
Zhao et al. Journal of Inequalities and Applications         ( 2020)  2020:11 

https://doi.org/10.1186/s13660-020-2281-6

RESEARCH Open Access

On generalized strongly modified h-convex
functions
Taiyin Zhao1, Muhammad Shoaib Saleem2, Waqas Nazeer3*, Imran Bashir2 and Ijaz Hussain2

*Correspondence:

nazeer.waqas@ue.edu.pk
3Department of Mathematics,

Government College University,

Lahore, Pakistan

Full list of author information is

available at the end of the article

Abstract

We derive some properties and results for a new extended class of convex functions,

generalized strongly modified h-convex functions. Moreover, we discuss Schur-type,

Hermite–Hadamard-type, and Fejér-type inequalities for this class. The crucial fact is

that this extended class has awesome properties similar to those of convex functions.
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1 Introduction

Nowadays, in science and modern analysis the convexity plays an important role in eco-

nomics, statistics, management science, engineering, and optimization theory. For in-

stance, Barani et al. [1] presented the Hermite–Hadamard inequality for functions with

preinvex absolute values of derivatives. Characterizations of convexity via Hadamard’s in-

equality has been studied in [2]. In 2003, Dragomir and Pearce [3] proposed some appli-

cations of Hermite–Hadamard inequalities. In 2015, Dragomir [4] presented inequalities

of Hermite–Hadamard type for h-convex functions on linear spaces. Some other inter-

esting results can be found in books [5, 6] and research papers [7, 8]. In the recent years,

generalizations and extensions were made rapidly for convex functions; for a recent gen-

eralization, see [9–11].

Convexity in the classical sense for a function g : L = [a1,a2] ⊂R →R is defined as

g
(

ta1 + (1 – t)a2
)

≤ tg(a1) + (1 – t)g(a2),

where a1,a2 ∈ L and t ∈ [0, 1].

Thework on the convexity is extended day by day by using some techniques; see [12–14].

The strongly extended convexity is widely used in optimization, economics, and nonlinear

programming.

Convex functiosn satisfy several inequalities in which famous inequalities are of Schur

type, Hermite–Hadamard-type, and Fejér-type inequalities. The Hermite–Hadamard-

type inequality introduced by Jaques Hadamard for classical convex functions g : L =
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[a1,a2]⊂R →R as

g

(

a1 + a2

2

)

≤
1

a2 – a1

∫ a2

a1

g(x)dx≤
g(a1) + g(a2)

2
.

For extended versions of this inequality, see [12] and [13]. For further reading, see [15–19].

Lipot Fejér presented an extended version of the Hermite–Hadamard inequality, known

as the Fejér inequality or a weighted version of the Hermite–Hadamard inequality. If f :

I →R is a convex function, then

g

(

a1 + a2

2

)∫ a2

a1

w(x)dx ≤
1

a2 – a1

∫ a2

a1

w(x)g(x)dx≤
g(a1) + g(a2)

2

∫ a2

a1

w(x)dx,

where a1 ≤ a2, and w : I → R is nonnegative, integrable, and symmetric about a+b
2
. For

further extended versions and development, see [20] and [8].

In this paper, we first present some preliminaries and basic results. In the next section,

we investigate Schur-type, Hermite–Hadamard-type, and Fejér-type inequalities for the

newly introduced class of functions.

2 Preliminaries

In this section, we investigate a new class of convexity by using a basic result. There is

no loss of generality in the extended version of convexity. To get asymptotic results, it

is necessary to put some restrictions: L is an interval in R, and η : A × A → B ⊆ R is a

bifunction.

Definition 1 (h-convex function [21]) Let g,h : L ⊂ R → R be nonnegative functions.

Then g is called an h-convex function if

g
(

ta1 + (1 – t)a2
)

≤ h(t)g(a1) + h(1 – t)g(a2)

for all a1,a2 ∈ L and t ∈ [0, 1].

Definition 2 (Modified h-convex function [13]) Let g,h : L ⊂ R → R be nonnegative

functions. Then g is called a modified h-convex function if

g
(

ta1 + (1 – t)a2
)

≤ h(t)g(a1) +
(

1 – h(t)
)

g(a2) (1)

for all a1,a2 ∈ L and t ∈ [0, 1].

