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1 Introduction

An inconvenient truth about quantum integrable models — well-known to experts but sel-

dom acknowledged — is that the corresponding Bethe ansatz (BA) equations (to which

exact solutions of such models invariably reduce) are very difficult to solve. Various ap-

proaches to solving BA equations have been investigated, see e.g. [1, 2] and references

therein. Significant further progress on this problem was recently achieved in [3], which

formulated so-called Q-systems, whose polynomial solutions can be found efficiently; the

zeros of the fundamental Q-function are the sought-after Bethe roots. The SU(2)-invariant

Q-system was an essential ingredient in the recent computation of torus partition func-

tions [4, 5], which exploited also techniques from algebraic geometry.

The Q-systems in [3] were restricted to rational BA equations for closed spin chains

with periodic boundary conditions. The purpose of this paper is to generalize the SU(2)-

invariant Q-system [3] in two different directions: from rational to trigonometric, and from

closed to open. These new Q-systems will be used to compute partition functions for

trigonometric vertex models and for vertex models with boundaries [6, 7].

The outline of this paper is as follows. In section 2, we review the Q-system from [3]

for the closed XXX spin chain with periodic boundary conditions. However, we provide

an alternative derivation based on [8], which is convenient for deriving generalizations. In

section 3, we formulate a Q-system for the closed XXZ spin chain with periodic boundary

conditions. We then turn to open spin chains. In section 4, we formulate a Q-system for

the SU(2)-invariant open XXX spin chain. A Q-system for the quantum-group-invariant

open XXZ spin chain [9] is formulated in section 5. We conclude in section 6 with a brief

summary and a list of some interesting open problems.

2 Closed XXX Q-system

In this section we review the Q-system [3] whose polynomial solutions provide the full

spectrum of the closed XXX spin chain of length N with periodic boundary conditions,

whose Hamiltonian is given by

H =
N∑
k=1

~σk · ~σk+1 , ~σN+1 ≡ ~σ1 . (2.1)

First the model is introduced and its solution by the algebraic BA method is recalled,

together with the physicality conditions for the Bethe roots. We then describe the relevant

Q-system and construct its solution explicitly. We show that polynomial solutions are in

one-to-one correspondence with the physical solutions.

2.1 Review of the algebraic BA solution

The closed spin-1/2 XXX spin chain and its solution can be succinctly formulated with

the help of an SU(2)-invariant solution of the Yang-Baxter equation given by the 4 × 4

R-matrix (see e.g. [10])

R(u) =

(
u− i

2

)
I + iP , (2.2)
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where P is the permutation matrix, I is the identity matrix, and u is the spectral parameter.

For N sites with periodic boundary conditions, one can introduce the monodromy matrix

M and the transfer matrix T as

T(u) = tr0(M0(u)) , M0(u) = R01(u)R02(u) . . .R0N (u) . (2.3)

An auxiliary space denoted by index 0 has been introduced, and lower indices help indicate

the spaces in which operators act. The transfer matrix is obtained by tracing over the

auxiliary space, and thus acts on the quantum space, which is the N -fold tensor product

of C2 accommodating all possible states of spin-up and spin-down. As a consequence of

the Yang-Baxter equation, the transfer matrix forms a one-parameter family of commuting

operators

[T(u),T(v)] = 0 , (2.4)

and generates conserved charges in involution, including the Hamiltonian of the system (2.1).

We are interested in the eigenvectors and eigenvalues of the transfer matrix. The

former can be generated from the all spin-up reference state

|0〉 =

(
1

0

)⊗N
(2.5)

by acting with a matrix element of the monodromy matrix as

B(u1) . . .B(uM )|0〉 ≡ |u1, . . . , uM 〉 , M0(u) =

(
A(u) B(u)

C(u) D(u)

)
. (2.6)

The eigenvalues T (u) of the transfer matrix

T(u)|u1, . . . , uM 〉 = T (u)|u1, . . . , uM 〉 (2.7)

satisfy the TQ-relation

T (u)Q(u) =

(
u+

i

2

)N
Q(u− i) +

(
u− i

2

)N
Q(u+ i) , (2.8)

where Q encodes the Bethe roots {ui}:

Q(u) =

M∏
j=1

(u− uj) . (2.9)

As follows from the definition of the transfer matrix and its commutativity property (2.4),

T (u) is a polynomial in u, and is thus regular at uj . The TQ-relation (2.8) then leads to

the BA equations for the roots:(
uj + i

2

uj − i
2

)N
= −

M∏
k=1

uj − uk + i

uj − uk − i
, j = 1, . . . ,M . (2.10)

For roots with multiplicities, we have further equations [11, 12]. Since repeated roots do

not seem to appear in this model (see e.g. [2]), we assume that roots never coincide.
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We call a solution of the BA equations physical if the corresponding Bethe vector (2.6)

is an eigenvector of the transfer matrix. Unfortunately, not all solutions of the BA equations

are physical. Solutions that contain the roots ± i
2 can be unphysical, i.e. they might solve

the BA equations, but there is no related eigenvector of the transfer matrix. We define

a solution {u1, . . . , uM} of the BA equations to be admissible, if all roots are finite and

pairwise distinct; and, if they are of the form { i2 ,−
i
2 , u1, . . . , uM−2} (which we call a

singular solution), then the further constraint

M−2∏
j=1

(uj + i
2)

(uj − i
2)

(uj + 3i
2 )

(uj − 3i
2 )

= (−1)N (2.11)

is satisfied. It was shown in [13] that admissibility implies physicality, and the converse

follows from Lemmata 2 and 4 of [8]. Hence, admissibility and physicality are equivalent.

The number N (N,M) of admissible solutions of the BA equations with M ≤ N/2 has been

conjectured to be given by (see e.g. [2])

N (N,M) =

(
N

M

)
−
(

N

M − 1

)
. (2.12)

Alternatively, it was observed in [3] that the polynomial solutions of a Q-system on an

appropriately chosen diagram can be computed efficiently, and correctly account for the

physical solutions. In the remainder of this section, we provide an alternative derivation

of these results based on [8], which we will subsequently use to generalize this Q-system.

2.2 Q-system

For given values of N and M , the Q-functions Qa,s are defined on a Young diagram with the

indices referring to the vertex (a, s), where the a-axis is vertical and the s-axis is horizontal,

see figure 1. These Q-functions satisfy the QQ-equations, which are formulated around a

face as1

Qa+1,s(u)Qa,s+1(u) ∝ Q+
a+1,s+1(u)Q−a,s(u)−Q−a+1,s+1(u)Q+

a,s(u) , (2.13)

where f±(u) = f(u ± i
2). The relevant diagram for the closed XXX spin chain with the

boundary conditions, Q2,s = 1, Q1,s≥M = 1, is displayed in figure 1. The initial condition

Q0,0(u) = uN , Q1,0(u) = Q(u) =

M∏
j=1

(u− uj) , (2.14)

leads to a unique solution of the Q-system. The degree of the polynomial Qa,s(u) is given

by the number of boxes in the Young diagram to the right and top of the vertex (a, s). Let

us see how we can proceed column-by-column and express all Q-functions in terms of Q0,0

and Q1,0.

