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ABSTRACT
Conditional functional dependencies (CFDs) have recently been
proposed as a useful integrity constraint to summarize data seman-
tics and identify data inconsistencies. A CFD augments a func-
tional dependency (FD) with a pattern tableau that defines the con-
text (i.e., the subset of tuples) in which the underlying FD holds.
While many aspects of CFDs have been studied, including static
analysis and detecting and repairing violations, there has not been
prior work on generating pattern tableaux, which is critical to real-
ize the full potential of CFDs.

This paper is the first to formally characterize a “good” pattern
tableau, based on naturally desirable properties of support, confi-
dence and parsimony. We show that the problem of generating an
optimal tableau for a given FD is NP-complete but can be approx-
imated in polynomial time via a greedy algorithm. For large data
sets, we propose an “on-demand” algorithm providing the same ap-
proximation bound, that outperforms the basic greedy algorithm in
running time by an order of magnitude. For ordered attributes, we
propose the range tableau as a generalization of a pattern tableau,
which can achieve even more parsimony. The effectiveness and ef-
ficiency of our techniques are experimentally demonstrated on real
data.

1. INTRODUCTION
Let X and Y be subsets of a relational schema R. A functional

dependency (FD) X → Y asserts that any two tuples that agree on
the values of all the attributes in X (the antecedent) must agree on
the values of all the attributes in Y (the consequent).

FDs have traditionally been used in schema design and, as such,
specify integrity constraints over entire relations. However, many
interesting constraints hold conditionally, that is, on only a subset
of the relation. For instance, consider table Sales, storing purchase
records of an international retailer, with the following schema:

Sales(tid, name, type, price, tax, country, city)

Each Sales tuple represents a transaction, uniquely identified by
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Table 1: Example pattern tableau for the FD
[name, type, country]→ [price, tax]

name type country price tax
- clothing - - -
- book France - 0
- - UK - -

tid, where a product with a given name and type was sold in a
given country and city for a given price and charged a given tax.
Suppose the semantics of the data are such that

[name, type, country]→ [price, tax]

but only if type = clothing, (country = France and
type = book), or country = UK; in addition, suppose all
books purchased in France are charged zero tax. FDs cannot
express these semantics because they must hold over a whole
relation and do not bind specific values to the consequent attributes.
However, conditional semantics are common in real data; e.g., if
a relation integrates data from multiple sources, then a constraint
may hold only on tuples obtained from one particular source.

Conditional functional dependencies (CFDs) have recently been
proposed to express the above types of constraints [4, 5, 9]. A CFD
is composed of an embedded FD X → Y plus a pattern tableau
that determines which tuples must obey the FD. Table 1 illustrates
a tableau corresponding to our example on the Sales table. For any
pattern (row) tp in the tableau, if two tuples have the same values of
attributes in X and these values match those in tp, then they must
have the same values of attributes in Y and these values must match
those in tp. Here a ‘¡’ denotes the wildcard (match-all) pattern,
meaning that a standard FD is equivalent to a CFD with a single
all-wildcards row in the pattern tableau. Observe that constants in
the antecedent restrict the scope of the CFD, whereas constants in
the consequent fix the values of the corresponding attributes of all
matching tuples. Also, note that pairs of tuples whose antecedent
attributes do not match any pattern do not violate the CFD, even if
they agree on the antecedent but not the consequent of the embed-
ded FD.

Existing work on CFDs considered the problems of validating a
given CFD on a relation instance [4], determining consistency and
implications of multiple CFDs [4, 5], and “repairing” the relation
so that the given CFD is satisfied [9]. However, these all assume
a pattern tableau is supplied, and what has not been addressed is
how to create useful tableaux. In fact, it is not even obvious what
design principles should guide the creation of a tableau. Clearly,
automating this process is necessary as users may not be aware of
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Table 2: Excerpt from a sub-optimal tableau for the FD
[name, type, country]→ [price, tax]

name type country price tax
- clothing - - -
- - UK - -

Harry Potter book France - 0
The Lord of the Rings book France - 0

Le Petit Prince book France - 0
. . . . . . . . . . . . . . .

all the specific constraints that hold over a given relation due to
schema and/or data evolution. These are exactly the problems we
study in this paper.

Our first contribution is defining the problem of optimal pattern
tableau generation based on natural criteria. It might seem that a
good tableau should choose patterns to maximize the number of tu-
ples matching the embedded FD while not allowing any violations.
However, real data typically include errors and noise; therefore,
such patterns, if they exist, would match only a small fraction of
the data. On the other hand, a tableau matching the entire rela-
tion (e.g., containing a single all-wildcards pattern) may identify
too many exceptions to be semantically useful. Clearly, the right
strategy lies somewhere between these two extremes. We argue
that a good tableau should apply to at least some minimal subset
of the data and should allow some of these tuples to cause viola-
tions, but only a bounded number. Furthermore, a tableau should
be concise so that it captures the semantics of the data. For exam-
ple, the tableau from Table 1 is preferable to that shown in Table 2,
where the pattern (¡, book, France,¡, 0) is replaced with a set of
patterns that enumerate all books sold in France. Thus, we seek a
small set of tableau patterns with both high support (many tuples
should match) and high confidence (few exceptions).

Our second contribution is a study of the complexity of the
tableau generation problem. We show that generating a parsimo-
nious tableau that simultaneously exceeds specified support and
confidence constraints is NP-complete and that no good approxi-
mation algorithm exists. We also show that generating an optimal
tableau where each pattern on its own exceeds the specified con-
fidence threshold reduces to an instance of PARTIAL SET COVER,
which is NP-complete but approximable in polynomial time. Thus,
a greedy algorithm may be used to generate tableaux whose size is
within a logarithmic factor of an optimal solution.

Third, we propose a more efficient version of the greedy algo-
rithm for our problem instance. The number of candidate patterns
(with or without wildcards) may be very large, so the idea is to
dynamically expand the set of patterns considered “on-demand”
rather than to pre-compute the full set of candidates. We believe
this optimization to the greedy set cover algorithm is more broadly
applicable than just to our problem.

Our fourth contribution is based on the observation that viola-
tions of constraints often represent interesting events [8]. Hence,
in addition to discovering hold tableaux that identify the context
in which the embedded FD holds, one may also want to generate
fail tableaux that concisely summarize tuples causing the bulk of
violations. We thus formulate the problem of finding a good fail
tableau analogously composed of concise patterns having low con-
fidence, and extend our algorithm to efficiently produce both types
of tableaux. For example, suppose that in conjunction with the hold
tableau in Table 1, we have computed the fail tableau shown in Ta-
ble 3. We now know which tuples satisfy the embedded FD, and
that the FD is violated mainly by purchases in the USA (possibly
because some cities set their own tax rates) and electronics (possi-
bly because the prices of electronics drop over time).

Table 3: Example fail tableau for the FD
[name, type, country]→ [price, tax]

name type country price tax
- - USA - -
- electronics - - -

Our fifth contribution is the proposal of the range tableau for
ordered attributes. Ranges, which generalize both constants and
wildcards, provide more expressivity and hence more parsimony
than patterns. We describe how to extend the on-demand algorithm
to efficiently generate range tableaux.

Finally, we experimentally evaluate the proposed solutions us-
ing two real data sets: sales data containing purchase transactions
from an on-line retailer, and router configuration data from a large
Internet Service Provider (ISP). The results demonstrate significant
performance benefits of the on-demand algorithm—in some cases,
it outperforms the basic greedy algorithm in running time by more
than an order of magnitude—as well as the utility of deriving good
hold and fail tableaux. In addition, we show that the generated
tableaux routinely have optimal or near-optimal sizes (well below
the approximation upper-bound), and are robust to taking different
samples of the data. Finally, we demonstrate that range tableaux
can be effectively leveraged on ordered attributes to further provide
conciseness compared to standard pattern tableaux.

The goal of this work is to realize the full potential of CFDs as
compact summaries of the semantics of large data sets. As such,
this paper is related to previous work on discovering the semantics
of relational data, such as mining standard FDs [14, 17], algebraic
constraints [6], correlations [15], and association rules [2]. How-
ever, automatic generation of pattern tableaux has not been studied.
Also, note that while the generated tableaux may point out poten-
tial data quality problems, how to resolve those problems is not
the subject of this paper. In particular, we do not advocate using
the generated tableaux as an integrity enforcement mechanism and
dropping all the tuples that do not match a tableau.

The remainder of this paper is organized as follows. Section 2
reviews CFDs, and defines tableau support and confidence. In Sec-
tion 3, we discuss the complexity of deriving interesting tableaux.
Section 4 presents an efficient tableau generation algorithm and
Section 5 describes extensions to generate fail and range tableaux.
Section 6 summarizes the experimental results, Section 7 reviews
related work, and Section 8 concludes the paper.

2. DEFINITIONS

2.1 FDs and CFDs
Let R be a relational schema on attributes A1, A2, ..., A` with

instance dom(R) = {t1, t2, ..., tN}. We shall abuse notation
and let dom(X) refer to {t1[X], ..., tN [X]}, the set of tuples
projected on X µ R. For X, Y µ R, let dom(XY ) denote
{xy : ∃ti ∈ dom(R) such that (ti[X] = x) ∧ (ti[Y ] = y)}.
A functional dependency X → Y is said to hold when ∀i, j, if
ti[X] = tj [X] then ti[Y ] = tj [Y ], where X µ R is a set of
attributes referred to as the antecedent and Y µ R is a set of at-
tributes referred to as the consequent.

A Conditional Functional Dependency (CFD) φ on R is a pair
(R : X → Y, T ), where (1) X → Y is a standard FD, referred
to as the embedded FD; and (2) T is a pattern tableau with all at-
tributes from X and Y , where for each row tp ∈ T and each at-
tribute A ∈ X ∪ Y , tp[A] = a, for some a ∈ dom(A), or tp[A] =
‘¡’. To denote that a tuple t ∈ dom(R) satisfies a particular row
tp of tableau T , we use the symbol ‘³’. We write t[S] ³ tp[S]
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iff for each attribute A of S, either t[A] = tp[A] or tp[A] = ‘¡’.
That is, t matches tableau row tp if t agrees with tp on all the non-
wildcard attributes of tp. We say that a relation instance dom(R)
(exactly) satisfies a CFD φ iff ∀ti, tj ∈ dom(R) and ∀tp ∈ T , if
ti[X] = tj [X] ³ tp[X] then ti[Y ] = tj [Y ] ³ tp[Y ].

