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ON GENERALIZED MODULAR FORMS AND THEIR

APPLICATIONS

WINFRIED KOHNEN and GEOFFREY MASON∗

Abstract. We study the Fourier coefficients of generalized modular forms

f(τ ) of integral weight k on subgroups Γ of finite index in the modular group.

We establish two Theorems asserting that f(τ ) is constant if k = 0, f(τ ) has

empty divisor, and the Fourier coefficients have certain rationality properties.

(The result is false if the rationality assumptions are dropped.) These results

are applied to the case that f(τ ) has a cuspidal divisor, k is arbitrary, and

Γ = Γ0(N), where we show that f(τ ) is modular, indeed an eta-quotient, under

natural rationality assumptions on the Fourier coefficients. We also explain how

these results apply to the theory of orbifold vertex operator algebras.

§1. Introduction

Let Γ ⊆ SL(2,Z) be a subgroup of finite index. A generalized mod-

ular function of weight zero (GMF) on Γ is a function f(τ) holomorphic

throughout the complex upper half-plane H, satisfying

(1) f(γτ) = χ(γ)f(τ), γ ∈ Γ,

for some character χ : Γ → C∗, and which is ‘meromorphic at the cusps’.

As usual, the latter condition means that for all γ ∈ SL(2,Z), there is a

q-expansion

f(γτ) =

∞
∑

n=n0

anq
n/M

for some positive integer M (depending on γ), convergent in a punctured

neighborhood of the origin in the q-plane. (Here and below, q = e2πiτ for

τ ∈ H.) Thus f enjoys all of the properties of a (classical) modular function

of weight zero on Γ, except that χ is not required to be unitary. That is, we

allow the possibility that |χ(γ)| 6= 1 for γ ∈ Γ, and even if χ is unitary it
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may not have finite order. There is an obvious extension of (1) to the case

of integral weight k that we will also use.

The general study of GMFs was initiated in [KM1], where a GMF in the

above sense was called a PGMF (P for parabolic). Throughout the present

paper, we use the definition given above. Several ways to construct GMFs

are described in [KM1]. For large enough weight k and for χ parabolic (loc.

cit.), the Eisenstein series

∑

γ

χ(γ)−1(cτ + d)−k

is a GMF of weight k (as usual, γ ranges over a certain set of elements of

Γ with second row (c, d)). One may then multiply it by a classical form of

weight −k to obtain a GMF of weight zero. Also, the logarithmic derivative

of a GMF of weight zero is a (classical) meromorphic modular form g(τ)

of weight 2, and conversely one can construct GMFs of weight zero by

exponentiating an antiderivative of a suitable weight 2 classical form. This

second construction is considered in more detail below.

Aside from their intrinsic interest, one of the main motivations for

studying GMFs is the possibility of applying them to so-called ‘Moonshine’

properties of finite groups in orbifold theory. The Conway-Norton conjec-

ture [CN], which concerned the association of certain modular functions of

weight zero to elements of the Monster simple group M , was established by

Borcherds [B] in a celebrated paper. In particular, the q-expansions of [CN]

were shown to be both hauptmoduln on genus zero subgroups of SL(2,R),

and also graded traces of elements of M acting on the Frenkel-Lepowsky-

Meurman Moonshine Module V ♮ [FLM]. A fundamental fact underlying

this construction (loc. cit.) is that V ♮ is a particular type of vertex operator

algebra.

Since the work of Borcherds, it has become clear that one should expect

similar results to hold in great generality. Precisely, if V is a rational vertex

operator algebra and g an automorphism of V of finite order, one expects

that an appropriately defined notion of graded trace of g on V will be a

modular function of weight zero on some congruence subgroup of SL(2,Z).

(We refer the reader to [DM1] and Section 4 below for more background.

