On Generalized Quasi Einstein Manifolds

Avik De ${ }^{\text {a }}$, Ahmet Yildiz ${ }^{\text {b }}$, Uday Chand De ${ }^{\text {c }}$
${ }^{a}$ Institute of Mathematical Sciences, University of Malaya, 50603 Kuala Lumpur, Malaysia
${ }^{b}$ Art and Science Faculty, Department of Mathematics, Dumlupmar University, Kütahya, Turkey
${ }^{c}$ Department of Pure Mathematics, University of Calcutta, 35, B.C. Road, Kolkata-700019, West Bengal, India

Abstract

Quasi Einstein manifold is a simple and natural generalization of an Einstein manifold. The object of the present paper is to study some geometric properties of generalized quasi Einstein manifolds. Two non-trivial examples have been constructed to prove the existence of a generalized quasi Einstein manifold.

1. Introduction

A Riemannian or a semi-Riemannian manifold $\left(M^{n}, g\right), n=\operatorname{dim} M \geq 2$, is said to be an Einstein manifold if the following condition

$$
\begin{equation*}
S=\frac{r}{n} g, \tag{1}
\end{equation*}
$$

holds on M, where S and r denote the Ricci tensor and the scalar curvature of $\left(M^{n}, g\right)$ respectively. According to ([1], p. 432), (1) is called the Einstein metric condition. Einstein manifolds play an important role in Riemannian Geometry as well as in general theory of relativity. Also Einstein manifolds form a natural subclass of Riemannian or semi-Riemannian manifolds by a curvature condition imposed on their Ricci tensor ([1], p. 432-433). For instance, every Einstein manifold belongs to the class of Riemannian manifolds $\left(M^{n}, g\right)$ realizing the following relation :

$$
\begin{equation*}
S(X, Y)=a g(X, Y)+b A(X) A(Y) \tag{2}
\end{equation*}
$$

where a, b are smooth functions and A is a non-zero 1-form such that

$$
\begin{equation*}
g(X, U)=A(X) \tag{3}
\end{equation*}
$$

for all vector fields X.
A non-flat Riemannian manifold $\left(M^{n}, g\right)(n>2)$ is defined to be a quasi Einstein manifold [3] if its Ricci tensor S of type $(0,2)$ is not identically zero and satisfies the condition (2). We shall call A the associated 1 -form and the unit vector field U is called the generator of the manifold. Such a manifold is denoted by $(Q E)_{n}$.

[^0]Quasi Einstein manifolds arose during the study of exact solutions of the Einstein field equations as well as during considerations of quasi-umbilical hypersurfaces of semi-Euclidean spaces. For instance, the Robertson-Walker spacetime are quasi Einstein manifolds. Also quasi Einstein manifolds can be taken as a model of the perfect fluid spacetime in general relativity[7]. So quasi Einstein manifolds have some importance in the general theory of relativity.

The study of quasi Einstein manifolds was continued by M.C.Chaki [3], S.Guha [11], U.C.De and G.C.Ghosh ([5], [6]), P.Debnath and A.Konar [9], Özgür and Sular [21], Özgür [18] and many others. In a recent paper [25] Shaikh, Kim and Hui studied Lorentzian quasi Einstein manifolds

Several authors have generalized the notion of quasi Einstein manifold such as generalized quasi Einstein manifolds ([4], [20]), nearly quasi Einstein manifolds [8], generalized Einstein manifolds[2], super quasi Einstein manifolds [19], pseudo quasi Einstein manifolds [24] and $N(k)$-quasi Einstein manifolds ([17], [21], [18], [27], [13]).

In 2001, Chaki [4] introduced the notion of generalized quasi Einstein manifolds. A non-flat Riemannian manifold $\left(M^{n}, g\right)(n>2)$ is called a generalized quasi Einstein manifold if its Ricci tensor S of type $(0,2)$ is non-zero and satisfies the condition

$$
\begin{equation*}
S(X, Y)=a g(X, Y)+b A(X) A(Y)+c(A(X) B(Y)+A(Y) B(X)) \tag{4}
\end{equation*}
$$

where a, b, c are certian non-zero scalars and A, B are two non-zero 1-form. The unit vector fields U and V corresponding to the 1 -forms A and B respectively, defined by

$$
g(X, U)=A(X), \quad g(X, V)=B(X)
$$

for every vector field X are orthogonal, that is, $g(U, V)=0$. Such as n-dimensional manifold is denoted by $G(Q E)_{n}$. The vector fields U and V are called the generators of the manifold and a, b, c are called the associated scalars. If $c=0$, then the manifold reduces to a quasi Einstein manifold $(Q E)_{n}$. It may be mentioned that De and Ghosh [5] introduced the same notion in another way. In 2008, De and Gazi [8] introduced nearly quasi Einstein manifolds $N(Q E)_{n}$ and prove the existence of such a manifold by several examples.

