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Abstract—Low-rate Denial of Quality (DoQ) attacks, by send-
ing intermittent bursts of requests, can severely degrade the
quality of Internet services and evade detection. In this paper, we
generalize the previous results by considering arbitrary attack
intervals. We obtain two sets of new results for a web server
with feedback-based admission control. First, we model the web
server under the attack as a switched system. By proving the
Lyapunov and Lagrange stability of the system, we show that
the admission rate can always be throttled to a bounded low
value. Second, we investigate the worst impacts of a DoQ attack
by optimizing a utility function for the attacks. As a result, we
obtain for the first time optimal attack patterns for both periodic
and aperiodic attacks. Extensive simulation results also agree
with the analytical results.

I. INTRODUCTION

The Denial-of-Quality (DoQ) attack has been shown effec-
tive in degrading the quality of Internet service and evading
detection [1]. The DoQ attack exploits the adaptation mech-
anism employed in a victim service by sending intermittent
bursts of requests to cause a transient overloading on that
service. Although the request arrival rate within a burst is high,
the average arrival rate of such DoQ attacks is low. Therefore,
the DoQ attack is also considered as a low-rate attack.

However, the analysis (and the understanding) of the DoQ
attacks is so far limited to constant attack intervals (i.e., a
constant time between two successive attack bursts). Such
periodic attacks can also be easily detected [2], [3]. Therefore,
a more sophisticated attacker could randomize the attack
intervals to evade the detection while achieving a certain
level of damage to a victim service. Motivated by this, we
therefore investigate in this paper the impact of DoQ attacks
with arbitrary attack intervals (i.e., aperiodic attacks), with the
periodic attack as a special case.

Following the Reduction of Quality (RoQ) attack [1], we use
a web server’s admission control mechanism as an example
to address two fundamental issues for the generalized DoQ
attack:

1. Given a target victim, is it always possible to launch a
DoQ attack against it?

2. If it is possible, what are the worst impacts of the periodic
and aperiodic attacks given a utility function for the
attacks?

Modeling the DoQ attacks with arbitrary attack intervals
is very challenging. The main difficulty is that the victim’s

system states exhibit discontinuities at the arrivals of attack
bursts. As a result, the classical control theory could not be
applied to model the victim system. In our approach, we model
it as a switched system, which is a hybrid system involving a
series of subsystems and changes at discrete times. Modeling
the victim as a switched system enables us to tackle the two
aforementioned fundamental issues. We summarize our main
contributions below:

1) We have modeled a web server with a PI controller for
admission control under a DoQ attack using the switched
system theory. By proving the Lyapunov and Lagrange
stability of the switched system, we have shown that
the victim’s admission rate can always be throttled to
a bounded low value.

2) We have formulated attack optimization problems for
both periodic and aperiodic attacks. By solving them
using a gradient-based algorithm and a particle swarm
optimization method, we have obtained the worst attack
impacts. The impact of the aperiodic attack is found to
be more severe than that of the periodic attack.

II. MODELING THE DOQ ATTACK

A. A DoQ attack model

To launch a DoQ attack, an attacker sends a sequence of
request bursts to a victim web server. We denote the attack as
A = {Λ, τ,N}, where Λ = (λa1 , λa2 , . . . , λaN

)T indicates the
arrival rate of each burst, τ = (τ1, τ2, . . . , τN )T denotes the
arrival time of each burst, and N is the number of bursts in the
sequence. Here, we assume λai

= λa (a constant) to simplify
the analysis. In the following we refer τ = (τ1, τ2, . . . , τN )T

to as an attack sequence.

Admission
Control

Web
Server

Reference
Input

Control
Error

+ _

Admission
rate

Arrivals

Utilization
Rate

Fig. 1: The admission control of a web server.

B. A web server model

Following [1], the model of a web server’s admission
control mechanism is illustrated in Figure 1. The admission



system is based on the feedback control. The server’s utiliza-
tion rate is fed back and compared with a reference value.
The control error indicates the difference between the mea-
sured utilization rate and the reference value. The admission
controller bases on the control error to determine the admission
rate. Table I summarizes the main notations used in this paper.

TABLE I: The main notations used in this paper.