A detailed knowledge of vertex operator algebras and orbifolds will not be

needed in order to understand the results of the present paper.) From this

perspective, the case V = V ♮ is distinguished in that the graded traces are
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hauptmoduln, a fact which will certainly not hold in general. Borcherds’

proof cannot, and does not, generalize, so if one wants to understand the

more general situation, a new approach is needed. If successful, such an

approach would - when applied to the Moonshine Module - give a new proof

of the fact that the trace functions of elements in M over V ♮ are modular

functions without necessarily showing that they are in fact hauptmoduln.

There are several paths down which one might travel in pursuit of this goal.

The one we advocate here, based on GMFs, is particularly arithmetic.

A general theory of graded traces of automorphisms of vertex operator

algebras was developed in [DLM]. One of the results obtained there (al-

though not stated as such) is that if V is a1 holomorphic vertex operator

algebra (an example is V ♮) and g an automorphism of V of finite order,

then the graded trace of g on V is a GMF on a congruence subgroup. This

leads to the following conjecture:

Suppose that f is a nonzero GMF on Γ0(N) with q-expansion

f(τ) =
∑

anq
n with leading nonzero coefficient equal to 1 and

Fourier coefficients an ∈ Z. Then f is a classical modular function.

(2)

One may - and in Section 2 we shall - contemplate stronger conjectures

of a similar type. The general idea is that a GMF which is not a classical

modular function has ‘poorly behaved’ Fourier coefficients. In any case, we

will see that (2) already implies the modularity of trace functions of elements

of M acting on V ♮. In the present paper we make a start on Conjecture (2)

and certain variations.

As we already mentioned, it was observed in [KM1] that if f is a GMF

of weight zero on Γ then the logarithmic derivative f ′/f is a (classical) mero-

morphic modular form of weight 2 on Γ, and conversely any meromorphic

modular form of weight 2 satisfying some mild conditions arises in this way.

In particular, holomorphic modular forms of weight 2 on Γ correspond in

this way to GMFs which have all of their poles and zeros located at the

cusps of Γ, and cusp-forms of weight 2 correspond to GMFs with no poles

and no zeros (in H ∪ Q ∪ ∞). Thus, if Γ has positive genus then it sup-

ports nonconstant GMFs with empty divisor. It is this circumstance which

1It is standard terminology to call a VOA holomorphic if it is simple and has a unique
irreducible module. This is quite different from more familiar uses of the word holomor-
phic, for example in reference to a modular form.
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animates the main results of the present paper. A basic tool in the theory

of modular functions is the fact that a modular function with no poles or

zeros is constant, and as we have explained this generally fails for GMFs.

One needs a substitute, and our first two main results each provide one,

under somewhat different assumptions. Theorem 1 says that a GMF with

no poles or zeros is constant if, in addition, it satisfies the integrality con-

ditions of (2). In effect, Conjecture (2) is true if f has no zeros or poles,

moreover the proof applies to arbitrary subgroups of Γ ⊆ SL(2,Z) of finite

index in place of Γ0(N). Theorem 2 shows that the same result also holds

under the weaker assumption that the Fourier coefficients are rational and

are p-integral for almost all primes p, as long as Γ is a congruence subgroup.

With these results in hand, we take up Conjecture (2) in case the poles

and zeros of f are at the cusps of Γ0(N). More precisely, we show (Theo-

rem 3) that a GMF f with Fourier coefficients satisfying the same integrality

conditions as Theorem 2, with poles and zeros at the cusps and satisfying a

certain natural condition, is an eta quotient, and in particular it is modular.

Here we allow f to have a weight k. This extends results found in [K]. In

Section 4 we explain how GMFs arise in the theory of orbifolds and in par-

ticular how our results apply to many vertex operator algebras, including

V ♮.

§2. GMFs with empty divisor

In this section we show that Conjecture (2) is true in case the loga-

rithmic derivative of f is a cusp-form of weight 2, i.e. if f has no poles or

zeros in H ∪ Q ∪ {∞}. Indeed, we establish two stronger versions of the

Conjecture under this assumption, one in which Γ0(N) is replaced by an

arbitrary subgroup of SL(2,Z) of finite index, and one in which the Fourier

coefficients of f are rational numbers and are p-integral for almost all primes

p.

