -algebra A then it has a Moore-Penrose inverse  $a^+ \in A$ .

Proof. We use the construction of Theorem 3 and apply Theorem 1: if  $p = p^2 \in A$  then

$$1 - (p - p^*)^2 = 1 + (p - p^*)^*(p - p^*)$$

is invertible [1], [3], [4] by the  $B^*$ -condition, so that Theorem 3 applies with

$$e = [p] = p^* p(1 - (p - p^*)^2)^{-1},$$

and also, after "reversal of products", with

$$f = [q^*] = qq^*(1 - (q - q^*)^2)^{-1},$$

where a=aba with ba=p and ab=q. We may now apply Theorem 1: evidently  $a^+=[p]b[q^*]$  is a Moore-Penrose inverse for a.

It is rather clear, if A has an involution, that a regular  $\Leftrightarrow a^*$  regular; in a  $C^*$ -algebra we have more:

7. THEOREM. If  $a \in A$  for a  $C^*$ -algebra A then

$$(7.1) a regular \Leftrightarrow a^*a regular \Leftrightarrow aa^* regular.$$

In particular,

$$(7.2) (a^*a)^+ = a^+(a^+)^* and (aa^*)^+ = (a^+)^*a^+.$$

Proof. If more generally A has an involution and  $a=aba\in A$  with  $ab=(ab)^*$  then

$$a^*abb^*a^*a = a^*ab(ab)^*a = a^*ababa = a^*a$$

so that  $a^*a \in A$  is also regular; thus if in particular a has a Moore-Penrose inverse then both  $aa^*$  and  $a^*a$  must be regular. By Theorem 6 this applies to all regular  $a \in A$  when A is a  $C^*$ -algebra. Conversely, if for example  $a^*a$  is regular then there is  $c \in A$  for which  $a^*a = a^*aca^*a$ , which gives

$$(a - aca^*a)^*(a - aca^*a) = 0 \in A.$$

Now if the  $B^*$ -condition holds in A it follows that  $a = aca^*a$ ; this with a similar argument for  $aa^*$  finishes the proof of (7.1). For the first part of (7.2) observe that if a = aba with self-adjoint ba and ab then

$$bb^*a^*a = b(ab)^*a = baba = (ba)^*ba$$
 self-adjoint.

Our main result is a converse for Theorem 2:

8. Theorem. If  $a \in A$  for a  $C^*$ -algebra A then

$$(8.1) aA closed \Rightarrow a regular,$$

and hence also

$$aA = \operatorname{cl} aA \Leftrightarrow Aa = \operatorname{cl} Aa$$
.

Proof. Begin with the special case of a *positive* element, which always has a "square root" [1], [3], [4]:

$$0 \le a \in A \Rightarrow \exists a^{1/2} = (a^{1/2})^* \in \operatorname{cl} aA$$
.

If aA is closed it follows that there is  $c \in A$  for which  $a^{1/2} = ac$ ; but now

$$acc^*a = ac(ac)^* = (a^{1/2})^2 = a$$
.

For general  $a \in A$  the product  $a^*a$  is positive, and satisfies

$$||ax|| = ||(a^*a)^{1/2}x||$$
 for each  $x \in A$ .

so that, since also  $dist(x, a^{-1}(0)) = dist(x, (a^*a)^{-1/2}(0))$ ,

$$aA \text{ closed} \Leftrightarrow (a^*a)^{1/2}A \text{ closed}.$$

Now (8.1) follows from two applications of Theorem 7: if aA is closed then so is cA for the positive element  $c=(a^*a)^{1/2}$ , which by the first part of this argument is also regular; but now  $a^*a=c^*c$  is regular, and hence also a.

With the help of the square root we can also see that the Moore-Penrose inverse of a positive element will always be positive:

$$0 \le a \Rightarrow a^+ = a^+ a a^+ = (a^{1/2} a^+)^* a^{1/2} a^+$$
.

We shall call an element  $a \in A$  decomposably regular if  $a \in aA^{-1}a$ , i.e., it has an *invertible* generalized inverse, and *simply polar* ([2], Definition 3.1; [3], Definition 7.3.5) if  $a \in a$  comm(a)a, i.e., it has a *commuting* generalized inverse. This is a very strong condition to impose:

9. Theorem. A normalized commuting generalized inverse is unique. If  $a \in A$  has a commuting generalized inverse then it is decomposably regular, and

(9.1) 
$$A = aA + a^{-1}(0) \quad \text{with } aA \cap a^{-1}(0) = \{0\},$$

(9.2) 
$$A = Aa + a_{-1}(0) \quad \text{with } Aa \cap a_{-1}(0) = \{0\}.$$

Proof. If a = aba with ba = ab and also a = ab'a with b'a = ab' then

$$ab' = abab' = bab'a = ba,$$

so that the projection p=ba=ab is uniquely determined, and hence also by Theorem 1 the (normalized) commuting generalized inverse b=bab. We can—at the cost of normalization—convert b to an invertible generalized inverse:

$$c = b + (1 - p)$$
,  $c' = a + (1 - p) \Rightarrow a = aca$  and  $c'c = 1 = cc'$ .

