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Abstract
We present a procedure to generate short test sequences for syn-
chronous sequential circuits described at the gate level. Short
test sequences are important in reducing test application time and
memory requirements. The proposed procedure constructs a test
sequence using a combination of fault-independent and fault-
oriented criteria. Experimental results are presented to demon-
strate its effectiveness.

1. Introduction
We address the problem of generating short (compact) test
sequences for synchronous sequential circuits described at the
gate level. Short test sequences are important to reduce test
application time and memory requirements. The problem of
generating compact test sets for combinational circuits was con-
sidered, e.g., in [1,2]. It was shown that it is possible to generate
compact test sets for combinational circuits in a cost-effective
way, achieving significant reductions in test set size by using
simple heuristics. With the exception of [3,4], test generation
procedures for synchronous sequential circuits generally concen-
trate on achieving high fault coverage, and either ignore test
sequence length, or target it as a secondary objective. For exam-
ple, overlapping of test sequences for various faults is used to
reduce the overall sequence length in most test generation pro-
cedures. In [3], an additional feature called "freeze" is used to
stop the clocking of flip-flops and freeze the state of the circuit.
With the circuit kept at a state S, several primary input combina-
tions are applied to detect faults that require the same values on
the state variables but different primary input values. In [4],
post-processing of test sequences already generated by a test
generation procedure is used to reduce test sequence length.

In this work, we describe a test generation procedure for
non-scan synchronous sequential circuits, that directly attacks
the problem of generating compact test sequences. The underly-
ing concept of the procedure proposed here is similar to the
approach used in [5] for combinational circuits. In [5], a fault-
independent procedure is first used to generate tests that detect
large numbers of faults. The faults that remain undetected after
the first phase are then considered under a fault-oriented test
generation procedure that targets the remaining faults one at a
time. The test generation procedure proposed here also uses a
fault-independent phase and a fault-oriented phase. However, the
following differences exist between the proposed procedure, that
targets sequential circuits, and [5] that targets combinational cir-
cuits. In combinational circuits, a single input combination is
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required to detect a fault. Consequently, path sensitization by a
single input combination is used in [5] as an objective for a
fault-independent procedure. In synchronous sequential circuits,
sequences of input combinations are required to detect a fault.
Therefore, the objectives of the fault-independent phase need to
be redefined to accommodate fault activation and fault propaga-
tion sequences. The main goal in defining these objectives is to
ensure that if a sequence of k input patterns is needed before the
next fault is detected, then these input patterns are selected so as
to (1) maximize the number of faults detected after k input pat-
terns are applied, and (2) minimize the test sequence length
required to detect additional faults following the first fault detec-
tion. A fault-independent procedure suitable for synchronous
sequential circuits is described in this work. A fault independent
procedure for sequential circuits is mentioned in [3], however, its
details are omitted and are not available in the literature.
Another difference between the procedure proposed here and the
procedure of [5] is that the fault-independent and the fault-
oriented phases of the proposed procedure are interleaved, in
order to ensure that test sequences for the faults that require
fault-oriented test generation are overlapped as much as possible
with the test sequences of the other faults. The proposed pro-
cedure constructs a test sequence by considering the circuit at
consecutive time units, selecting an input combination to be
applied at time i before considering time i +1. The criteria for
selecting each input combination and for switching between the
fault-independent and the fault-oriented phases are designed so
as to achieve small test lengths. Due to the selection of input
combinations one at a time, the proposed procedure is similar in
structure to test generation procedures that use forward time pro-
cessing [6,7]. It is also similar to [6] in the use of cost measures
to select the input combinations in the test sequence and in con-
sidering subsets of faults. The main difference between the pro-
posed procedure and [6] is that [6] is a simulation-based method,
whereas the proposed procedure contains a fault-oriented test
generation procedure. When the simulation-based approach is
not effective in advancing the test sequence towards the detec-
tion of new faults, input vectors are selected based on a deter-
ministic test generation procedure. In this way, the test sequence
length can be kept low and complete fault coverage can be
guaranteed.