The QQ-equation for (a, s) = (1, 0) can be solved easily

Q1,1(u) = Q+
1,0(u)−Q−1,0(u) ≡ Q′1,0(u) = Q′(u) , (2.15)

1A Q-function is defined up to a multiplicative constant. For definiteness, we generally treat ∝ as

equality, or (as in (2.15)) with an extra minus sign.
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Figure 1. Non-trivial Q-functions for the closed XXX spin chain.

where we have introduced the discrete derivative defined by

f ′(u) = f+(u)− f−(u) . (2.16)

The function Q1,1 is automatically a polynomial of degree M − 1. The equation for

(a, s) = (0, 0) gives

Q0,1Q1,0 = Q−0,0Q
+
1,1 −Q

+
0,0Q

−
1,1 . (2.17)

Making use of (2.15) and (2.17), it follows that

Q0,1Q = Q−0,0Q
++ +Q+

0,0Q
−− −Q(Q−0,0 +Q+

0,0) , (2.18)

or

(Q0,1 +Q−0,0 +Q+
0,0)Q = Q−0,0Q

++ +Q+
0,0Q

−− . (2.19)

Recognizing the r.h.s. of the above equation as the r.h.s. of the TQ-relation (2.8), one

obtains

T = Q0,1 +Q−0,0 +Q+
0,0 . (2.20)

Polynomiality of Q0,1 is equivalent to the polynomiality of T , which leads to the BA

equations (2.10).

2.2.1 Qa,s in terms of Q and P

We now show that the polynomiality of the remaining Q-functions is equivalent to the

admissibility of {u1, . . . , uM}. To this end, we define a function P (u), such that

Q0,0 = P+Q− − P−Q+ . (2.21)

Using this parametrization for Q0,0, one can easily show that

Q0,1 ∝ P ′+Q′− − P ′−Q′+ , (2.22)

where prime denotes discrete derivative (2.16). Repeating the calculations starting from

(a, s) = (1, 1) and (a, s) = (0, 1), we arrive at

Q1,2 = Q′′ , Q0,2 ∝ P ′′+Q′′− − P ′′−Q′′+ . (2.23)

– 4 –
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This can be iterated further

Q1,n = Q(n) , Q0,n ∝ P (n)+Q(n)− − P (n)−Q(n)+ , (2.24)

where the superscript (n) denotes the nth discrete derivative. In short, all Q-functions can

be expressed in terms of P and Q. Clearly, if P is a polynomial, then all Q-functions are

polynomial. In the following we show that the polynomiality of P is in fact equivalent

to the polynomiality of Q0,2. We also derive that polynomiality of P is equivalent to the

admissibility of the roots {u1, . . . , uM}.

2.2.2 Construction of P

We construct P as in [8] by generalizing the approach in [14] (which implicitly assumes

that all Bethe roots are regular) to the case of a singular solution. String configurations

have roots that differ by i: ui1 − ui2 = i, and it is well known (see e.g. [8]) that the only

exact string solution consists of one pair of singular roots u1 = i
2 and u2 = − i

2 . In the

presence of such singular roots, the Q-function takes the following form

Q(u) = u+u−Q̄(u) , Q̄(u) =
∏

uj 6=± i
2

(u− uj) . (2.25)

We start by dividing (2.21) by Q+Q−. We need to write

R(u) =
uN

Q+Q−
=

uN−2

u++u−−Q̄+Q̄−
(2.26)

in the form

R =
P+

Q+
− P−

Q−
=

(
P

Q

)′
, (2.27)

i.e. we need to “integrate” R in the discrete sense. To this end, we perform a partial

fraction decomposition of (2.26)

R = π +
q+
Q̄+

+
q−
Q̄−

+
a+
u++

+
a−
u−−

, (2.28)

where π is a polynomial of order N − 2M , the polynomials q± have degree less than Q̄,

while a± are constants. Using the relation

R+ +R− =
T

Q++Q−−
=

T

u+u−u+++u−−−Q̄++Q̄−−
(2.29)

which follows from the TQ-relation (2.8), one can investigate all the singularities explicitly.

In particular, the r.h.s. of (2.29) has no singularities at the zeros of Q̄, implying

q+ = q+ , q− = −q− , (2.30)

for some polynomial q(u). The coefficients a± can be determined from the residues of (2.29)

at u = ∓ i
2 :

a± = ∓
T (∓ i

2)

2iQ̄(± i
2) Q̄(∓3i

2 )
. (2.31)
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The polynomial π can always be written as

π = ρ′ = ρ+ − ρ− , (2.32)

where ρ is a polynomial. Clearly, ρ is defined up to a constant. Changing this constant by

a modifies P as P + aQ. This additional term, however, disappears from R and Q0,0, thus

is irrelevant for us.

In the absence of singular roots, we have Q̄ = Q and a± = 0; hence, the polynomial

P = ρQ + q satisfies (2.27), which implies the required eq. (2.21), see also [14]. In the

presence of singular roots, the “integration” of R in (2.27) requires to “integrate” u−1,

appearing in (2.28). To this end, we define the function p(u) by

p′(u) =
1

u
, p(u) = −iψ

(
−iu+

1

2

)
, (2.33)

where ψ(u) is the digamma function

ψ(u) = −γ +

∞∑
n=0

(
1

n+ 1
− 1

n+ u

)
. (2.34)

In view of the fact

a+
u++

+
a−
u−−

=
(
a+p

+++a−p
−−)′= [1

2
(a+−a−)(p++−p−−)+

1

2
(a++a−)(p+++p−−)

]′
=

[
1

2
(a+−a−)

(
1

u+
+

1

u−

)
+

1

2
(a++a−)(p+++p−−)

]′
, (2.35)

we see that the function P satisfying (2.27) takes the form

P = ρQ+ u+u−q + (a+ − a−)uQ̄+
1

2
(a+ + a−)(p++ + p−−)Q . (2.36)

It is a polynomial if and only if a+ = −a−, i.e. when

(−1)M
Q̄(+ i

2)Q̄(+3i
2 )

Q̄(− i
2)Q̄(−3i

2 )
= 1 (2.37)

is satisfied. Here we used the TQ-relation (2.8) to eliminate T (± i
2) in (2.31). Clearly this

is the admissibility condition for singular solutions (2.11). Thus, we have just proven that

polynomiality of P is equivalent to the admissibility of the roots.

Even if P is not a polynomial, the relation (2.27) implies (2.21), which leads to

T = P++Q−− − P−−Q++ . (2.38)

This implies that P also satisfies the TQ-relation

TP = (u+)NP−− + (u−)NP++ . (2.39)

Thus P and Q are the two independent solutions of this second order difference equation,

and (2.21) is the corresponding Wronskian relation. It has been known (see e.g. [15, 16])
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that the two independent solutions of the TQ-relation are both polynomial iff the Bethe

state (2.6) is an eigenstate of the transfer matrix.

Finally, let us investigate the polynomiality of

Q0,2 = Q+
0,1 +Q−0,1 + P ′++Q′−− − P ′−−Q′++ . (2.40)

Since Q0,1 is a polynomial,2 we investigate the regularity of the remaining part at u = 0.

Since Q(± i
2) = 0 we can see that

Q′−−(0) = −Q
(
−3i

2

)
, Q′++(0) = Q

(
3i

2

)
, (2.41)

which are not zero. We now focus on the pole contributions at u = 0. They can only come

from the terms proportional to p(u), which have poles at u = −i(n + 1
2) for any integer

n ≥ 0, with residues −1. Thus the singular parts can arise as

P ′++(ε) = P

(
3i

2
+ ε

)
+ · · · = 1

2
(a+ + a−)Q

(
3i

2

)
(p+++++(ε) + p+(ε)) = 0 + . . .