Fix a subgroup Γ ⊆ SL2(Z) of finite index, which at the outset is not

necessarily a congruence subgroup. Let M be the least positive integer

with

(

1 M
0 1

)

∈ Γ. We let f be a GMF on Γ of weight zero such that f is

holomorphic and non-vanishing at infinity, so that f has a Fourier expansion

of the form

f(τ) =
∑

n≥0

a(n)qn/M (τ ∈ H)

with a(0) 6= 0.
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Theorem 1. Assume that f has no poles or zeros in H ∪ Q ∪ {∞}.

Furthermore, suppose that a(0) = 1 is normalized and that each a(n) (n ∈

N0) is a rational integer. Then f = 1 is constant.

Proof. Since f has no zeros or poles, it follows from Theorem 2 in

[KM1] that the function

g =
θf

f

(as usual, θ = q1/M d
dq1/M = M

2πi
d
dτ ) is a holomorphic cusp form of weight 2

on Γ. (Note that for this, the “parabolic” property of f assumed in [KM1]

is not needed.) We write

g =
∞
∑

n=1

b(n)qn/M .

By [ES], [BKO], f has an infinite product expansion

(3) f(τ) =

∞
∏

n=1

(1 − qn/M )c(n) (|q| < 1)

where the c(n) are uniquely determined complex numbers and complex pow-

ers as usual are defined in terms of the principal branch of the complex

logarithm. Moreover, one has the relations

b(n) = −
∑

d|n

dc(d),(4)

nc(n) = −
∑

d|n

µ(d)b
(n

d

)

.(5)

In particular, since the a(n) are rational, the c(n) are rational. We claim

that under our hypothesis, the c(n) in fact are integers (compare also [ES]).

Indeed, using the expansion

(1 − q1/M )c =
∑

n≥0

(

c

n

)

qn/M (|q| < 1, c ∈ R)

where
(

c

n

)

=
c(c − 1) · · · (c− n+ 1)

n!
,
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we find from (3) that

a(n) = (−1)ν1+···+νn
∑

ν1+2ν2+···+nνn=n

(

c(1)

ν1

)(

c(2)

ν2

)

· · ·

(

c(n)

νn

)

= −c(n) + (−1)ν1+···+νn−1

×
∑

ν1+2ν2+···+(n−1)νn−1=n

(

c(1)

ν1

)(

c(2)

ν2

)

· · ·

(

c(n − 1)

νn−1

)

where both sums range nonnegative integers νi. Since the a(n) are integers

by hypothesis and
(α
n

)

∈ Z for α ∈ Z, our claim follows by induction.

We now apply the Rankin-Selberg estimate to the Fourier coefficents

b(n), which holds even though Γ is not necessarily a congruence subgroup

[S]. Then

b(n) ≪f,ǫ n
4/5+ǫ (ǫ > 0),

hence we conclude from (5) that

nc(n) ≪f,ǫ

∑

d|n

d4/5+ǫ ≪ n4/5+ǫσ0(n) ≪ǫ n
4/5+2ǫ (ǫ > 0),

where σ0(n) is the number of positive divisors of n. Since the c(n) are

integers, it follows that c(n) = 0 for n≫ 0.

At this point there are several ways to complete the proof of the The-

orem. From (4) we conclude that the b(n) are bounded, hence the Rankin-

Selberg zeta function of g, defined for σ = ℜ(s) > 2 by

Rg(s) =
∑

n≥1

b(n)2n−s,

is convergent for σ > 1. On the other hand, it is well-known that Rg(s) has

a pole at s = 2 of residue (up to a non-zero multiple) equal to the square

〈g, g〉 of the Petersson norm of g. Hence g = 0, i.e. f = 1. Alternatively,

the condition c(n) = 0, n ≫ 0, together with (3) shows that f is a rational

function of q1/M . It is shown in [KM2, Section 6] that the real axis is a nat-

ural boundary for a nonconstant component of any vector-valued modular

form. In particular, this applies to f and allows us to again conclude that

f is constant.
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Theorem 2. Assume that f has no poles or zeros in H ∪ Q ∪ {∞}.

