On Generalized ϕ -Recurrent LP-Sasakian Manifolds

Jai Prakash Jaiswal* and Ram Hit Ojha

Department of Mathematics Faculty of Science Banaras Hindu University Varanasi U. P. India 221005.

e-mail: jaipjai_m@rediffmail.com and rh_ojha@rediffmail.com

ABSTRACT. In this paper we studied generalized ϕ -recurrent and generalized concircular ϕ -recurrent LP-Sasakian manifolds.

1. Introduction

In 1977, T. Takahashi[4], introduced the notion of locally φ-symmetric Sasakian manifolds and obtained some interesting properties. Some authors like U.C. De and G. Pathak[8], Venkatesha and C.S. Bagewadi[9], A.A. Shaikh and U.C. De[10] have extended this notion to 3-dimentional Kenmotsu, trans-Sasakian, LP-Sasakian manifolds respectively.

In present paper we studied generalized ϕ -recurrent and generalized concircular ϕ -recurrent LP-Sasakian manifolds. The paper is organized as follows: In section 2, we give a brief account of LP-Sasakian manifolds. In section 3, we studied generalized ϕ -recurrent LP-Sasakian manifolds. At first it is shown that a generalized ϕ -recurrent LP-Sasakian manifold is an Einstein manifold. Then we have shown that in a generalized ϕ -recurrent LP-Sasakian manifold the characteristic vector field ξ and the vector field $\rho + \sigma$ associated with 1-form $\alpha + \beta$ are in opposite direction. In section 4, we studied generalized concircular ϕ -recurrent LP-Sasakian manifolds. We first obtain the relation between the 1-forms α and β , then we prove that it is an Einstein manifold. Finally we have shown that the characteristic vector field ξ and the vector fields ρ , σ associated to the 1-forms α , β respectively are in opposite direction.

2. Preliminaries

An *n*-dimensional differentiable manifold M_n is called an LP-Sasakian manifolds [1], [2] if it admitts a (1,1) tensor field ϕ , a vector field ξ , a 1-form η and a Lorentzian metric g which satisfy

(1)
$$\eta(\xi) = -1, \phi^2(X) = X + \eta(X)\xi,$$

Received April 14, 2009; revised September 10, 2009; accepted September 20, 2009. 2000 Mathematics Subject Classification: 53C05, 53C20, 53C25, 53D15.

Key words and phrases: Generalized ϕ -recurrent, generalized concircular ϕ -recurrent, LP-Sasakian manifold, Einstein manifold.

^{*} Corresponding author.

(2)
$$g(\phi X, \phi Y) = g(X, Y) + \eta(X)\eta(Y),$$

(3)
$$g(X,\xi) = \eta(X), \nabla_X \xi = \phi X,$$

(4)
$$(\nabla_X \phi)(Y) = g(X, Y)\xi + \eta(Y)X + 2\eta(X)\eta(Y)\xi,$$

where ∇ denotes the operator of covariant differentiation with respect to the Lorentzian metric g.

It can easily be seen that in an LP-Sasakian manifold, the following relations hold

$$\phi \xi = 0, \eta(\phi X) = 0,$$

(6)
$$rank(\phi) = n - 1.$$

Further in an LP-Sasakian manifold the following relations also hold[2],[3]

(7)
$$(a) R(X, Y, \xi) = \eta(Y)X - \eta(X)Y,$$

(b)
$$R(\xi, X, Y) = g(X, Y)\xi - \eta(Y)X$$
,

$$S(X,\xi) = (n-1)\eta(X),$$

(9)
$$R(X,\xi,\xi) = -X - \eta(X)\xi,$$

(10)
$$\eta(R(X,Y,Z)) = q(Y,Z)\eta(X) - q(X,Z)\eta(Y),$$

(11)
$$S(\phi X, \phi Y) = S(X, Y) + (n-1)\eta(X)\eta(Y),$$

$$(12) \qquad (\nabla_X \eta)(Y) = g(X, \phi Y) = g(\phi X, Y),$$

for any vector fields X, Y, Z, where R(X, Y, Z) is the curvature tensor, S is the Ricci tensor.

3. Generalized ϕ -recurrent LP-Sasakian Manifolds.

Analogous of consideration of generalized recurrent manifolds[5], we give the following definition.