P ′−−(ε) = −P
(
−3i

2
+ ε

)
+ · · · = −1

2
(a+ + a−)Q

(
−3i

2

)
(p−−−−−(ε) + p−(ε))

=
1

ε
(a+ + a−)Q

(
−3i

2

)
+ . . . , (2.42)

where we have omitted regular terms in ε. The singular part of Q0,2(ε) is then −1
ε (a+ +

a−)Q(3i2 )Q(−3i
2 ) whose vanishing implies a+ = −a−, i.e. the polynomiality of P .

We can thus conclude that the following four properties are equivalent:

(i) P is a polynomial

(ii) all Qa,s-functions are polynomial

(iii) the roots {u1, . . . , uM} are admissible solutions of the BA equations

(iv) the Bethe vector is an eigenvector of the transfer matrix

2.2.3 An example

We conclude this subsection with an elementary explicit example of how to use the Q-

system (2.13)–(2.14) to obtain all the Bethe roots for modest values of N ≡ L and M using

a simple-minded implementation in Mathematica. (A more general and sophisticated code

is provided in [3].) We begin by defining the functions Q0,0(u) and Q1,0(u)

Q[0, 0, u_] := u^L;

Q[1, 0, u_] := Sum[c[k] u^k, {k, 0, M-1}] + u^M;

2Recall from (2.20) that polynomiality of Q0,1 is equivalent to polynomiality of T ; and the latter is

evident from

T = (u+)N−1u−−−
Q̄−−

Q̄
+ (u−)N−1u+++ Q̄

++

Q̄
,

which follows from the TQ-relation (2.8) and (2.25), and which has vanishing residues at the zeros of Q̄ by

virtue of the BA equations.

– 7 –
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where the coefficients ck are to be determined. We also define the functions Q1,n(u) and

Q0,n(u) by3

Q[1, n_, u_] := Q[1, n-1, u + I/2] - Q[1, n-1, u - I/2];

Q[0, n_, u_] := (Q[1, n, u + I/2] Q[0, n-1, u - I/2] -

Q[1, n, u - I/2] Q[0, n-1, u + I/2])/ Q[1, n-1, u];

which follow from (2.13) with a = 1 (setting Q2,s = 1) and a = 0, respectively. The

functions Q1,n(u) are evidently polynomials in u; the key point is that the functions Q0,n(u)

must also be polynomials in u. In order to ensure the latter requirement (the so-called zero-

remainder conditions), we first use the built-in symbol PolynomialRemainder to define the

polynomials yn(u)

y[n_, u_] := PolynomialRemainder[Numerator[Together[Q[0, n, u]]],

Denominator[Together[Q[0, n, u]]], u];

We then solve for the coefficients ck that make {y1(u), . . . , yM (u)} vanish for all values of u,4

sol = Solve[Table[CoefficientList[y[n, u], u] == 0, {n, 1, M}],

Table[c[k], {k, 0, M-1}]]

Let us consider as an example the case L = 6,M = 2. The above code generates

9 solutions, in agreement with (2.12). For each of these solutions, one can obtain the

corresponding Bethe roots by solving for the zeros of Q1,0(u). For example, for the first

solution

Solve[(Q[1, 0, u] /. sol[[1]]) == 0, u] // Flatten

we obtain the Bethe roots ±i/2.

3 Closed XXZ Q-system

In this section we present a generalization of the Q-system for the closed XXZ spin chain

of length N with periodic boundary conditions, whose Hamiltonian is given by

H =
N∑
k=1

[
σxkσ

x
k+1 + σykσ

y
k+1 +

1

2
(q + q−1)σzkσ

z
k+1

]
, ~σN+1 ≡ ~σ1 . (3.1)

We show that there is a notion of polynomial solutions of the QQ-equations, which deter-

mine the spectrum of the closed XXZ model.

3The equation for Q1,n is valid only for 1 ≤ n ≤M . For n = M , we find Q1,M ∝ 1.
4For some examples, the coefficients ck can be determined using fewer than M equations.
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3.1 Review of the algebraic BA solution

The XXZ spin chain is related to the trigonometric generalization of the rational R-

matrix (2.2):5

R(u) =


sinh(u+ η

2 ) 0 0 0

0 sinh(u− η
2 ) sinh(η) 0

0 sinh(η) sinh(u− η
2 ) 0

0 0 0 sinh(u+ η
2 )

 . (3.2)

The monodromy and transfer matrices can be introduced by the analogous formulae to

the XXX case (2.3). The off-diagonal elements of the monodromy matrix (2.6) can be

used as creation and annihilation operators. The B operators, by acting on the all spin-up

reference state (2.5), create eigenstates of the transfer matrix. The eigenvalue T (u) of the

transfer matrix T(u) satisfies the TQ-relation

T (u)Q(u) = sinhN
(
u+

η

2

)
Q(u− η) + sinhN

(
u− η

2

)
Q(u+ η) , (3.3)

where now

Q(u) =

M∏
j=1

sinh(u− uj) . (3.4)

Alternatively, we can switch to the variable t = eu. By construction, T (u) is a polynomial

of t and t−1, regular at tj = euj , which implies the BA equations

(
sinh(uk + η

2 )

sinh(uk − η
2 )

)N
= −

M∏
j=1

sinh(uk − uj + η)

sinh(uk − uj − η)
, k = 1, . . . ,M . (3.5)

Singular BA solutions appear also for the XXZ spin chain, and the admissibility of the

solution {−η
2 ,

η
2 , u1, . . . , uM−2} with pairwise distinct and finite roots can be formulated

similarly to the XXX case as [17]

Q̄(+η
2 )Q̄(+3η

2 )

Q̄(−η
2 )Q̄(−3η

2 )
= (−1)N , (3.6)

where Q̄(u) =
∏M−2
j=1 sinh(u− uj). We work for generic η, i.e. when q=eη is not a root of

unity. We conjecture that the number N (N,M) of admissible solutions of the BA equations

with M ≤ N/2 is given by

N (N,M) =

(
N

M

)
. (3.7)

In the following we introduce a Q-system whose polynomial (in t and t−1) solutions

account for the physical solutions.

5The XXX limit can be recovered by the rescalings u→ εu, η → iε and by then taking the ε→ 0 limit.
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3.2 Q-system and its solution

For the closed XXZ case, as in the XXX case, Q2,s = 1 and the nontrivial Q-functions are

Q1,s and Q0,s; however, there is no condition on Q1,s≥M . We now regard the Q-functions

as functions of the argument t = eu. Moreover, shifts now denote f±(t) = f(tq±
1
2 ), and

QQ-equations are formulated around each face as

Qa+1,s(t)Qa,s+1(t) ∝ Q+
a+1,s+1(t)Q

−
a,s(t)−Q−a+1,s+1(t)Q

+
a,s(t) . (3.8)

The initial conditions are

Q0,0(t) = (t− t−1)N , Q1,0(t) = Q(t) =
M∏
j=1

(tt−1j − t
−1tj) . (3.9)

Both of these Q-functions are polynomial in the variables t and t−1. As in the XXX case,

we introduce the analogue of P , and then proceed to express all Q-functions in terms of

P and Q.