Experimental results presented in this work demonstrate
the effectiveness of the proposed approach in generating short
test sequences. We first develop the test generation procedure for
circuits that have a fault free reset mechanism. Then, we show
how it can be applied to circuits without reset, or when reset
faults are considered. We compare the results obtained for cir-
cuits with a fault free reset mechanism to those of [8] and to
those of VERITAS [9]. Like [8,9], our procedure results in com-



plete fault coverage for all circuits considered. The results
obtained when reset does not exist are compared to those of [10],
[11] and [12]. We do not compare our results with [3] that uses
the additional feature of "freeze" since the fault coverages
reported in [3] are not complete.

The paper is organized as follows. In Section 2, we
describe a fault-independent procedure to generate tests for a
synchronous sequential circuit. The fault-independent procedure
cannot guarantee detection of every detectable fault. In Section
3, we consider the incorporation of a fault-oriented test genera-
tion procedure into the procedure of Section 2, to guarantee
detection of every detectable fault. In Section 4 we present
experimental results. Concluding remarks are given in Section 5.

2. A fault-independent procedure
In this section, we first describe a fault-independent procedure
for synchronous sequential circuits that have small numbers of
primary inputs. We then extend the procedure to circuits with
arbitrary numbers of primary inputs.

2.1 Circuits with small numbers of primary inputs
The fault-independent procedure constructs a test sequence T as
follows. Initially, T is empty and the fault free and faulty cir-
cuits are in their reset states. In step i, the i-th input combination
of T, ti , is determined. The input combination ti is selected such
that the benefit from adding ti to T is maximal. Consider the fol-
lowing example.
Example : ISCAS-89 benchmark circuit s 27 is shown in Figure
1. Circuit lines are identified by integer values. We consider the
faults {2 s.a.0, 3 s.a.0, 4 s.a.0, 5 s.a.0, 6 s.a.1, 7 s.a.0} (a reduced
fault list is considered in this example for illustration purposes).
Let 000 be the reset state of the circuit. Primary output values
and next-states are given in Table 1 for input combinations 0000,
0100 and 0111. Each input combination c is applied to the fault
free circuit and to the circuit in the presence of every one of the
faults above, starting from state 000. Under input combination
0000, the fault 6 s.a.1 is detected (the fault-free/faulty outputs
are 1/0). In the presence of every other fault, the faulty circuit
remains in state 000, and the fault is not detected. Under input
combination 0100, only 6 s.a.1 is detected. In addition, the fault
2 s.a.0 is activated (the fault-free/faulty next state is 001/000).
The other four faults are neither detected nor activated, however,
the faulty circuits go from state 000 to a new state, 001. In
choosing between input combinations 0000 and 0100, 0100 has
the advantage that it activates an additional fault and allows
exploration of a new state for three other faults. Under input
combination 0111, both 2 s.a.0 and 6 s.a.1 are detected. In addi-
tion, 3 s.a.0 is activated (the fault-free/faulty states are 000/001).
In selecting between 0100 and 0111, we prefer 0111 since it
detects an additional fault. `

For circuits with small numbers of primary inputs, such
that all primary input combinations can be explicitly considered,
three parameters are computed for each input combination c to
determine the benefit of adding it to T. To define them, we use
the following terminology.

A faulty circuit is said to be brought to an activation state
by an input sequence T if the state of the faulty circuit is dif-
ferent from the state of the fault free circuit after T is applied
starting from the reset state. For example, after applying to s 27
the input sequence (0100), comprised of a single input combina-
tion 0100, the fault free state is 001 and the faulty state in the
presence of 2 s.a.0 is 000 (cf. Table 1). Thus, the faulty machine
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Figure 1: ISCAS-89 benchmark circuit s 27
Table 1: Responses and next states of s 27 (i = 0)

0000 0100 0111
next- primary next- primary next- primary

fault state outputs state outputs state outputsiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
fault-free 000 1 001 1 000 1iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

2 s.a.0 000 1 000 1 010 0
3 s.a.0 000 1 001 1 001 1
4 s.a.0 000 1 001 1 000 1
5 s.a.0 000 1 001 1 000 1
6 s.a.1 010 0 011 0 010 0
7 s.a.0 000 1 001 1 000 1cc
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in the presence of 2 s.a.0 is brought to an activation state.
A faulty circuit is said to be brought to a new state by an

input sequence T if the composite fault-free/faulty state at the
end of T is not reached by the fault-free/faulty circuits before the
end of T. For example, considering s 27 and the fault 3 s.a.0, the
state 001/001 reached by the fault-free/faulty circuits after apply-
ing the input sequence (0100) is a new state. If, in addition, the
final state under T is an activation state, then the faulty circuit is
said to be brought to a new fault activation state.