Definition 3.1. An LP-Sasakian manifold is called generalized ϕ -recurrent if its curvature tensor R satisfies the condition

(13)
$$\phi^{2}((\nabla_{W}R)(X,Y,Z)) = \alpha(W)R(X,Y,Z) + \beta(W)[g(Y,Z)X - g(X,Z)Y],$$

where α and β are two 1-forms, β is non-zero and these are defined by

(14)
$$\alpha(W) = g(W, \rho), \beta(W) = g(W, \sigma),$$

and ρ , σ are vector fields associated with 1-forms α , β respectively.

If the 1-form β in (13) becomes zero, then the manifold reduces to a ϕ -recurrent LP-Sasakian manifold. ϕ -recurrent LP-Sasakian manifolds have been studied by Al-Aqeel, De and Ghosh[13].

From (13) using (1), we have

(15)
$$(\nabla_W R)(X, Y, Z) + \eta((\nabla_W R)(X, Y, Z))\xi$$

$$= \alpha(W)R(X, Y, Z) + \beta(W)[g(Y, Z)X - g(X, Z)Y],$$

from which it follows that

(16)
$$g((\nabla_W R)(X, Y, Z), U) + \eta((\nabla_W R)(X, Y, Z))\eta(U) \\ = \alpha(W)g(R(X, Y, Z), U) + \beta(W)[g(Y, Z)g(X, U) - g(X, Z)g(Y, U)].$$

Let $\{e_i\}$, i=1,2,....,n be an orthonormal basis of the tangent space at any point of the manifold. Then putting $X=U=e_i$ in (16) and taking summation over i, $1 \le i \le n$, we get

(17)
$$(\nabla_W S)(Y, Z) + \sum_{i=1}^n \eta((\nabla_W R)(e_i, Y, Z))\eta(e_i)$$

$$= \alpha(W)S(Y, Z) + (n-1)\beta(W)g(Y, Z).$$

The second term of L.H.S. in (17) by putting $Z = \xi$ assumes the form

$$g((\nabla_W R)(e_i, Y, \xi), \xi)g(e_i, \xi),$$

which is denoted by E. In this case E vanishes. Namely we have

$$g((\bigtriangledown_W R)(e_i, Y, \xi), \xi) = g(\bigtriangledown_W R(e_i, Y, \xi), \xi) - g(R(\bigtriangledown_W e_i, Y, \xi), \xi) - g(R(e_i, \bigtriangledown_W Y, \xi), \xi) - g(R(e_i, Y, \bigtriangledown_W \xi), \xi),$$

at $p \in M$. Since $\{e_i\}$ is an orthonormal basis, so $\nabla_X e_i = 0$ at p. Using (7), we obtain

$$g(R(e_i, \nabla_W Y, \xi), \xi) = g(\nabla_W Y, \xi)g(e_i, \xi) - g(\xi, e_i)g(\nabla_W Y, \xi) = 0.$$

Thus we obtain

$$g((\nabla_W R)(e_i, Y, \xi), \xi) = g(\nabla_W R(e_i, Y, \xi), \xi) - g(R(e_i, Y, \nabla_W \xi), \xi).$$

In virtue of $q(R(e_i, Y, \xi), \xi) = q(R(\xi, \xi, Y), e_i) = 0$, we have

$$q(\nabla_W R(e_i, Y, \xi), \xi) + q(R(e_i, Y, \xi), \nabla_W \xi) = 0,$$

which implies

$$g((\nabla_W R)(e_i, Y, \xi), \xi) = -g(R(e_i, Y, \xi), \nabla_W \xi) - g(R(e_i, Y, \nabla_W \xi), \xi).$$

Hence we reach

$$E = -\sum_{i=1}^{n} \{ g(R(\phi W, \xi, Y), e_i) g(\xi, e_i) + g(R(\xi, \phi W, Y), e_i) g(\xi, e_i) \}$$

= -\{ g(R(\phi W, \xi, Y), \xi) + g(R(\xi, \phi W, Y), \xi) \} = 0.

Replacing Z by ξ in (17) and using (8), we get

(18)
$$(\nabla_W S)(Y, \xi) = (n-1)\alpha(W)\eta(Y) + (n-1)\beta(W)\eta(Y).$$

Now, we have

$$(\nabla_W S)(Y, \xi) = \nabla_W S(Y, \xi) - S(\nabla_W Y, \xi) - S(Y, \nabla_W \xi).$$

Using (8) and (3) in the above relation, it follows that

(19)
$$(\nabla_W S)(Y, \xi) = (n-1)g(W, \phi Y) - S(Y, \phi W).$$

In view of (18) and (19), we obtain

$$(20) (n-1)g(W,\phi Y) - S(Y,\phi W) = (n-1)\alpha(W)\eta(Y) + (n-1)\beta(W)\eta(Y).$$

Replacing Y by ϕY in (20) and then using (1), (5) and (11), we get

(21)
$$S(Y, W) = (n-1)g(Y, W),$$

for all Y, W. This leads the following.