A non-flat Riemannian manifold $\left(M^{n}, g\right)(n>2)$ is called a nearly quasi Einstein manifold if the Ricci tensor S is non-zero and satisfies the condition

$$
S(X, Y)=a g(X, Y)+b E(X, Y)
$$

where E is a symmetric tensor of type $(0,2)$.
In a Riemannian manifold $\left(M^{n}, g\right)(n>3)$ the Weyl conformal curvature tensor C of type $(1,3)$ is defined by

$$
\begin{array}{r}
C(X, Y) Z=R(X, Y) Z-\frac{1}{n-2}[g(Y, Z) Q X-g(X, Z) Q Y \\
+S(Y, Z) X-S(X, Z) Y] \\
+\frac{r}{(n-1)(n-2)}[g(Y, Z) X-g(X, Z) Y]
\end{array}
$$

where R, S, r denotes the Riemannian curvature tensor, the Ricci tensor of type $(0,2)$ and the scalar curvature of the manifold respectively and Q is the symmetric endomorphism of the tangent space at each point corresponding to the Ricci tensor S, that is, $g(Q X, Y)=S(X, Y)$. If the dimension $n=3$, then the conformal curvature tensor vanishes identically. The conformal curvature tensor have been studied by several authors in several ways such as ([12], [14], [15], [16], [26]) and many others.

The importance of a $G(Q E)_{n}$ lies in the fact that a four-dimensional semi-Riemannian manifold is relevant to study of a general relativistic fluid spacetime admitting heat flux [23], where U is taken as the velocity vector of the fluid and V is taken as the heat flux vector field.
In the present paper we have studied $G(Q E)_{n}$. The paper is organized as follows:
After introduction in Section 2, we study some basic results of $G(Q E)_{n}$. We prove that if the generator U or V is a parallel vector field, then $G(Q E)_{n}$ reduces to a $(Q E)_{n}$. A necessary condition is obtained for a $G(Q E)_{n}$ to be conformally conservative. Section 3 is devoted to study Ricci-semisymmetric $G(Q E)_{n}$. In the next section we consider Ricci-recurrent $G(Q E)_{n}$. Finally, we construct two non-trivial examples of a $G(Q E)_{n}$.

2. Basic results

Suppose the generator U is a parallel vector field, then $R(X, Y) U=0$. Hence

$$
\begin{equation*}
S(X, U)=0 \tag{5}
\end{equation*}
$$

Putting $Y=U$ in (4) gives

$$
\begin{align*}
S(X, U) & =a A(X)+b A(X)+c B(X) \\
& =(a+b) g(X, U)+c g(X, V) \tag{6}
\end{align*}
$$

Using (5) in (6) we get

$$
\begin{equation*}
(a+b) g(X, U)+c g(X, V)=0 \tag{7}
\end{equation*}
$$

Putting $X=V$ in (7) yields $c=0$. That is, $G(Q E)_{n}$ reduces to a $(Q E)_{n}$. Again if V is a parallel vector field, then $S(X, V)=0$. Setting $Y=V$ in (4), we obtain

$$
\begin{align*}
S(X, V) & =a g(X, V)+b A(X) A(V)+c(A(X) B(V)+A(V) B(X)) \\
& =a B(X)+c A(X), \text { since } A(V)=g(U, V)=0 . \tag{8}
\end{align*}
$$

Putting $X=U$ in (8) gives

$$
a B(U)+c A(V)=0
$$

which implies $c=0$, since $B(U)=g(U, V)=0$. In this case also $G(Q E)_{n}$ reduces to a $(Q E)_{n}$.
This leads to the following :
Theorem 2.1. In a $G(Q E)_{n}$ if either of the generators U, V is parallel, then the manifold reduces to a quasi Einstein manifold.

