
On Generating Solved Instances of Computational Problems

Martin Abadi’

Eric mender t

Andrei Broder*

Joan Feigenbaum:

Lane A. HemachandraS

Abstract: We consider the efficient generation of solved instances of computational prob-

lems. In particular, we consider ;nvulnerable generators. Let S be a subset of (0 , l) and

be a Turing Machine that accepts S; an accepting computation w of M on input x is called

a “witness” that x E S. Informally, a program is an winvulnerable generator if, on bput

I”, it produces instance-witness pairs (2, w), with 1x1 = n, according to a distribution under

which any polynomial-time adversary who is given I fails to 6nd a witness that x E S, with

probability at least a, for infinitely many lengths n.

The question of which sets have invulnerable generators is intrinsically appealing t h e

retically, and the results can be applied to the generation of test data for heuristic algorithms

and to the theory of zero-knowledge proof systems. The existence of invulnerable generators

is closely related to the existence of cryptographically secure one-way functions. We prove

three theorems about invulnerability. The first addresses the question of which sets in NP

have invulnerable generators, if indeed any NP sets do. The second addresses the question

of how invulnerable these generators are.

Theorem (Completeness): If any set in N P has an a-invulnerable generator, then SAT

has one.

Theorem (Ampliflcation): If S E N P has a P-invulnerable generator, for some constant

/3 E (O , l) , then S has an a-invulnerable generator, for every constant a E (0 , l) .

‘DEC Systems Research Center, Palo Alto, CA 94301.

tRutgers University, New Brunswick, NJ 08903. Research supported in part by NSF grant CCR-8810467.

*AT&T Bell Laboratories, Murray Hill, N J 07974.

*Columbia University, New York, NY 10027. Research supported by NSF grant CCR-8809174 and a
Hewlett-Packard Corporation equipment grant.

S. Goldwasser (Ed.): Advances in Cryptology - CRYPT0 ’88, LNCS 403, pp. 297-310, 1990.

0 Springer-Verlag Berlin Heidelberg 1990

298

Our third theorem on invulnerability shows that one cannot, using techniques that rela-

tivize, resolve the question of whether the assumption that P # N P alone suf€ices to prove

the existence of invulnerable generators. Clearly there are relativized worlds in which invul-

nerable generators exist; in all of these worlds, P # NP. The more subtle question, which

we resolve in our third theorem, is whether there are also relativized worlds in which P #

NP and invulnerable generators do not exist.

Theorem (Relativization): There is an oracle relative to which P # NP but there are

no invulnerable generators.

1 Introduction

Sanchis and Fulk have studied the complexity of constructing test instances of hard prob-

lems, and the COMectiOns between such construction and the structure of complexity classes

[20,21]. In this paper, we consider the efficient generation of solved instances of computa-

tional problems. For example, if S = {z: 3w.p(5, w)} is a set in NP, we may wish to generate

instance-witness pairs (2, w) according to a specified distribution. The relationship between

the complexity of generating pairs (2, w) and the complexity of finding w given z is intrinsi-

cally interesting theoretically, and it is alsd important to the testing of heuristic algorithms

for hard problems and the proposed applications of zero-knowledge proof systems.

Specifically, we ask is whether it is possible to generate what we call an i n d n e r a b l e

distribution of instance-witness pairs. For example, is it possible to generate pairs (f , a) ,

where f is a boolean formula and a is a satisfying assignment, give the secret a to one

user A, publish the formula f , and remain reasonably coniident that a polynomial-time

adversary would be unable to find a satisfying assignment a’ for f and thus to impersonate

A? Feige, Fiat, and Shamir proposed this use of “zero-knowledge proofs of identity” as a

security mechanism; the specific scheme they suggest is based on the Quadratic Residuosity

Problem (QRP, [S]) . Zero-knowledge proofs of identity may still be useful even if the QRP

turns out to be easier than is widely assumed; furthermore, even if the QRP is hard, it may

be possible to base a scheme on another problem and achieve more security. Thus, it is

important to have a complexity-theoretic framework in which to consider whether a scheme

for generating instance-witness pairs produces a secure distribution.

When Goldwasser, Micali, and Rackoff first introduced zero-knowledge proof systems,

they postulated an all-powerful prover ([lo]). Since then, they and others (e.g., [3], [5]) have

299

considered a model in which prover and verifier have the same computational resources, and

the prover’s only advantage is that he happens to know the witness w for a particular instance

x of the hard problem at hand, perhaps because he constructed x and w simultaneously.