The QQ-equation for (a, s) = (1, 0) leads again to the discrete derivative of Q:

Q1,1(t) = Q+
1,0(t)−Q

−
1,0(t) ≡ Q

′
1,0(t) = Q′(t) . (3.10)

However, contrary to the XXX case, the order of Q1,1 is the same as that of Q.6 Since

the QQ-equations for the XXZ case (3.8) are the same as for the XXX case (2.13), the

solutions are the same, too. In particular, formulas such as (2.18)–(2.20) are exactly the

same, and polynomiality of Q0,1 is equivalent to the polynomiality of T , which gives the

BA equations (3.5). In proceeding as before, we search for a function P that satisfies

Q0,0 = P+Q− − P−Q+ , (3.11)

that is, (
t− t−1

)N
= P

(
tq

1
2

)
Q
(
tq−

1
2

)
− P

(
tq−

1
2

)
Q
(
tq

1
2

)
. (3.12)

With this P and Q, all Q-functions can be written as in the XXX case (2.24)

Q1,n = Q(n) , Q0,n ∝ P (n)+Q(n)− − P (n)−Q(n)+ , (3.13)

except that the superscript (n) denotes the nth discrete derivative obtained from multi-

plicative shifts in t, with f±(t) = f(tq±
1
2 ) and f ′(t) = f+(t)− f−(t).

The construction of the function P , once written in terms of the shifts, literally repeats

the steps in the XXX case. One first shows that the only singular solutions are t = q±
1
2 .

One then separates the singular solutions as Q(t) = (t− t−1)+(t− t−1)−Q̄(t), and performs

a partial fraction decomposition of R(t) as

R(t) =
(t− t−1)N

Q+Q−
= π +

r+
Q̄+

+
r−
Q̄−

+
a+

(t− t−1)++
+

a−
(t− t−1)−−

, (3.14)

6In fact, Q1,n has order M , and Q0,n has order N .
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where π(t) is polynomial. From the singularity structure, one can obtain r+ = r+ and

r− = −r− for some polynomial function r(t), together with

a± = ±
2NT

(
q∓

1
2

)
(q − q−1)2 (q2 − q−2)

1

Q̄
(
q±

1
2

)
Q̄
(
q∓

3
2

) . (3.15)

The important new step now is the discrete integration of (t− t−1)−1 = 1
2( 1
t−1 + 1

t+1). To

this end, we define the function pq(t) by

p′q(t) =
1

t−t−1
, pq(t) =

1

2logq

{
ψq−1

(
log t

logq
+

1

2

)
−ψq−1

(
log(−t)

logq
+

1

2

)}
, (3.16)

where ψq(x) denotes the q-deformed digamma function [18, 19], which satisfies

ψq(x+ 1)− ψq(x) =
log q

1− q−x
. (3.17)

Another step of the XXX case that requires special care when generalizing to the XXZ

case, which was already addressed in [14], is the deformed discrete integration of π into ρ

such that

ρ′ = π . (3.18)

The non-constant terms can be integrated using
(

tn

qn/2−q−n/2

)′
= tn for n 6= 0. However,

a constant term cannot be integrated into a polynomial, and requires instead a function

cq (t) such that c′q (t) = 1. We have

cq (t) =
log t

log q
, (3.19)

up to an additive constant. Hence, the function P finally takes the form

P = ρ0Q+ α log (t)Q+ (t− t−1)+(t− t−1)−r +
1

2
(a+ − a−)(t− t−1)

(
q

1
2 − q−

1
2

)
Q̄

+
1

2
(a+ + a−)(p++

q + p−−q )Q , (3.20)

with ρ0 a polynomial, and α = π0
log q a constant, where π0 is the constant term of π. For N

odd α vanishes [14], but it can be non-zero for N even. Thus we see that even in absence

of strings, P is not always a polynomial, but what we will call a ‘quasi-polynomial’, i.e. a

polynomial plus log t times a polynomial.

Quasi-polynomiality of P (in t, t−1) requires a+ = −a−, which is equivalent to the

admissibility of the Bethe roots (3.6). As for the polynomiality of the function Q0,2 (and

Q0,n), one sees that the log part of P (n)± is α log(t)Q(n)± so that it always cancels out in

Q0,n. Then one discovers that the polynomiality of the function Q0,2 is also equivalent to the

a+ = −a− condition. Thus, (almost) similarly to the XXX case, the following statements

are equivalent: (i) P is a quasi-polynomial, (ii) all Qa,s-functions are polynomial, (iii) the

roots {u1, . . . , uM} are admissible solutions of the BA equations, (iv) the Bethe vector is

an eigenvector of the transfer matrix.
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Let us briefly comment on the root of unity case q = eiπ/p with integer p ≥ 2. In

this case, another exact string besides ±η/2 becomes possible, namely, a complete string

of length p [20–24], due to the periodicity of sinh in the imaginary direction. Thus the

construction of the function P would involve more q-deformed digamma functions located at

the center of these new exact strings, and the quasi-polynomiality of P would be equivalent

to the cancellation of multiple constants. It would a priori require more work to show that

their cancellation are equivalent to the QQ-relations, as we should expect.

3.2.1 An example

We now present an explicit example of using the Q-system (3.8)–(3.9) to compute Bethe

roots. The functions Q0,0(t) and Q1,0(t) are now given by7

Q[0, 0, t_] := (t - t^(-1))^L;

Q[1, 0, t_] := t^(-M)/c[0] + Sum[c[k] t^(2k - M), {k, 1, M-1}] + t^M;

and the functions Q1,n(t) and Q0,n(t) are given by

Q[1, n_, t_] := Q[1, n-1, t Exp[eta/2]] - Q[1, n-1, t Exp[-(eta/2)]];

Q[0, n_, t_] := (Q[1, n, t Exp[eta/2]] Q[0, n-1, t Exp[-(eta/2)]] -

Q[1, n, t Exp[-(eta/2)]] Q[0, n-1, t Exp[eta/2]])/ Q[1, n-1, t];

Moreover, we define yn(t) by

y[n_, t_] := PolynomialRemainder[Numerator[t^L Together[Q[0, n, t]]],

Denominator[t^L Together[Q[0, n, t]]], t];

where we have inserted tL factors to ensure that both the numerator and denominator are

polynomials in t. We then solve for the coefficients ck that make yn(t) vanish for all values

of t. From experience, it is enough to consider n = 1, 2, . . . ,M .

sol = Solve[Table[CoefficientList[y[n, t], t] == 0, {n, 1, M}],

Table[c[k], {k, 0, M-1}]]

As before, let us consider the case N ≡ L = 6 and M = 2, and we now further set

η = log(2). The above code generates 15 solutions, in agreement with (3.7). We can solve

for the corresponding Bethe roots similarly as before, for example

NSolve[(Q[1, 0, Exp[u]] /. sol[[1]]) == 0, u]// Simplify // Flatten

gives ±0.346574.

7In order to avoid a vanishing t−M term, we define its coefficient as 1/c[0], and we consider solutions

with finite c[0].
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4 Open XXX Q-system

We turn now to the open XXX spin chain of length N , with Hamiltonian

H =

N−1∑
k=1

~σk · ~σk+1 , (4.1)

which is SU(2) invariant. After reviewing its BA solution, we propose a corresponding

Q-system, and argue that all the Q’s are polynomial if and only if the Bethe state is an

eigenstate of the transfer matrix.