Definition 3 (Generalized modified h-convex function) Let functions g , h: J ⊂ R → R

be nonnegative functions. Then g : I ⊂ R → R is called a generalized modified h-convex

function if

g
(

ta1 + (1 – t)a2
)

≤ g(a2) + h(t)η
(

g(a1), g(a2)
)

(2)

for all a1,a2 ∈ I and t ∈ [0, 1].
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Definition 4 (Wright-convex function [20]) A function g : L ⊂ R → R is said to be

Wright-convex if

g
(

(1 – t)a1 + ta2
)

+ g
(

ta1 + (1 – t)a2
)

≤ g(a1) + g(a2)

for all a1,a2 ∈ L and t ∈ [0, 1].

Definition 5 (Additivity) A function η is said to be additive if η(x1, y1) + η(x2, y2) = η(x1 +

x2, y1 + y2) for all x1,x2, y1, y2 ∈R; see [22] for more detail.

Definition 6 (Nonnegative homogeneity) A function η is said to be nonnegatively homo-

geneous if η(λa1,λa2) = λη(a1,a2) for all a1,a2 ∈R and λ ≥ 0.

Definition 7 (Supermultiplicativity [23]) A function g : L ⊂R →R+ is said to be a super-

multiplicative function if g(a1a2) ≥ g(a1)g(a2) for all a1,a2 ∈ L, t ∈ [0, 1].

Definition 8 (Similar-order functions [24]) Functions f and g are said to be of similar

order on L ⊆R if 〈f (x) – f (y), g(x) – g(y)〉 ≥ 0 for all x, y ∈ L.

Now we are going to introduce a new extended definition of convexity.

Definition 9 (Generalized strongly modified h-convex function) Let g,h : L ⊂ R → R be

nonnegative functions. Then g is called a generalized stronglymodified h-convex function

if

g
(

ta1 + (1 – t)a2
)

≤ g(a2) + h(t)η
(

g(a1), g(a2)
)

–µt(1 – t)(a1 – a2)
2 (3)

for all a1,a2 ∈ L and t ∈ [0, 1].

Remark 1

1. Inequality (3) reduces to inequality (1) if µ = 0 and η(x, y) = x – y.

2. Definition (9) becomes the definition of a classical convex function when µ = 0,

η(x, y) = x – y, and h(t) = t.

3. Inequality(3) reduces to inequality (2) when µ = 0.

4. If h(t) = t, then definition (9) reduces to the definition of a strongly generalized

convex function [12].

Example 1 A function g : L = [a1,a2] ⊂R →R is defined by g(x) = x2, η(a1,a2) = 2a1 + a2,

and h(t) ≥ t, then g is a generalized strongly modified h-convex function.

3 Main results

This section contains some basic and straightforward results. The following proposition

shows the linearity of the class of generalized strongly modified h-convex functions.

Proposition 1 Let f and g be generalized strongly modified h-convex functions where η is

additive and nonnegatively homogeneous.Then for all a,b ∈R, af +bg is also a generalized

strongly modified h-convex function.
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Proposition 2 Let h1, h2 be nonnegative functions on L such that h2(t)≤ h1(t). If g is a gen-

eralized stronglymodified h2-convex function, then g is also a generalized stronglymodified

h1-convex function.

Proof As g is generalized strongly modified h-convex function, for all a1,a2 ∈ L and t ∈

[0, 1], we have

g
(

ta1 + (1 – t)a2
)

≤ g(a2) + h2(t)η
(

g(a1), g(a2)
)

–µt(1 – t)(a1 – a2)
2

≤ g(a2) + h1(t)η
(

g(a1), g(a2)
)

–µt(1 – t)(a1 – a2)
2.

This completes the proof. �

Remark 2 If g is a generalized strongly modified h1-convex and h1(t) ≤ h2(t), then g is a

generalized strongly modified h2-convex function.

Proposition 3 Let f be a linear function such that f (x)– f (y) = x–y, and let g be a general-

ized strongly modified h-convex function. Then g ◦ f is also a generalized strongly modified

h-convex function.