This model, together with the proof that all sets in N P have,zer&knowledge proof systems

(141, [Ill), forms the basis for the “compilation” of multi-party protocols into “validated”

protocols ([7], [ll]). Thus, it is important to realize that the model is meaningful only if

there is a way for an efficient program to generate harder instances than the verser can

solve.

Many NP-complete sets have obvious, simple generation schemes. For example, Hamil-

tonian graphs on n vertices can be generated by choosing a random circuit and then aiding

each other possible edge independently with probability 1/2. The probability of generating a

particular graph is proportional to the number of Hamiltonian circuits it has. However, the

following examples show that some natural methods of generating solved instances are not

secure. The first method succumbs to a very simple algorithm; the second can be cracked

by a sophisticated technique.

Example: SSAT. A JSAT instance is a set of variables U = {u l , uz , . . . ,un} and a set of

clauses C = {q, 122,. . . , c,,,}, where each clause consists of three literals. The question is

whether there exists a truth assignment that satisfies C. (See [S] for definitions.)

A “natural” way to generate solved JSAT instances is as follows. Choose a truth as-

signment t uniformly from the 2” possibilities. For each i between 1 and m, choose three

distinct variables uniformly at pndom; of the eight sets of literals that correspond to these

variables, seven are true under t . Choose clause c i from those seven, uniformly at random.

This scheme produces each set C of m clauses satisfied by t with equal probability.

A polynomial-time adversary can reconstruct t with high probability, if the number of

clauses m is large enough. The basic observation is that if t(u i) = TRUE then

for every i and j.
Pr(ui E cj) - 4
Pr(Tq€ C j) 3’

_ -

Therefore, if rn 2 kn In n for a suitable constant k, then with probability 1 - o(1) for every

i simultaneously, the literal ui appears in C more often than the literal Ti if and only if

t (u;) = TRUE.

One can try to improve this generation scheme by choosing the literals in each clause

so that at least one is FALSE and at least one is TRUE. Then the expected number of

300

occurences of is equal to the expected number of occurences of ui , for all i. However, the

improved scheme can be cracked easily if m 1 kn2 Inn by observing statistics about pairs

of variables. I

Example: Subset Sum. A Subset Sum instance consists of a finite set A = {al, a2, . . . , an}

of positive integers and a positive integer M . The question is whether there exists a set A' C

A that has s u m equal to M . The difficulty of the Subset Sum problem is the justification

of knapsack-type public key cryptosystems.

One can generate solved Subset Sum instances as follows. Choose a vector e =

Choose (e l , . . . ,en) of zeroes and ones, uniformly at random. Fix a positive integer B.

each ai f A uniformly at random from { 1 , 2 , . , , , B } . Let A4 = - - aiei.

This generation scheme can be cracked with an algorithm due to Lagarias and Odlyzko

([lS]). If B is sufficiently large, then every instance is almost certainly solvable by their

ingenious application of the LLL basis-reduction algorithm. 1

In Section 3 below, we define precisely what it means for a generation scheme to be

invulnerable. We then prove a Completeness Theorem that states that, if any set in NP

has an invulnerable generator, SAT has one. In particular, under the Quadratic Residuosity

Assumption, the Discrete Logarithm Assumption, or the Factoring Assumption, one can

generate a hard distribution of SAT.' This is not surprising. What is more interesting is

that, even if all of these assumptions turn out to be false, one can still generate a hard

distribution of SAT, provided one can generate a hard distribution of anything in NP. Our

construction of an invulnerable generator for SAT incorporates whatever invulnerability is

present in any possible generator for an NP set and does not assume it knows where the

invulnerability comes from (as it would be assuming if it built hard instances by multiplying

distinct primes, as in [6], etc.). Section 3 also contains an Amplification Theorem, which

shows how to enhance the invulnerability of any generable distribution, and a Relativization

Theorem - the existence of invulnerable generators clearly implies that P # NP, but the

converse cannot be proven by techniques that relativize.

In Section 4, we discuss briefly the general question of which sets can be generated

'Various forms of these assumptions are ubiquitous in the cryptographic literature (see, e.g., [l], [Z], [9],

[23]), and we don't need precise statements of them for this informal discussion. For our purpcses, i t suffices

to note tha t it is possible to generate instances of these number-theoretic problems in randomized polynomial

time and that it is widely assumed that, for each of the three problems, for any constant fraction, each

polynomial-time algorithm fails to solve that constant fraction of the instances of length n, for all sufficiently

large n.