Assume furthermore that Γ is a congruence subgroup and that the Fourier

coefficents a(n) (n ∈ N0) are rational and are p-integral for all but a finite

number of primes p. Then f is constant.

Proof. The proof follows the general lines of Theorem 1, but is consid-

erably harder in the present case. We may, and shall, assume that a(0) = 1

and that Γ is the principal congruence subgroup of level M . We retain nota-

tion from the previous proof, in particular f continues to have the product

representation (3).

For a prime p, set Z(p) := Zp ∩Q. Let S be the set of primes such that

a(n) ∈ Z(p) for all n if, and only if, p 6∈ S. Thus S is finite by hypothesis.

Since f is normalized, we see that b(n) ∈ Z(p) for all n if p 6∈ S. Since
(α
n

)

∈ Z(p) for α ∈ Z(p), as easily follows from p-adic continuity, we also

conclude as in the proof of Theorem 1 that c(n) ∈ Z(p) for all n if p 6∈ S.

By [Sh, Thm. 3.52], the space S2(Γ) of weight 2 cusp-forms on Γ has a

basis of functions whose Fourier coefficients are integers, hence there exists

A ∈ N such that

(6) Ab(n) ∈ Z

for all n. Choosing A minimal, it follows that the primes dividing A are

contained in S.

Let n ∈ N and write n = n1m where n1,m ∈ N, n1 has only prime

divisors in S and m is coprime to all primes in S. Since Anc(n) ∈ Z by (5)

and (6) and c(n) is p-integral for p 6∈ S, it follows that

(7) An1c(n) ∈ Z

for all n. By the Eichler-Shimura-Deligne estimates for Fourier coefficients

of weight 2 cusp-forms on a congruence subgroup, we have

(8) b(n) ≪f,ǫ n
1/2+ǫ (ǫ > 0),

hence by (5) we obtain

(9) nc(n) ≪f,ǫ

∑

d|n

d1/2+ǫ ≤ n1/2+ǫσ0(n) ≪ǫ n
1/2+2ǫ.
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If c(n) 6= 0, we therefore conclude from (7) and (9) that

m

A
≤
m

A
· An1|c(n)| = n|c(n)| ≪f,ǫ (n1m)1/2+ǫ (ǫ > 0),

and hence

m≪f,ǫ A
2

1−2ǫn
1+2ǫ
1−2ǫ

1 (0 < ǫ < 1/2).

Taking e.g. ǫ = 1/4 (which is sufficient for our purposes), we thus infer that

for n = n1m with n1 and m as above we either must have

(10) c(n) = 0,

or else m is bounded by

(11) m ≤ C ·A4 · n3
1

where C is an absolute constant depending only on f .

If S = {p1, . . . , pt} and n1 = pα1

1 · · · pαt
t (αν ≥ 0), then (11) in particular

implies that

(12) m ≤ K(α1, . . . , αt)

where

K(α1, . . . , αt) := C · p
4(e+α1)
1 · · · p

4(e+αt)
t

and e is an appropriately chosen positive integer.

We will now argue that the Hecke L-series

Lg(s) :=
∑

n≥1

b(n)n−s

attached to g, which is known to converge absolutely for σ > 3/2, is in fact

absolutely convergent for σ > 13
10 . From this one easily derives a contradic-

tion (unless g = 0, i.e. f = 1) by again comparing with the Rankin-Selberg

series Rg(s).

Indeed, from (10) and (12) it follows for any ǫ > 0 that
∑

n≥1

|c(n)|n−σ+1 =
∑

α1,...,αt≥0, m≤K(α1,...,αt)

|c(mpα1

1 · · · pαt
t )|(mpα1

1 · · · pαt
t )−σ+1

≪f,ǫ

∑

α1,...,αt≥0, m≤K(α1,...,αt)

(mpα1

1 · · · pαt
t )−σ+1/2+ǫ

=
∑

α1,...,αt≥0

(pα1

1 · · · pαt
t )−σ+1/2+ǫ

(

∑

m≤K(α1,...,αt)

m−σ+1/2+ǫ
)
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where in the second line we have used (8).