Using this terminology, the following parameters are
defined with respect to a test sequence T.

N det(c) is the number of yet-undetected faults which are
detected by the sequence T .c (T .c is the sequence
obtained by adding c at the end of T).
Nnew_activ(c) is the number of yet-undetected faults which
are brought to a new activation state by the sequence T .c.
Nnew(c) is the number of yet-undetected faults which are
brought to a new state by the sequence T .c.

When selecting an input combination c to be added to T,
we require that N det(c), Nnew_activ(c) and Nnew(c) be maximized,
in this order. The requirement to maximize N det(c) results from
our goal to detect as many faults as possible by the fault-
independent procedure. The reason for maximizing Nnew_activ(c)
is that by exploring as many activation states for various faults as
possible, we potentially drive as many of the faults as possible
closer to states where they can be detected. The reason for max-
imizing Nnew(c) is that by exploring as many different states for
various faults as possible, we potentially drive as many of the
faults as possible closer to fault activation states, and eventually
to fault detection. The fault-independent procedure is summar-
ized next.
Procedure 1: Fault-independent test generation for a circuit with
a small number of primary inputs
(1) Set i = 0. Set T = φ. Set F to contain every target fault.
(2) For every input combination c, compute N det(c),

Nnew_activ(c) and Nnew(c).



(3) Set C to contain every primary input combination.
Remove from C every input combination c′ such that
N det(c′) < max{N det(c):c ∈ C}.
Remove from C every input combination c′ such that

Nnew_activ(c′) < max{Nnew_activ(c):c ∈ C}.
Remove from C every input combination c′ such that
Nnew(c′) < max{Nnew(c):c ∈ C}.

(4) Randomly select an input combination c 0 ∈ C. Add c 0
to T (i.e., set T = T .c 0) and drop from F every fault
detected by the new sequence T.

(5) Set i = i +1. If F ≠ φ and i does not exceed a predeter-
mined bound, go to Step 2.

2.2 Circuits with large numbers of primary inputs
In Section 2.1 we assumed that every primary input combination
can be considered explicitly, and we established criteria for
selecting the next input combination to be included in the test
sequence T. For circuits with large numbers of primary inputs,
one of the following approaches can be taken.

It is possible to simulate a large number of randomly
determined primary input combinations and select the best one.
Alternatively, the methods proposed in [6] can be used.

It is also possible to generate test sequences for several
yet-undetected faults, starting from the final state reached under
the partially constructed test sequence T, and use the first input
combinations of these sequences as candidates for inclusion in T.
This method has a high complexity, since it requires fault-
oriented test generation for several faults, however, it has the
advantage of ensuring that every primary input combination
selected advances at least one fault towards detection.

Alternatively, it is possible to extend the approach taken
in [1] to sequential circuits. The test generation procedure of [1]
proceeds as follows. A target fault f, called the primary target
fault, is selected from the fault list. A test pattern t is generated
for f, leaving as many primary inputs as possible unspecified.
Additional primary inputs are then unspecified using the maxi-
mal compaction heuristic of [1]. Additional target faults, called
secondary target faults, are then selected. When a secondary tar-
get fault f ′ is considered, an attempt is made to specify
unspecified primary inputs in t such that the resulting test would
be a test for f ′. The process continues until all secondary target
faults are considered. For synchronous sequential circuits, the
test t for the primary target fault may be a sequence of primary
input combinations, and its extension for a secondary target fault
may involve setting additional primary input values in one or
more time units. The fault-independent procedure is replaced in
this case by a test generation process targeting secondary faults.
Alternatively, it is possible to consider one time unit at a time, as
in Procedure 1.

In our experiments we select each input pattern of the test
sequence from 100 randomly generated input patterns.