Description
α(·) admission rate
ρ(·) utilization rate
ρ∗ desired utilization rate
α∗ admission rate when ρ = ρ∗

nm(·) number of waiting requests
np(·) number of backlogged requests
μ service rate
A, B, C, D, � constants for determining ρ(·)
λ(·) the total arrival rate
λn arrival rate of normal requests
λa attack intensity
K controller’s parameter
τi arrival time of the ith attack pulse
N total number of attack pulses

The system uses a proportional-integral (PI) controller to
adjust the admission rate α:

α̇(t) = K(ρ∗ − ρ(t)), α ∈ [0, 1]. (1)

The number of requests (i.e., nm(t)) waiting for service
consists of two parts: newly admitted requests (i.e. λ(t)α(t))
and backlogged requests (i.e., np(t)):

nm(t) = λ(t)α(t) + np(t), nm ∈ [0,+∞). (2)

The backlogged requests are those admitted requests that
cannot be processed in [t− 1, t). The number of new requests
arriving in period [t− 1, t) is α(t− 1)× λ(t− 1)× 1 and the
number of backlogged requests is

np(t) = λ(t − 1)α(t − 1) − μ(t − 1), np ∈ [0,+∞). (3)

Moreover, ρ is estimated from the queue length by

ρ(t) =
{

Anm(t) + B if nm(t) < �
Cnm(t) + D if nm(t) ≥ �

, ρ ∈ [0, 1]. (4)

The trajectories of ρ and α in the absence of attack are
illustrated in Figure 2(a). The system starts from an initial
condition where α = nm = np = 0 and ρ = 0.2. After
elapsing for 300 seconds α and ρ have reached constant values,
and we refer this stage to as steady state.

When an attack burst arrives at time t, the total arrival rate
of requests at t is λ(t) = λn + λa. To ease the analysis,
we assume λn, λa and μ (the service rate) are constant.
The server therefore admits (λn + λa)α(t) requests. If λa is
large enough, it will increase nm(t) and consequently cause
ρ(t) = 1 (i.e., fully utilized). In this case, the server enters
the saturated state and remains there until most of backlogged
requests are processed. After that, ρ will first decrease (as nm

decreases) and then increase (as α increases). Accordingly,
the server enters the recovery stage. As ρ has two increasing
rates governed by constants A and C, the recovery stage can
be further divided into two distinct stages. Figure 2 illustrates
the four stages for ρ(t) and α(t), where η1, η2 and η3 are
respective durations for the saturated stage, and the recovery
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Fig. 2: Trajectories of the admission rate and utilization rate.

stages one and two.

C. A model of a web server under DoQ attacks

Since the web server’s behavior in the presence of a DoQ
attack consists of a set of state changes, we model these state
changes using the switched system theory [4].

We first consider a family of subsystems:

ẋ = fp(x), (5)

where x ∈ R
n, p ∈ P (P is finite), and for each p ∈ P , fp is

Lipschitz continuous. Next, we consider the switched system

ẋ = fσ(x), (6)

where σ : [0,∞) → P is a piecewise constant switching sig-
nal, continuous from the right. We denote by ti, i = 1, 2, . . .,
the consecutive discontinuities of σ called the switching times.
Here, we assume that if there are infinitely many switching
times, there exists a τ > 0, such that for every T ≥ 0, one
can find a positive integer i for which ti+1 − τ ≥ ti ≥ T .
For t ∈ [tk, tk+1) and σ(t) = ik, the ikth subsystem is active.
Hence, the trajectory x(t) of the switched system (6) is defined
as the trajectory xik

(t) of the ikth subsystem for t ∈ [tk, tk+1).
An equilibrium point of (6) is a point xe ∈ R

n satisfying
fp(xe) = 0 for all p ∈ P .

We rewrite the web server model as a set of functions of
α(t):

α̇(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

K(ρ∗ − Aλα(t) − B)
K(ρ∗ − Cλα(t) − D)
K(ρ∗ − 1)
K(ρ∗ − 0)
0

(7)

whose switching time is controlled by attack sequence, switch-
ing law is determined by current status of the system. When



α̇(t) = 0 for t ∈ [tk, tk+1), α(t) is a constant. Since this
case only inflates the convergence time without affecting the
stability of the switched system, we can ignore α̇(t) = 0 when
calculating equilibrium point for stability analysis.