Suppose that 1
2 + ǫ < σ < 3

2 + ǫ. Then for any K > 2 we clearly have

∑

m≤K

m−σ+1/2+ǫ ≤ 1 +

∫ K

2
x−σ+1/2+ǫ dx≪ K−σ+3/2+ǫ.

Therefore for such σ we obtain that

∑

n≥1

|c(n)|n−σ+1 ≪f,ǫ

∑

α1,...,αt≥0

(pα1

1 · · · pαt
t )−σ+1/2+ǫK(α1, . . . , αt)

−σ+3/2+ǫ.

The sum on the right-hand side is equal to

(p1 · · · pt)
4e(−σ+3/2+ǫ)

∑

α1,...,αt≥0

(pα1

1 · · · pαt
t )−5σ+13/2+5ǫ

which is ≪f,ǫ 1 for σ > 13
10 + ǫ.

We therefore deduce that the Dirichlet series

∑

n≥1

c(n)n−s+1

is absolutely convergent on any line close to the right of the line σ = 13
10 ,

hence must be absolutely convergent for σ > 13
10 .

Now observe that (4) is equivalent to

Lg(s) = −ζ(s)
(

∑

n≥1

c(n)n−s+1
)

(σ > 3/2)

and so Lg(s) indeed is absolutely convergent for σ > 13
10 . Therefore by (8)

we infer that

Rg(σ) ≪f,ǫ

∑

n≥1

|b(n)|n−σ+1/2+ǫ <∞

for σ > 9
5 + ǫ and any ǫ > 0. Since Rg(s) has a pole at s = 2 > 9

5 of

residue 〈g, g〉 as already stated above, it follows that g = 0, i.e. f = 1. This

completes the proof of Theorem 2.
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§3. GMFs with cuspidal divisor

In this section we always take the subgroup Γ to be Γ0(N). We let f

be a GMF on Γ0(N) of some integral weight k, and consider the possibility

that the GMF f has all of its poles and zeros at the cusps of Γ. We will

prove Conjecture (2) assuming an additional mild cusp condition.

Recall that a complete set of representatives of the cusps of Γ0(N) is

given by the numbers a/c where c runs over positive divisors of N , and

for given c, a runs through integers with 1 ≤ a ≤ N , (a,N) = 1 that are

inequivalent modulo (c,N/c).

The width of the cusp a/c is given by

(13) w = wa/c =
N

(c2,N)
.

If f is a GMF of integral weight k on Γ0(N), then at the cusp a/c, f

has a Fourier expansion

(cτ + d)−kf
(aτ + b

cτ + d

)

=
∑

n≫−∞

a(n)qn/w

convergent in a small punctured neighborhood of q = 0, where b, d are

integers with ad− bc = 1.

If f is not identically zero, recall that the order orda/c f of f at a/c

is defined as n0 where n0 is the smallest integer such that a(n0) 6= 0. We

introduce the following hypothesis:

(14) Condition C: for each c|N , the order orda/c f is independent of a.

Theorem 3. Let f be a GMF of integral weight k on Γ0(N), and sup-

pose that the poles and zeros of f are supported at the cusps. Suppose further

that the Fourier coefficients satisfy the same conditions as in Theorem 2 and

that f satisfies condition C. Then f is an eta-quotient, i.e. there are integers

M 6= 0 and mt (t|N) such that

fM(τ) =
∏

t|N

∆(tτ)mt ,

where ∆(τ) is the classical discriminant. In particular, f is modular.
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Proof. We have

∆(τ) = q
∏

n≥1

(1 − qn)24.

For given integers mt (t|N) put

F (τ) =
∏

t|N

∆(tτ)mt .

Then F is on Γ0(N) and as is well-known (cf. [M] and references therein),

one has

orda/c F = wa/c

∑

t|N

(t, c)2

t
mt

with wa/c given by (13).