4.1 Review of the algebraic BA solution

The transfer matrix T(u) is given by [25]

T(u) = tr0U0(u) , U0(u) = M0(u) M̂0(u) , (4.2)

where M0(u) is the monodromy matrix in (2.3), and M̂0(u) is given by

M̂(u) = R0N (u) · · ·R02(u)R01(u) . (4.3)

The R-matrix is again given by (2.2). Its boundary equivalent, the K-matrix, is the identity

in the case considered here. By construction, the open-chain transfer matrix (4.2) has the

commutativity property

[T(u) ,T(v)] = 0 , (4.4)

and it also has the crossing symmetry

T(−u) = T(u) . (4.5)

The Hamiltonian (4.1) is proportional to dT(u)
du

∣∣∣
u=i/2

, up to an additive constant.

We denote the matrix elements of U0(u) (4.2) as follows

U0(u) =

(
A(u) B(u)

C(u) u−

u D(u) + i
2uA(u)

)
. (4.6)

The reference state (2.5) is annihilated by C(u), and is an eigenstate of A(u) and D(u), with

A(u)|0〉 = (u+)2N |0〉 , D(u)|0〉 = (u−)2N |0〉 . (4.7)

The Bethe states are defined by

|u1 . . . uM 〉 =
M∏
k=1

B(uk)|0〉 . (4.8)

The Bethe states satisfy (for any {u1 , . . . , uM}) the off-shell relation

T(u)|u1 . . . uM 〉 = T (u)|u1 . . . uM 〉+
M∑
j=1

Fj |u, u1 . . . ûj . . . uM 〉 , (4.9)
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where ûj is omitted. Moreover, T (u) is given by the TQ-relation

uT (u)Q(u) = (u+)2N+1Q−−(u) + (u−)2N+1Q++(u) , Q(u) =
M∏
k=1

(u− uk) (u+ uk) ,

(4.10)

and the coefficients Fj of the “unwanted” terms are given by

Fj =
2iu+(uj − i

2)

uj(u− uj)(u+ uj)

(uj +
i

2

)2N M∏
k 6=j
k=1

(uj − uk − i)(uj + uk − i)
(uj − uk)(uj + uk)

−
(
uj −

i

2

)2N M∏
k 6=j
k=1

(uj − uk + i)(uj + uk + i)

(uj − uk)(uj + uk)

 . (4.11)

We again write f±(u) = f(u± i
2), as in the closed XXX case. Note that both Q and T are

even functions of u

Q(−u) = Q(u) , T (−u) = T (u) . (4.12)

Substituting u = uj in the TQ-relation (4.10), we see that the l.h.s. vanishes, and we obtain(
uj+

i

2

)2N+1 M∏
k=1

(uj−uk−i)(uj+uk−i)+

(
uj−

i

2

)2N+1 M∏
k=1

(uj−uk+i)(uj+uk+i) = 0 ,

j= 1, . . . ,M . (4.13)

If uj 6= ± i
2 , then these equations are equivalent to the BA equations(

uj + i
2

uj − i
2

)2N

=
M∏
k 6=j
k=1

(uj − uk + i)(uj + uk + i)

(uj − uk − i)(uj + uk − i)
, j = 1, . . . ,M . (4.14)

The BA equations have the reflection symmetry uj 7→ −uj , while keeping the other u’s

(i.e. uk with k 6= j) unchanged. Hence, without loss of generality, we henceforth assume

that <e(uj) > 0, or <e(uj) = 0 and =m(uj) ≥ 0.

Roughly speaking, if {u1 , . . . , uM} satisfy the BA equations (4.14), then all Fj = 0;

i.e., the “unwanted” terms in the off-shell relation (4.9) vanish, hence the Bethe state (4.8)

is an eigenstate of the transfer matrix, with corresponding eigenvalue T (u). However,

there are some important caveats. We argue in appendix A that certain “exceptional”

solutions of the BA equations (namely 0 and ± i
2) do not lead to eigenstates of the transfer

matrix. Moreover, we make the standard assumption (supported by numerical evidence,

see e.g. [24]) that the Bethe roots are pairwise distinct, i.e. uj 6= uk if j 6= k.

We therefore define an admissible solution {u1 , . . . , uM} of the BA equations (4.14),

such that all the uj ’s are finite, not equal to ± i
2 or 0, and pairwise distinct (no two are

equal), and each uj satisfies either

<e(uj) > 0 (4.15)
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or

<e(uj) = 0 and =m(uj) > 0 . (4.16)

The set {u1 , . . . , uM} is an admissible solution of the BA equations if and only if the Bethe

state |u1 . . . uM 〉 is an eigenstate of the transfer matrix T(u). We emphasize that, for the

open XXX chain, there are no physical singular solutions of the Bethe equations — all the

singular solutions are unphysical. The number N (N,M) of admissible solutions of the BA

equations with M ≤ N/2 has been conjectured [24] to be given by

N (N,M) =

(
N

M

)
−
(

N

M − 1

)
, (4.17)

when q = eη is not a root of unity.

4.2 Q-system

We propose the following Q-system

uQa+1,s(u)Qa,s+1(u) ∝ Q+
a+1,s+1(u)Q−a,s(u)−Q−a+1,s+1(u)Q+

a,s(u) , (4.18)

where the nontrivial Q-functions for given values of N and M are again defined on the

Young diagram in figure 1, with the boundary conditions Q2,s = 1 , Q1,s≥M = 1, and with

the initial condition

Q0,0(u) = u2N with Q1,0(u) = Q(u) =

M∏
k=1

(u− uk) (u+ uk) . (4.19)

In contrast to the Q-system for periodic XXX (2.13), there is an extra factor of u on the

l.h.s. of (4.18), and the Q’s are even functions of u. The degree of the polynomial Qa,s(u)

is doubled with respect to the periodic XXX case (namely, twice the number of boxes in

the Young diagram to the right and top of the vertex (a, s)).8 We claim that all the Q’s are

polynomial if and only if the Bethe state |u1 . . . uM 〉 (4.8) is an eigenstate of the transfer

matrix T(u) (4.2).

Before entering into the proof, let us quickly check that this Q-system indeed leads to

the correct BA equations for {u1 , . . . , uM}. We write the QQ-equations for (a, s) = (0, 0):

uQ1,0Q0,1 ∝ Q+
1,1Q

−
0,0 −Q

−
1,1Q

+
0,0 , (4.20)

and for (a, s) = (1, 0):

uQ2,0Q1,1 ∝ Q+
2,1Q

−
1,0 −Q

−
2,1Q

+
1,0 . (4.21)

Since Q2,0 = Q2,1 = 1, the latter reduces to

uQ1,1 ∝ Q− −Q+ . (4.22)

Performing the shifts u 7→ u± i
2 in (4.22) and evaluating at u = uj , we obtain(

uj +
i

2

)
Q+

1,1(uj) ∝ −Q
++(uj) ,

(
uj −

i

2

)
Q−1,1(uj) ∝ Q

−−(uj) , (4.23)

8Equivalently, the Q-functions are polynomials in the variable u2 of the same degree as in the periodic

XXX case.
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since Q(uj) = 0. Moreover, evaluating (4.20) at u = uj gives

Q+
1,1(uj)Q

−
0,0(uj) = Q−1,1(uj)Q

+
0,0(uj) . (4.24)

Substituting (4.23) into the above relation gives

−
(
uj −

i

2

)
Q++(uj)Q

−
0,0(uj) =

(
uj +

i

2

)
Q−−(uj)Q

+
0,0(uj) , (4.25)

which coincides with the BA equations (4.13).