Theorem 3.1. A generalized ϕ -recurrent LP-Sasakian manifold is an Einstein manifold.

Two vector fields P and Q are said to be codirectional if P = fQ, where f is a non-zero scalar. That is g(P, X) = fg(Q, X) for all X.

Now from (13), we have

(22)
$$(\nabla_W R)(X, Y, Z) = -\eta((\nabla_W R)(X, Y, Z))\xi + \alpha(W)R(X, Y, Z)$$
$$+\beta(W)[g(Y, Z)X - g(X, Z)Y].$$

Then by use of second Bianchi's identity and (22), we get

(23)
$$\alpha(W)\eta(R(X,Y,Z)) + \alpha(X)\eta(R(Y,W,Z)) + \alpha(Y)\eta(R(W,X,Z)) + \beta(W)[g(Y,Z)\eta(X) - g(X,Z)\eta(Y)] + \beta(X)[g(W,Z)\eta(Y) - g(Y,Z)\eta(W)] + \beta(Y)[g(X,Z)\eta(W) - g(W,Z)\eta(X)] = 0.$$

By virtue of (10), we obtain from (23)

(24)
$$[\alpha(W) + \beta(W)][g(Y,Z)\eta(X) - g(X,Z)\eta(Y)]$$

$$+ [\alpha(X) + \beta(X)][g(W,Z)\eta(Y) - g(Y,Z)\eta(W)]$$

$$+ [\alpha(Y) + \beta(Y)][g(X,Z)\eta(W) - g(W,Z)\eta(X)] = 0.$$

Putting $Y = Z = e_i$ in (24) and taking summation over $i, 1 \le i \le n$, we get

(25)
$$\{\alpha(W) + \beta(W)\}\eta(X) = \{\alpha(X) + \beta(X)\}\eta(W),$$

for all vector fields X, W.

Replacing X by ξ in (25), it follows that

(26)
$$\alpha(W) + \beta(W) = -\eta(W)[\eta(\rho) + \eta(\sigma)],$$

for any vector field W, where $\alpha(\xi) = g(\xi, \rho) = \eta(\rho)$ and $\beta(\xi) = g(\xi, \sigma) = \eta(\sigma)$.

From (25) and (26) we can state that the following.

Theorem 3.2. In a generalized ϕ -recurrent LP-Sasakian manifold the characteristic vector field ξ and the vector field $\rho + \sigma$ associated to the 1-form $\alpha + \beta$ are in opposite direction.

In view of (3) and (7) it can be easily seen that in an LP-Sasakian manifold the following relation holds

$$(27) \qquad (\nabla_W R)(X, Y, \xi) = g(W, \phi Y)X - g(W, \phi X)Y - R(X, Y, \phi W).$$

By virtue of (10), it follows from (27), that

(28)
$$\eta((\nabla_W R)(X, Y, \xi)) = 0.$$

Now assume that X, Y and Z are (local) vector fields such that $(\nabla X)_p = (\nabla Y)_p = (\nabla Z)_p = 0$ for a fixed point p of M_n . By Ricci identity for $\phi[6]$

$$-(R(X,Y).\phi Z) = (\nabla_X \nabla_Y \phi)Z - (\nabla_Y \nabla_X \phi)Z.$$

We have at the point p,

$$-R(X,Y,\phi Z) + \phi R(X,Y,Z) = \nabla_X((\nabla_Y \phi)Z) - \nabla_Y((\nabla_X \phi)Z).$$

Using (4), we have

$$\begin{split} -R(X,Y,\phi Z) + \phi R(X,Y,Z) \\ &= \bigtriangledown_X \left\{ g(Y,Z)\xi + \eta(Z)Y + 2\eta(Y)\eta(Z)\xi \right\} \\ &- \bigtriangledown_Y \left\{ g(X,Z)\xi + \eta(Z)X + 2\eta(X)\eta(Z)\xi \right\} \\ &= g(Y,Z) \bigtriangledown_X \xi + (\bigtriangledown_X \eta)(Z)Y + 2(\bigtriangledown_X \eta)(Y)\eta(Z)\xi \\ &+ 2(\bigtriangledown_X \eta)(Z)\eta(Y)\xi + 2\eta(Y)\eta(Z)\bigtriangledown_X \xi \\ &- g(X,Z) \bigtriangledown_Y \xi - (\bigtriangledown_Y \eta)(Z)X - 2(\bigtriangledown_Y \eta)(X)\eta(Z)\xi \\ &- 2(\bigtriangledown_Y \eta)(Z)\eta(X)\xi - 2\eta(X)\eta(Z)\bigtriangledown_Y \xi. \end{split}$$