Note that wa/c
(t,c)2

t is indeed an integer for t|N , orda/c F is independent

of a, and F is normalized with integral Fourier coefficients.

We want to show that the mt can be chosen such that

(15) orda/c F = mha/c

for all cusps a/c of Γ0(N). Here, ha/c is the order of f12 at a/c and m is

an appropriate non-zero integer depending only on f . Note that ha/c is an

integer by assumption and is independent of a. It is sufficient to prove that

the rational square matrix

AN =
(

(t, c)2
)

t|N, t|c

of size σ0(N) and with the divisors of N arranged in some fixed order, is

invertible.

If N = N1N2 with (N1, N2) = 1, then clearly

AN = AN1
⊗AN2

is the Kronecker product of AN1
and AN2

(the arrangements of the orders

of the divisors of N1 and N2 in AN1
and AN2

have to be made compatible

with those in AN ). Hence

‖AN‖ = ‖AN1
‖σ(N2) ‖AN2

‖σ(N1)

(‖A‖ means the determinant of a square matrix A).
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It is therefore sufficient to show that Apα is invertible for all primes p

and all α ≥ 1. Fix a prime p and put x := p2. Then we find from the

definition that

Apα =















1 1 1 · · · 1
1 x x · · · x
1 x x2 · · · x2

...
...

1 x x2 · · · xα















.

Suppose that α ≥ 2. By Laplace’s rule, expanding the determinant

with respect to the first column, we find that

|Apα | =

∣

∣

∣

∣

∣

∣

∣

∣

∣

x x · · · x
x x2 · · · x2

...
...

...
x x2 · · · xα

∣

∣

∣

∣

∣

∣

∣

∣

∣

−

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 1 · · · 1
x x2 · · · x2

...
...

...
x x2 · · · xα

∣

∣

∣

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 1 · · · 1
x x · · · x
...

...
...

x x2 · · · xα

∣

∣

∣

∣

∣

∣

∣

∣

∣

∓ · · ·

(16)

= (xα − xα−1)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 1 1 · · · 1
1 x x · · · x
1 x x2 · · · x2

...
...

...
...

1 x x2 · · · xα−1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

since the third and higher terms of the sum on the right-hand side of (16)

clearly vanish.

We thus obtain

|Apα | = p2α−2(p2 − 1)|Apα−1 | (∀α ≥ 2).

Since

|Ap| = p2 − 1

we therefore see by induction that Apα is invertible for all α ≥ 1. We thus

have established formula (15), with an appropriate m.

Let k1 be the weight of F . Since ∆ does not vanish on H, we find from

the valence formula applied to F that the sum of the orders of F at the

different cusps of Γ0(N) is equal to

k1

12
[Γ(1) : Γ0(N)].
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On the other hand, by [KM1, Lemma 3.5] the valence formula is also valid

for the GMF f12 of weight 12k. Since f has no zeros on H by assumption,

we therefore deduce from (15) that

k1 = 12mk.

Letting M = 12m we see that fM/F is a GMF satisfying all of the as-

sumptions of Theorem 2. We conclude from the Theorem that fM = F , as

required. This completes the proof of Theorem 3.

§4. Vertex operator algebras and GMFs

The purpose of this section is to review some results from the theory

of orbifolds, i.e. the action of finite groups on vertex operator algebras, and

explain how GMFs arise in this context. We refer to [DLM] and [DM1] for

further background and details. However, a detailed understanding of VOA

theory will not be required in order to understand the results of this section.

We work in the following setting2:

V is a C2-cofinite, holomorphic vertex operator algebra over C

with decomposition

V = C1⊕ V1 ⊕ V2 · · ·

into L(0)-eigenspaces and central charge c divisible by 24.

G ⊆ AutV is a finite group of automorphisms of V .

(17)

For example, the Moonshine Module V ♮ satisfies these conditions (loc. cit.)

with c = 24 and G the Monster simple group M . Each homogeneous space

Vn is a finite-dimensional G-module (with V0 = C1 the trivial module), and

we denote by an the character of G afforded by Vn. Then for h ∈ G we set

(18) Z(h, τ) = q−c/24
∞
∑

n=0

an(h)qn.