A violation of a standard FD occurs when two tuples agree on all
the attributes in the antecedent but not the consequent. Violations of
CFDs come in two types. A single-tuple violation (STV) occurs if
an individual tuple matches the antecedent, but not the consequent,
of some pattern. Formally, a STV occurs if t ∈ dom(R) and tp ∈
T such that t[X] ³ tp[X] but t[Y ] 6³ tp[Y ]. Note that for an
STV to occur, T must have at least one row with at least one non-
wildcard entry in the consequent (e.g., row 2 in Table 1). A multi-
tuple violation (MTV) occurs if ti, tj ∈ dom(R) and ∃tp ∈ T
such that ti[X] = tj [X] ³ tp[X] but ti[Y ] 6= tj [Y ]. Note that
the two conflicting tuples must match the antecedent of at least one
pattern.

2.2 Support and Confidence
Given a CFD φ = (R : X → Y, T ) and a relation instance

dom(R), let cover(p) be the set of tuples matching pattern p:

cover(p) = {t : (t ∈ dom(R)) ∧ (t[X] ³ p[X])}.
We define the local support of p as the fraction of tuples “covered”
by (i.e., match the antecedent of) p, and the global support of T as
the fraction of tuples covered by at least one of its patterns:

local support(p) =
|cover(p)|

N

global support(T ) =
1

N

˛

˛

˛

˛

˛

˛

[

tp∈T

cover(tp)

˛

˛

˛

˛

˛

˛

.

Observe that these definitions only reference the antecedent since
only those attributes can restrict the scope (coverage) of a CFD.

We also require a measure (“confidence”) that reflects the degree
to which the data satisfy the CFD. Several definitions have been
proposed for standard FDs, involving the computation of the en-
tropy of dom(X) and dom(XY ) [10, 13]; the probability that a
randomly drawn pair of tuples agreeing on X also agree on Y [7,
18]; the number of distinct values in dom(X) versus the number
of distinct values in dom(XY ) [15]; and the smallest number of
tuples that would have to be removed from the relation in order to
eliminate all violations [14, 17, 18, 19]. We extend the last def-
inition as it is not clear how to modify the other three to account
for STVs. Also, this edit-distance based measure is natural and has
been widely studied in the context of standard FDs.

Let keepers(p) denote the tuples covered by p, after removing
the fewest tuples needed to eliminate all violations (i.e., disagree-
ment in the consequent):

keepers(p) = ∪x∈dom(X){t : t[XY ] ³ p[XY ] = xyx}
where, for all x ∈ dom(X), yx = arg maxy |{t : xy = t[XY ] ³
p[XY ]}|. That is, for each distinct binding x of the antecedent
attributes, we retain tuples that agree on the most frequently oc-
curring consequent binding yx matching p[Y ], and eliminate those
that do not. Then:

local confidence(p) =
|keepers(p)|
|cover(p)|

global confidence(T ) =
| ∪tp∈T keepers(tp)|
| ∪tp∈T cover(tp)| .

Table 4: Instance of Sales relation
tid name type country price tax
1 Harry Potter book France 10 0
2 Harry Potter book France 10 0
3 Harry Potter book France 10 0.05
4 The Lord of the Rings book France 25 0
5 The Lord of the Rings book France 25 0
6 Algorithms book USA 30 0.04
7 Algorithms book USA 40 0.04
8 Armani suit clothing UK 500 0.05
9 Armani suit clothing UK 500 0.05

10 Armani slacks clothing UK 250 0
11 Armani slacks clothing UK 250 0
12 Prada shoes clothing USA 200 0.05
13 Prada shoes clothing USA 200 0.05
14 Prada shoes clothing France 500 0.05
15 Spiderman DVD UK 19 0
16 Star Wars DVD UK 29 0
17 Star Wars DVD UK 25 0
18 Terminator DVD France 25 0.08
19 Terminator DVD France 25 0
20 Terminator DVD France 20 0

Table 5: Tuples covered by pattern (¡,¡, UK|¡,¡)
tid name type country price tax
8 Armani suit clothing UK 500 0.05
9 Armani suit clothing UK 500 0.05

10 Armani slacks clothing UK 250 0
11 Armani slacks clothing UK 250 0
15 Spiderman DVD UK 19 0.06
16 Star Wars DVD UK 29 0
17 Star Wars DVD UK 25 0

Given the above definitions of support and confidence, an FD
has a global support of 1, whereas a CFD has a global support of s,
where 0 · s · 1. Furthermore, an exact FD or CFD is required to
hold with a global confidence of 1, whereas an approximate FD or
CFD holds with global confidence c, where 0 · c · 1.

2.3 Example
Let us compute the support and confidence of the CFD from Ta-

ble 1 over an instance of the Sales relation shown in Table 4 (at-
tributes not used in this example have been omitted). First, con-
sider the pattern (¡,¡, UK|¡,¡); we use ‘|’ to separate the an-
tecedent and consequent. We need to determine which tuples it
covers and, for each distinct antecedent, compute the sizes of its
keepers and cover sets. Since distinct antecedent values are asso-
ciated with mutually disjoint sets of tuples, we simply sum over
these to compute the sizes for the covering pattern. Table 5 dis-
plays the 7 tuples covered by (¡,¡, UK|¡,¡), grouped on the
antecedent, and shows the tuple with tid 16 in boldface to indi-
cate that removing it would eliminate all violations (i.e., the other
tuples are the keepers). Hence, the local support of this pattern
is 7

20
and its local confidence is 6

7
. Similarly, the local support of

(¡, clothing,¡|¡,¡) is 7
20

and its local confidence is 1. The local
support of (¡, book, France|¡, 0), is 5

20
and its local confidence

is 4
5

(the tuple with tid = 3 causes a STV).
Now, the global support of the tableau is 15

20
as the only tuples

that do not match at least one pattern are those with tids of 6, 7,
18, 19 and 20. Note that the global support is smaller than the sum
of the three local supports since some tuples match more than one
pattern. The global confidence is 13

15
= 0.87. It is worth pointing

out that using the tableau with a single all-wildcards pattern yields
higher support (of 1) but lower global confidence (of 15

20
= 0.75).

Finally, we define the marginal local support of a pattern p with
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respect to an existing tableau T by considering only those tuples
which have not already been covered by some pattern in T , that is,
|cover(p)¡ cover(T )|/N , where cover(T ) = ∪tp∈T cover(tp);
marginal local confidence is defined similarly. For example, the
marginal local support of the pattern (¡, DVD,¡|¡,¡) is 3

20
,

since its local support is 6
20

, but three tuples with type = DVD
(those with tids of 15, 16, and 17) already match the third row of
the existing tableau. Its marginal local confidence is 1

3
.

3. TABLEAU GENERATION PROBLEM
We now formalize the problem of generating a good pattern

tableau. The input to our problem is a relation instance and a stan-
dard FD that does not exactly hold on the data (else we would not
need a CFD). Optionally, the FD may be known to hold over some
patterns which can be supplied as input; here, we ignore such pat-
terns and assume the tableau to be initially empty. The FD could
be given (the semantics of the application domain may suggest nat-
ural dependencies, e.g., [country = France] → [tax = 0]) or au-
tomatically found using an algorithm for discovering approximate
FDs (e.g., [14, 17]); how to find this initial FD is outside the scope
of this paper. Our problem is to generate a tableau that will allow
the FD to hold conditionally on the data (i.e., as a CFD) with higher
confidence. Note that there are inherent limitations on how much
a CFD can improve over its embedded FD. For example, if the FD
holds with only 60% confidence, then no subset with at least 75%
global support can possibly allow the FD to hold with more than
80% confidence. In general, a tableau with global support s can
attain no more than min{1, c/s} global confidence using an em-
bedded FD with confidence c.

Moreover, we wish to find a parsimonious set of patterns. This
will provide a more semantically meaningful tableau using general,
and thus more interesting, patterns (due to their higher supports)
rather than spurious ones. It will also enable faster validation of the
CFD on other instances of the relation.

Given a relation schema R and a CFD φ = (R : X → Y, T ), we
say that dom(R) is (ŝ, ĉ)gg-satisfied by φ iff global support(T )
¸ ŝ and global confidence(T ) ¸ ĉ. We say that dom(R) is
(ŝ, ĉ)gl-satisfied by φ iff global support(T ) ¸ ŝ and ∀tp ∈ T,
local confidence(tp) ¸ ĉ. Note that the local confidence con-
straints on tp do not provide any (useful) guarantees on the global
confidence for the entire tableau T , unless the local confidence of
each pattern is 1, in which case the global confidence is also 1.1

Both sets of constraints are desirable in their own right. For in-
stance, one appealing property of a local confidence threshold is
that each and every pattern is guaranteed to be “good” (above ĉ).
On the other hand, using the global confidence threshold may lead
to a smaller tableau for some fixed level of global support because
there are more candidate patterns. In addition, one may wish to im-
pose a local support threshold. This can be handled in the same way
as local confidence but, for ease of exposition, we do not discuss it
further here.

Definition 1. The tableau generation problem with global sup-
port ŝ and global confidence ĉ is, given an FD R : X → Y on a
relation schema R with instance dom(R), find a pattern tableau T
of smallest size such that the CFD (R : X → Y, T ) is (ŝ, ĉ)gg-
satisfied, if one exists, and to return “infeasible” otherwise.

Unfortunately, this problem is not only NP-complete but also
provably hard to approximate well.
1However, as will be discussed in Section 6, we observed that lo-
cal confidence constraints yield tableaux with global confidence far
exceeding ĉ in practice.

PROPOSITION 1. If there are a polynomial-time algorithm A
and a constant ε > 0 such that, for all N and R such that
|dom(R)| = N , A returns a tableau of size at most N 1/2¡ε times
the optimal size whenever the CFD can be (ŝ, ĉ)gg-satisfied, then
P=NP.

We give the proof in the appendix, where we also prove that deter-
mining if a tableau exists, of any size, such that the CFD is (ŝ, ĉ)gg

satisfied, is solvable in polynomial time.

Definition 2. The tableau generation problem with global sup-
port ŝ and local confidence ĉ is, given an FD R : X → Y on
a relation R with instance dom(R), to find a pattern tableau T
of smallest size such that the CFD (R : X → Y, T ) is (ŝ, ĉ)gl-
satisfied, if one exists, and to return “infeasible” otherwise.

Determining if there is any pattern tableau, of any size, such that
the CFD (R : X → Y, T ) is (ŝ, ĉ)gl-satisfied, is solvable in poly-
nomial time. (Without loss of generality one can assume that all
the antecedents in T are fully instantiated and all the consequents
are wildcards. Discard all database rows whose local confidence
falls below ĉ. A feasible tableau exists if and only if the remain-
ing database rows cover a fraction of ŝ, or more, of the relation.)
However, the generation problem is NP-complete.