3. Ensuring complete fault coverage
The fault-independent procedure of Section 2 (Procedure 1) does
not guarantee complete fault coverage. It also suffers from the
following limitation. Consider a fault f under a partially con-
structed test sequence T = (t 0,t 1, . . . ,tk −1). Let the fault free cir-
cuit and the faulty circuit in the presence of f go through the fol-
lowing transitions under T.

Fault free: S 0→
t0

S 1→
t1

S 2→
t2

. . . →
tk −1

Sk .

Faulty: Q 0→
t0

Q 1→
t1

Q 2→
t2

. . . →
tk −1

Qk .

Suppose that f can be detected by a primary input combination t
if the fault-free/faulty circuits are brought to states Si/Qi for
some i < k. Let ti ≠ t. An input combination ti ≠ t may be
selected by Procedure 1, e.g., if ti is more effective than t in
detecting other faults after (t 0, . . . ,ti −1) is applied to the circuit
(i.e., N det(ti) > N det(t) when T = (t 0,t 1, . . . ,ti −1)). Thus,
although the state Si/Qi is reached after applying the subse-
quence (t 0, . . . ,ti −1), f is not detected since ti ≠ t is selected
next. In this case, the test sequence may have to bring the fault-
free/faulty circuits back to states Si/Qi before the fault f can be
detected. However, the measures N det(c), Nnew_activ(c) and
Nnew(c) may all be zero for every c until state Si/Qi is reached
again. Thus, they may not help in guiding Procedure 1 back to
this state. A related problem occurs when N det(c) = 0 and
Nnew_activ(c)+Nnew(c) ≤ 1 for every primary input combination c.
In this case, any input combination c that may be selected is
potentially effective only for one fault. In fact, even if
N det(c) = 0, Nnew_activ(c) ≤ 1 and Nnew_activ(c)+Nnew(c) > 1, the
benefit of selecting c as the next input combination may be low.
It is better in this case to select the next input combination by
using a fault-oriented test generation procedure for a yet-
undetected fault f.

To resolve the problems discussed above and to ensure
that complete fault coverage can be achieved by the proposed
test generation procedure, we take the following approach.
Whenever N det(c) = 0 and Nnew_activ(c) ≤ 1 for every primary
input combination c, we select the first yet-undetected fault f in
the fault list. We attempt to generate a test sequence T′ for f
starting from the last pair of fault-free/faulty states reached under
T. If a test sequence cannot be found, then f is marked and
dropped from the fault list. Otherwise, if a test sequence T′ is
generated for f, we use the first input combination of T′ as the
next input combination of T. If the measures N det(c) or
Nnew_activ(c) increase, selection of primary input combinations
continues based on Procedure 1. Otherwise, the same fault f is
selected again, and the next input combination of T′ is added to
T. Thus, the test sequence T′ is eventually added to T to detect f,
unless better input combinations can be selected. At the end of
the process, we consider all the faults that were marked and
dropped from the fault list. Such a fault f may be undetectable
after a sequence T is applied, however, starting from the reset
state, a test for f may exist [13]. Thus, it cannot be concluded
that f is redundant unless test generation for it is attempted start-
ing from the reset state. We perform test generation for each
such fault separately, starting from the reset state. If a test
sequence T′ can be generated, it is added to T with an indication
that reset has to be applied before T′ is applied. The complete
procedure is given next. It is given for the case where all primary
input combinations can be considered.
Procedure 2: The test generation procedure
(1) Set i = 0. Set T = φ. Set F to contain every target fault.

Set R = φ.
(2) For every input combination c, compute N det(c),

Nnew_activ(c) and Nnew(c).
(3) Set C to contain all primary input combinations.

Remove from C every input combination c′ such that
N det(c′) < max{N det(c):c ∈ C}.
Remove from C every input combination c′ such that

Nnew_activ(c′) < max{Nnew_activ(c):c ∈ C}.
Remove from C every input combination c′ such that
Nnew(c′) < max{Nnew(c):c ∈ C}.



(4) Randomly select an input combination c 0 ∈ C.
(5) If N det(c 0) = 0 and Nnew_activ(c 0) ≤ 1:

(a) Select the first fault f in F.
(b) Perform test generation for f to generate a test

sequence T′, such that T .T′ is a test sequence for f.
If no test sequence can be generated:
(i) Remove f from F and add f to R.
(ii) If F = φ, go to Step 8
(iii) Go to Step 5(a).