Proof As f is a linear function such that f (x) – f (y) = x – y and g is a generalized strongly

modified h-convex function, for all a1,a2 ∈ L and t ∈ [0, 1], we get

(g ◦ f )
(

ta1 + (1 – t)a2
)

= g(tf (a1) + (1 – t)f (a2)

≤ (g ◦ f )(a2) + h(t)η
(

(g ◦ f )(a1), (g ◦ f )(a2)
)

–µt(1 – t)
(

f (a1) – f (a2)
)2

= (g ◦ f )(a2) + h(t)η
(

(g ◦ f )(a1), (g ◦ f )(a2)
)

–µt(1 – t)(a1 – a2)
2.

This shows that g ◦ f is a generalized strongly modified h-convex function. �

Proposition 4 Let functions gj : L ⊂ R → R be generalized strongly modified h-convex

functions,
∑m

j=1 λj = 1, and let η be additive non-negatively homogeneous function. Then

their linear combination f : R → R is also a generalized strongly modified h-convex func-

tion.

Proof As gj : L ⊂R→ R be generalized strongly modified h-convex functions, for a1,a2 ∈

L and t ∈ [0, 1], let

f (x) =

m
∑

j=1

λjgj(x).
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Set x = (ta1 + (1 – t)a2). Then

f
(

ta1 + (1 – t)a2
)

=

m
∑

j=1

λjgj
(

ta1 + (1 – t)a2
)

≤

m
∑

j=1

λjgj(a2) + h(t)

m
∑

j=1

λjη
(

gi(a1), gi(a2)
)

–µt(1 – t)(a1 – a2)
2

m
∑

j=1

λj

= f (a2) + h(t)η

(

m
∑

j=1

λjgi(a1),

m
∑

j=1

λjgi(a2)

)

–µt(1 – t)(a1 – a2)
2

= f (a2) + h(t)η
(

f (a1), f (a2)
)

–µt(1 – t)(a1 – a2)
2.

This completes the proof. �

Corollary 1 Every generalized strongly modified h-convex function is a generalized modi-

fied convex function.

Proof Let g be a generalized modified h-convex function. Then

g
(

ta1 + (1 – t)a2
)

≤ g(a2) + h(t)η
(

g(a1), g(a2)
)

–µt(1 – t)(a1 – a2)
2

≤ g(a2) + h(t)η
(

g(a1), g(a2)
)

for all a1,a2 ∈ L ⊂R. �

Corollary 2 If g is generalized strongly convex function and t ≤ h(t), then g is a generalized

strongly modified h-convex function.

Theorem 1 (Schur-type inequality) Let g : L → R be a generalized strongly modified h-

convex function, let h be a supermultiplicative function, and let η : N × N → M be a

bifunction for appropriate A,B ⊆ R. Then for a1,a2,a3 ∈ L such that a1 < a2 < a3 and

a3 – a1,a3 – a2,a2 – a1 ∈ L, we have the inequality

h(a3 – a1)g(a2) ≤ h(a3 – a1)g(a3) + h(a3 – a2)η
(

g(a1), g(a2)
)

–µ(a3 – a2)(a2 – a1)h(a3 – a1) (4)

if and only if g is a generalized strongly modified h-convex function.

Proof Let a1,a2,a3 ∈ L ⊂ R be such that (a3–a2)
(a3–a1)

∈ (0, 1) ⊆ L, (a2–a1)
(a3–a1)

∈ (0, 1) ⊆ L, and
(a3–a2)
(a3–a1)

+ (a2–a1)
(a3–a1)

= 1. Then

h(a3 – a1) = h

(

a3 – a1

a3 – a2
(a3 – a2)

)

≥ h

(

a3 – a1

a3 – a2

)

h(a3 – a2)

as h is supermultiplicative.
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Suppose h(a3 – a2) ≥ 0. Then by the definition of g we have

g
(

tx + (1 – t)y
)

≤ g(y) + h(t)η
(

g(x), g(y)
)

–µt(1 – t)(x – y)2. (5)