PROPOSITION 2. The tableau generation problem with global
support and local confidence is NP-complete and NP-hard to ap-
proximate to within any constant less than 34/33.

PROOF. We exhibit a polynomial-time reduction from VERTEX
COVER IN TRIPARTITE GRAPHS, which is not only NP-Complete
but which cannot be approximated to within any constant smaller
than 34/33 [3]. Let G be a tripartite graph with given vertex parti-
tion (A, B, C) having, say, m edges. Denote the vertices of A,
B and C as ai, bj and ck, respectively. Create five new dis-
tinct constants d, d′, x, y, z which are not vertices of G. Build a
database with schema (A, B, C, D) satisfying a CFD with embed-
ded FD ABC → D as follows. Given edges e of G, populate the
database such that (1) if e = {ai, bj}, add row (ai, bj , z|d); (2)
if e = {ai, ck}, add row (ai, y, ck|d); and (3) if e = {bj , ck},
add row (x, bj , ck|d); where ‘|’ emphasizes that d is the value
in the consequent. Finally, add two more rows: (x, y, z|d) and
(x, y, z|d′). Define the target global support to be m (the number
of edges of G) and the local confidence target to be 1. This com-
pletes the reduction.

Clearly, the reduction can be done in polynomial time. Also
note that there must be some feasible tableau: just take all patterns
(ai,¡,¡|¡), (¡, bj ,¡|¡), (¡,¡, ck|¡). We must show that the
size of the smallest tableau meeting the global support and local
confidence bounds equals the size of the smallest vertex cover.

Consider any tableau that is (ŝ, ĉ)gl-satisfied. We first prove that
the feasible solution can be assumed to contain only patterns of the
form (ai,¡,¡|¡), (¡, bj ,¡|¡), or (¡,¡, ck|¡), and thus cor-
responds in an obvious way to a set of vertices in G. We may
assume that each tableau pattern matches at least one database row.
Consider a tableau pattern p (assume that its consequent is ‘¡’).
Pattern p cannot match any tuples with antecedent (x, y, z), other-
wise its local confidence would be less than 1 due to the presence of
(x, y, z|d) and (x, y, z|d′). Hence, p matches at least one other row
in the database. Suppose it matches the row (ai, bj , z|d), the other
two cases of matching (ai, y, ck|d) or (x, bj , ck|d) being symmet-
ric. This means that the first component of p is either ai or ‘¡’,
its second component is either bj or ‘¡’, and its third component
is either z or ‘¡’. If the first two components are ‘¡’, then we
have a contradiction, for then we match (x, y, z|d) and (x, y, z|d′)
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and thus the confidence is less than 1. So let us assume by sym-
metry that the first component is ai. Now replace that pattern p
by p′ = (ai,¡,¡|¡). The new pattern covers at least as many
database rows as the previous one, and its local confidence is still
1.

By repeating this process, we can build a new tableau, of the
same size or smaller, all of whose patterns satisfy the local confi-
dence bound and whose overall support is at least as large; hence,
the overall support is m. Furthermore, each pattern corresponds
to a vertex in a natural way. Since x, y, z appear nowhere in the
tableau, to get support m, for each edge {ai, bj}, we must have
chosen either (ai,¡,¡|¡) or (¡, bj ,¡|¡) for the tableau; that
is, we must have chosen one of the two vertices covering the edge
{ai, bj}. By symmetry, similar statements apply for edges {ai, ck}
and {bj , ck}. Hence, we have a vertex cover whose size is at most
the size of the tableau. Therefore, the size of the smallest vertex
cover is at most the size of the smallest tableau.

Given a vertex cover A′ ∪B′ ∪ C′, A′ µ A, B′ µ B, C ′ µ C,
the tableau with patterns (ai,¡,¡|¡) for all ai ∈ A, (¡, bj ,¡|¡)
for all bj ∈ B, and (¡,¡, ck|¡) for all ck ∈ C satisfies the local
confidence and global support constraints and has the same size as
the vertex cover. Hence the size of the smallest tableau is at most
the size of the smallest vertex cover.

It follows that the minimum size of a tableau equals the mini-
mum size of a vertex cover. Hence, tableau minimization with a
local confidence constraint is NP-complete and NP-hard to approx-
imate to within any constant less than 34/33.

Fortunately, unlike the tableau generation problem with global
confidence, this problem admits a reasonable approximation. We
describe one such approximation algorithm in the next section.

4. APPROXIMATION ALGORITHM
In this section, we give a simple reduction of the problem defined

in Definition 2 of Section 3 to a variant of SET COVER, present
an efficient implementation of a greedy approximation algorithm
for our setting, and propose a faster on-demand algorithm. Here,
we consider pattern antecedents and assume the consequents have
wildcards in each attribute; in Section 5.1 we describe how to bind
constants in the consequent.

4.1 Preliminaries
We define cube(t) = {p : t ³ p} to denote the set of tuples

obtained from t by replacing constants with ‘¡’ in all possible
ways. For example, if X = (A, B, C) and (a, b, c) ∈ dom(X),
then cube(a, b, c) = {(¡,¡,¡), (a,¡,¡), (¡, b,¡), (¡,¡, c),
(a, b,¡), (a,¡, c), (¡, b, c), (a, b, c)}. This is the set of candidate
patterns covering all tuples with antecedent values (a, b, c). Let
cube(S) denote the set of tuples

S

t∈S cube(t). Given an embed-
ded FD X → Y , we assume that we have a table D containing all
the values in dom(X), i.e., the distinct wildcard-free antecedent
patterns. Each entry in D is also assumed to store the correspond-
ing sizes of the cover and keepers sets, denoted ct and kp, respec-
tively. Finally, let K = |X| and n = |dom(X)| · N .

4.2 Greedy Algorithm
Let P be cube(dom(X)), i.e., the set of all possible can-

didate antecedent patterns, with elements p. We take lo-
cal confidences into account by eliminating patterns p having
local confidence(p) < ĉ. Finding a collection of patterns whose
cover sets include at least ŝN tuples from dom(R) will yield a
tableau satisfying the global support threshold. Therefore, finding
a minimum size tableau meeting both the global support and local

confidence constraints is an instance of PARTIAL SET COVER.2 Al-
though this problem is NP-complete, there is a well-known greedy
polynomial-time approximation algorithm for it—always choose
the set that covers the most elements that have not yet been cov-
ered [16].3

The algorithm computes the support and confidence of every
possible candidate pattern and then iteratively chooses patterns
with highest marginal support (and above the confidence thresh-
old), adjusting the marginal supports for the remaining candidate
patterns after each selection, until the global support threshold is
met or until all candidate patterns are exhausted. For compari-
son with the on-demand algorithm presented next, the pseudocode
given in Figure 1 adds patterns whose confidence is below the con-
fidence threshold even though such patterns will never be chosen
and therefore need not be added. The “frontier” F maintains the
remaining candidates patterns, and is initialized to be the set P of
candidate patterns. Variable margSupp(p) reflects |cover(p)|, af-
ter tuples covered by tableau T have been removed, at all iterations.

GenerateTableau(D, ŝ, ĉ):
01 for each tuple t ∈ D do
02 for each pattern p ∈ cube(t) do
03 cover(p) := cover(p) ∪ {t};
04 (kp(p), ct(p)) += (kp(t), ct(t));
05 F := ∅;
06 for each pattern p do
07 margSupp(p) := ct(p);
08 conf(p) := kp(p)/ct(p);
09 F := F ∪ {p};
10 T := ∅; cumSupport := 0;
11 while F 6= ∅ and cumSupport < ŝN do
12 p := arg maxx∈F margSupp(x);
13 F := F \ {p};
14 if conf(p) ≥ ĉ then
15 T := T ∪ {p}; // p selected for tableau
16 cumSupport += margSupp(p);
17 for each remaining p′ ∈ F do
18 cover(p′) := cover(p′)¡ cover(p);
19 margSupp(p′) := |cover(p′)|;

Figure 1: Tableau Generation Algorithm

PROPOSITION 3. The greedy algorithm in Figure 1 finds an
approximately minimal tableau T with a bound on the size ratio
|T |/|T ∗| · 1+ln(ŝN) compared to an optimal tableau T ∗, given
D with thresholds ŝ and ĉ. It has complexity O(2KN).

Proof: The size of the universe (total number of database tuples)
is N , so the greedy algorithm for ŝN -SET COVER gives a 1 +
ln(ŝN) bound [11]. Each tuple in dom(X) can appear in at most
2K patterns; hence the total number of candidate patterns |P | ·
2Kn. Each pattern (as well as each tuple) is visited at most once
during algorithm execution. The arg max can be maintained in
amortized constant time by using a vector on the integer domain
[1, N ] (i.e., the range of possible margSupp(p)-values), where
each vector element stores a list of pointers to the p’s having that
value.

4.3 On-demand Algorithm
The processing in lines 02–04 of Figure 1 can be expensive, es-

pecially for large data sets. (It is similar to computing the dat-
2More precisely, we use a variant where the set elements are
weighted by their ct-values. This is different from a weighted set
cover.
3Other approximation algorithms for PARTIAL SET COVER exist
(see [11]) but we do not consider them here.
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GenerateTableau(D, ŝ, ĉ):
01 for each tuple t ∈ D do
02 for only the null pattern p do
03 cover(p) := cover(p) ∪ {t};
04 (kp(p), ct(p)) += (kp(t), ct(t));
05 F := ∅;
06 for only the null pattern p do
07 margSupp(p) := ct(p);
08 conf(p) := kp(p)/ct(p);
09 F := F ∪ {p};
10 T := ∅; V := ∅; cumSupport := 0;
11 while F 6= ∅ and cumSupport < ŝN do
12 p := arg maxx∈F margSupp(x);
13 F := F \ {p};
14 if conf(p) ≥ ĉ then
15 T := T ∪ {p};
16 cumSupport += margSupp(p);
17 for each remaining p′ ∈ F do
18 cover(p′) := cover(p′)¡ cover(p);
19 margSupp(p′) :=

P

t∈cover(p′) ct(t);
20 else // expand children of p

21 V := V ∪ {p};
22 for each t ∈ cover(p) do
23 for each child pattern c of p using t do
24 if parents(c) ⊆ V then
25 determine cover(c) from cover(p);
26 margSupp(c) := |cover(p)|;
27 F := F ∪ {c};

Figure 2: Pseudocode for On-demand Algorithm

acube.) Moreover, updating metadata associated with unused pat-
terns (such as cover(p′) and margSupp(p′) in lines 17–19) adds
unnecessary overhead. If the support threshold is small, or if the
data are skewed such that the support threshold can be met with
only a few patterns, then pre-computing all possible candidate pat-
terns is wasteful. The on-demand algorithm defers computation
involved with patterns until as late as possible, which provides
much benefit when the algorithm terminates before the patterns are
needed.