(c) (T′ was generated) Set c 0 to be the first primary
input combination in T′.

(6) Add c 0 to T (i.e., set T = T .c 0) and drop from F every
fault which is detected by the new sequence T.

(7) Set i = i +1. If F ≠ φ, go to Step 2.
(8) For every f ∈ R:

(a) Perform test generation for f starting from the
reset state.

(b) If a test sequence T′ is generated, add T′ to T and
indicate that reset has to be applied before T′. If
no test sequence can be generated, f is redundant.

Any fault-oriented test generation procedure can be used
in Steps 5(b) and 8(a) of Procedure 2. In our implementation, we
used a test generation procedure based on the concepts of [14],
that generates a minimum length test sequence for any given
fault. The details of this procedure are given in Section 4.

In most circuits considered, R contained only redundant
faults. The existence of redundant faults (or more generally,
faults that cannot be detected by extending the test sequence T),
may sometimes bias the measures Nnew_activ(c) and Nnew(c), and
consequently it may bias the selection of c 0 added to T in Step 6.
For example, if a circuit has Nr redundant faults and all of them
can be activated, then Nnew_activ(c) and Nnew(c) for some input
combinations c can be higher by Nr than their values when
redundant faults are eliminated. Since the input combinations
should be selected only for detectable faults, the bias due to
redundant faults is undesirable. Two features of Procedure 2 are
used to reduce and eventually eliminate the effect of faults that
cannot be detected by the test sequence T. (1) During Procedure
2, faults that cannot be detected by T are identified in Step 5 and
removed from F. The computation of Nnew_activ(c) and Nnew(c) is
done so as to eliminate the effect of these faults, as follows.
Nnew_activ(c) is computed as the number of yet-undetected faults
which are still in F, and are brought to a new activation state by
the sequence T .c. Nnew(c) is computed as the number of yet-
undetected faults which are still in F, and are brought to a new
state by the sequence T .c. This extension is easily implemented
by computing Nnew_activ(c) and Nnew(c) with respect to the fault
list F maintained by Procedure 2. Note that detected faults are
omitted from F in Step 6 and faults that cannot be detected by T
are omitted from F in Step 5. (2) Once Procedure 2 terminates
and the redundant faults are identified in Step 8, we repeat Pro-
cedure 2, this time including only the detectable faults in the set
of target faults F and omitting the redundant faults.

Another point that needs attention is the following. Con-
sider the case where the measure N det(c) may be zero for every
input combination c during several time units, say
ui ,ui+1, . . . ,uj . Suppose that it is possible to find input combi-
nations such that Nnew_activ(ck) > 1 at time unit uk for
ui ≤ uk ≤ uj−1, however, at time uj , Nnew_activ(c) ≤ 1 for every c.
In this case, the fault-independent procedure would be used for

time units ui , . . . ,uj −1 and the fault-oriented procedure would be
used at time uj . However, the fault-independent procedure does
not lead to fault detection in this case. Thus, instead of starting
the fault-oriented test generation procedure at time uj , it may be
preferable to start it at time ui , and potentially reduce the test
length by j −i −1. We incorporated this option into Procedure 2,
however, experimental results indicated that it does not affect the
test length significantly.

A similar case that needs to be considered is the follow-
ing. Let the fault-oriented phase be entered with a fault f. Sup-
pose that to detect f, k input combinations are required. Suppose
in addition that after applying i < k of these input combinations,
there exists an input combination c for which N det(c) = 0 and
Nnew_activ(c) > 1. Then c is selected by the fault-independent
phase. However, c may not be useful in bringing any fault closer
to detection, and eventually, the fault-oriented phase will be
entered again with the same fault f. Thus, the input combinations
applied by the fault-independent phase unnecessarily lengthen
the test sequence. To avoid such a case, we added to Procedure 2
the restriction that after the fault-oriented phase is entered, the
only way to return to fault-independent selection of input pat-
terns is if an input combination c is found such that N det(c) > 0.
To incorporate this change, we define a flag denoted f _oriented.
When f _oriented = 1 it forces selection of input patterns by the
fault-oriented procedure. Initially, f _oriented = 0. When an
input combination is selected in Step 5(c) of Procedure 2,
f _oriented is set to 1. The condition for entering Step 5 is
changed to the following:

"If N det(c 0) = 0 and either f _oriented = 1 or
Nnew_activ(c 0) ≤ 1"

Thus, after the fault-oriented phase is entered once, it is entered
again regardless of the value of Nnew_activ(c 0), as long as
N det(c 0) = 0. If Step 5 is not entered (the condition at the begin-
ning of Step 5 is not satisfied), f _oriented is set to 0. We refer
to the modified procedure as Procedure 2’. In the following sec-
tion we present experimental results of Procedures 2 and 2’.