Corollary 2.1. If the generator U of $a G(Q E)_{n}$ is a parallel vector field, then $a+b=0$.
Theorem 2.2. In a $G(Q E)_{n}, Q U$ is orthogonal to U iff $a+b=0$.
Proof. In the equation (5) let us set $Y=U$. Then we get

$$
S(X, U)=a g(X, U)+b A(X) A(U)+c(A(X) B(U)+A(U) B(X))
$$

Again putting $X=U$, we obtain $S(U, U)=a+b$ and hence $g(Q U, U)=a+b$, which implies that $Q U$ is orthogonal to U if and only if $a+b=0$.

Theorem 2.3. A necessary condition for a $G(Q E)_{n}$ to be conformally conservative is

$$
2(n-1) d c(U)=(n-2) d a(U)+(2 n+1) d b(U)
$$

Proof. A Riemannian manifold of dimension >3 is said to be of conservative conformal curvature tensor if $\operatorname{div} \mathrm{C}=0$ where 'div' denotes divergence. It is known[10] that $\operatorname{div} \mathrm{C}=0$ implies

$$
\begin{equation*}
\left(\nabla_{X} S\right)(Y, Z)-\left(\nabla_{Z} S\right)(Y, X)=\frac{1}{2(n-1)}[d \tau(X) g(Y, Z)-d \tau(Z) g(X, Y)] \tag{9}
\end{equation*}
$$

Putting $X=Y=U$ and $Z=V$ in (9) we get

$$
\begin{equation*}
\left(\nabla_{U} S\right)(U, V)-\left(\nabla_{V} S\right)(U, U)=\frac{1}{2(n-1)}[d \tau(U) g(U, V)-d \tau(V) g(U, U)] \tag{10}
\end{equation*}
$$

From (4) we obtain

$$
\begin{equation*}
r=a n+b \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
S(U, V)=c \tag{12}
\end{equation*}
$$

Using (11) and (12) in (10), we get

$$
\nabla_{U} c-\nabla_{V}(a+b)=\frac{1}{2(n-1)}[-n d a(U)-d b(U)]
$$

That is,

$$
2(n-1) d c(U)-(n-2) d a(U)-(2 n+1) d b(U)=0
$$

This completes the proof.

3. Ricci-semisymmetric $G(Q E)_{n}$

A Riemannian manifold is said to be Ricci-semisymmetric if $R \cdot S=0$ holds. In this section we study Ricci-semisymmetric $G(Q E)_{n}$ and prove the following theorem:

Theorem 3.1. A Ricci-semisymmetric $G(Q E)_{n}$ is either nearly quasi Einstein manifold $N(Q E)_{n}$ or, $A(R(X, Y) V)=0$.
Proof. Suppose that $R \cdot S=0$. Then we get

$$
S(R(X, Y) Z, W)+S(Z, R(X, Y) W)=0
$$

Now using (4) we get

$$
\begin{align*}
& a g(R(X, Y) Z, W)+b A(R(X, Y) Z) A(W)+c\{A(R(X, Y) Z) B(W) \\
& +A(W) B(R(X, Y) Z)\}+a g(Z, R(X, Y) W)+b A(Z) A(R(X, Y) W) \tag{13}\\
& +c\{A(Z) B(R(X, Y) W)+A(R(X, Y) W) B(Z)\}=0
\end{align*}
$$

Taking $W=U$ and $Z=V$ in (13), we obtain

$$
b A(R(X, Y) V)=0 \text {, since } B(R(X, Y) V)=g(R(X, Y) V, V)=0
$$

Then either $b=0$ or, $A(R(X, Y) V)=0$.
If $b=0$, from (4) we get

$$
S(X, Y)=a g(X, Y)+c\{A(X) B(Y)+A(Y) B(X)\}=a g(X, Y)+c E(X, Y)
$$

where $E(X, Y)=A(X) B(Y)+A(Y) B(X)$ is a symmetric tensor. Hence either the manifold is a nearly quasi Einstein manifold $N(Q E)_{n}$ or, $A(R(X, Y) V)=0$.