4.2.1 Qa,s in terms of Q and P

We now solve the Q-system (4.18) in terms of Q(u) and a function P (u), such that poly-

nomiality of P (u) implies polynomiality of all the Q’s. We define P (u) by9

P+Q− − P−Q+ = uQ0,0 , (4.26)

where Q0,0 is given by (4.19). It follows from (4.20) and (4.22) that

Q1,1 ∝
Q′

u
= DQ , uQ0,1 ∝ (DP )+(DQ)− − (DP )−(DQ)+ , (4.27)

where we have used the following compact notation for discrete derivatives with certain

1/u factors

Df =
1

u
(f+ − f−) =

f ′

u
,

D2f =
1

u

[
(Df)+ − (Df)−

]
, . . .

Dnf =
1

u

[
(Dn−1f)+ − (Dn−1f)−

]
. (4.28)

Similarly, we obtain

Q1,2 ∝ D2Q , uQ0,2 ∝ (D2P )+(D2Q)− − (D2P )−(D2Q)+ , (4.29)

and in general

Q1,n ∝ DnQ , uQ0,n ∝ (DnP )+(DnQ)− − (DnP )−(DnQ)+ . (4.30)

Since both Q(u) and P (u) are even functions of u, it follows that DQ and DP are also

even functions of u. Hence, if P (u) is a polynomial function of u, then the r.h.s. of the

second equation in (4.27) is divisible by u, thus Q0,1 is polynomial; and, from (4.30), we

similarly conclude that all the Q’s are polynomial.

We observe, similarly to the closed-chain case, that the TQ-equation (4.10) together

with the definition of P (4.26) imply

uT = P++Q−− − P−−Q++ . (4.31)

It follows that P is also a solution of the TQ-equation

uT P = (u+)2N+1 P−− + (u−)2N+1 P++ . (4.32)

Hence, (4.26) can be regarded as the Wronskian relation obeyed by the two solutions Q

and P of the TQ-equation (4.10).

9As in the closed-chain case, for given Q, this equation does not uniquely define P : if P (u) is a solution

of (4.26), then so is P (u) + αQ(u), for any constant value of α.
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4.2.2 Construction of P

We now construct the function P (u) for a set {u1 , . . . , uM}, and argue that P (u) is poly-

nomial if and only if {u1 , . . . , uM} is an admissible solution of the BA equations.

The construction of the P -function for the open chain is similar to that for the closed

chain, but with some significant differences. In the presence of one singular root i
2 and one

zero root 0, the Q-function takes the form10

Q(u) = u+u−u2Q̄(u) , Q̄(u) =

M∏
uk 6= i

2
,0

k=1

(u− uk)(u+ uk) . (4.33)

We define the function R(u)

R =
u2N+1

Q+Q−
=

u2N−1

u++u−−(u+u−)2Q̄+Q̄−
, (4.34)

which is related to P (u) defined in (4.26) by

R =

(
P

Q

)′
=
P+

Q+
− P−

Q−
. (4.35)

Decomposing (4.34) in partial fractions, we obtain

R = π +
q+
Q̄+

+
q−
Q̄−

+
a+
u++

+
b+
u+

+
c+

(u+)2
+

a−
u−−

+
b−
u−

+
c−

(u−)2
, (4.36)

where π is a polynomial of order 2N − 4M + 1, q± are polynomials of degree less than that

of Q̄, and a± , b± , c± are constants. Note that a± arise from the presence of the singular

root, while b± , c± are due to the presence of the zero root. From the TQ-relation (4.10),

we obtain

R+ +R− =
uT

Q++Q−−
=

uT

u+u−u+++u−−−(u++u−−)2Q̄++Q̄−−
. (4.37)

We now evaluate the l.h.s. of (4.37) using (4.36), and consider the values of u where

singularities could arise. The r.h.s. of (4.37) has no singularities at the zeros of Q̄ (recall

that T (u) is regular for values of u corresponding to admissible Bethe roots), hence

q+ = q+ , q− = −q− , (4.38)

for some polynomial q(u). From the residues of (4.37) at u = ∓ i
2 , we obtain

a± =
4T (∓ i

2)

9Q̄(± i
2)Q̄(∓3i

2 )
=

8(−1)N+1

9Q̄(± i
2)Q̄(∓3i

2 )
. (4.39)

Since Q(u) is an even function of u, we conclude — in significant contrast from the closed-

chain case — that a+ = a− ≡ a. From the residues of (4.37) at u = ∓i, we can obtain

expressions for c± and b±, and we find that

c ≡ c+ = −c− , b ≡ b+ = b− , (4.40)

10The cases of either one singular root or one zero root are essentially special cases, for which b± = c± = 0

or a± = 0 in (4.36) below, respectively.
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which is consistent with the constraints coming from the residues of (4.37) at u = 0 (note

that the presence of a zero root implies that T (u) has a double pole at u = 0).

We write the polynomial π in (4.36) as

π = ρ′ = ρ+ − ρ− , (4.41)

where ρ is a polynomial. Recalling the definition of the function p(u) (2.33), we see that

R =

(
ρ+

q

Q̄
+ a(p++ + p−−) + b(p+ + p−) +

c

u2

)′
. (4.42)

It immediately follows from (4.35) that the P -function is given by

P = ρQ+ u+u−u2q + c u+u−Q̄+ a(p++ + p−−)Q+ b(p+ + p−)Q , (4.43)

which is a polynomial iff a = b = 0. That is, the P -function is polynomial iff there is

no singular root and no zero root, in which case {u1 , . . . , uM} is admissible. Moreover,

Q0,2 is polynomial iff a = b = 0, as follows from a similar analysis to the periodic case in

section 2.2.2.

The proof of the Q-system (4.18) is now complete, since we have argued as before that

the following statements are equivalent: (i) P is a polynomial, (ii) all Qa,s-functions are

polynomial, (iii) the roots {u1, . . . , uM} are admissible solutions of the BA equations, (iv)

the Bethe vector is an eigenvector of the transfer matrix.

4.2.3 An example

We now present an explicit example of using the Q-system (4.18)–(4.19) to compute Bethe

roots. The code is similar to the one in section 2.2.3. The functions Q0,0(u) and Q1,0(u)

are now given by

Q[0, 0, u_] := u^(2L);

Q[1, 0, u_] := Sum[c[k] u^(2k), {k, 0, M-1}] + u^(2M);

while Q1,n(u) and Q0,n(u) are given by

Q[1, n_, u_] := (Q[1, n-1, u + I/2] - Q[1, n-1, u - I/2])/u;

Q[0, n_, u_] := (Q[1, n, u + I/2] Q[0, n-1, u - I/2] -

Q[1, n, u - I/2] Q[0, n-1, u + I/2])/( u Q[1, n-1, u]);

We define yn(u) and solve for the coefficients ck exactly as in section 2.2.3.

For the case N ≡ L = 6,M = 2, the above code generates 9 solutions, in agreement

with (4.17). For example, for the first solution, the corresponding Bethe roots are given

by 0.301932, 1.26627.