Pseudocode for this subroutine is given in Figure 2, with the
changes compared to Figure 1 indicated in boldface. We define
the parents of a pattern p as those patterns with exactly one of p’s
constants replaced with a ‘¡’; the children of p may be defined
analogously. The algorithm initially inserts only the “null” (all-
wildcards) pattern and later dynamically inserts new patterns into
the frontier F . Lines 20–27 dynamically expand a pattern p to its
children. The set V of visited patterns not meeting the confidence
bound is maintained for the sake of delaying the expansion of chil-
dren until all their parents are in V . For example, if t = (a, b, c)
and p = (a,¡,¡), then the children of p with respect to t are
(a, b,¡) and (a,¡, c). If (and only if) (¡,¡, c) exists in V , then
(a,¡, c) is expanded. We will establish a correspondence with the
(off-demand) greedy algorithm by showing that the same patterns
will be chosen for T in the same order.

PROPOSITION 4. Let P = cube(dom(X)). Let Vk and Tk be
V and T (defined above) at some iteration k of the basic greedy
algorithm, thus P ¡Vk ¡Tk are the remaining candidate patterns
available at step k. Given a set S of patterns, let S+ include these
patterns and all their descendants, that is, {p ∈ P : cover(p) µ
cover(S)}. Define the “horizon” H(S) of set S as all patterns not
subsumed by another pattern in S, that is, p ∈ H(S) iff 6 ∃q ∈ S
that is an ancestor of p. Then, assuming ties are broken lexico-
graphically with the wildcard defined to come before constants, the
pattern with maximum marginal support (also meeting local confi-
dence) in both P ¡ Vk ¡ Tk and H(P ¡ Vk ¡ T+

k ) is the same.

Proof: All p ∈ T and their children will have

margSupp(p) = 0, so any p ∈ T + need not be
considered and thus maxx∈P¡Vk¡Tk

margSupp(x) =
max

x∈P¡Vk¡T
+
k

margSupp(x). Since every p ∈ H(S)

must have a q ∈ S with marginal support at least as high, the
pattern with maximum support is in both P ¡ Vk ¡ Tk and
H(P ¡ Vk ¡ T+

k ).
Let Fk denote the frontier F at the beginning of the kth iteration.

PROPOSITION 5. At every iteration k of the on-demand algo-
rithm, Fk = H(P ¡ Vk ¡ T+

k ).

Proof: The proof is by induction on k.
BASE CASE: At k = 0, F0 contains only the null pattern and

T0 = V0 = ∅. Clearly, F0 = H(P ) = H(P ¡ V0 ¡ T+
0 ).

INDUCTION STEP: Assume the claim is true at iteration k. To
get to k + 1, either conf(p) ¸ ĉ or conf(p) < ĉ. If conf(p) ¸
ĉ, then Fk+1 := Fk ¡ {p}. Since, by the inductive hypothesis,
Fk = H(P ¡ Vk ¡ T+

k ), and we know p 6∈ Fk, Fk ¡ {p} =
H(P ¡ Vk ¡ T+

k ) ¡ {p}. The right-hand side can be rewritten
as H(P ¡ Vk ¡ (Tk ¡ {p})+), which is equivalent to H(P ¡
Vk+1¡T+

k+1) since Tk+1 = Tk ∪{p} and Vk+1 = Vk. Therefore,
Fk+1 = H(P¡Vk+1¡T+

k+1). Otherwise, conf(p) < ĉ, in which
case Fk+1 = (Fk ¡ {p}) ∪ {∪ici} for children ci of p having all
its parents in Vk. Since H(S ¡ {p}) = H(S) ∪ {∪ici}, we have
that H(P ¡ Vk ¡ T+

k ) ∪ {∪ici} = H(P ¡ (Vk ∪ {p}) ¡ T+
k ),

which is equal to H(P ¡ Vk+1 ¡ T+
k+1) since Tk+1 = Tk and

Vk+1 = Vk ∪{p}. Therefore, Fk+1 = H(P ¡Vk+1¡T+
k+1).

As a result, at all steps of the on-demand algorithm, there is a
correspondence with the (off-demand) greedy algorithm in terms
of the patterns considered for inclusion in T .

4.4 Example
We now present a worked example of generating a tableau for

the embedded FD [name, type, country] → [price, tax] on the
Sales relation instance from Table 4. We set ĉ = 0.8 and ŝ = 0.75
(the confidence of the embedded FD is 0.75).

The first iteration inserts the null pattern into V and populates F
with the 15 patterns having exactly one constant and two wildcards
in the antecedent. In the second iteration, (¡,¡, France|¡,¡) has
the highest support (0.45), but its local confidence is too low, so it
is moved to V (but not expanded).

In the third iteration, there are three patterns in F tied for the lead
in marginal support, at 0.35 each. Suppose the algorithm chooses
(¡, clothing,¡|¡,¡). This pattern exceeds ĉ = 0.8 and is in-
serted into the tableau.

Next, after all the marginal supports in F have been up-
dated, there is one pattern in F with support of 0.35, namely
(¡, book,¡|¡,¡), but its local confidence is too low. This pattern
is then moved to V and expanded into (¡, book, France|¡,¡) be-
cause both parents of this new pattern are now in V .

In the fifth iteration, the marginal support of
(¡, book, France|¡,¡) is the highest at 0.25, and it meets
the local confidence threshold, so it is inserted into the tableau.

In the sixth iteration, (¡, dvd,¡) has the highest marginal sup-
port at 0.3, but its local confidence is too low. After getting moved
to V , it expands into (¡, dvd, France|¡,¡).

Finally, in the seventh iteration, there are three patterns
with marginal support of 0.1; suppose the algorithm chooses
(¡,¡, UK). This pattern meets the confidence threshold, and is
the third and final pattern to be inserted into the tableau. Thus, the
tableau is as shown in Table 1, minus consequent bindings, which
will be discussed below.

Ignoring the null pattern, the on-demand algorithm considers the
15 initial patterns with two wildcards each in the antecedent, plus
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Table 6: Computing the sizes of the keepers sets for different
bindings of the consequent of pattern (¡, book, France|¡,¡).

price tax count(∗)

all all 5
10 all 3
25 all 2
all 0 4
all 0.05 1
10 0 2
25 0 2
10 0.05 1

two additional expanded patterns. The total number of possible
candidates can be shown to be 51, so fewer than one third of the
patterns were explored by the on-demand algorithm.

5. ALGORITHM EXTENSIONS
This section discusses the following extensions: assigning con-

stants to the consequent (Section 5.1), generating fail tableaux
(Section 5.2), and generating range tableaux (Section 5.3). We also
comment on choosing appropriate support and confidence thresh-
olds (Section 5.4).

5.1 Binding the Consequent
Until now, we have only dealt with antecedent patterns. Whereas

generality (wildcards) in the antecedent leads to parsimony, speci-
ficity (constants) in the consequent provides stronger assertions. To
see this, recall the second row of the tableau from Table 1, which
not only forces all books purchased in France to have the same tax,
but also that the value be zero.

By definition, local support(p) of pattern p does not depend on
its consequent p[Y ], but local confidence(p) does—it may de-
crease if constants are added to p[Y ] due to single-tuple violations
(recall Section 2.1). Thus, a simple heuristic is to first generate
the tableau and then, for each tableau pattern independently, assign
constants to the consequent while remaining above the local confi-
dence threshold. One way to implement this is as follows. For each
tp ∈ T , we first issue a query over dom(R) of the form

select count(*) from keepers(t_p)
cube by y1,y2,...,yi

with yjs being attributes in Y . Observe that this query computes
the sizes of the keepers sets for all possible bindings of the conse-
quent. We then choose the binding with the fewest wildcards in the
consequent that exceeds ĉ.

Recall the example in Section 4.4. We show how
the consequent binding tax = 0 may be assigned to pattern
(¡, book, France|¡,¡). The size of the cover set of this pattern
is 5. Suppose that ĉ = 0.79, meaning that the size of the keepers
set must be at least 4. The output of the corresponding datacube is
illustrated in Table 6. Highlighted in bold are the two bindings that
meet the local confidence threshold; (all, 0) has fewer wildcards
and corresponds to (¡, book, France|¡, 0).

5.2 Generating Fail Tableaux
We have observed that the set of tuples in dom(R) which violate

a CFD may be of interest, and summarizing such tuples in addition
to the hold tableau provides added value. Therefore, we define the
fail tableau generation problem as follows.

Definition 3. We are given a CFD φ = (R : X → Y, T ), a
relation instance dom(R), a support threshold ŝerr , and a confi-
dence threshold ĉerr . An optimal fail tableau Tf with respect to

hold tableau T is one having the smallest size such that its global
marginal support with respect to T is above ŝerr and ∀tf ∈ Tf ,
marginal local confidence(tf ) · ĉerr .

Given the similarity of this problem to that of generating hold
tableaux, we can reuse the on-demand algorithm with two minor
modifications. First, in order to compute marginal local confi-
dences, we recompute the keepers and count sizes (kp and ct; recall
Section 4.1) for each remaining pattern using only those tuples not
covered by T . Second, only those patterns whose marginal local
confidence is below ĉerr may be included in Tf . Note that it does
not make sense to bind values of the consequent in the fail tableau
since, by definition, each candidate pattern has low confidence and
therefore is matched by tuples agreeing on the antecedent but not
the consequent.

We give an example of constructing a fail tableau using the CFD
from Table 1 over the Sales relation instance from Table 4. There
are five tuples not covered by the hold tableau, with tids of 6, 7,
18, 19 and 20. These five tuples satisfy the embedded FD with a
confidence of 2

5
. Suppose we want the fail tableau to cover half

of these uncovered rows with a ĉerr threshold just below 2
5

, say
0.38. This can be accomplished with a single fail tableau pattern:
(Terminator, dvd, France|¡,¡).