4. Nature of the associated 1-forms of a $G(Q E)_{n}$

In this section, we assume that the associated scalars a, b, c are constants and we enquire under what conditions the associated 1-forms A, B to be closed. Let us suppose that the manifold $G(Q E)_{n}$ satisfies Codazzi type of Ricci tensor, that is, the Ricci tensor satisfies

$$
\begin{equation*}
\left(\nabla_{X} S\right)(Y, Z)=\left(\nabla_{Y} S\right)(X, Z) \tag{14}
\end{equation*}
$$

Using (4) in (14) we get

$$
\begin{array}{r}
b\left[\left(\nabla_{X} A\right) Y A(Z)+A(Y)\left(\nabla_{X} A\right) Z\right]+c\left[\left(\nabla_{X} A\right) Y B(Z)\right. \\
\left.+A(Y)\left(\nabla_{X} B\right) Z+\left(\nabla_{X} A\right) Z B(Y)+A(Z)\left(\nabla_{X} B\right) Y\right] \\
=b\left[\left(\nabla_{Y} A\right) X A(Z)+A(X)\left(\nabla_{Y} A\right) Z\right]+c\left[\left(\nabla_{Y} A\right) X B(Z)\right. \tag{15}\\
\left.+A(X)\left(\nabla_{Y} B\right) Z+\left(\nabla_{Y} A\right) Z B(X)+A(Z)\left(\nabla_{Y} B\right) X\right] .
\end{array}
$$

Putting $Z=U$ in (15) and using $\left(\nabla_{X} A\right) U=0$, since U is a unit vector, we obtain

$$
\begin{align*}
b\left[\left(\nabla_{X} A\right) Y-\left(\nabla_{Y} A\right) X\right]= & c\left[A(X)\left(\nabla_{Y} B\right) U+\left(\nabla_{Y} B\right) X\right. \\
& \left.-A(Y)\left(\nabla_{X} B\right) U-\left(\nabla_{X} B\right) Y\right] . \tag{16}
\end{align*}
$$

Now suppose $\nabla_{Y} U \perp V$, then

$$
\begin{equation*}
\left(\nabla_{X} B\right) U=0 . \tag{17}
\end{equation*}
$$

Using (17) in (16), we get

$$
b(d A)(X, Y)=-c(d B)(X, Y)
$$

Hence we can state the following :
Theorem 4.1. If a $G(Q E)_{n}$ with associated scalars as constants satisfies Codazzi type of Ricci tensor, then the associated 1-form A is closed if and only if B is closed, provided $\nabla_{Y} U \perp V$.

Next suppose the 1-form A is closed. Then

$$
\left(\nabla_{X} A\right) Y-\left(\nabla_{Y} A\right) X=0
$$

which implies

$$
\begin{equation*}
g\left(\nabla_{X} U, Y\right)+g\left(\nabla_{Y} U, X\right)=0 \tag{18}
\end{equation*}
$$

Hence the vector field U is irrotational. Putting $X=U$ in (18), we get

$$
g\left(\nabla_{U} U, Y\right)+g\left(\nabla_{Y} U, U\right)=0 .
$$

Since U is a unit vector, $g\left(\nabla_{Y} U, U\right)=0$. Hence

$$
g\left(\nabla_{U} U, Y\right)=0
$$

which implies $\nabla_{U} U=0$, that is, the integral curves of the vector field U are geodesic.
Thus we can state the following :
Corollary 4.1. If a $G(Q E)_{n}$ with associated scalars as constants satisfies Codazzi type of Ricci tensor, then the vector field U is irrotational and the integral curves of the vector field U are geodesic provided 1-form B is closed and $\nabla_{\gamma} U \perp V$.

5. Ricci-recurrent $G(Q E)_{n}$

A Riemannian manifold is said to be Ricci-recurrent [22] if the Ricci tensor is non-zero and satisfies the condition

$$
\left(\nabla_{X} S\right)(Y, Z)=D(X) S(Y, Z)
$$

where D is a non-zero 1 -form.
Let $\left(M^{n}, g\right)$ be a $G(Q E)_{n}$ manifold. If U is a parallel vector field, then $\nabla_{X} U=0$, from which it follows that $R(X, Y) U=0$. Therefore $S(Y, U)=0$. Then from Theorem 1 and Corollary 1, we get $c=0$ and $a+b=0$. Therefore we can rewrite the equation (4) in the following form:

$$
S(X, Y)=a[g(X, Y)-A(X) A(Y)]
$$

Taking the covariant derivative of the above equation with respect to Z, we obtain

$$
\left(\nabla_{Z} S\right)(X, Y)=d a(Z)[g(X, Y)-A(X) A(Y)]
$$

since $\nabla_{X} U=0$ implies that $\left(\nabla_{Z} A\right)(X)=0$. Therefore $\left(\nabla_{Z} S\right)(X, Y)=\frac{d a(Z)}{a} S(X, Y)$, i.e., the manifold $\left(M^{n}, g\right)$ is Ricci-recurrent.