It is worth noting from Figure 2 that there are two disconti-
nuities for ρ(t): the point separating η1 and η2, and the point
separating η2 and η3. Let

0 < s1 < s2 < · · · < si < · · · (8)

denote the time instants of switching events nm(si) = � and
η1

k indicate the duration of the saturated stage (η1 in Figure 2)
in t ∈ [τk, τk+1). Then, for t ∈ [τk, τk+1),

ρ̃(t) =

⎧⎨
⎩

1, τk ≤ t < τk + η1
k,

Aλα(t), τk + η1
k ≤ t < si,

Cλα(t), si ≤ t < τk+1,
(9)

if nm(si) = � and τk < si < τk+1, or

ρ̃(t) =
{

1, τk ≤ t < τk + η1
k,

Aλα(t), τk + η1
k ≤ t < τk+1,

(10)

if nm(t) < � for all t ∈ [τk, τk+1).
If the attack sequence satisfies τk+1 − τk ≤ η1

k for all k =
1, 2, . . ., then

˜ρ(t) ≡ 1 (11)

for all t ≥ 0, implying that the admission rate keeps decreasing
by α̇ = K(ρ∗ − 1) < 0. Since α ∈ [0, 1], it follows that α(t)
converges to 0 asymptotically. In this case, the admission rate
cannot converge to a targeted value unless this value is 0. We
further assume that an attacker can let a subsequence {τki

} of
the attack sequence {τk} fulfill that τki+1 − τki

> η1
ki

for all
k = 1, 2, . . .. Moreover, if the attack sequence is an infinite
sequence, then this subsequence is infinite as well.

Hence, the hybrid model for (7) is given by

α̇(t) = K(ρ∗ − sat(ρ̃(t))), (12)

where

sat(x) =

⎧⎨
⎩

1, x > 1,
x, 0 ≤ x ≤ 1,
0, x < 0.

(13)

This hybrid model is a switched system with state-dependent
switching si and time-dependent switching τk. The switching
time tk of (6) can be expressed as tk = τk and tk+1 = τk+1

if there is no si between τk and τk+1, or tk = τk, tk+1 = si,
and tk+2 = τk+1 if there exists a si between τk and τk+1.

D. Stability Analysis

Due to the limited space, we report only the main stability
results. Other details omitted here will be reported in a
forthcoming paper.

Proposition 1: Assume that there exists a subsequence
{τki

} of the attack sequence {τk}, such that

α(τki
) <

K

2
(1 − ρ∗)(τki+1 − τki

) +
μ

λ
(14)

for all i = 1, 2, . . . and

α(τk) ≥ Kγ

2
(1 − ρ∗) +

μ

λ
(15)

for all k = 1, 2, . . ., where γ > 0 is a constant. Moreover, if the
attack sequence is an infinite sequence, then this subsequence

is infinite as well. Next, assume that if there are infinitely many
switching times for (12), there exists a κ > � + η2, such that
for every T ≥ 0 one can find a positive integer i for which
τi+1 − κ ≥ τi ≥ T , where

� =
2λ − 2μ

λK(1 − ρ∗)
, η2 = − 1

KAλ
ln

AN + B − ρ∗

Aμ + B − ρ∗
. (16)

Finally, assume that for every k = 1, 2, . . ., holds. Then the
switched system (i.e. (12)) is Lyapunov stable on [0, 1].

Proposition 1 proves the Lyapunov stability of the switched
system. It also points out that an attacker can determine the
upper and lower bounds of admission rate according to (14)
and (15) respectively.

Proposition 2: Assume that there exists a subsequence
{τki

} of the attack sequence {τk}, such that τki+1−τki
> η1

ki

for all i = 1, 2, . . .. Moreover, if the attack sequence is an
infinite sequence, then this subsequence is infinite as well.
Next, assume that if there are infinitely many switching times
for (12), there exists a τ > 0, such that for every T ≥ 0 one
can find a positive integer i for which ti+1 − τ ≥ ti ≥ T .
Then the switched system (i.e. (12)) is Lagrange stable.
Furthermore,

α(t) ≤ ε, (17)

where

ε = max
p∈P

(αep + |α(0) − αep|) ≤ max
p∈P

(2αep + 1) , (18)

and αep is an equilibrium point.