In view of (3) and (12) the above equation becomes

(29)
$$R(X,Y,\phi Z) = -g(\phi X,Z)Y - g(Y,Z)\phi X + g(\phi Y,Z)X + g(X,Z)\phi Y$$
$$-2g(X,\phi Z)\eta(Y)\xi - 2\eta(Y)\eta(Z)\phi X$$
$$+2g(Y,\phi Z)\eta(X)\xi + 2\eta(X)\eta(Z)\phi Y + \phi R(X,Y,Z),$$

for any $X, Y, Z \in T_pM$. From (27) and (29), it follows that

(30)
$$(\nabla_W R)(X, Y, \xi) = g(Y, W)\phi X - g(X, W)\phi Y + 2g(X, \phi W)\eta(Y)\xi + 2\eta(Y)\eta(W)\phi X - 2g(Y, \phi W)\eta(X)\xi - 2\eta(X)\eta(W)\phi Y - \phi R(X, Y, W).$$

In view of (15) and (28), we obtain from (30)

$$\begin{split} \alpha(W) R(X,Y,\xi) + \beta(W) [g(Y,\xi)X - g(X,\xi)Y] \\ &= g(Y,W) \phi X - g(X,W) \phi Y + 2g(X,\phi W) \eta(Y) \xi + 2\eta(Y) \eta(W) \phi X \\ &- 2g(Y,\phi W) \eta(X) \xi - 2\eta(X) \eta(W) \phi Y - \phi R(X,Y,W). \end{split}$$

In view of (7) and (26), the above equation becomes

(31)

$$-\eta(W)[\eta(\rho) + \eta(\sigma)][\eta(Y)X - \eta(X)Y]$$

$$= g(Y, W)\phi X - g(X, W)\phi Y + 2g(X, \phi W)\eta(Y)\xi + 2\eta(Y)\eta(W)\phi X$$

$$- 2g(Y, \phi W)\eta(X)\xi - 2\eta(X)\eta(W)\phi Y - \phi R(X, Y, W).$$

Hence if X and Y are orthogonal to ξ , then (31) reduces to

(32)
$$\phi R(X, Y, W) = g(Y, W)\phi X - g(X, W)\phi Y.$$

operating ϕ on both sides of (32) and using(1), we get

$$R(X, Y, W) = q(Y, W)X - q(X, W)Y.$$

This leads the following.

Theorem 3.3. A generalized ϕ -recurrent LP-Sasakian manifold is a space of constant curvature provided that X and Y are orthogonal to ξ .

4. Generalized concircular ϕ -recurrent LP-Sasakian manifolds.

Analogous of consideration of generalized recurrent manifolds[5], we give the following definition.

Definition 4.1. An LP- Sasakian manifold is called generalized concircular ϕ -recurrent if its concircular curvature tensor C,

(33)
$$C(X,Y,Z) = R(X,Y,Z) - \frac{r}{n(n-1)} [g(Y,Z)X - g(X,Z)Y]$$

satisfies the condition

(34)
$$\phi^2((\nabla_W C)(X, Y, Z)) = \alpha(W)C(X, Y, Z) + \beta(W)[g(Y, Z)X - g(X, Z)Y],$$

where α and β are defined as (14) and r is the scalar curvature.

If the 1-form β in (34) becomes zero, then the manifold reduces to a concircular ϕ -recurrent manifolds. Concircular ϕ -recurrent LP-Sasakian manifolds has been studied by Venkatesha and Bagewadi[14].