5.3 Generating Range Tableaux
We define a range tableau Tr as a tableau with all attributes from

X and Y , where for each row tr ∈ Tr and each (ordered) attribute
A ∈ X ∪ Y , tp[A] = [a`, ar], with a`, ar ∈ dom(A), a` · ar .
Note that ranges generalize both constants and wildcards, as a con-
stant a can be written [a, a] and ‘¡’ can be written [amin, amax],
where amin = min dom(A) and amax = max dom(A). Given
a tuple t ∈ dom(R) and row tr ∈ Tr, we write t[S] ³ tr[S]
iff for each attribute A of S, t[A] ∈ tr[A]; that is, t matches
tableau row tr if t[A] is an element of the range tr[A] for every
attribute A. We say that a relation instance dom(R) satisfies a
CFD φ = (R : X → Y, Tr) iff ∀ti, tj ∈ dom(R) and ∀tr ∈ Tr,
if ti[X] = tj [X] ³ tr[X] then ti[Y ] = tj [Y ] ³ tr[Y ].

Of course, it is possible to define a “hybrid” tableau in a straight-
forward way, where ordered attributes in the tableau may have
ranges, and the unordered attributes have regular patterns. Also,
note that one can restrict the choices for a` and ar (or even have
them come from outside dom(A)), for example, to ensure any two
ranges must either overlap completely or not at all. This allows
for interesting special cases such as prefix hierarchies (e.g., IP ad-
dresses). Finally, as with regular patterns with wildcards, a range
pattern does not imply that the tuples matching the range predicate
in the antecedent must satisfy the confidence threshold for each dis-
tinct range value, nor that the keepers of any pair of distinct range
values have identical values in the consequent; rather, a tableau
row with a range is simply a concise way of conditioning on the
embedded FD.

The greater expressivity of ranges gives rise to more tableau
row candidates (a superset), which in turn allows the global sup-
port threshold to be met with fewer tableau rows, compared to
regular patterns. Recall the Sales relation from the Introduction
and suppose that the FD country → tax holds. In particular,
suppose that the tax rate in France is 0.05. Now suppose that
the tax rate in France changed to 0.06 on May 1, 2008. This
can be expressed very concisely using a modified FD of the form
[country, date] → tax and the range tableau shown in Table 7.
This is vastly more compact than listing all the dates of 2008 in
separate patterns.

The number of candidate patterns grows rapidly with ranges
when any arbitrary subrange of the cross-product of the domains
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Table 7: Range tableau for the FD [country, date]→ [tax]
country date tax
France [01/01/2008, 04/30/2008] 0.05
France [05/01/2008, 12/31/2008] 0.06

can be considered. This blow-up makes the basic greedy algorithm
infeasible even for moderate domain sizes due to a prohibitive num-
ber of candidates, and provides even stronger motivation for the
on-demand algorithm.

The on-demand algorithm is easy to extend to ranges as it is quite
similar to that without ranges. In fact, all of the pseudocode from
Figure 2 remains the same; the only change is in how to expand
patterns that fail the confidence threshold. The children of a pat-
tern p are determined as follows. For each attribute A (let p[A] be
[a`, ar]), p has children [a`+1, ar] and [a`, ar¡1] in attribute A if
a` < ar , all other attributes staying the same. For example, let
X = ABC and suppose p[X] = ([a2, a9], [b5, b5], [c3, c4]). Its
children are ([a3, a9], [b5, b5], [c3, c4]), ([a2, a8], [b5, b5], [c3, c4]),
([a2, a9], [b5, b5], [c4, c4]), and ([a2, a9], [b5, b5], [c3, c3]). Find-
ing the parents of a pattern with ranges is similar: for each at-
tribute A with range [a`, ar], it has a parent with range [a`¡1, ar]
if a` > amin and a parent with range [a`, ar+1] if ar < amax, all
other attributes staying the same.

5.4 Choosing Support and Confidence
Thresholds

Clearly, ĉ should be chosen to be higher than the confidence of
the embedded FD, else the FD would suffice. Often, the user will
have a fixed target ĉ in mind (perhaps based on domain knowledge
of the number of exceptions to allow [14]) and be more flexible
with respect to ŝ. A special case of interest is when ĉ = 1, which
will result in a global confidence of 1 and corresponds to exact
CFDs. In this case, the highest ŝ for which there exists a tableau
that can be (ŝ, ĉ)gg-satisfied may be desired. However, maximizing
the support is not necessarily desirable as it could “overfit” the data.
Since we are using a greedy algorithm, the user can choose ŝ on-
the-fly, stopping when the maximum marginal support over all the
remaining patterns is small. This ensures that spurious patterns
with low support are not included in the tableau. Another useful
stopping criterion is that the size of the tableau grows excessively
large. Similarly, for fail tableaux, we can choose ŝerr on-the-fly,
and ĉerr to be slightly lower than the (global) confidence of the
remainder of dom(R) not covered by the hold tableau.

6. EXPERIMENTS

6.1 Setting
We now present an evaluation of the proposed tableau genera-

tion solutions on two real data sets. The first data set, also used
in [9], contains 300K sales records from an online retailer. The
schema extends the Sales relation from the motivating example in
Section 1:

Sales(tid, itemid, name, type, price, tax, country, city)

The new attribute is the item identifier itemid. The second data
set is a 30-day excerpt of a network configuration table from a
large ISP’s database. This is an append-only collection of daily
snapshots describing the configuration of every interface attached
to every router in the network. The partial schema is:
(date, router name, interface name, interface type,
IP address,. . . )
Possible interface types include Gigabit Ethernet, ATM, etc. The

Table 8: Embedded FDs used in the experiments
embedded FD

FD1 type,name,country→ price,tax,itemid
FD2 router name,interface name→ IP address
FD3 router name,interface name,interface type→ IP address
FD4 router name,interface name,date→ IP address

total size of this configuration table is confidential, as is the number
of routers and interfaces in the network.

Our copy of the network configuration database is located on a
SPARC III with 5 processors of 900 MHz each. For consistency,
all of our experiments were done on that machine, using a C++
implementation of the greedy set cover algorithm and our improved
on-demand algorithm. All performance measurements reported in
this paper represent averages of five trials.

Table 8 lists the embedded FDs used in our experiments. FD1
refers to the sales table, while FD2, FD3, and FD4 refer to the
network configuration table. Note that FD2 asserts that the IP ad-
dress of an interface does not change over time, unless the router
and/or interface name also changes. FD3 relaxes FD2 and allows
interfaces with the same name on the same router to have different
IP addresses at any point in time, provided that the interface types
are different. Finally, FD4 allows interfaces with the same name
on the same router to have different IP addresses in different daily
snapshots.

The remainder of this section presents experimental results on
the above four FDs over the above two real-life data sets. In brief,
we have observed that:

² Compared against optimal tableaux, our algorithms return
tableaux whose sizes are far smaller than the upper bound
given by the approximation guarantee.

² The relative performance improvement of the on-demand al-
gorithm as compared to the basic greedy algorithm increases
as the number of candidate tableau patterns increases, and
exceeds one order of magnitude in our experiments using
FD4.

² Range tableaux may be orders of magnitude smaller than
standard pattern tableaux if the embedded FD holds for a
range of values of antecedent attributes.

6.2 Tableau Generation
We begin by generating hold tableaux for FD1, whose confi-

dence is 0.871. We set the local confidence threshold ĉ to 0.88
and test several global support thresholds ŝ between 0.3 and 0.9.
Table 9 lists the sizes of the hold tableaux generated by our algo-
rithm, the optimal tableau sizes, and the global confidences. Opti-
mal tableau sizes were computed using CPLEX (www.cplex.com),
a worst-case exponential-time integer program solver. Note that:

² Our algorithms return hold tableaux whose sizes are equal to
or nearly equal to the optimal sizes.

² The global confidences of the resulting CFDs are above the
local confidence threshold of 0.88 (and therefore above the
confidence of FD1 itself).

² When the global support threshold is below 0.8, the hold
tableaux are very small.

Table 10 illustrates the first ten rows of the 41-row hold tableau
for ŝ = 0.8. The marginal support and local confidence of each
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Table 9: Summary of hold tableau properties for FD1, ĉ = 0.88
support threshold size opt size global conf

0.3 1 1 0.908
0.4 2 2 0.916
0.5 2 2 0.916
0.6 2 2 0.916
0.7 3 3 0.922
0.8 41 41 0.924
0.9 1690 1689 0.927

row are also shown. The remaining 31 rows are of the form
(¡,¡, C|¡,¡), where C is some country code, and have very low
marginal support. Note that choosing the first two or three rows
alone yields a global support of 0.66 and 0.778, respectively. Also
note that all but the first three rows have very low marginal sup-
port, which explains why the tableau size increases significantly if
ŝ > 0.8 is desired (recall Table 9). This means that if we stop the
tableau generation algorithm when all remaining candidate patterns
have marginal support under, say, 0.002, then it is not possible to
reach ŝ > 0.778 with ĉ = 0.88. Finally, observe that some patterns
contain constants in the tax attribute of the consequent; e.g., the tax
on all purchases made in Great Britain (GBR) is 6.79, regardless of
the item type or title.

Table 10: First ten rows of a hold tableau for FD1 (ŝ = 0.8, ĉ =
0.88)

type name country price tax itemid mar. sup. loc. conf.
book - - - - - 0.335 0.91
music - - - - - 0.331 0.92

- - GBR - 6.79 - 0.112 0.97
- - ETH - 5.86 - 0.001 1
- - NCL - 2.07 - 0.001 1
- - VAT - - - 0.001 1
- - JOR - - - 0.001 1
- - MDA - 4.88 - 0.001 1
- - DEU - 9.42 - 0.001 1
- - BRB - - - 0.001 1

We remark that the usage of wildcards in tableau patterns is the
key to achieving compactness. For example, suppose that a tableau
for FD1 may contain only those “patterns” which have constants for
each antecedent attribute (no wildcards). There are over 194,000
such patterns in the data set which have local confidence above
0.88. Using only these patterns, it requires over 50,000 rows to
attain a global support of 0.3 and over 111,000 rows to attain a 0.5
global support.

Next, we examine the robustness of the solutions produced by
our algorithm by comparing tableaux generated according to inde-
pendently chosen uniform random samples of the sales data. Ta-
ble 11 lists tableau sizes obtained by running our algorithm on four
30K samples (ĉ = 0.88). For ŝ · 0.8, all the tableaux, including the
original tableau over the full 300K data set, are identical. For higher
global support thresholds, the tableaux differ only in patterns that
have very low support. These experiments suggest that the gen-
erated tableaux are robust to changes in the underlying data set.
Of course, there may be cases when the data set and its semantics
change significantly and the tableaux must be re-computed. This is
an important issue for future work that is outside the scope of this
paper.