The decomposition (9.1) is accomplished by writing x = px + (1-p)x for each  $x \in A$ , where p = ab = ba, and similarly for (9.2).

The conditions (9.1) and (9.2) are not together sufficient for  $a \in aAa$  to be simply polar: for example ([2], Example 4.7; [3], (7.3.6.8)) take

$$a = T = \begin{pmatrix} W & -I \\ 0 & 0 \end{pmatrix} : \begin{pmatrix} c_{00} \\ c_{00} \end{pmatrix} \to \begin{pmatrix} c_{00} \\ c_{00} \end{pmatrix}$$

with  $(Wx)_n = (1/n)x_n$   $(n \in \mathbb{N})$  for each  $x \in c_{00}$ , the terminating sequences. When  $a \in A$  is simply polar then [2], [3] its "Drazin inverse"  $a^{\times} = b$  and

When  $a \in A$  is simply polar then [2], [3] its Drazin inverse a = 0 and its support projection p = ab = ba lie in the double commutant comm<sup>2</sup>(a) of a in A, and all the powers  $a^n$  of a are regular:  $a^n = a^n b^n a^n$  for each  $n \in \mathbb{N}$ .

76

A normal element in a  $C^*$ -algebra with a generalized inverse has all these properties:

- 10. Theorem. The Moore-Penrose inverse a+ of a regular normal element a in a C\*-algebra A is also normal and commutes with a:
- $a \in aAa \text{ and } aa^* = a^*a \Rightarrow a^+a^{+*} = a^{+*}a^+ \text{ and } aa^+ = a^+a$ . In particular, normal regular elements are simply polar.

Proof. If  $a \in A$  is normal then c = a lies in the double commutant of a and  $a^*$ , and therefore by (5.1) commutes with the Moore-Penrose inverse  $a^+$ . This gives the second part of (10.1); for the normality recall (5.5) and (7.2):

$$(a^*a)^+ = a^+a^{*+} = a^+a^{+*}$$
 and  $(aa^*)^+ = a^{*+}a^+ = a^{+*}a^+$ .

We are indebted to the referee for the argument (5.4), which enables us to deduce (5.1) without using the  $B^*$ -condition.

The special case of Theorem 8, in which A = BL(X, X) is the algebra of all bounded operators on a Hilbert space X, tells us that an operator T has closed range in X if and only if the multiplication  $L_T$  has closed range in BL(X,X). This can be seen directly: if, more generally, X, Y and  $Z \neq \{0\}$ are normed spaces and  $T \in BL(X,Y)$  then with the help of "rank one" operators  $h \odot y: z \rightarrow h(z)y$  there is implication

$$L_T BL(Z,X)$$
 closed in  $BL(Z,Y) \Rightarrow T(X)$  closed in Y,

for if  $y = \lim Tx_n$  and if  $z \in Z$  and  $h \in Z^{\dagger}$  satisfy h(z) = 1 then there must be  $U \in BL(Z,X)$  for which

$$L_T(h \odot x_n) = h \odot Tx_n \rightarrow h \odot y = L_T(U) = TU$$
,

giving  $y = T(Uz) \in T(X)$ . Conversely, if the spaces X and Y are complete then T(X) is closed if and only if  $T^{\wedge}: X/T^{-1}(0) \to Y$  is bounded below, and the factorization  $T = T^{\wedge} \circ \pi$  gives inclusion

(10.2) Range 
$$L_T \subseteq \text{Range } L_{T^{\wedge}}$$
.

If also the null space  $T^{-1}(0)$  is complemented then there exists  $\omega: X/T^{-1}(0)$  $\rightarrow X$  such that  $T^{\wedge} = T \circ \omega$ , giving equality in (10.2). The same sort of argument shows that the right multiplication  $R_T$  has closed range if and only if the dual operator  $T^{\dagger}:Y^{\dagger}\to X^{\dagger}$  has closed range, provided the closure of the range of T is complemented.

## References

K. R. Goodearl, Notes on Real and Complex C\*-Algebras, Shiva, 1982.

- R. E. Harte, Invertibility and Singularity, Dekker, 1988.
- R. E. Harte and M. O Searcoid, Positive elements and the B\* condition. Math. Z. 193 (1986), 1-9.
- I. Kaplansky, Rings of Operators, Benjamin, 1968.
- T. Kato, Perturbation Theory for Linear Operators, Springer, 1966.
- Z. V. Kovarik, Similarity and interpolation between projectors, Acta Sci. Math. (Szeged) 39 (1977), 341-351.

QUEEN'S UNIVERSITY BELFAST, BT7 1NN NORTHERN IRELAND, U.K.

UNIVERSITÉ DE LILLE 59655 VILLENEUVE D'ASCQ CEDEX FRANCE

Received September 17, 1991 Revised version January 22, 1992 (2840)

<sup>[2]</sup> R. E. Harte, Fredholm, Weyl and Browder theory, Proc. Royal Irish Acad, 85A (1985), 151-176,