Inserting (a3–a2)
(a3–a1)

= t, x = a1, and y = a3 into inequality (5), we obtain

g

(

(a3 – a2)

(a3 – a1)
a1 +

(

1 –
(a3 – a2)

(a3 – a1)

)

a3

)

≤ g(a3) + h

(

(a3 – a2)

(a3 – a1)

)

η
(

g(a1), g(a3)
)

–µ(a3 – a2)(a2 – a1)

≤ g(a3) +
h(a3 – a2)

h(a3 – a1)
η
(

g(a1), g(a3)
)

–µ(a3 – a2)(a2 – a1),

g(a2)h(a3 – a1) ≤ h(a3 – a1)g(a3)

+ h(a3 – a2)η
(

g(a1), g(a3)
)

–µ(a3 – a2)(a2 – a1)h(a3 – a1).

(6)

Conversely, suppose inequality (4) holds and insert a1 = x, a2 = tx+(1– t)y, and a3 = y into

inequality (4). Then we get

h(y – x)g
(

tx + (1 – t)y
)

≤ h(y – x)g(y) + h(y – x)h(t)η
(

g(x), g(y)
)

–µh(y – x)t(y – x)(1 – t)(y – x),

g
(

tx + (1 – t)y
)

≤ g(y) + h(t)η
(

g(x), g(y)
)

–µt(1 – t)(x – y)2.

This completes the proof. �

Remark 3

1. By taking h(t) = t in (4) it is reduced to aSchur-type inequality for generalized

strongly convex functions.

2. If µ = 0 and η(x, y) = x – y, then (4) is reduced to a Schur-type inequality for

modified h-convex functions; see [13].

Further, wewill discuss theHermite–Hadamard-type inequality for generalized strongly

modified h-convex functions.

Theorem 2 (Hermit–Hadamard-type inequality) Let function g : L → R be a generalized

strongly modified h-convex function on [a1,a2] with a1 < a2. Then

g

(

a1 + a2

2

)

– h

(

1

2

)

Mη +
µ

12
(a2 – a1)

2 ≤
1

a2 – a1

∫ a2

a1

g((x)dx

≤ g(a2) +Nη –
µ

6
(a2 – a1)

2. (7)
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Proof Choosing w = ta1 + (1 – t)a2 and z = (1 – t)a1 + ta2, we have

g

(

a1 + a2

2

)

= g

(

w + z

2

)

= g

(

ta1 + (1 – t)a2 + (1 – t)a1 + ta2

2

)

.

Now by the definition of g we have

g

(

a1 + a2

2

)

≤ g
(

(1 – t)a1 + ta2
)

+ h

(

1

2

)

η
(

g
(

ta1 + (1 – t)a2
)

, g
(

(1 – t)a1 + ta2
))

–µ
1

2

(

1 –
1

2

)

(a2 – a1)
2(2t – 1)2.

Integrating with respect to t on [0,1], we get

g

(

a1 + a2

2

)

≤

∫ 1

0

g
(

(1 – t)a1 + ta2
)

dt

+ h

(

1

2

)∫ 1

0

η
(

g
(

ta1 + (1 – t)a2
)

, g
(

(1 – t)a1 + ta2
))

dt

–
µ

4
(a2 – a1)

2

∫ 1

0

(2t – 1)2 dt.

Putting x = (1 – t)a1 + ta2, we get

g

(

a1 + a2

2

)

≤
1

a2 – a1

∫ a2

a1

g(x)dx + h

(

1

2

)

Mη –
µ

12
(a2 – a1)

2,

g

(

a1 + a2

2

)

– h

(

1

2

)

Mη +
µ

12
(a2 – a1)

2 ≤
1

a2 – a1

∫ a2

a1

g((x)dx.

(8)

In the right-hand side of inequality (8), we set x = ta1 + (1 – t)a2, and using the definition

of g , we get

∫ a2

a1

g(x)dx≤ (a2 – a1)g(a2) + (a2 – a1)

∫ 1

0

h(t)η(g
(

a1, g(a2)
)

dt –
µ

6
(a2 – a1)

2,

1

(a2 – a1)

∫ a2

a1

g(x)dx≤ g(a2) +Nη –
µ

6
(a2 – a1)

2.