Note that if h = 1 then (18) is just the graded dimension of V :

(19) Z(1, τ) = q−c/24
∞
∑

n=0

(dimVn)qn = q−c/24 + · · · .

2See the footnote on p. 121 regarding the adjective ‘holomorphic’ that occurs in (17).
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Zhu proved [Z] that (19) is a modular function (weight zero) on the full

modular group SL(2,Z), possibly with a character (which necessarily has

order dividing 3). It is expected that all of the trace functions (18) are

modular functions on a congruence subgroup of SL(2,Z), but this remains

open.

Next we record some general properties of the trace functions (18) which

follow from elementary facts about complex representations of a finite group.

Because V is holomorphic it admits a unique normalized, non-degenerate,

invariant bilinear form 〈 , 〉 ([L]), moreover the form is both symmetric

[FHL] and G-invariant. This implies that each an is an orthogonal repre-

sentation of G, and hence

the coefficients an(h) are real algebraic integers in

Z[ζN ], where ζN = e2πi/N and N is the order of h.
(20)

For an integer d coprime to N , let σd be the Galois automorpism of Q(ζN )

induced by ζN 7→ ζd
N . Denote by Z(h, τ)σd the q-expansion obtained by

replacing each coefficient an(h) by an(h)σd . Then an(h)σd is the character

of G given by the dth Adams operation ψd(an), and

Z(h, τ)σd = q−c/24
∞
∑

n=0

ψd(an)(h)qn = Z(hd, τ).

In particular, the following are equivalent:

(a) Z(h, τ) = Z(hd, τ) whenever (N, d) = 1

(b) each an restricts to a rational representation of 〈h〉

(c) Z(h, τ) has integral coefficients.

(21)

The next result is deeper, and is proved in [DLM]:

each Z(h, τ) is holomorphic in τ , i.e. it is a holomorphic

function in the complex upper half-plane H.
(22)

Now we need the twisted sectors. For each element g ∈ G, a g-twisted

sector is a certain vector space analogous to (17) which admits an irreducible

action of V by g-twisted operators. We will not need the details of this

definition, only the consequences established in [DLM]. Namely, for each g

there is a unique g-twisted sector (up to isomorphism), denoted by V (g).
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If g = 1 then V (1) is nothing but the vertex operator algebra V . The L(0)

operator induces a grading on V (g) of the form

(23) V (g) =

∞
∑

n=0

V (g)n/N+λg

where λg (the conformal weight of V (g)) lies in Q and V (g)λg 6= 0. There

is a projective action of the centralizer CG(g) = {h ∈ G | gh = hg}

on V (g). That is, V (g) determines a 2-cocycle αg ∈ Z2(CG(g),C∗) such

that each V (g)n/N+λg
affords a representation of the twisted group algebra

Cαg [CG(g)]. We denote the corresponding character by an,g. For each pair

of commuting elements g, h ∈ G, regarded as elements of Cαg [CG(g)], we

define

(24) Z(g, h, τ) = q−c/24+λg

∞
∑

n=0

an,g(h)q
n/N .

A little care is needed with this definition. Replacing αg by a cohomologous

2-cocycle will give a different graded trace which will differ from (24) by an

overall nonzero scalar. Because V (1) is identifed with V , Z(1, h, τ) is just

different notation for Z(h, τ). All of these q-expansions enjoy property (22),

i.e. they are holomorphic in H. Note that taking h = 1 in (24) yields the

graded dimension of V (g). Thus,

Z(g, 1, τ) = q−c/24+λg

∞
∑

n=0

dimV (g)n/N+λg
qn/N(25)

has nonnegative integral coefficients.(26)

Within the setting in which we are working, the main modular-invari-

ance result of [DLM] says the following3:

Let γ =

(

a b
c d

)

∈ SL(2,Z). There is a nonzero scalar ǫ(γ, g, h)

independent of τ such that

Z(g, h, γτ) = ǫ(γ, g, h)Z((g, h)γ, τ)(27)

where (g, h)γ = (gahc, gbhd).