Conversely, suppose that $G(Q E)_{n}$ is Ricci-recurrent. Then

$$
\left(\nabla_{X} S\right)(Y, Z)=D(X) S(Y, Z), D(X) \neq 0
$$

But

$$
\left(\nabla_{X} S\right)(Y, Z)=X S(Y, Z)-S\left(\nabla_{X} Y, Z\right)-S\left(Y, \nabla_{X} Z\right)
$$

Therefore

$$
\begin{equation*}
D(X) S(Y, Z)=X S(Y, Z)-S\left(\nabla_{X} Y, Z\right)-S\left(Y, \nabla_{X} Z\right) \tag{19}
\end{equation*}
$$

Putting $Y=Z=U$ in (19), we obtain

$$
\begin{equation*}
D(X)(a+b)=X(a+b)-S\left(\nabla_{X} U, U\right)-S\left(U, \nabla_{X} U\right) \tag{20}
\end{equation*}
$$

From the equation (4), we obtain

$$
\begin{aligned}
S\left(\nabla_{X} U, U\right) & =a g\left(\nabla_{X} U, U\right)+b A\left(\nabla_{X} U\right)+c B\left(\nabla_{X} U\right) \\
& =(a+b) A\left(\nabla_{X} U\right)+c B\left(\nabla_{X} U\right)
\end{aligned}
$$

Hence from (20), we get

$$
\begin{equation*}
X(a+b)-D(X)(a+b)=2(a+b) A\left(\nabla_{X} U\right)+2 c B\left(\nabla_{X} U\right) \tag{21}
\end{equation*}
$$

Since $A(U)=1$ implies $g\left(\nabla_{X} U, U\right)=0$, i.e., $A\left(\nabla_{X} U\right)=0$, therefore from (21) $B\left(\nabla_{X} U\right)=0$ if and only if $d(a+b)(X)=(a+b) D(X)$. But $B\left(\nabla_{X} U\right)=0$ implies that either U is a parallel vector field or $\nabla_{X} U \perp V$.

Thus we can state the following:
Theorem 5.1. $A G(Q E)_{n}$ is a Ricci-recurrent manifold provided the generator U is a parallel vector field. Conversely, if a $G(Q E)_{n}$ is a Ricci-recurrent manifold, then either the vector field U is parallel or, $\nabla_{X} U \perp V$.

6. Examples of generalized quasi Einstein manifolds

Example 6.1. We consider a Riemannian manifold $\left(\mathbb{R}^{4}, g\right)$ endowed with the metric g given by

$$
d s^{2}=g_{i j} d x^{i} d x^{j}=(1+2 q)\left[\left(d x^{1}\right)^{2}+\left(d x^{2}\right)^{2}+\left(d x^{3}\right)^{2}+\left(d x^{4}\right)^{2}\right]
$$

where $q=\frac{e^{x^{1}}}{k^{2}}$ and k is a non-zero constant and $i, j=1,2,3,4$.
The only non-vanishing components of the Christoffel symbols, the curvature tensor and the Ricci tensor are

$$
\begin{aligned}
\Gamma_{11}^{1} & =\frac{q}{1+2 q^{\prime}}, \Gamma_{22}^{1}=-\frac{q}{1+2 q^{\prime}}, \Gamma_{33}^{1}=-\frac{q}{1+2 q^{\prime}}, \\
\Gamma_{44}^{1} & =-\frac{q}{1+2 q^{\prime}}, \Gamma_{12}^{2}=\frac{q}{1+2 q^{\prime}}, \Gamma_{13}^{3}=\frac{q}{1+2 q^{\prime}}, \\
\Gamma_{14}^{4} & =\frac{q}{1+2 q^{\prime}}, \\
R_{1221} & =R_{1331}=R_{1441}=\frac{q}{1+2 q^{\prime}} \\
R_{2332} & =R_{2442}=R_{3443}=\frac{q^{2}}{1+2 q^{\prime}}, \\
R_{11} & =\frac{3 q}{(1+2 q)^{2}}, \\
R_{22} & =R_{33}=R_{44}=\frac{q}{1+2 q} .
\end{aligned}
$$

The scalar curvature is $\frac{6 q(1+q)}{(1+2 q)^{3}}$ which is non-zero and non-constant. We take scalars a, b and c as follows :

$$
a=\frac{q}{(1+2 q)^{2}}, b=\frac{3 q}{(1+2 q)^{3}}-\frac{q}{(1+2 q)^{2}}, c=\frac{q}{1+2 q} .
$$