We also show the effect of varying the local confidence thresh-
old. Figure 3 graphs the tableau size for FD1 as a function of ŝ
and ĉ; for display purposes, the z-axis has been cropped at 1000.
Increasing ĉ reduces the number of candidate patterns with high

Table 11: Tableau sizes for 4 random samples of the sales data
support threshold sample 1 sample 2 sample 3 sample 4

0.3 1 1 1 1
0.4 2 2 2 2
0.5 2 2 2 2
0.6 2 2 2 2
0.7 3 3 3 3
0.8 39 41 33 35
0.9 623 540 625 517
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Figure 3: Comparison of tableau size vs. ŝ and ĉ for FD1.

supports to choose from and thus leads to larger tableaux. For ex-
ample, recall Table 10 and suppose that ĉ = 0.95. The first two
patterns (type = book and type = music), whose total support is
0.666, now fall below the confidence threshold and cannot be in-
cluded in the tableau. As a result, even if ŝ = 0.5, the hold tableau
already contains 109 patterns. Furthermore, it is impossible to
achieve ŝ > 0.8 using ĉ ¸ 0.95 because there are not enough
candidate patterns meeting this confidence threshold.

Table 12 shows the first ten rows of the 68-row fail tableau for
FD1, given an initial hold tableau with ĉ = 0.88 and ŝ = 0.5 (i.e.,
the initial hold tableau consists of the first two rows of Table 10 and
actually attains a global support of 0.667). The marginal local sup-
port and marginal local confidence of each row in the fail tableau
are also listed. The desired global support of the fail tableau was set
to 0.25, which covers 75 percent of tuples that have not been cov-
ered by the original hold tableau. The local confidence threshold
was set to 0.79, which is one percent lower than the global confi-
dence of the 50 percent of the table not covered by the hold tableau.
For brevity, the fail tableau shown in Table 12 is projected on the
antecedent attributes as all the patterns have all-wildcards in the
consequent attributes. Observe that the first pattern concisely illus-
trates that the same item (type and title) purchased in the USA may
be charged a different tax in different transactions because the tax
rate varies from state to state. Note that all but the first row have
very low marginal local support. Also note that the fail tableau has
size one (the first row of Table 12) for values of global support be-
low 0.11, regardless of the global support threshold of the initial
hold tableau.

Note that the above fail tableau is small enough to be easily inter-
preted by a human and is more user-friendly than a raw list of tuples
that violate the embedded FD. In particular, these 68 fail patterns
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concisely represent a total of over 32,000 violating tuples. More-
over, reaching the same level of global support using only patterns
without wildcards (in the antecedent) requires a fail tableau of size
over 9,000.

Table 12: First ten rows of a fail tableau for FD1 (ŝ = 0.25, ĉ =
0.77)

type name country marginal supp local conf
- - USA 0.111 0.40
- Romeo and Juliet - 0.001 0.33
- Les Miserables - 0.001 0.43
- Phantom of the Opera - 0.001 0.52
- Hound of the Baskervilles - 0.001 0.54
- The Raven - 0.001 0.64
- The Three Musketeers - 0.001 0.49
- Of Human Bondage - 0.001 0.56
- Within the Law - 0.001 0.58
- Bluebeard - 0.001 0.59

Moving on to the network configuration data, Table 13 lists
the tableau size returned by our algorithms, the optimal tableau
size computed by CPLEX, and the size of the corresponding fail
tableaux (that cover 50 percent of the tuples that are not covered
by the hold tableaux) for FD2 through FD4, using support thresh-
olds ranging from 0.5 to 0.9. Notably, CPLEX was unable to return
the optimal tableau sizes for FD4 because the number of candidate
patterns was too large. This underscores the need to use an approx-
imation algorithm. Now, for each hold tableau, the value of ĉ is
set to one percent above the confidence of the respective embedded
FD; for each fail tableau, the value of its ĉ is set to one percent
below the confidence of the remaining tuples that have not been
covered by the corresponding hold tableau. Due to the proprietary
nature of the network data, we cannot reveal any further details or
show the actual tableaux. However, we can say that the network
configuration table is larger than the sales data set, and the number
of tableau candidate patterns is also larger. The number of candi-
date patterns for FD4 is roughly 30 times as much as for FD2 due
to the 30 possible values of date that occur for nearly each router
and interface name.

In general, the observations we have made about the sales data
set are also true for the network data set. In particular, 1) our algo-
rithms still generate tableaux with optimal or near-optimal sizes; 2)
the global confidences of the resulting CFDs are above ĉ; 3) tableau
sizes increase dramatically for very high global support thresholds,
after candidate patterns with high marginal supports have been ex-
hausted; and 4) fail tableau sizes are small enough to be easily in-
terpreted by a human. Although the tableau sizes are now some-
what larger, they are still orders of magnitude smaller than those
containing only patterns with wildcard-free antecedents.

6.3 Algorithm Performance
We now demonstrate how the on-demand strategy improves the

performance of the greedy algorithm for generating tableaux. We
ignore the running time of the post-processing step that assigns
constants to the consequent attributes (its cost is the same for both
versions) and only measure the time to create hold tableaux (the
relative performance improvements of the on-demand algorithm on
fail tableaux are very similar). We also ignore the time needed to
compute the table D that is used by our algorithms (recall Sec-
tion 4.1) as it is the same for both versions and heavily depends on
the underlying database.

Consider the two graphs in the top row of Figure 4. They il-
lustrate the running time (left) and number of candidate patterns

Table 13: Summary of hold and fail tableau sizes for:
(a) FD2

support threshold size optimal size fail tableau size
0.5 76 76 127
0.6 156 156 78
0.7 360 358 43
0.8 20062 19834 20
0.9 66604 66376 5

(b) FD3

support threshold size optimal size fail tableau size
0.5 12 12 68
0.6 46 46 24
0.7 144 144 3
0.8 12254 12217 1
0.9 59096 58759 1

(c) FD4

support threshold size optimal size fail tableau size
0.5 27 N/A 155
0.6 86 N/A 92
0.7 198 N/A 4
0.8 1228 N/A 3
0.9 53854 N/A 2

considered (right) as functions of ŝ, comparing the basic and on-
demand greedy algorithms using FD1. In summary, the on-demand
algorithm is roughly twice as fast, while considering no more
than one third of the total number of candidate patterns, which is
607,433. Note that the total number of candidate patterns is sig-
nificantly smaller than the upper-bound of 23 £ 216, 824 ≈ 1.7
million. This means that the antecedent attributes are not com-
pletely independent as some values of one attribute co-occur only
with a subset of the values of another. Both algorithms perform
slightly worse as ŝ increases because more patterns are required to
meet the threshold, and thus more candidate patterns are expanded
and maintained. It is worth noting that CPLEX took up to one hour
to compute the optimal solution, while even the basic greedy algo-
rithm terminated in under 15 seconds.

The next two rows of Figure 4 refer to FD2 and FD3, respec-
tively, and indicate that the relative performance improvement of
the on-demand algorithm increases as the number of attributes in
the antecedent of the embedded FD increases. We report the frac-
tion of candidate patterns in the y-axis of the plots on the right.
On FD2, which has two antecedent attributes, the on-demand al-
gorithm is again about twice as fast and considers a small fraction
of the possible patterns. On FD3, which contains an additional at-
tribute in the antecedent, the on-demand algorithm is roughly five
times as fast and considers even fewer possible patterns. Both al-
gorithms are slower on FD3 than on FD2 because the number of
possible patterns is larger.

Finally, the bottom row of Figure 4 refers to FD4 and shows
that on-demand dramatically outperforms the basic algorithm as the
number of candidate patterns for the tableau increases (by a factor
of about 30 as compared to FD2). Even for ŝ = 0.9, the on-demand
algorithm found a solution in under 12 minutes. In contrast, the
running time of the basic algorithm was “off the scale” at over 12
hours, even for ŝ = 0.5, which amounts to a difference of more
than an order of magnitude. The key to the on-demand algorithm’s
efficiency in this example was that it considered a very small frac-
tion of the possible patterns (less than one percent for small values
of ŝ, under 7 percent for ŝ = 0.9).

6.4 Generating Range Tableaux
Our final experiment illustrates the ability of range tableaux to
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Figure 4: Comparison of the running time (left) and the num-
ber of patterns considered (right) by the basic and on-demand
algorithms for FD1 (top) through FD4 (bottom).

parsimoniously express the semantics of the data when the em-
bedded FD holds conditionally within a range of values of the
antecedent attributes. We test FD4 over an older 30-day excerpt
of the network configuration table, and, for simplicity, convert the
date values to integers from one to 30. We chose this excerpt be-
cause we knew that most interfaces had unique IP addresses up to a
certain point of time in that range. The on-demand algorithm cor-
rectly identified this phenomenon, and, for ŝ < 0.7, produced a
tableau with a single pattern: (¡,¡,[1,26]|¡,¡). As shown in Ta-
ble 14, reaching this support threshold without ranges required 76
patterns. Moreover, it was not possible to attain ŝ > 0.8 without
using ranges due to the lack of candidate patterns that meet the lo-
cal confidence threshold. On the other hand, patterns with ranges
easily covered 90 percent of the data. Although the number of can-
didate patterns considered by the on-demand algorithm with ranges
was lower than that of on-demand without ranges, its running time
was 10-20 percent slower, most likely due to our unoptimized im-

plementation of range exploration.

Table 14: Reducing tableau size for FD4 with attribute ranges
support threshold size size with ranges

0.5 23 1
0.6 76 1
0.7 328 2
0.8 2634 4
0.9 N/A 320

7. RELATED WORK
Conditional functional dependencies were proposed in [4] for

data cleaning. Existing work on CFDs considered the problems of
validating a given CFD on a relation instance [4], determining con-
sistency and implications of multiple CFDs [4, 5], and “repairing”
the relation so that the given CFD is satisfied [9]. However, these
all assume a pattern tableau is supplied. Ours is the first paper to
formally define what constitutes a good tableau and investigate the
problem of generating one automatically. We remark that our prob-
lem is orthogonal to that of computing a minimal cover for a set of
CFDs (with existing tableaux) over different sets of attributes, as
discussed in [4]. There, an extension of Armstrong’s axioms was
developed to remove CFDs that are implied by others. In contrast,
we want to discover a minimal set of patterns for a single CFD
meeting specified support and confidence thresholds.

The problem of discovering approximate functional dependen-
cies, given a confidence threshold, was studied in [14, 17]. How-
ever, the goal there was to find antecedent and consequent attributes
from among the different subsets of attributes in the schema which
approximately satisfy the FD over the entire relation. Hence, this
work is complementary to our problem, which involves condition-
ing over different subsets of the data to find subsets that approxi-
mately hold given a fixed FD.