We point out that Procedures 2 and 2’ attempt to generate
a single test sequence where reset is applied only once, at the
beginning. Multiple resets are used only if there are faults that
cannot be otherwise detected (faults detected in Step 8 of the
procedure). Alternatively, it is possible to apply reset while gen-
erating the test sequence T in Steps 1-7. An appropriate time to
apply reset is when a fault f is considered under fault-oriented
test generation, and it turns out that a long test sequence is
required for its detection. If the test sequence starting from the
reset state is shorter, it may be advantageous to apply reset
before applying a test for f. We did not pursue this possibility.

To accommodate the case where a reset mechanism is not
available, the following changes are made in Procedure 2 (and
consequently, Procedure 2’). (1) We replace the initial states of
the fault free and faulty circuits with the all-unspecified (all-x)
state. (2) The first step of a test generation procedure for circuits
without reset is typically to synchronize the fault free and faulty
circuits as much as possible. To ensure that Procedures 2 and 2’
synchronize the circuits, we added another criterion for the
selection of an input combination in the fault-independent phase,
as follows. This criterion is similar to the one used in [6]. We
denote the number of specified next-state variables in the fault
free and in all the faulty circuits corresponding to yet-undetected
faults, after a sequence T is applied, by Nspec(T). After applying
an additional input combination c, the number of specified state
variables is Nspec(T .c). The benefit from selecting c in terms of



the number of additional state variables specified is
Nspec(c) = Nspec(T .c)−Nspec(T). We consider Nspec(c) as lower in
importance than N det(c), but higher than every other criterion.
Thus, if N det(c 1) = N det(c 2) and Nspec(c 1) > Nspec(c 2), then c 1 is
selected. In Procedure 2, the fault-oriented phase is entered for
the first time with a given fault f if N det(c) = 0, Nspec(c) = 0 and
Nnew_activ(c) ≤ 1. In Procedure 2’, the fault-oriented phase is
entered for the first time with a given fault f if N det(c) = 0, and
either f _oriented = 1, or Nspec(c) = 0 and Nnew_activ(c) ≤ 1. (3)
The definition of an activation state is modified as follows. Let
S = s 1s 2

. . . sk be a state of the fault free circuit, where si is the
value of state-variable i. Let Q = q 1q 2

. . . qk be a state of the
faulty circuit, where qi is the value of state-variable i. Then S /Q
is an activation state if there exists a state-variable i such that
si ≠ x, qi ≠ x and si ≠qi . (4) The definition of a new state is
modified as follows. Using the notation above, we say that state
S /Q covers a state A /B if (a) si = ai for every i except possibly
when si = x, and (b) qi = bi for every i except possibly when
qi = x. We consider S /Q reached at the end of a test sequence T
as a new state if it does not cover any state reached after a proper
subsequence of T is applied.

4. Experimental results
To implement Procedures 2 and 2’, we need a fault-oriented test
generation procedure in Steps 5 and 8. The following test gen-
eration procedure was used. It is based on [14], however, it uses
the gate-level description of the circuit instead of its state-table.
The procedure is given for circuits with small numbers of pri-
mary inputs. Circuits with large numbers of primary inputs are
discussed after the procedure is given. The procedure proposed
starts from a given fault-free/faulty state Ai/Aj , where Ai and Aj
are vectors of state-variable values. In Procedures 2 and 2’, this
is the state reached by the fault-free/faulty circuits after the par-
tially determined test sequence T is applied. We denote by

Bi
zi

→
c

Ci a transition from state Bi to state Ci under primary input

combination c, producing a primary output value zi .
Procedure 3: Fault-oriented test generation for a fault f
(1) Set S 0 = {Ai/Aj}. Set u = 0.
(2) Set Su +1 = φ.