We choose the 1-forms as follows :

$$
A_{i}(x)= \begin{cases}\sqrt{1+2 q}, & \text { for } \mathrm{i}=1 \\ 0, & \text { for } \mathrm{i}=2,3,4\end{cases}
$$

and

$$
B_{i}(x)= \begin{cases}\sqrt{\frac{1+2 q}{3}}, & \text { for } \mathrm{i}=2,3,4 \\ 0, & \text { for } \mathrm{i}=1\end{cases}
$$

We have,

$$
\begin{align*}
& R_{11}=a g_{11}+b A_{1} A_{1}+c\left(A_{1} B_{1}+A_{1} B_{1}\right) \tag{22}\\
& R_{22}=a g_{22}+b A_{2} A_{2}+c\left(A_{2} B_{2}+A_{2} B_{2}\right) \tag{23}\\
& R_{33}=a g_{33}+b A_{3} A_{3}+c\left(A_{3} B_{3}+A_{3} B_{3}\right) \tag{24}\\
& R_{44}=a g_{44}+b A_{4} A_{4}+c\left(A_{4} B_{4}+A_{4} B_{4}\right) \tag{25}
\end{align*}
$$

R.H.S. of (22) is $\frac{3 q}{(1+2 q)^{2}}=R_{11}=$ L.H.S of (22).
R.H.S. of (23) is $\frac{q}{(1+2 q)}=R_{22}=$ L.H.S of (23).

Similarly we can show that the (24) and (25) are also true. We shall now show that the 1 -forms are unit and orthogonal.

$$
\begin{gathered}
g^{i j} A_{i} A_{j}=g^{11} A_{1} A_{1}+g^{22} A_{2} A_{2}+g^{33} A_{3} A_{3}+g^{44} A_{4} A_{4}=1, \\
g^{i j} B_{i} B_{j}=g^{11} B_{1} B_{1}+g^{22} B_{2} B_{2}+g^{33} B_{3} B_{3}+g^{44} B_{4} B_{4}=1
\end{gathered}
$$

and

$$
g^{i j} A_{i} B_{j}=g^{11} A_{1} B_{1}+g^{22} A_{2} B_{2}+g^{33} A_{3} B_{3}+g^{44} A_{4} B_{4}=0
$$

So, the manifold under consideration is a generalized quasi Einstein manifold.
Example 2. We consider the 3-dimensional manifold $M=\left\{(x, y, z) \in R^{3}\right\}$, where (x, y, z) are the standart coordinates in R^{3}. Let $\left\{e_{1}, e_{2}, e_{3}\right\}$ be linearly independent global frame on M given by

$$
e_{1}=\frac{\partial}{\partial x}-y \frac{\partial}{\partial z}, e_{2}=\frac{\partial}{\partial y}, e_{3}=\frac{\partial}{\partial z}
$$

Let g be the Riemannian metric defined by $g\left(e_{1}, e_{3}\right)=g\left(e_{2}, e_{3}\right)=g\left(e_{1}, e_{2}\right)=0$ and $g\left(e_{1}, e_{1}\right)=g\left(e_{2}, e_{2}\right)=$ $g\left(e_{3}, e_{3}\right)=1$.

Let ∇ be the Levi-Civita connection with respect to the Riemannian metric g and R be the curvature tensor of g. Then we have

$$
\left[e_{1}, e_{2}\right]=e_{3},\left[e_{1}, e_{3}\right]=0,\left[e_{2}, e_{3}\right]=0
$$

The Riemannian connection ∇ of the metric g is given by

$$
\begin{align*}
2 g\left(\nabla_{X} Y, Z\right)= & X g(Y, Z)+Y g(Z, X)-Z g(X, Y) \tag{26}\\
& -g(X,[Y, Z])-g(Y,[X, Z])+g(Z,[X, Y])
\end{align*}
$$

which is known as Koszul's formula. This formula yields

$$
\begin{aligned}
\nabla_{e_{1}} e_{1} & =0, \nabla_{e_{1}} e_{2}=\frac{1}{2} e_{3}, \nabla_{e_{1}} e_{3}=-\frac{1}{2} e_{2} \\
\nabla_{e_{2}} e_{1} & =-\frac{1}{2} e_{3}, \nabla_{e_{2}} e_{2}=0, \nabla_{e_{2}} e_{3}=\frac{1}{2} e_{1}, \\
\nabla_{e_{3}} e_{1} & =-\frac{1}{2} e_{2}, \nabla_{e_{3}} e_{2}=\frac{1}{2} e_{1}, \nabla_{e_{3}} e_{3}=0 .
\end{aligned}
$$