Proposition 2 proves that the switched system is Lagrange
stable. It also shows that there exists an attack sequence that
can force α to be less than ε, which is determined by the
equilibrium point and the initial condition.

III. OPTIMIZING THE DOQ ATTACK

The cost of launching a DoQ attack could be measured by
the number of attack requests involved in the attack. Sending
more attack requests is more vulnerable to detection and also
requires more resources. A sophisticated attacker would like
to maximize the attack damage and reduce the attack cost
simultaneously by manipulating the attack sequence.

To obtain optimal attack sequences, we first define the attack
damage Γ as the percentage of normal requests dropped by the
victim server due to a DoQ attack:

Γ =
Number of rejected normal requests

Number of normal requests
(19)

On the other hand, the cost of a DoQ attack, denoted by γ, is
a function of the arrival rate of the attack requests.

Besides the damage and cost, an attacker’s willingness of
taking risk also affects his utility function [5]. A conservative
attacker may send out bursts of requests with large intervals to
avoid detection. However, an aggressive attacker may prefer
to inflict more damage by decreasing the attack intervals.
Therefore, we use (1 − γ)κ to measure an attacker’s risk
preference, where κ is a risk index of an attacker. If an attacker
is willing to take more risk, κ is small; otherwise, κ is large.

We next formulate an optimization problem to maximize an



attacker’s utility function:

max
τ̄∗ J = Γ × (1 − γ)κ, (20)

where τ̄∗ = (τ∗
1 , τ∗

2 , . . . , τ∗
k , . . .)T is the optimal attack

sequence. We first investigate optimal periodic DoQ attack
and propose a nonlinear optimization algorithm to solve it.
Then we extend our discussions to aperiodic DoQ attacks and
propose a particle swarm optimization algorithm to obtain the
optimal result. Generally an attacker can gain a higher utility
by launching an aperiodic attack than a periodic attack.

A. Optimizing Periodic Attacks

We proved in [6] that the web server’s admission rate
converges to periodic behavior under a periodic DoQ attack.
Here, we assume the system already converges. Following
(19), the damage is represented as the percentage of rejected
normal requests in an attack period.

Γ =
1/T

∫ T

0
(α∗ − α(t))λndt

1/T
∫ T

0
α∗λndt

= 1 −
∫ T

0
α(t)dt

α∗T
, (21)

where T is the attack period. Similarly, the attack cost is
the normalized number of attack requests in an attack period,
defined as

γ =

∫ T

0
λaδ(T )dt∫ T

0
λaδ(T )dt +

∫ T

0
λndt

=
λa

λa + λnT
. (22)

Given (21) and (22), the optimization problem for the
periodic DoQ attack is:

Problem 1: Given that an attacker sends an infinite number
of periodic bursts of requests to a victim web server, find a
period T ∗ that maximizes J :

max
T∗

J = Γ × (1 − γ)κ, (23)

subject to the state evolution described in section II and T > 0.

We have solved Problem 1 using a gradient-based nonlinear
optimization algorithm.

B. Optimizing Aperiodic Attacks

In this subsection we investigate the problem of optimizing
aperiodic DoQ attacks. Suppose there are N bursts sent within
a fixed interval [t0, tf ] with the following attack sequence;

t0 = τ0 < τ1 < τ2 < . . . < τN < τN+1 = tf .

The damage is the average number of normal requests dropped
during the given time interval [t0, tf ]:

Γ =
1

tf − t0

∫ tf

t0

(α∗ − α(t))λndt =
∫ tf

t0

L(x)dt. (24)

The attack cost is defined as:

γ =
1
N

∑
i

∫ τi

τi−1
λaδ(τi)dt/(τi − τi−1)∫ τi

τi−1
λaδ(τi)dt/ minδτ (τi − τi−1)

. (25)

Note that the denominator in (25) is the maximum arrival rate
obtained from all attack intervals. We do not use the average
arrival rate, because it may not reflect the true cost of attacker
due to the irregular distribution of the attack bursts. Therefore,
we use the maximum arrival rate (i.e., the minimal interval

between consecutive bursts) to normalize γ to the range of
[0, 1].

