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On generalized inverses in C*-algebras

by
ROBIN HARTE (Belfast) and MOSTAFA MBEKHTA {(Lille)

Abstract, We investigate when a C*-algebra element generates a closed ideal, and
discusg Moore-Penrose and commuting generalized inverses.

0. Suppose A is a ring, with identity 1 and invertible group A~. Then
we call an element o € A regular if o € ada, giving it a generalized inverse
b € A for which

(0.1) a = aba.

Generalized inverses breed idempotents: if (0.1) holds then ba = p = p?
and ab = ¢ = ¢° satisfy A = g4 and Aa = Ap with, for each z € 4,

ar=0&&pr=0 and za=0&ag=0.
The generalized inverse b € A of (0.1) can be normalized: if ¢ = bab then
a=gce and c=cac.

The passage from b to ¢ does not alter the projections p and g; conversely,
» == bab is determined by p and ¢

1. THROREM. If a = aba then
(L.1) Va = ba and ab’ = ab = bab’ = b ab = bab,
and if also e = ¢* and f = f* with Ao = Ae and ad = fA then
c=ebf = a=ace with ca =e and ac= f.
Proof, Once stated, this is very routine. m

Associated with o € A are the multiplication operators Ly :  +— ax and
R, : @+ zo from A to A; when in particular A is a Hausdorff topological
ring (addition and multiplication continuous) then L, and R, are both
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continuous and each of the “kernel ideals”
a0y = L7H0)={z € A: ax =0},
a-1(0) = R7H0) = {z € A:za =0}

closed. The same is not always the case for the “range ideals”:

2. THEOREM. [fa € A is regular then so are L, and Ry, and the ronge
ideals aA = La(A) end Aa = R,(A) are both closed.

Proof. Ifa = aba then L, = LoLyL, and R, = R RyR,; hence also
ad =qA = (1-¢)*{0) and Aa = Ap = (1 ~p)-1(0). w

Much of this note is concerned with the converse of Theorem 2; we begin
with an observation about “neighbouring” idempotents ([1], Proposition
19.1; [5], Theorem 26; [6], Proposition 1.4.2):

3. THEOREM. If p=p? and ¢ = ¢° then
plp—g?=@p-a)% and ¢p-¢)*=(~0.
If in particulor
1-(p~gqP=r"ed™
then e = qpr 1s idempotent, with
eA=gA and e"1(0)=p"1(0),
Ae=Ap and e-1(0)=g-1(0).
Proof. This is easily checked, once the formula is given. w

Kovarik [7] calis this the “poor man’s path” between p and ¢. The
product pg of idempotents p and g need not be idempotent ([3], Theorem
2.5.4):

4. THEOREM. If p = p? and ¢ = ¢° in A sotisfy
(1-ql-p}=0
then pg is idempotent, with
gA=p7'(0)+pgd and p~'(0)Npyd = {0},
Ap =q-1(0) + Apg and g-1(0) N Apg = {0}.
Proof. Again routine. w

If the ring A has an involution # : A -+ 4 then we can introduce the
concept of a “Moore-Penrose inverse”, in the sense of a (normalized) gen-
eralized inverse b(= bab) for a = aba € A for which

ba = (ba)* and ab=(ab)*,

ie., the induced projections are self-adjoint-—strictly, this is implied when
we call an idempotent a “projection”. For example the adjoint is a Moore-
Penrose inverse for a partiol isometry, a € A for which o = ea*a.
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When they exist, Moore~-Penrose inverses are unique, and double com-
mute with an element and'its adjoint:

5. THEOREM. Ifb & A and b € A are Moore~Penrose inverses for
a € A thent! =b, If bis the Moore-Penrose inverse of a € A then

(5.1) ca = a¢ and ca” = a*c = cb = be.
Proof With p= ba and p’ = g, by (0.1),

!

p'p=baba=ba=p and pp =baba=ba=p.