It is known that

$$
\begin{equation*}
R(X, Y) Z=\nabla_{X} \nabla_{Y} Z-\nabla_{Y} \nabla_{X} Z-\nabla_{[X, Y]} Z . \tag{27}
\end{equation*}
$$

With the help of the above results and using (27), we can easily calculate the non-vanishing components of the curvature tensor as follows:

$$
\begin{aligned}
& R\left(e_{2}, e_{3}\right) e_{3}=\frac{1}{4} e_{2}, R\left(e_{1}, e_{3}\right) e_{3}=\frac{1}{4} e_{1}, \quad R\left(e_{1}, e_{2}\right) e_{2}=-\frac{3}{4} e_{1} \\
& R\left(e_{2}, e_{3}\right) e_{2}=-\frac{1}{4} e_{3}, R\left(e_{1}, e_{3}\right) e_{1}=-\frac{1}{4} e_{3}, \quad R\left(e_{1}, e_{2}\right) e_{1}=\frac{3}{4} e_{2}
\end{aligned}
$$

and the components which can be obtained from these by the symmetric properties from which, we can easily calculate the non-vanishing components of the Ricci tensor S as follows:

$$
S\left(e_{1}, e_{1}\right)=-\frac{1}{2}, S\left(e_{2}, e_{2}\right)=-\frac{1}{2}, S\left(e_{3}, e_{3}\right)=\frac{1}{2}
$$

and the scalar curvature is $-\frac{1}{2}$. Since $\left\{e_{1}, e_{2}, e_{3}\right\}$ is a frame field, any vector field $X, Y \in \chi(M)$ can be written as

$$
X=a_{1}^{\prime} e_{1}+b_{1}^{\prime} e_{2}+c_{1}^{\prime} e_{3}
$$

and

$$
Y=a_{2}^{\prime} e_{1}+b_{2}^{\prime} e_{2}+c_{2}^{\prime} e_{3},
$$

where $a_{i}^{\prime}, b_{i}^{\prime}, c_{i}^{\prime} \in R^{+}$such that $a_{1}^{\prime} a_{2}^{\prime}+b_{1}^{\prime} b_{2}^{\prime}+c_{1}^{\prime} c_{2}^{\prime} \neq 0$. Hence

$$
\begin{aligned}
& S(X, Y)=-\frac{1}{2}\left(a_{1}^{\prime} a_{2}^{\prime}+b_{1}^{\prime} b_{2}^{\prime}-c_{1}^{\prime} c_{2}^{\prime}\right) \\
& g(X, Y)=a_{1}^{\prime} a_{2}^{\prime}+b_{1}^{\prime} b_{2}^{\prime}+c_{1}^{\prime} c_{2}^{\prime}
\end{aligned}
$$

We choose the associated scalars as follows:

$$
a=1, b=-\frac{3}{2} \text { and } c=-\frac{1}{2} \text {. }
$$

We also choose two associated 1-forms as follows:

$$
\begin{aligned}
& A(X)=\left(a_{1}^{\prime} a_{2}^{\prime}+b_{1}^{\prime} b_{2}^{\prime}\right)^{\frac{1}{2}}, \forall X . \\
& B(X)=\frac{c_{1}^{\prime} c_{2}^{\prime}}{2\left(a_{1}^{\prime} a_{2}^{\prime}+b_{1}^{\prime} b_{2}^{\prime}\right)^{\frac{1}{2}}}, \forall X .
\end{aligned}
$$

By virtue of the definition and chosen of two scalars and 1 -forms, we can say that $\left(M^{3}, g\right)$ is a generalized quasi Einstein manifold whose associated scalars are constants.