5 Open quantum-group-invariant XXZ Q-system

We now generalize the preceding results to the open quantum-group-invariant XXZ spin

chain, whose Hamiltonian is given by [9]

H =

N−1∑
k=1

[
σxkσ

x
k+1 + σykσ

y
k+1 +

1

2
(q + q−1)σzkσ

z
k+1

]
− 1

2
(q − q−1)

(
σz1 − σzN

)
. (5.1)

For simplicity, we restrict to generic values of q = eη.
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5.1 Review of the algebraic BA solution

The transfer matrix is now given by [25]

T(u) = tr0KL
0 (u)U0(u) , U0(u) = M0(u)KR

0 (u) M̂0(u) , (5.2)

where the R-matrix is again given by (3.2), and the left and right K-matrices (solutions of

boundary Yang-Baxter equations) are given by the diagonal matrices

KL(u) = diag(e−u−
η
2 , eu+

η
2 ) , KR(u) = diag(eu−

η
2 , e−u+

η
2 ) . (5.3)

The transfer matrix (5.2) has the commutativity property (4.4) as well as the crossing sym-

metry (4.5). The Hamiltonian (5.1) is proportional to dT(u)/du
∣∣∣
u=η/2

, up to an additive

constant.

We define the elements of U0(u) (5.2) as follows

U0(u) =

(
eu−

η
2A(u) B(u)

C(u) e−u−
η
2 sinh(2u−η)
sinh(2u) D(u) + eu−

η
2 sinh(η)

sinh(2u) A(u)

)
. (5.4)

The reference state (2.5) is annihilated by C(u), and is an eigenstate of A(u) and D(u)

A(u)|0〉 = sinh2N
(
u+

η

2

)
|0〉 , D(u)|0〉 = sinh2N

(
u− η

2

)
|0〉 . (5.5)

The Bethe states are again defined by

|u1 . . . uM 〉 =

M∏
k=1

B(uk)|0〉 . (5.6)

The off-shell equation is

T(u)|u1 . . . uM 〉 = T (u)|u1 . . . uM 〉+

M∑
j=1

Fj |u, u1 . . . ûj . . . uM 〉 , (5.7)

where T (u) is given by the TQ-relation

sinh(2u)T (u)Q(u) = sinh(2u+ η) sinh2N
(
u+

η

2

)
Q(u− η)

+ sinh(2u− η) sinh2N
(
u− η

2

)
Q(u+ η) , (5.8)

with

Q(u) =
M∏
k=1

sinh(u− uk) sinh(u+ uk) , (5.9)

and Fj is given by

Fj =
sinh(2u+η)sinh(2uj−η)sinh(η)

sinh(2uj)sinh(u−uj)sinh(u+uj)

×

sinh2N
(
uj+

η

2

) M∏
k 6=j
k=1

sinh(uj−uk−η)sinh(uj+uk−η)

sinh(uj−uk)sinh(uj+uk)

− sinh2N
(
uj−

η

2

) M∏
k 6=j
k=1

sinh(uj−uk+η)sinh(uj+uk+η)

sinh(uj−uk)sinh(uj+uk)

 . (5.10)
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Substituting u = uj in the TQ-equation (5.8), we see that the l.h.s. vanishes, and we obtain

sinh(2uj+η) sinh2N
(
uj+

η

2

) M∏
k=1

sinh(uj−uk−η) sinh(uj+uk−η) (5.11)

+sinh(2uj−η) sinh2N
(
uj−

η

2

) M∏
k=1

sinh(uj−uk+η)sinh(uj+uk+η) = 0 , j= 1, . . . ,M .

If uj 6= ±η
2 , then these equations are equivalent to the BA equations(

sinh
(
uj+

η
2

)
sinh

(
uj− η

2

))2N

=

M∏
k 6=j
k=1

sinh(uj−uk+η)sinh(uj+uk+η)

sinh(uj−uk−η)sinh(uj+uk−η)
, j= 1, . . . ,M . (5.12)

The BA equations have the reflection symmetry uj 7→ −uj (while keeping the other u’s

unchanged), as well as the periodicity uj 7→ uj + iπ.

We must exclude solutions with roots 0, ± iπ
2 and ±η

2 , see section A.2. We therefore

define an admissible solution {u1 , . . . , uM} of the BA equations (5.12), such that all the

uj ’s are finite, not equal to 0, ± iπ
2 or ±η

2 , pairwise distinct, and each uj satisfies either

<e(uj) > 0 and − π

2
< =m(uj) ≤

π

2
(5.13)

or

<e(uj) = 0 and 0 < =m(uj) <
π

2
. (5.14)

The set {u1 , . . . , uM} is an admissible solution of the BA equations if and only if the

Bethe state |u1 . . . uM 〉 is an eigenstate of the transfer matrix T(u). The number N (N,M)

of admissible solutions of the BA equations with M ≤ N/2 has been conjectured [24] to be

given again by (4.17).

5.2 Q-system

We propose the following Q-system11

(t2 − t−2)Qa+1,s(t)Qa,s+1(t) ∝ Q+
a+1,s+1(t)Q

−
a,s(t)−Q−a+1,s+1(t)Q

+
a,s(t) , (5.15)

where the nontrivial Q-functions for given values of N and M are again defined on the

Young diagram in figure 1, with the boundary conditions Q2,s = 1 , Q1,s≥M = 1, and with

the initial condition

Q0,0(t) = (t− t−1)2N with Q1,0(t) = Q(t) =
M∏
k=1

(
tt−1k − t

−1tk
) (
ttk − t−1t−1k

)
. (5.16)

In contrast to the periodic XXZ case (3.8), there is an extra factor (t2 − t−2) ∝ sinh(2u)

on the l.h.s. of (5.15). This Q-system indeed leads to the BA equations (5.11), as can

be seen by following the same logic (4.20)–(4.25) of the rational case. The degree of the

polynomials (highest power of t ≡ eu) is the same as in the open XXX case.

11As for the periodic XXZ case, here again t = eu, and f±(t) = f(tq±
1
2 ).
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5.2.1 Qa,s in terms of Q and P

We now define P by

P+Q− − P−Q+ = (t2 − t−2)Q0,0 , (5.17)

where Q0,0 is given by (5.16). Similarly to the rational case (4.30), we find that the Q-

system (5.15) implies that

Q1,n ∝ DnQ , (t2 − t−2)Q0,n ∝ (DnP )+(DnQ)− − (DnP )−(DnQ)+ , (5.18)

where D is now defined by

Df =
1

(t2 − t−2)
(f+ − f−) =

f ′

(t2 − t−2)
,

D2f =
1

(t2 − t−2)
[
(Df)+ − (Df)−

]
, . . .

Dnf =
1

(t2 − t−2)
[
(Dn−1f)+ − (Dn−1f)−

]
, (5.19)

cf. (4.28). Note that P is also a solution of the TQ-relation (5.8)

sinh(2u)T P = sinh(2u+ η)Q+
0,0 P

−− + sinh(2u− η)Q−0,0 P
++ , (5.20)

cf. (4.32).