Taking adjoints gives p’ = tp’ )* = p*(p’)* = pp’ = p, and similarly ¢’ = ¢;
now use (1.1). Towards (5.1) we claim that if b is the Moore-Penrose inverse
for @ in A and p = ba the induced idempotent then

(5.2) co = ac = pc = pep,

(5.3) ca* =a"c=pep=cp.

For (5.2) argue '

(5.4) pe = bac = bea = beaba = bacba = pep,

and similarly for (5.3); alternatively take adjoints in (5.2). Thus if ¢ is in the
double commutant of a and a* then ¢ commutes with p = ba, and similarly,
or by “reversal of products”, with g = ab. But now also be = babec = beab =
bach = cbab = cb, giving (5.1). =

We shall write at for the Moore~Penrose inverse of a € A. For example
if o € A has Moore-Penrose inverse b = at then also

(6.5) o)t = (@)

and hence the Moore-Penrose inverse of a self-adjoint element will also be
self-adjoint. In general (notice for example a* = a*aa’t)

(@F)"*(0) = (e*)"1(0) and otA=a"4.

The Moore-Penrose inverse exists for all regular elements when.A is a
C*-algebra [1], 3], [4]:

6. THEOREM. If a 48 regular in o C*-algebra A then it has o Moore~
Penrose inverse a™ € A.

Proof We uge the construction of Theorem 3 and apply Theorem 1: if
p=1p? & A then

1=(p=p*) =1+ (@-p")"(p-p)
is invertible [1], [3], [4] by the B*-condition, so that Theorem 3 applies with
e= [ =p"p(l~(p~p")")7",
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and also, after “reversal of products”, with

F=lgl=a (- tg- ),
where a = aba with be = p and ab = g. We may now apply Theorem 1:
evidently o™ = [plb[g*] is & Moore-Penrose Inverse for a. m

It is rather clear, if A has an involution, that ¢ regular <> a™ regular; in
a ("™-algebra we have more:

7. THEOREM. Ifa € A for a C*-algebra A then
(7.1) a regulor & a’a regulor < aa” regular.
In particular,
(7.2) (a*e)* =aT(a")* and (ea™)" = (a")*a’.

Proof If more generally A has an involution and a = aba € A with
ab = (ab)* then

a*abb*e’a = a"ab(ab) e = a*ababa = a*a,

so that a*a € A is also regular; thus if in particular a has a Moore- Penrose
inverse then both ae* and ¢”c must be regular. By Theorem 6 this applics
to all regular e € 4 when A is a C*-algebra. Conversely, if for example a*a
is regular then there is ¢ € A for which a*e = a*ace*a, which gives

(@ —aca*a)(a —aca*a)=0¢c A.

Now if the B*-condition holds in A it follows that a = aca"a; this with a
similar argument for aa* finishes the proof of (7.1). For the first part of
(7.2) observe that if @ = aba with self-adjoint ba and ab then

bt 0" a = blab)*a = baba = (ba)*ba self-adjoint. w
Our main result is a converse for Theorem 2:
8. THEOREM. Ifa € A for a C*-algebra A then

(8.1) aA closed = a regular,
and hence also

ad = clad & Aa = clda.

Proof. Begin with the special case of a positive element, which always
has a “square root” [1], [3], [4]:

0<ae A= 32 = (0% g clad.
If aA is closed it follows that there is ¢ € A for which a2 = a¢; but now
acc*a = acfac)” = (a*/?)? = q.
For general a € A the product a*a is positive, and satisfies

lazi| = f|(a*a)"?x|| foreach z € A,
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so that, since also dist(z, a~*(0)) = dist(w, (a*a)~1/2(0}), -
aA closed & (a*a)'/2A closed.

Now (8.1) follows from two applications of Theorem 7: if aA is closed
then so is ¢4 for the positive element ¢ = (a*a}*/2, which by the first part
of this argument is also regular; but now ¢*a = c*c is regular, and hence
also a. w

With the help of the square root we can also see that the Moore-Penrose
inverse of a positive element will always'be positive:

0 <a'=a=aTaat = (a*/%a")*a!/?at.