The optimization problem for the aperiodic DoQ attack is:

Problem 2: Given a fixed time interval [t0, tf ] and N bursts
of requests, find a sequence τ̄∗ = (τ∗

1 , τ∗
2 , . . . , τ∗

N )T , such that

max
τ̄∗ J = Γ × (1 − γ)κ, (26)

subject to the state evolution described in section II, and

τ1 − τ0 ≥ T1, . . . , τN+1 − τN ≥ TN+1, (27)

where Ti, i = 1, . . . , N + 1, are predefined non-negative
values.

We have solved Problem 2 using a particle swarm optimiza-
tion (PSO) algorithm which is based on the swarm intelligence
approach.

IV. SIMULATION RESULTS

In this section we present the Matlab simulation results for
optimal DoQ attacks. The parameters are the same as those in
[1]: A = 0.00267, B = 0.2, C = 0.024, D = −1.4, N = 75,
w = 100, and K = 0.01. The service rate is μ = 90 requests
per second, and the desired utilization rate is ρ∗ = 0.7. The
arrival rate of normal request is 100 requests per second, and
that for an attack burst is 1000 requests per second.

Figures 3(a)-3(c) demonstrate the correctness of the opti-
mized periodic DoQ attacks. In each figure, the value of J0 is
obtained for a periodic attack using an optimal value Jopt. The
figure shows the intersection of the two curves at the maximal
value of J0. To verify the convergence of our optimization
algorithm, we set the initial period to different periods varying
from 2 to 300 seconds. The result shows that our algorithm
converges to the optimal value, regardless of the initial period.
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Fig. 4: Impact of the risk index on optimal period and utility function values.

We investigate the impact of κ on Topt and Jopt and
demonstrate the results in Figure 4, where the left y-axis
labels Jopt and the right y-axis labels Topt. We can see that
Jopt decreases and Topt increases with κ. Recall that a larger
κ means a less willingness of taking risk. The results are
therefore consistent with our analysis in section III.

Figures 5(a)-5(c) illustrate the results of optimized aperiodic
DoQ attacks. In these experiments we fixed the observation
time to [0, 1200] seconds and generated random attacks as the
initial inputs to the PSO algorithm. Jopt denotes the optimal
result. For the purpose of comparison, we also generated a
set of periodic attacks and use Jperiodic to denote their utility
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Fig. 3: Optimized objective functions of periodic DoQ attacks.
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Fig. 5: Optimized objective functions of aperiodic DoQ attacks.

function values. Note that in these experiments Jperiodic is
calculated according to (24) and (25). The number of bursts in
each experiment is set to N = tf/T , where T is the period of
periodic attacks. These figures clearly show that the optimized
aperiodic attack is more effective than periodic attacks.

V. RELATED WORK

The Reduction of Quality (RoQ) attacks [1] is the closest
to this work in terms of the attack objectives and targets.
However, the main difference is that the analysis in [1] was
restricted to periodic attacks. Moreover, no stability analysis
and attack optimization were performed in [1]. Besides the
DoQ attacks, we have investigated the pulsing DoS attacks
on Internet’s TCP/AQM architecture [7], [8], [5], which could
cause significant throughput degradation on TCP flows.

On another front, overload control is an important element
in guaranteeing end systems’ QoS. Welsh and Culler [9] pro-
posed a feedback loop in Internet service system named SEDA
to implement per-stage admission control. Yaksha system [10]
adopted a PI controller for admission control, instead of the
AIMD algorithm used in SEDA. Other QoS-sensitive overload
controls were proposed for web services [11], [12].

VI. CONCLUSION AND FUTURE WORK

In this paper, we investigated generalized DoQ attacks on
an admission control mechanism used in web service. We have
modeled the victim system under DoQ attacks as a switched
system. By proving that the switched system is Lyapunov
stable and Lagrange stable, for the first time we have showed
that a DoQ attack can always throttle the victim system’s
admission rate to an arbitrary low value. We have also studied
the worst impact of the attack by optimizing a utility function
of the attack. As a future work, we will apply the methodology

developed in this paper to analyzing other kinds of controllers,
such as PID. We will also investigate the attack impacts on
other overload control models discussed in the last section.
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