Let us consider a generalized concircular ϕ -recurrent LP-Sasakian manifold. Then by virtue of (1) and (34), we have

(35)
$$(\nabla_W C)(X, Y, Z) + \eta((\nabla_W C)(X, Y, Z))\xi$$

$$= \alpha(W)C(X, Y, Z) + \beta(W)[q(Y, Z)X - q(X, Z)Y],$$

from which it follows that

(36)
$$g((\bigtriangledown_W C)(X, Y, Z), U) + \eta((\bigtriangledown_W C)(X, Y, Z))\eta(U) \\ = \alpha(W)g(C(X, Y, Z), U) + \beta(W)[g(Y, Z)g(X, U) - g(X, Z)g(Y, U)].$$

Let $\{e_i\}$, i=1,2,....,n be orthonormal basis of the tangent space at any point of the manifold. Then putting $Y=Z=e_i$ in (36) and taking summation over $i,1 \le i \le n$, we get

(37)
$$(\nabla_W S)(X, U) - \frac{W(r)}{n} g(X, U) + (\nabla_W S)(X, \xi) \eta(U) - \frac{W(r)}{n} \eta(X) \eta(U)$$

$$= \alpha(W) [S(X, U) - \frac{r}{n} g(X, U)] + (n - 1) \beta(W) g(X, U).$$

Replacing U by ξ in (37) then using (1) and (8), we have

(38)
$$\alpha(W)[(n-1) - \frac{r}{n}]\eta(X) + (n-1)\beta(W)\eta(X) = 0.$$

Putting $X = \xi$ in (38), we obtain

(39)
$$[(n-1) - \frac{r}{n}]\alpha(W) + (n-1)\beta(W) = 0.$$

Theorem 4.1. Let (M_n, g) be a generalized concircular ϕ -recurrent LP-Sasakian manifold then

$$[(n-1) - \frac{r}{n}]\alpha(W) + (n-1)\beta(W) = 0.$$

Now putting $X = U = e_i$ in (36) and taking summation over $i, 1 \leq i \leq n$, we get

(40)
$$(\nabla_W S)(Y, Z) = -\sum_{i=1}^n g((\nabla_W R)(e_i, Y, Z), \xi)g(e_i, \xi)$$

$$+ \frac{W(r)}{n}g(Y, Z) - \frac{W(r)}{n(n-1)}[g(Y, Z) + \eta(Y)\eta(Z)]$$

$$+ \alpha(W)[S(Y, Z) - \frac{r}{n}g(Y, Z)] + (n-1)\beta(W)g(Y, Z).$$

Replacing Z by ξ in (40) and using (38), we have

(41)
$$(\nabla_W S)(Y,\xi) = \frac{W(r)}{n} \eta(Y).$$

Now, we have

$$(\nabla_W S)(Y,\xi) = \nabla_W S(Y,\xi) - S(\nabla_W Y,\xi) - S(Y,\nabla_W \xi).$$

Using (3) and (8) in the above relation, it follows that

$$(42) \qquad (\nabla_W S)(Y,\xi) = (n-1)g(\phi Y,W) - S(\phi Y,W).$$

In view of (41) and (42)

(43)
$$S(Y, \phi W) = (n-1)g(Y, \phi W) - \frac{W(r)}{n}\eta(Y).$$

Replacing Y by ϕY in (43) then using (2),(5) and (11), we obtain

(44)
$$S(Y,W) = (n-1)g(Y,W).$$

This leads to the following theorem.

Theorem 4.2. A generalized concircular ϕ -recurrent LP-Sasakian manifold is an Einstein manifold.

Now from (35), we have

(45)
$$(\nabla_W C)(X, Y, Z) = \alpha(W)C(X, Y, Z) + \beta(W)[g(Y, Z)X - g(X, Z)Y] - \eta((\nabla_W C)(X, Y, Z))\xi.$$

This implies

(46)
$$(\nabla_W R)(X, Y, Z) = -\eta((\nabla_W R)(X, Y, Z))\xi + \alpha(W)R(X, Y, Z)$$

$$+ \frac{W(r)}{n(n-1)}[g(Y, Z)X - g(X, Z)Y + g(Y, Z)\eta(X)\xi$$

$$- g(X, Z)\eta(Y)\xi] - [\frac{r}{n(n-1)}\alpha(W) - \beta(W)]$$

$$[g(Y, Z)X - g(X, Z)Y].$$

Now from (46) and Bianchi's second identity, we have

(47)
$$\alpha(W)\eta(R(X,Y,Z)) + \alpha(X)\eta(R(Y,W,Z)) + \alpha(Y)\eta(R(W,X,Z))$$