The terms “support” and “confidence” used here were inspired
by the association rule mining literature. In association rules, the
support of a rule X → Y is the fraction of tuples that match both
the antecedent and the consequent and the confidence is the frac-
tion that match both divided by those matching the antecedent [2].
Note that there is no notion of multi-tuple violations in association
rules, only single-tuple violations; and no notion of global support
(respectively, confidence), only local support.

While detecting individual tuples that violate a CFD has been
studied in [4, 9], and concisely representing anomalies in hierar-
chical aggregates was discussed in [1, 20], we are not aware of pre-
vious work on the concise summarization of constraint violations
that our fail tableau provides.

Our proposed range tableau is inspired by Extended Conditional
Functional Dependencies (eCFDs) [5], which support disjunction
and negation in patterns. Ranges are an interesting special case
in which the set of disjuncts contains only contiguous values, and
whose description length is independent of the size of the set. Al-
though ranges have not been studied before in the context of FDs,
they have been used to discover richer kinds of associations in so-
called quantitative association rule mining [21].

The area of data cleaning deals with many issues that are outside
the scope of our work, including missing data, erroneous values
and (approximate) duplicates. Employing CFDs that hold (exactly
or approximately) is merely one among an array of tools, includ-
ing record linkage, deduplication, etc., that should be marshaled to
detect data quality problems.
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8. CONCLUSIONS
Data quality and undocumented semantics are serious issues in

today’s complex databases. Tools like CFDs, that have the poten-
tial to capture the semantics of the data and identify possible data
quality problems, are of significant importance.

In this paper, we showed how to realize the full potential of CFDs
by (a) formally defining the “goodness” of pattern tableaux, based
on the desirable properties of support, confidence and parsimony,
and (b) studying the computational complexity of automatic gener-
ation of optimal tableaux and providing an efficient approximation
algorithm. We also proposed two extensions of pattern tableaux
that can be accommodated by our algorithm: fail tableaux to com-
pactly capture “anomalies” in the data with respect to a given CFD,
and range tableaux that offer greater expressivity (and hence more
parsimony) for ordered attributes. Experiments on real data sets
demonstrated the utility and efficiency of our solutions.

The notion of conditioning integrity constraints on subsets of the
relation is very appealing and has wide scope beyond functional
dependencies, to inclusion dependencies [5], keys and “semi-keys”
(see [22]). Automatic generation of tableaux will play an important
role in these contexts.
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APPENDIX
Let dom(R) be a relation on schema R with N = |dom(R)| tu-
ples. Let the size of a tableau be defined as the number of its pattern
rows.

Recall from Definition 1 that TABLEAU GENERATION FOR
GLOBAL SUPPORT AND GLOBAL CONFIDENCE, abbreviated
TABLEAU GENERATION-GG, is this problem: Given an FD R :
X → Y on a relation schema R with instance dom(R), and
bounds ŝ and ĉ, find a pattern tableau T of smallest size such that
the CFD (R : X → Y, T ) has global support at least ŝ and global
confidence at least ĉ, if one exists, and return “infeasible” other-
wise.

We also need the following similar definition.

Definition 4. TABLEAU EXISTENCE FOR GLOBAL CONFI-
DENCE AND GLOBAL SUPPORT, abbreviated as TABLEAU
EXISTENCE-GG, is this problem: Given an FD R : X → Y on a
relation schema R with instance dom(R), and bounds ŝ and ĉ, de-
termine if a pattern tableau T exists, of any size, which has global
support at least ŝ and global confidence at least ĉ.

In order for TABLEAU GENERATION-GG to be a reasonable opti-
mization question, we need TABLEAU EXISTENCE-GG to be poly-
nomially solvable. In fact, it is.

THEOREM 1. There is a polynomial-time algorithm for
TABLEAU EXISTENCE-GG.

PROOF. Given an input to TABLEAU EXISTENCE-GG, if there
is a feasible tableau T , then there is one, called T ′, all of whose
rows are “fully instantiated,” i.e., have no wildcards in the an-
tecedents: just let T ′ be the tableau which has one row for each dis-
tinct database row r which matches some pattern in T . Of course, if
there is no feasible tableau, then there is also no feasible tableau of
fully instantiated rows. So as far as existence (but not optimization)
goes, we can determine if there is a tableau of fully instantiated
rows which satisfies the support and confidence thresholds.

We can solve this problem via dynamic programming. First
compute the local support sr and number of keepers kr for each
distinct antecedent r which appears in the database. For any
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0 · ` · n (n being the number of distinct antecedents) and any
S, 0 · S ·Pn

r=1 sr , define f(`, S) to be the maximum value of
P

i∈T ki over all subsets T of {1, 2, ..., `} with
P

i∈T si = S,
and ¡∞ if no suitable T exists. In words, it is the maximum
sum of keepers associated with covers of the first ` distinct rows
whose sum of local supports is exactly S. We have f(0, 0) = 0
and f(0, S) = ¡∞ for all S 6= 0.

Now the key recurrence is that f(` + 1, S) is the maximum of
(possibly) two quantities: f(`, S), and f(`, S ¡ s`+1) + k`+1 if
s`+1 · S.

Using this recurrence we calculate f(`, S) for all ` =
0, 1, 2, ..., n and S = 0, 1, 2, ...,

Pn

r=1 sr in time O(nN). Once
we have these values, we return “feasible” if there is an S ¸ ŝ with
f(n, S)/S ¸ ĉ, and “infeasible” otherwise.

We will show that not only is TABLEAU GENERATION-GG NP-
Hard, it is provably hard to approximate (unless P=NP). Specifi-
cally, if there are an ε > 0 and a polynomial-time algorithm that
takes, for any N , an N -row database D as input, and returns “in-
feasible” if TABLEAU EXISTENCE-GG is infeasible, and otherwise
returns a feasible tableau whose size is at most the size of the opti-
mal tableau times N1/2¡ε, then P=NP.

Definition 5. Given a graph G = (V, E), we say a vertex v cov-
ers an edge e iff v ∈ e (viewing an edge as a set of size two). A set
S of vertices covers a set F of edges if each edge in F is covered
by some vertex in S. VERTEX COVER is the problem of finding in
G a smallest subset S of V that covers E.

Definition 6. A tripartite or 3-colorable graph is one in which
the vertex set V can be partitioned into three sets such that each
edge has its endpoints in two different sets.

Definition 7. VERTEX COVER IN TRIPARTITE GRAPHS, which
we abbreviate VC3P, is the problem of finding a smallest vertex
cover in a tripartite graph (with a given tripartition).

It is known (see [12]) that finding a smallest vertex cover in a tri-
partite graph is NP-Hard.4 We will also assume that the tripartition
is always explicitly given.

We will prove the following nonexistence theorem.

THEOREM 2. If there are a polynomial-time algorithm A and a
constant ε > 0 such that, for all N , A returns a feasible solution to
TABLEAU GENERATION-GG (when TABLEAU EXISTENCE-GG is
feasible) of size at most N1/2¡ε times optimal, N being the number
of rows of the input database, then P=NP.

We will prove Theorem 2 by proving two lemmas. But first, we
need another definition. Let us denote the minimum size of a vertex
cover in graph G by ¿(G). Suppose we instead define a variant:

Definition 8. We say that an edge e′ covers an edge e iff e′ = e.
A vertex-edge cover in a graph G = (V, E) is a pair (S, F ), S µ
V, F µ E, such that every e in E is covered either by a v in S or
an e′ in F . Its size is |S|+ |F |.

Then VERTEX-EDGE COVER MINIMIZATION, abbreviated as VE
COVER, is the problem of finding the smallest vertex-edge cover
of a graph G. Restricted to tripartite graphs, we call the problem
VE3P.

One would never really study such a problem. Why would one
use an edge e′ to cover an edge e = {u, v}, if one could take
4In fact, it is NP-Hard even to find a smallest vertex cover in a
3-regular, planar graph. All connected 3-regular graphs with the
exception of the clique K4 are tripartite, by Brooks’ Theorem.

either u or v instead? Both endpoints cover e and may cover other
edges as well, so it would seem stupid to choose e′ = e to cover e,
when, for the same price, one could choose a vertex which covers
the same edge and maybe more.

Nonetheless, one can ask the following question. It is known
that there is a 2-approximation algorithm for VERTEX COVER, the
problem of covering the edge set by vertices. This means that one
can use two sets of vertices, each of size at most ¿(G), to cover
E. What if one is allowed to use, for VERTEX COVER, only ¿(G)
vertices, but, in addition, some number of edges?

Definition 9. A restricted n1¡ε-approximation algorithm for
VE3P is a polynomial-time algorithm A which takes a tripartite
graph G on say, n vertices, and a positive integer ` as input, and
if ¿(G) · `, then A returns a vertex-edge cover (S, F ) for G in
which |S| · ` and |F | · `(n1¡ε). (If ¿(G) > `, then the al-
gorithm can return anything. It just must terminate in polynomial
time.)

Note that the algorithm can’t “cheat” on the size of S. S must
have size at most `. Since one can find a vertex cover by using
only ¿(G) additional vertices, it is interesting to see what power
additional edges buys. (Not much, it turns out.)

LEMMA 3. If there are a ± > 0 and a restricted n1¡±-
approximation algorithm B for VE3P, then there is a polynomial-
time algorithm for VC3P, and hence P=NP.

In other words, edges are basically worthless for covering edges.
You have to take way too many. Additional vertices are much more
valuable.

Lemma 3 is one of the two lemmas needed to prove Theorem 2.
The other one is Lemma 4.

LEMMA 4. If there are an ε > 0 and a polynomial-time algo-
rithm A that takes a database with, say, N rows, and bounds ĉ and
ŝ, and produces a feasible tableau whose size is at most N 1/2¡ε

times the size of the smallest tableau satisfying the given support
and confidence bounds (when TABLEAU EXISTENCE-GG is fea-
sible), for all N , then there is a restricted n1¡2ε-approximation
algorithm for VE3P.

Lemmas 3 and 4 together clearly imply Theorem 2. We start
with the proof of Lemma 4.

PROOF. Suppose that ε > 0 and that A is a polynomial-time
algorithm that takes, for all N , a database D with N rows, ĉ, and ŝ,
and produces a tableau whose size is at most N 1/2¡ε times the size
of the optimal tableau (when TABLEAU EXISTENCE-GG is feasi-
ble). We show how to build a restricted n1¡2ε-approximation algo-
rithm for VE3P.