(9)

Now from inequalities (8) and (9) we get

g

(

a1 + a2

2

)

– h

(

1

2

)

Mη +
µ

12
(a2 – a1)

2 ≤
1

a2 – a1

∫ a2

a1

g((x)dx

≤ g(a2) +Nη –
µ

6
(a2 – a1)

2. (10)

This completes the proof. �
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Remark 4

1. If we take µ = 0 and η(x, y) = x – y, then the Hermite–Hadamard-type inequality

(10) is reduced to Hermite–Hadamard-type inequality for modified h-convex

functions; for details, see [13].

2. If we put h(t) = t in (10), then we get a Hermite–Hadamard-type inequality for

generalized strongly convex functions; see [12].

3. If we take µ = 0, η(x, y) = x – y and h(t) = t, then inequality (10) is reduced to a

Hemite–Hadard-type inequality for classical convex functions.

Now we prove the following lemma by using technique of [25]. This lemma has the cru-

cial fact that generalized strongly modified h-convex functions behave like classic convex

functions.

Lemma 1 Let g be a generalized modified h-convex function, and suppose that η(x, y) =

–η(y,x). Then

g(a1 + a2 – x)≤ g(a1) + g(a2) – g(x) ∀x ∈ [a1,a2],

where x = ta1 + (1 – t)a2 and t ∈ [0, 1].

Proof As g is generalized modified h-convex function, for x = ta1 + (1 – t)a2, we get

g(a1 + a2 – x) = g
(

(1 – t)a1 + ta2
)

≤ g(a1) + h(t)η
(

g(a2), g(a1)
)

= g(a1) + g(a2) – g(a2) – h(t)η(g(a1), g(a2)

= g(a1) + g(a2) –
[

g(a2) + h(t)η(g(a1), g(a2)
]

≤ g(a1) + g(a2) – g(x).

This completes the proof. �

Lemma 2 Let g be q the generalized strongly modified h-convex function, and suppose that

η(x, y) = –η(y,x). Then

g(a1 + a2 – x)≤ g(a1) + g(a2) – g(x) ∀x ∈ [a1,a2], (11)

where x = ta1 + (1 – t)a2 and t ∈ [0, 1].

Proof Let g be a generalized strongly modified h-convex function. Then for x = ta1 + (1 –

t)a2, we get

g(a1 + a2 – x) = g
(

(1 – t)a1 + ta2
)

≤ g(a1) + h(t)η
(

g(a2), g(a1)
)

–µt(1 – t)(a1 – a2)
2

≤ g(a1) + g(a2) – g(a2) – h(t)η(g(a1), g(a2)

–µt(1 – t)(a1 – a2)
2 + 2µt(1 – t)(a1 – a2)

2
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≤ g(a1) + g(a2) –
[

g(a2) + h(t)η(g(a1), g(a2) –µt(1 – t)(a1 – a2)
2
]

≤ g(a1) + g(a2) – g(x).

This completes the proof. �

It is very interesting that when g is a modified h-convex function [13], generalized mod-

ified h-convex, or generalized strongly modified h-convex function, then inequality (11)

holds.

Theorem 3 (Fejér-type inequality) Let g : [a1,a2] →R be a generalized strongly modified

h-convex, and let w : [a1,a2] → R be nonnegative, integrable, and symmetric with respect

to a1+a2
2

. Then

g

(

a1 + a2

2

)∫ a2

a1

w(x)dx +
µ

4

∫ a2

a1

(a1 + a2 – 2x)w(x)dx –Nη(a1,a2)

≤

∫ a2

a1

g(x)w(x)dx

≤
g(a1) + g(a2)

2

∫ a2

a1

w(x)dx + Tη(a1,a2) –µ

∫ a2

a1

(x – a2)(a1 – x)w(x)dx, (12)

where

Nη(a1,a2) = h

(

1

2

)∫ a2

a1

η
(

g(a1 + a2 – x), g(x)
)

w(x)dx,

Tη(a1,a2) =
η(g(a1), g(a2))

2

∫ a2

a1

h

(

x – a2

a1 – a2

)

w(x)dx.