For every pair of states Bi/Bj ∈ Su:
For every input combination c:

Let Bi
zi

→
c

Ci and let Bj
zj

→
c

Cj (Ci , Cj , zi and zj are

obtained using gate-level simulation for states Bi
and Bj under input c).
If zi ≠ zj , stop: A test sequence can be found by
tracing the transitions that led into Ci/Cj .
If Ci/Cj has not been reached before, add Ci/Cj to
Su +1 (considering every state Ci/Cj at most once
ensures that the resulting test sequence has
minimum length).

(3) Set u = u +1. If Su ≠ φ, go to Step 2.
(4) (Su = φ and the fault was not detected in Step 2) Stop: The

fault cannot be detected.
Procedure 3 is extended to handle circuits with large

numbers of primary inputs by considering a limited number of
randomly selected primary input combinations, as described in
Section 2.2. We also set a limit on the maximum value of u in
Step 3 of the procedure. The resulting test generation procedure
is not guaranteed to generate a minimum length test sequence.
In addition, the resulting procedure is not complete, i.e., it may

fail to generate a test sequence for a detectable fault, since it may
not consider all the states reachable from the initial state.

Due to the use of randomly selected primary input combi-
nations, the test generation procedure may not give the same test
sequence for a given fault f in two different applications. Con-
sider a case where the fault-oriented procedure is entered with a
fault f and a test sequence T′ = (t 1,t 2, . . . ,tk) is generated. Then
t 1 is used by Procedure 2. Suppose that the fault-oriented pro-
cedure is then entered again. We want to ensure that t 2 is found.
However, this may not happen since the randomly generated
input combinations may change. Consequently, a longer test
sequence may be generated, or no test sequence may be gen-
erated for f. To prevent this case, we store the test sequence T′
and the fault f for which it was generated. If the fault-oriented
procedure is entered again immediately with the same fault f,
test generation is not repeated and t 2 is selected.

If reset is not available, Procedure 3 is started from fully
unspecified initial states. A state Ci/Cj is considered as new and
entered into Su +1 in Step 2 if it does not cover a state Di/Dj that
exists in Sv for v ≤ u +1.

We applied Procedure 2 to MCNC finite-state machine
benchmarks and to some of the smaller ISCAS-89 benchmark
circuits, assuming that reset to the all-0 initial state is available.
We also applied Procedure 2’ to some of the circuits. We com-
pared the test sequence lengths to the test sequence lengths
obtained in [8] and in [9]. The results are reported in Table 2. All
the procedures included in Table 2 detected all irredundant faults
in each circuit. In Table 2, after circuit name, we give the
number of primary inputs, the number of primary outputs and the
number of state variables. The number of faults is given next,
followed by the number of redundant faults in parentheses. The
test sequence lengths from [8] and from [9] are given next. They
are followed by the test length obtained by Procedure 2, referred
to as SEQCOM, and Procedure 2’ (when it was applied),
referred to as SEQCOM’. It can be seen that except for one cir-
cuit (s 344, explained below), the test sequence length produced
by SEQCOM and SEQCOM’ is lower than the test sequence
lengths produced by the other procedures, sometimes
significantly. For example, for s 1488, the reduction in test
sequence length is over three times compared to [8] and [9].
CPU times and results for larger circuits are omitted, since pro-
gram efficiency was not considered while implementing Pro-
cedures 2, 2’ and 3. However, to give an indication of the CPU
times involved, we measured the CPU time for several of the cir-
cuits on a SUN SPARC 2 workstation. For dk 15, the CPU time
was 24 seconds; and for bbara, the CPU time was 53 seconds.
As for s 344, we speculate that the reason for the high test length
obtained by SEQCOM is related to the use of a single reset at the
beginning of the test sequence. In [9], reset is applied 9 times
along a sequence with a total length of 48 input combinations.

In Table 3, we report results for circuits where the number
of inputs is too large to consider all input combinations at every
iteration. Instead, we consider a random selection of 100 input
combinations in Procedures 2, 2’ and 3. Similar reductions to
those of Table 2 can be seen in test length. For these circuits, all
the procedures reported derived tests for all irredundant faults.