Given an instance of VE3P, i.e., a tripartite graph G = (V, E)
on n vertices, V partitioned into (A, B, C), and an integer `, build
an instance of TABLEAU EXISTENCE-GG as follows.

Fix two new constants d 6= d′. For each edge {ai, bj}, with
ai ∈ A, bj ∈ B, add a row (ai, bj , cai,bj

|d), d being the con-
sequent, to the database, where cai,bj

is some new constant ap-
pearing nowhere else in the database. Notice that the local support
and keeper count of antecedent (ai, bj , cai,bj

) are both 1. Analo-
gously, for each edge {bj , ck}, with bj ∈ B, ck ∈ C, add a row
(abj ,ck

, bj , ck|d) to the database, where abj ,ck
is some new con-

stant appearing nowhere else in the database, and for each edge
{ai, ck}, with ai ∈ A, ck ∈ C, add a row (ai, bai,ck

, ck|d) to the
database, where bai,ck

is some new constant appearing nowhere
else in the database.
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For each vertex ai ∈ A in the database, add two rows,
(ai, bai , cai |d) and (ai, bai , cai |d′), to the database, where bai and
cai are new constants. Notice that the local support and keeper
count of antecedent (ai, bai , cai) are 2 and 1, respectively. Do the
analogous thing for vertices bj ∈ B and ck ∈ C.

Set the target global support bound ŝ to be m + 2`, m being
the number of edges in the tripartite graph G, and the target global
confidence bound ĉ to be (m + `)/(m + 2`). This completes the
construction of the TABLEAU EXISTENCE-GG instance.

It is easy to verify the following fact.

FACT 5. Any feasible solution T to this instance of TABLEAU
EXISTENCE-GG must have Cover(T, D) (the set of rows of D cov-
ered by patterns in T ) equal to the set of all m database rows cor-
responding to the set E of edges, together with exactly 2` database
rows corresponding to the pairs associated with some set of ` ver-
tices, and no others.

Which tableaux can achieve this? Since we may assume that
all consequents in such a tableau are wildcards, for the remainder
of the paper we look only at the antecedents. Say a tableau row
corresponds to a vertex if it is either (ai,¡,¡) for some ai ∈ A,
or (¡, bj ,¡) for some bj ∈ B, or (¡,¡, ck) for some ck ∈ C.
There may be tableau rows, even with exactly two wildcards, such
as (¡,¡, cai,bj

), which do not correspond to vertices. Similarly,
say a tableau row corresponds to an edge if it is either (ai, bj ,¡)
for some ai ∈ A, bj ∈ B with {ai, bj} ∈ E, or (ai,¡, ck) for
some ai ∈ A, ck ∈ C with {ai, ck} ∈ E, or (¡, bj , ck) for some
bj ∈ B, ck ∈ C with {bj , ck} ∈ E. There may be tableau rows,
even with exactly one wildcard, such as (ai,¡, cai,bj

), which do
not correspond to edges.

We prove that any suitable tableau T can be converted to one,
called T ′, of size no greater, with global confidence at least as high
as that of T , and for which cover(T ′, D) ⊇ cover(T, D), and
hence global support at least as high as that of T .

First, no row of T can be (¡,¡,¡), for such a tableau has global
confidence too small. (This requires assuming that ` < n.)

Now let’s consider rows of T with exactly two wildcards. By
symmetry, we may assume they appear in positions 2 and 3.
Any such row which covers at least one row of the database
is either of the form (ai,¡,¡) (which corresponds to a ver-
tex), or (abj ,ck

,¡,¡), or (abj
,¡,¡), or (ack

,¡,¡). The row
(abj ,ck

,¡,¡) covers only the row (abj ,ck
, bj , ck) of the database,

so can be replaced by (¡, bj , ck), which corresponds to an edge,
in the tableau. Row (abj

,¡,¡) covers only the two rows having
antecedent (abj

, bj , cbj
) in the tableau. Replacing it by (¡, bj ,¡)

covers the same two “node” rows of the database and more “edge”
rows of the database, but, by Fact 5, they were already covered any-
way. Similarly, row (ack

,¡,¡) covers only row (ack
, bck

, ck) of
the tableau. Replacing it by (¡,¡, ck) covers the same one “node”
row of the database and more “edge” rows of the database, but, by
Fact 5, they were already covered anyway.

Now let’s consider rows of T with exactly one wildcard. By
symmetry, we may assume the wildcard appears in position 3.
Any such row which covers at least one row of the database is
either of the form (ai, bj ,¡) (which corresponds to an edge); or
(ai, bai,ck

,¡) or (abj ,ck
, bj ,¡); or (ai, bai ,¡), or (abj

, bj ,¡);
or (ack

, bck
,¡).

Rows (ai, bai,ck
,¡) and (abj ,ck

, bj ,¡) are symmetric so we
just discuss the first case. Row (ai, bai,ck

,¡) covers only the one
database row with antecedent (ai, bai,ck

, ck) so it can be replaced
by “edge” tableau row (ai,¡, ck).

Rows (ai, bai ,¡) and (abj
, bj ,¡) are symmetric so we just dis-

cuss the first case. Row (ai, bai ,¡) covers only the two database

rows with antecedent (ai, bai , cai), so can be replaced by “vertex”
tableau row (ai,¡,¡).

Last, we have row (ack
, bck

,¡), which covers only the two
database rows with antecedent (ack

, bck
, ck), so can be replaced

in the tableau by (¡,¡, ck).
Now we consider tableau rows with no wildcards. Each such

row already appears in the database. If it is an “edge” row,
(ai, bj , cai,bj

), replace it by (ai, bj ,¡). Do the analogous thing
for other edge rows. If it is a “vertex” row (ai, bai , cai), or some
variant of this, replace it in the tableau by (ai,¡,¡).

So we may assume that each row of the tableau is either a “ver-
tex” row (ai,¡,¡) (or the symmetric one with bj or ck) or an
“edge” row (ai, bj ,¡) (or a symmetric one).

Run the N1/2¡ε-approximation algorithm A for TABLEAU
GENERATION-GG on database D derived from the instance of
VE3P. We may assume that the result is a tableau having only ver-
tex and edge rows. In fact, it must have at most ` vertex rows (as
otherwise the global confidence bound would be violated).

If ¿(G) · `, then G has a vertex cover of size `. This means that
there is a tableau T of size ` using only vertex rows which satisfies
the global support and confidence thresholds. Since the approxi-
mation algorithm returns an N1/2¡ε approximation, it must return
at most `(N1/2¡ε) rows altogether, and hence at most `(N 1/2¡ε)
edge rows. If the number |S| of vertex rows exceeded `, then it
would violate the global confidence bound. Hence |S| · `. To-
gether, the vertex and edge rows of the tableau must cover all the
edge rows of the database. It follows that each edge of the tri-
partite graph G is covered either by a vertex or an edge in the
tableau. Hence, we have a VE cover (S, F ) of E, with |S| · `

and |F | · `(N1/2¡ε).
Any n-node graph has at most (1/2)n2 edges. It follows that

N · 2n + (1/2)n2 · n2 (we may assume n ¸ 4). This means
that |F | · `(n2)1/2¡ε · `(n1¡2ε), and hence that the algorithm
is a restricted n1¡2ε-approximation algorithm for VE3P.

Now we must prove Lemma 3.

PROOF. Suppose algorithm B is a polynomial-time, restricted
n1¡±-approximation algorithm for VE3P. From B we will con-
struct an exact polynomial-time algorithm for VC3P. Given a tri-
partite graph G and an integer `, choose a large integer r whose
value will be defined later. Build graph H by replacing each ver-
tex v ∈ V (G) by a cluster C(v) of r independent vertices; re-
place each edge {u, v} in G by a complete bipartite graph be-
tween Cu and Cv . Like G, H is tripartite. A folklore fact is that
¿(H) = r¿(G):

FACT 6. ¿(H) = r¿(G).

PROOF. The size ®(H) of the largest independent set in H is
exactly r times the size ®(G) of the largest independent set in G,
for the following reason. Given any independent set S in G, the
union of Cv over v ∈ S is independent in H , and given any inde-
pendent set in H , we can enlarge it to include all vertices of any
Cv of which it contains at least one, and then “retract” it to an in-
dependent set in G.

Now ¿(H) = nr ¡ ®(H) = nr ¡ r®(G) = r(n ¡ ®(G)) =
r¿(G).

Run algorithm B on tripartite graph H; provided that r is
bounded by a polynomial in n, B will run in polynomial time in
n. If ¿(G) · `, then ¿(H) · r` and hence B returns a set Z ′

of vertices of H , of size at most r`, together with a set of at most
M := (r`)(nr)1¡± edges (r` being an upper bound on ¿(H) and
nr being the number of vertices in H), such that Z ′ covers all but
at most M edges of H . Let Z µ V be the set of vertices v such
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that Cv ∩Z′ has size at least r¡
√

M + 1. Here is another simple
fact:

FACT 7. Z is a vertex cover of G.

PROOF. If not, then there is an edge {u, v} of E(G) such that
u, v 6∈ Z. Hence, |Cu ∩ Z′| and |Cv ∩ Z′| are both strictly less
than r ¡

√
M + 1. Since all possible edges between Cu and Cv

exist in H , Z ′ fails to cover at least (
√

M + 1)2 = M + 1 edges,
contradicting the definition of Z ′.

Algorithm B found at most r` vertices in H in its V E cover Z ′

of H . The size of the vertex cover Z given by Fact 7 is then at most
(r`)/(r ¡

√
M + 1) = `/(1¡

p

(M + 1)/r2).
Now are virtually done. The parameter r must be polynomial

in n, so that the resulting algorithm runs in polynomial time, but
need obey no other constraint. It is now a simple matter to choose
an r which is polynomial in n (for fixed ± > 0) such that for any
value of `, 1 ¡

p

(M + 1)/r2 > `/(` + 1). (We need `/(1 ¡
p

(r`(nr)1¡±)/r2) < `+1, that is,
p

(r`(nr)1¡±)/r2 < 1/(`+

1). It is sufficient to obtain
p

(rn(nr)1¡±)/r2 < 1/(n + 1), or
rn(nr)1¡δ

r2 < 1/(n + 1)2, or n2¡±r¡± < 1/n2, or n4¡± < r± ,
or r > n

4¡δ
δ .) This means that Z is a vertex cover of G of size at

most `. Now just try all values of ` and output the smallest vertex
cover found. When ` = ¿(G), we will find a smallest vertex cover
of G.
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