5.2.2 Construction of P

The construction of P parallels the rational case. In the presence of one singular root

(u = η
2 , t = q

1
2 ) and one zero root (u = 0, t = 1; the case u = iπ

2 , t = −1 is similar), the

Q-function becomes

Q(t) = (t− t−1)+(t− t−1)−(t− t−1)2 Q̄(t) . (5.21)

We now define R(t) as

R(t) =
(t2 − t−2)(t− t−1)2N

Q+Q−
=

(t2 − t−2)(t− t−1)2N−2

(t− t−1)++(t− t−1)−−[(t− t−1)+(t− t−1)−]2Q̄+ Q̄−
,

(5.22)

which is related to P (5.17) by R = (PQ)′. We decompose R as follows

R = π +
r+
Q̄+

+
r−
Q̄−

+
a+

(t− t−1)++
+

b+
(t− t−1)+

+
c+

[(t− t−1)+]2

+
a−

(t− t−1)−−
+

b−
(t− t−1)−

+
c−

[(t− t−1)−]2
, (5.23)

where π is polynomial. From the TQ-relation (5.8), we obtain

R++R−=
22N (t2−t−2)T
Q++Q−−

=
22N (t2−t−2)T

(t−t−1)+(t−t−1)−(t−t−1)+++(t−t−1)−−−[(t−t−1)++(t−t−1)−−]2Q̄++Q̄−−
.

(5.24)

– 21 –



J
H
E
P
0
3
(
2
0
2
0
)
1
7
7

From the singularity structure of this equation and the fact that Q(t) and T (t) are invariant

under t 7→ t−1, we again obtain

r+ = r+ , r− = −r− , (5.25)

where r(t) is a polynomial in t and t−1, and

a+ = a− ≡ a , c ≡ c+ = −c− , b ≡ b+ = b− . (5.26)

The expression (5.23) for R can therefore be rewritten in the form

R =

(
ρ+

r

Q̄
+ a(p++

q + p−−q ) + b(p+q + p−q ) +
c

(t− t−1)2

)′
, (5.27)

where pq(t) is defined in (3.16), cf. (4.42), and ρ′ = π.12 Since R = (PQ)′, we conclude that

P is given by

P = ρQ+ (t− t−1)+(t− t−1)−(t− t−1)2r + c (t− t−1)+(t− t−1)−Q̄
+ a(p++

q + p−−q )Q+ b(p+q + p−q )Q , (5.28)

which is a polynomial in t and t−1 iff a = b = 0. That is, as in the rational case, P is

polynomial iff there is no singular root and no zero root, in which case {u1 , . . . , uM} is

admissible. Moreover, Q0,2 is polynomial iff a = b = 0.

5.2.3 An example

Let us finally present an explicit example of using the Q-system (5.15)–(5.16) to compute

Bethe roots. The functions Q0,0(t) and Q1,0(t) are now given by

Q[0, 0, t_] := (t - t^(-1))^(2L);

Q[1, 0, t_] := Sum[c[k](t^(2k) + t^(-2k)), {k, 0, M-1}] + t^(2M) + t^(-2M);

and the functions Q1,n(t) and Q0,n(t) are given by

Q[1, n_, t_] := (Q[1, n-1, t Exp[eta/2]] -

Q[1, n-1, t Exp[-(eta/2)]])/(t^2 - t^(-2));

Q[0, n_, t_] := (Q[1, n, t Exp[eta/2]] Q[0, n-1, t Exp[-(eta/2)]] -

Q[1, n, t Exp[-(eta/2)]] Q[0, n-1, t Exp[eta/2]])/((t^2 - t^(-2)) Q[1, n-1, t]);

Moreover, we now define yn(t) by

y[n_, t_] := PolynomialRemainder[Numerator[t^(2L-1) Together[Q[0, n, t]]],

Denominator[t^(2L-1) Together[Q[0, n, t]]], t];

We then solve for the coefficients ck and the Bethe roots exactly as in section 3.2.1.

As before, let us consider the case N ≡ L = 6 and M = 2, with η = log(2). The

above code generates 9 solutions, as expected (4.17). For example, for the first solution,

the corresponding Bethe roots are given by 0.0967267i , 0.385801i.

12In contrast with the closed XXZ case, a term in P of the form α log (t)Q as in (3.20) is absent.
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6 Conclusions

Our main results are Q-systems for the closed XXZ (3.8)–(3.9), open XXX (4.18)–(4.19)

and open quantum-group-invariant XXZ (5.15)–(5.16) quantum spin chains. Polynomial

solutions of these Q-systems can be found efficiently, which in turn lead directly to the

admissible solutions of the corresponding BA equations.

Numerous applications of these results are possible. In conjunction with techniques

from algebraic geometry, these Q-systems allow the exact computation of partition func-

tions for trigonometric vertex models and for vertex models with boundaries [6, 7].

We restricted here to open spin chains with SU(2) or Uq(SU(2)) symmetry. It would

be both interesting and useful to formulate Q-systems for open spin chains with other

integrable boundary conditions, as well as for integrable models based on R-matrices for

higher-rank algebras and/or higher-dimensional representations.
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A Exceptional solutions for open spin chains

A.1 XXX

A.1.1 u1 = 0

Let us consider a solution u1 , . . . , uM of the BA equations (4.14) with one zero Bethe root,

say u1 = 0 (and u2 , . . . , uM pairwise distinct and not equal to 0). Since F1 in (4.11) is not

well-defined, we set u1 = ε and consider the limit limε→0 F1. It is straightforward to see

that this limit exists and is nonzero. Hence, the corresponding Bethe state in the off-shell

equation (4.9) is not an eigenstate of the transfer matrix, see also [26].

A.1.2 u1 = i
2

The equations (4.13) evidently have solutions u1 , . . . , uM with one “singular” root, say

u1 = i
2 (and u2 , . . . , uM pairwise distinct and not equal to ± i

2). However, the BA equa-

tions (4.14) do not have such solutions (recall that the latter equations are not equivalent

to (4.13) for this case). Hence, it is not surprising that the corresponding Bethe state is

not an eigenstate of the transfer matrix. Indeed, let us define a renormalized B-operator

B̃(u) =
1

u−
B(u) , (A.1)
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such that limε→0 B̃( i2 + ε) is finite and non-singular.13 Bethe states created with this renor-

malized operator satisfy an off-shell relation similar to (4.9), except with Fj replaced by

F̃j =
u−

uj − i
2

Fj . (A.2)

We find that limε→0 F̃1 exists and is nonzero for u1 = ± i
2 + ε. Hence, the corresponding

Bethe state is not an eigenstate of the transfer matrix.

The BA equations (4.14) do have solutions with a pair of singular Bethe roots, e.g.

u1 = i
2 and u2 = ± i

2 , which must be discarded since |u1| and |u2| are not distinct.

A.2 XXZ

For the XXZ case, the coefficients Fj of the “unwanted” terms are given by (5.10). We

exclude both uj = 0 and uj = iπ
2 , since (similarly to section A.1.1) the limit limε→0 F1

exists and is nonzero for both u1 = ε and u1 = iπ
2 + ε. We must also exclude uj = ±η

2 :

similarly to section A.1.2, we renormalize the B-operator

B̃(u) =
1

sinh(2u− η)
B(u) , (A.3)

so that limε→0 B̃(η2 +ε) is finite and non-singular. The coefficients of the “unwanted” terms

become

F̃j =
sinh(2u− η)

sinh(2uj − η)
Fj . (A.4)

Then limε→0 F̃1 exists and is nonzero for u1 = ±η
2 + ε.
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