$$= -\{\beta(W) - \frac{r}{n(n-1)}\alpha(W)\}[g(Y,Z)\eta(X) - g(X,Z)\eta(Y)]$$

$$-\{\beta(X) - \frac{r}{n(n-1)}\alpha(X)\}[g(W,Z)\eta(Y) - g(Y,Z)\eta(W)]$$

$$-\{\beta(Y) - \frac{r}{n(n-1)}\alpha(Y)\}[g(X,Z)\eta(W) - g(W,Z)\eta(X)].$$

By virtue of (10), we obtain from (47), that

$$\begin{aligned} \alpha(W)[g(Y,Z)\eta(X) - g(X,Z)\eta(Y)] \\ + \alpha(X)[g(W,Z)\eta(Y) - g(Y,Z)\eta(W)] \\ + \alpha(Y)[g(X,Z)\eta(W) - g(W,Z)\eta(X)] \\ = -\left\{\beta(W) - \frac{r}{n(n-1)}\alpha(W)\right\}[g(Y,Z)\eta(X) - g(X,Z)\eta(Y)] \\ -\left\{\beta(X) - \frac{r}{n(n-1)}\alpha(X)\right\}[g(W,Z)\eta(Y) - g(Y,Z)\eta(W)] \\ -\left\{\beta(Y) - \frac{r}{n(n-1)}\alpha(Y)\right\}[g(X,Z)\eta(W) - g(W,Z)\eta(X)]. \end{aligned}$$

Putting $Y = Z = e_i$ in (48) and taking summation over $i, 1 \leq i \leq n$, we get

(49)
$$(a) \quad \alpha(W)\eta(X) = \alpha(X)\eta(W),$$
$$(b) \quad \beta(W)\eta(X) = \beta(X)\eta(W),$$

for all vector fields X, W. Replacing X by ξ in (49), we get

(50)
$$(a) \quad \alpha(W) = -\eta(W)\eta(\rho),$$
$$(b) \quad \beta(W) = -\eta(W)\eta(\sigma),$$

for all vector field W.

From (49) and (50), we can state the following.

Theorem 4.3. In a generalized concircular ϕ -recurrent LP-Saskian manifold the characteristic vector field ξ and the vector fields ρ , σ associated to the 1-forms α , β respectively are in opposite direction and the 1-forms α , β are given by (50).

Acknowledgment. The authors are thankful to the refree for his valuable suggestions in the improvement of the paper.

References

 K.Matsumoto, On Lorentzian para contact manifolds, Bull. of Yamagata Uni. Nat. Sci., 12 (1989), 151-156.

- [2] K.Matsumoto and I.Mihai, On a certain transformation in LP-Sasakian manifold, Tensor, N.S., 47 (1988), 189-197.
- [3] U.C.De, K.Matsumoto, and A.A.Shaikh, On Lorentzian para-Sasakian manifolds, Reidi-Contidel Seminario Mathematico di Messina, Seric II, Supplemential, 3 (1999), 149-158.
- [4] T.Takahashi, Sasakian ϕ -symmetric spaces, Tohoku Mathematical Journal, **29** (1977), 91-113.
- [5] U.C. De and N.Guha, On generalized recurrent manifolds, Proceedings of the Mathematical Society, 7 (1991), 7-11.
- [6] S.Tanno, Isometric immersions of Sasakian manifold in sphere, Kodai Math. Sem. Rep., 21 (1969), 448-458.
- [7] K.Yano and M.Kon, Structures on Manifolds, Series in Pure Mathematics 3., World Scientific Publishing Co., Singapore.
- [8] U.C.De and G.Pathak, On 3-dimentional Kenmotsu manifolds, Indian J. Pure Appl. Math., 35 (2) (2004), 159-165.
- [9] Venkatesha and C.S.Bagewadi, On 3-dimensional trans-Sasakian manifolds, AMSE, 42 (5) (2005), 63-73.
- [10] A.A.Shaikh and U.C.De, On 3-dimensional LP-Sasakian manifolds, Soochow J. of Math., 26 (4) (2000), 359-368.
- [11] Quddus.Khan, On Generalized recurrent Sasakian manifolds, Kyungpook Math. J., 44 (2004), 167-172.
- [12] J. P.Jaiswal and R. H.Ojha, On Generalized ϕ -recurrent Sasakian manifolds, to appear.
- [13] Adnan. Al-Aqeel, U. C. De and G. C.Ghosh, On Lorentzian Para-Sasakian manifolds, Kuwait J. Science and Engg., 31 (2004), 1-13.
- [14] Venkatesha and C. S.Bagewadi, On concircular ϕ -recurrent LP-Sasakian manifolds, DGDS, **10** (2008), 312-319.