We also applied Procedures 2 and 2’ to circuits without
reset. Results for four of the circuits considered above are shown
in Table 4. Procedure 2’ proved to be more effective than Pro-
cedure 2, and we therefore report results only for Procedure 2’.
The number of faults in parentheses is the number of faults that
cannot be detected under the single observation time approach



Table 2: Experimental results for circuits with reset
(small number of inputs)

st faults test sequence length
circuit inp out var total (red) [8] [9] SEQCOM SEQCOM’iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
bbara 4 2 3 119 (0) 70 - 53
bou 2 6 5 617 (7) 137 - 129 127
cse 7 7 4 432 (0) 319 - 248
dk14 3 5 3 241 (0) 61 - 52
dk15 3 5 2 170 (1) 32 - 30
dk16 2 3 5 529 (6) 162 - 145 141
dk17 2 3 3 159 (0) 68 - 61
planet 7 19 6 1077 (13) 527 673 316
styr 9 10 5 1087 (1) 752 - 365iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
s27 4 1 3 32 (0) 13 - 8
s208 11 2 8 215 (65) - 192 109
s298 3 6 14 308 (35) - 119 118 111
s344 9 11 15 324 (5) - 48 81
s382 3 6 21 399 (20) - 1028 710
s386 7 7 6 384 (70) 186 168 124
s400 3 6 21 421 (26) - 1091 751
s444 3 6 21 474 (35) - 1026 833
s1488 8 19 6 1486 (40) 1301 1031 320
s1494 8 19 6 1506 (51) 1362 1040 310c
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Table 3: Experimental results for circuits with reset
(large number of inputs)

st faults test sequence length
circuit inp out var total (red) [8] [9] SEQCOMiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
s420 19 2 16 430 (226) - 187 111
s510 19 7 6 564 (0) - 584 203
s641 35 24 19 467 (59) - 134 77
s953 16 23 29 1079 (10) - 578 180c

c
c
c
c
c
c

c
c
c
c
c
c
c

c
c
c
c
c
c

c
c
c
c
c
c

[13] using three value simulation. The results are compared to
the test lengths from [10], [11] and [12], which also use the sin-
gle observation time approach and three value simulation.
Except for the procedure of [12], all the procedures included in
Table 4 derived tests to detect all the faults which are detectable
using the single observation time strategy. For the procedure of
[12], which did not find tests for some detectable faults, we give
in parentheses the number of faults that were left undetected.
These faults are left undetected in addition to the faults left
undetected by all other test generation procedures.

Table 4: Experimental results for circuits without reset
(small number of inputs)

faults test length
circuit total (und) [10] [11] [12] SEQCOM’iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
s208 215 (78) 184 294 NA 114
s298 308 (43) 306 203 161 160
s386 384 (70) 311 292 154 (19) 131
s1488 1486 (42) 1294 1270 243 (52) 358c
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In Table 5 we show the results obtained for circuits with
larger numbers of inputs, again, without using reset. For each
procedure we report the number of faults detected and the test
length. The test sets obtained can be seen to be smaller than
those of [10], [11] and [12].

Finally, comparison of the sequences generaed by the pro-
posed procedures to random sequences shows that the circuits
considered are not random pattern testable, and that the proposed
procedures are effective in generating short test sequences and
detecting larger numbers of faults than random sequences.

Table 5: Experimental results for circuits without reset
(large number of inputs)

[10] [11] [12] SEQCOM’
circuit flts det len det len det len det leniiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
s420 430 179 218 179 172 NA NA 179 149
s641 467 404 216 403 185 404 139 404 80
s1196 1242 1239 453 1238 376 1232 347 1232 238c
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5. Concluding remarks
We presented a procedure to generate short test sequences for
synchronous sequential circuits. The proposed procedure con-
structs a test sequence by selecting one input combination at a
time. The procedure switches between a fault-independent phase
and a fault-oriented phase. During a fault-independent phase, an
input combination is selected to maximize the number of
detected faults and to minimize the additional sequence length
required to detect other faults. During a fault-oriented phase, the
first input combination of a test sequence for a given fault is
added to the test sequence. Experimental results were presented
to demonstrate the effectiveness of this procedure.
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