‘We shall call an element o € A decomposably regular if o € ad™1a, ie., it
has an invertible generalized inverse, and simply polar ([2], Definition 3.1;
[3], Definition 7.3.5) if @ € a comm(a}a, i.e., it has a commuting generalized
inverse. This is a very strong condition to impose:

9. THEOREM. A normalized commuting generalized inverse is unique. If
a € A has o commuting generalized inverse then it is decomposably regular,
and
(9.1) A=aA+a Y (0) withadna™(0) = {0},
(9.2) A= Aa+a.1(0)  with AaMa_1(0) = {0}.
Proof If a = aba with be = ab and also @ = ab’'a with b'a = ab’ then
ab' = ababl’ = bab'a = ba,

go that the projection p = ba = ab is uniqueiy determined, and hence also
by Theorem 1 the (normalized) commuting generalized inverse b = bab. We
can-—at the cost of normalization—convert b to an invertible generalized
inverse:

c=b+(l—p), d=a+(l-p)=a=acaand cc=1=c¢c.
The decomposition (9.1) is accomplished by writing = = pz + (1 ~ p)z for
each x € A, where p = ab = ba, and similarly for (9.2} =

The conditions (9.1) and (9.2) are not together sufficient for a € ada to
be simply polar: for example (2], Example 4.7; [3], (7.3.6.8)) take

W =IN {eoo oo )

=r=(5 3):(2)- (&)

with (Wa), = (1/n)z, (n € N) for each € ¢qo, the terminating sequences.
When a € A is simply polar then [2], [3] its “Drazin inverse” o = b and

its support projection p = ab = ba lie in the double commutant comm?(a) of
ain A, and all the powers o™ of o are regular: o™ == a"b"a™ for ea_uch n & N,
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A normal element in a C*-algebra with a generalized inverse has all these
properties:

10. THEOREM. The Moore~Penrose inverse o+ of a regular normal
element a in a C*-algebra A is alse normal and commutes with a:

(10.1) ¢ € ada and aa* = a*a = aTat =at et and aet =a”

&,

In particular, normal regular elements are simply polar.

Proof. If a € Ais normal then ¢ = o lies in the double commutant of
a and o*, and therefore by (5.1) commutes with the Moore-Penrose inverse
aT. This gives the second part of (10.1); for the normality recall (5.5) and
(7.2):

(a*a)t =o't = atat and (ea*)T =d*Tat =aTrat. w

We are indebted to the referee for the argument (5.4}, which enables us
to deduce (5.1) without using the B*-condition.

The special case of Theorem 8, in which A = BL(X, X)) is the algebra of
all bounded operators on a Hilbert space X, tells us that an operator T' has
closed range in X if and only if the multiplication Ly has closed range in
BL(X,X). This can be seen directly: if, more generally, X, Y and Z # {0}
are normed spaces and T' € BL(X,Y) then with the help of “rank one”
operators h @y z — h(z)y there is implication

LpBL(Z,X) closed in BL(Z,Y) = T(X) closed in Y,
for ify = lim Tz, and if z € Z and h € Z! satisfy h(2) = 1 then there must
be U € BL(Z,X) for which
Lr(h@zn)=hOTe, - hOy=Lp{U)=TU,

giving y = T'(Uz) € T(X). Conversely, if the spaces X and YV are complete
then 7'(X) is closed if and only if T" : X/T=1(0) ~+ Y is bounded below,
and the factorization T = T" o 7 gives inclusion

(10.2) Range Ly C Range Lypa.

If also the null space T~1(0) is complemented then there exists w : X/T1(0)
— X such that T" = T o w, giving equality in (10.2). The same sort of
argument shows that the right multiplication Ry has closed range if and
only if the dual operator TT : ¥1 -+ X' has closed range, provided the
closure of the range of T is complemented,
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