Proof Let g be a generalized strongly modified h-convex function. Then

g

(

a1 + a2

2

)∫ a2

a1

w(x)dx =

∫ a2

a1

g

(

a1 + a2 – x + x

2

)

w(x)dx

≤

∫ a2

a1

g(x)w(x)dx

+ h

(

1

2

)∫ a2

a1

η
(

g(a1 + a2 – x), g(x)
)

w(x)dx

–

∫ a2

a1

µ
1

2

(

1 –
1

2

)

(2x – a1 – a2)
2w(x)dx,

g

(

a1 + a2

2

)∫ a2

a1

w(x)dx +
µ

4

∫ a2

a1

(a1 + a2 – 2x)2w(x)dx –Nη(a1,a2)

≤

∫ a2

a1

g(x)w(x)dx.

(13)
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In the right hand-side of inequality (13), put x = ta1 + (1 – t)a2. Then

∫ a2

a1

g(x)w(x)dx = (a2 – a1)

∫ 1

0

g
(

ta1 + (1 – t)a2
)

w
(

ta1 + (1 – t)a2
)

dt,

1

a2 – a1

∫ a2

a1

g(x)w(x)dx≤

∫ 1

0

g(a2)w
(

ta1 + (1 – t)a2
)

dt

+ η
(

g(a1), g(a2)
)

∫ 1

0

h(t)w
(

ta1 + (1 – t)a2
)

dt

–µ(a2 – a1)
2

∫ 1

0

t(1 – t)w
(

ta1 + (1 – t)a2
)

dt.

(14)

Similarly, if we put x = ta2 + (1 – t)a1 in the right-hand side of inequality (13), then we get

the inequality

1

a2 – a1

∫ a2

a1

g(x)w(x)dx ≤

∫ 1

0

g(a1)w
(

ta2 + (1 – t)a1
)

dt

+ η
(

g(a2), g(a1)
)

∫ 1

0

h(t)w
(

ta2 + (1 – t)a1
)

dt

–µ(a2 – a1)
2

∫ 1

0

t(1 – t)w
(

ta2 + (1 – t)a1
)

dt. (15)

Adding inequalities (14) and (15), where w is symmetric, we get

2

a2 – a1

∫ a2

a1

g(x)w(x)dx

≤
(

g(a1) + g(a2)
)

∫ 1

0

w
(

ta1 + (1 – t)a2
)

dt

+
[

η
(

g(a1), g(a2)
)

+ η
(

g(a2), g(a1)
)]

∫ 1

0

h(t)w
(

ta1 + (1 – t)a2
)

dt

– 2µ(a2 – a1)
2

∫ 1

0

t(1 – t)w
(

ta1 + (1 – t)a2
)

dt. (16)

Putting x = ta1 + (1 – t)a2 in the right-hand side of inequality (16), we have

∫ a2

a1

g(x)w(x)dx≤
(g(a1) + g(a2))

2

∫ a2

a1

w(x)dx

+
[η(g(a1), g(a2)) + η(g(a2), g(a1))]

2

∫ a2

a1

h(
x – a2

a1 – a2
w(x)dx

–µ

∫ a2

a1

(x – a2)(a1 – x)w(x)dx,

∫ a2

a1

g(x)w(x)dx≤
(g(a1) + g(a2))

2

∫ a2

a1

w(x)dx + Tη(a1,a2)

–µ

∫ a2

a1

(x – a2)(a1 – x)w(x)dx.

(17)
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Now from inequalities (13) and (17) we get Fejér-type inequality (12) for generalized

strongly modified h-convex functions. �

Remark 5

1. If h(t) = t, then inequality (12) reduced to Fejér type inequality for generalized

strongly convex functions, see [12].

2. If we put µ = 0 and η(x, y) = x – y then inequality (12) becomes a Fejér-type

inequality for modified h-convex functions; see [13].

3. If we put µ = 0, η(x, y) = x – y, and h(t) = t, then inequality (12) is reduced to a

Fejér-type inequality for classical convex functions.
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