References

[1] A. L. Besse, Einstein manifolds, Ergeb. Math. Grenzgeb., 3. Folge, Bd. 10, Springer-Verlag, Berlin, Heidelberg, New York, 1987.
[2] C. L. Bejan, T. Q. Binh, Generalized Einstein Manifolds, WSPC Proceedings Trim Size (2008), 470-504.
[3] M. C. Chaki, R. K. Maity, On quasi Einstein manifolds, Publ. Math. Debrecen, 57(2000), 297-306.
[4] M. C. Chaki, On generalized quasi-Einstein manifolds, Publ. Math. Debrecen, 58(2001), 683-691.
[5] U. C. De, Ghosh, Gopal Chandra, On quasi-Einstein manifolds, Period. Math. Hungar., 48(2004), 223-231.
[6] U. C. De, Ghosh, Gopal Chandra, On conformally flat special quasi-Einstein manifolds, Publ. Math. Debrecen, 66(2005), $129-136$.
[7] U. C. De, Ghosh, Gopal Chandra, On quasi Einstein and special quasi Einstein manifolds, Proc. of the Conf. of Mathematics and its applications, Kuwait University, April 5-7 (2004), 178-191.
[8] U. C. De, A. K. Gazi On nearly quasi Einstein manifolds, Novi Sad J Math.,38(2008),115-121.
[9] P. Debnath and A. Konar, On quasi-Einstein manifolds and quasi-Einstein spacetimes, Differ. Geom. Dyn. Syst.,12(2010), 73-82.
[10] L.P. Einshart, Riemannian Geometry, Princeton University Press, 1949.
[11] Guha, Sarbari Ray, On quasi-Einstein and generalized quasi-Einstein manifolds, Facta Universitatis, 3(2003), 821-842.
[12] I. E. Hirica, On some pseudo-symmetric Riemannian spaces, Balkan J. Geom. Appl.,14(2009), 42-49.
[13] A. Hosseinzader, A. Taleshian, On conformal and quasi-conformal curvature tensors of an N(k)-quasi-Einstein manifold, Commun. Korean Math. Soc., 27(2012), 317-326.
[14] S. Kumar, K. C. Petval, Analysis on recurrence properties of Weyl's curvature tensor and its Newtonian limit, Differ. Geom. Dyn. Syst., 12(2010), 109-117.
[15] C. A. Manica, Y. J. Suh, Conformally symmetric manifolds and conformally recurrent Riemannian manifolds, Balkan J. Geom. Appl.,16(2011), 66-77.
[16] S. M. Mincić, M. S. Stanković, Lj. S. Velimirović, Generalized Riemannian spaces and spaces of non-symmetric affine connection, Faculty of Science and Mathematics, University of Niś, 2013.
[17] H. G. Nagaraja, On N(k)-mixed quasi-Einstein manifolds, Eur. J. Pure Appl. Math., 3(2010), 16-25.
[18] C. Özg \ddot{u} r, N(k)-quasi Einstein manifolds satisfying certain conditions, Chaos, Solutions and Fractals,38(2008), 1373-1377.
[19] C. Ozgür, On some classes of super quasi-Einstein manifolds, Chaos, Solitons and Fractals, 40(2009) 1156-1161.
[20] C. Özgür, On a class of generalized quasi-Einstein manifolds, Applied Sciences, Balkan Society of Geometers, Geometry Balkan Press, 8(2006), 138-141.
[21] S. Sular, On N(k)-quasi-Einstein manifolds satisfying certain conditions, Balkan J. Geom. Appl., 13(2008), 74-79.
[22] E. M. Patterson, Some theorems on Ricci recurrent spaces, J. London Math. Soc., 27(1952), 287-295.
[23] D. Ray, J. Math. Phys. 21(1980), 2797-2798.
[24] A. A. Shaikh, On pseudo quasi Einstein manifold, Period. Math. Hungar., 59(2009),119,146.
[25] A. A. Shaikh, Y. H. Kim, S. K. Hui, On Lorentzian quasi Einstein manifolds, J. Korean Math. Soc.,48(2011), 669-689.
[26] M. S. Stanković, Lj. S. Velimirović, S. M. Mincić, M. Lj.Zlatanović, Equitorsion conform mappings of generalized Riemannian spaces, Math. Vesnik,61(2009), 119-129.
[27] A. Taleshian, A. A. Hosseenzadeh, Investigation of some conditions on $\mathrm{N}(\mathrm{k})$-quasi Einstein manifolds, Bull. Malays. Math. Sci. Soc.,34(2011), 455-464.

[^0]: 2010 Mathematics Subject Classification. 53C25, 53C35, 53D10
 Keywords. Einstein manifolds, Quasi Einstein manifolds, generalized quasi-Einstein manifolds.
 Received: 03 May 2013; Accepted: 25 July 2013
 Communicated by Ljubica Velimirović
 Email addresses: de.math@gmail.com (Avik De), ayildiz44@yahoo.com (Ahmet Yildiz), uc_de@yahoo.com (Uday Chand De)