3The reader should have no difficulty distinguishing between the lower left entry of
matrices such as γ, and the central charge, both of which we denote by c.
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From now on we take G = 〈h〉 to be the cyclic group generated by an

element h of order N . Choosing γ ∈ Γ1(N) and g = 1 in (27), and setting

χh(γ) = ǫ(γ, 1, h), we obtain

(28) Z(h, γτ) = χh(γ)Z(h, τ).

So (27) and (28) together show that

Z(h, τ) is a GMF of weight zero on Γ1(N) with character χh.

If instead we take γ ∈ Γ0(N) in (27), we find that (28) still holds as long

as Z(h, τ) is replaced on the right hand side by Z(hd, τ). From (21) we can

conclude:

Suppose that Z(h, τ) has integral coefficients. Then

Z(h, γτ) = χh(γ)Z(h, τ), γ ∈ Γ0(N),

and Z(h, τ) is a GMF of weight zero on Γ0(N) with character χh.

We now show that if Z(h, τ) is a GMF on Γ0(N) (regardless of the

nature of the Fourier coefficients), then Z(h, τ) satisfies Condition C (14).

A cusp a/c of Γ0(N) with c|N corresponds to a double coset

Γ0(N)

(

a b
c d

)〈

±

(

1 1
0 1

)〉

and we may choose a, d to be coprime to N . If we make such a choice, and

set γ =

(

a b
c d

)

, then Z(h, γτ) is a q-expansion for Z(h, τ) at the cusp a/c.

Hence (27) tells us that

Z(h, γτ) ∼ Z(hc, hd) ∼ Z(hc, h)σd ,

where we have used ∼ to indicate that the relevant q-expansions differ only

by an overall nonzero scalar. In particular, the order of Z(h, τ) at the cusp

a/c is independent of a, as required.

We collect some of our results together in the next Theorem.

Theorem 4. Let V be a holomorphic vertex operator algebra (17), and

suppose that h is an automorphism of V of finite order N . Then the follow-

ing hold :

(a) Z(h, τ) is a GMF on Γ1(N);

(b) If Z(h, τ) has integral coefficients then it is a GMF on Γ0(N);

(c) If Z(h, τ) is a GMF on Γ0(N) then it satisfies Condition C.
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Corollary 5. Let the assumptions be as in Theorem 4. If Z(h, τ) has

integral coefficients and its zeros are at the cusps of Γ0(N) then Z(h, τ) is

an eta-quotient. In particular, Z(h, τ) is a modular function of weight zero

on Γ0(N).

The Corollary follows from Theorems 3 and 4 together with (22) and

applies, for example, to lattice vertex operator algebras VL ([FLM]) where

L is an even, self-dual lattice and h arises from a fixed-point-free automor-

phism of L.

Concerning the particular case of the Moonshine Module V ♮, we observe

that condition (21)(b) holds in this case. Indeed, perusal of the character

table of the Monster group [A] shows that an irreducible complex character

of M is either rational or not self-dual. Therefore, all real representations

of M are rational, and our assertion follows from (20). (A slightly different,

but equivalent, discussion is given in [DM2, p. 118].) As a result, each

Z(h, τ) has integral Fourier coefficents by (21), hence by Theorem 4 it is a

GMF on some Γ0(N) which satisfies Condition C. Hence,

Corollary 6. Suppose that V is the Moonshine Module V ♮ and h ∈

M has order N . Then Z(h, τ) is a GMF on Γ0(N) which has rational

integral Fourier coefficients and which satisfies Condition C.

In this case, a number of elements h ∈ M satisfy the condition that

for some constant α,Z(h, τ) + α has its pole(s) and zero(s) at the cusps

(cf. [CN]). Removal of the requirement of a cuspidal divisor in Theorem 3

would, by Corollary 6, prove the modularity of all Monster trace functions.

Of course, in this case the resulting modular function is not necessarily an

eta-quotient.
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