301

according to which distributions, consider several related works, and propose directions for

future research. Section 2 contains terminology and notation that is used extensively in the

rest of the paper. We have deferred full proofs until the final version of the paper in order

to save space; whenever possible, we give sketches that convey some of the essential points.

2 Terminology, Notation, and Conventions

We call a program that flips coins and terminates in worst-case polynomial time on all

inputs a randomized po lynomia l - t ime program. Let {M,} denote a standard enumeration

of the randomized polynomial-time programs. Let { N j } denote a standard enumeration of

polynomial-time nondeterministic programs; thus, each NP set is recognized by at least one

program in our enumeration. We use L (N j) to denote the set (or language) recognized by

X I .

Let N be a nondeterministic polynomial-time program and S be L (N) . We call each

accepting path of N on input x a witness that the instance z is in S. We msume without

loss of generality that, for any fixed program N , the length n of an instance determines the

length m of a witness and that the function n H n + m is one-to-one. We let w,” denote

the set of witnesses that z E S.

We use PF to denote the class of polynomial-time computable functions; a function f E

PF need not have range { O , l } , and thus PF is a proper superset of the functions that

compute membership of strings in sets in P.

We let S,, denote the elements of S that have length n. The symbol A denotes the default

output of a program; it may be used to indicate that the desired output does not exist or

that the program failed to find it. All of the generation programs that we consider take as

input the length n, written in unary, run in polynomial time, and produce elements of S,;

thus we have, by definition. restricted attention to efficient generation.

3 Invulnerable Generators

In this section, we provide a complexity-theoretic framework in which to consider the gen-

eration of hard, solved instances. We define precisely what it means for a distribution of

instance-witness pairs to be “secure against polynomial-time adversaries.” Our first theo-

rem addresses the question of which sets in NP have invulnerable generators, if indeed any

302

such sets have them. Theorem 2 addresses the question of exactly how invulnerable these

generators are. Finally, Theorem 3 addresses the question of what complexity-theoretic

assumptions are needed to prove the existence of invulnerable generators.

Definition: The (i , j) th generation scheme, which we denote Gi,j, is a program that, on

input I", first simulates M; on input 1" and obtains an output string y. If y is of the form

(z, w), where 121 = n and w is an accepting computation of N, on input z, then Gi,j outputs

(I, w}; otherwise, it outputs A.

Consider the following game, played between a generation scheme G;,j and an adversary

f in PF. The input to the game is a string 1"; the first move is a run of Gi,j on input 1".

If Gi,j outputs a pair (z, w}, then the second move is for f to output f(z); if Gj,j outputs

A, then the game ends after the first move. The function f wins the game if the generator

outputs A, or if the generator outputs (5, w) and f(z) is an accepting computation w' of Nj

on input I; otherwise, the generator wins, Note that w' need not equal w ; for example, in

the identification scheme of Section 1, the adversary f can compromise the security of user

A if he computes any satisfying assignment for A's public formula - he need not discover

the private assignment that A was given during key-distribution.

Definition: A generation scheme is a-invulnerable, where a is a constant in [0,1], if, for all

f f PF, there are infin;tely many lengths n for which the probability that f wins on input

1" is at most 1 - a. This probability is computed over runs of the game on input 1 ".

Definition: A set S in N P is a-invulnerable, where a is a constant in [0,1], if there is a

pair (i , j) for which G,,j is a-inuulnerubk and S = L (N j) .

Notice that invulnerable generators are closely related to cryptographically secure one-

way functions. Let g be a length-preserving function in PF, and assume that any polynomial-

time program fails to invert a t least a constant fraction of g's outputs, on infinitely many

lengths (where "invert" means "find some element of the preimage"). Then the image of

g has an invulnerable generation scheme: on input I", generate a random w of length n

and let x equal g(w). Similarly, an invulnerable generation scheme G,,J gives rise to a

cryptographically secure one-way function. The program M; can be viewed as a mapping

fromcoin-toss sequences to pairs (z, w). Let g be the function that takes a coin-toss sequence

to the first component I of the pair output by M;. Then g must be hard for any polynomial-

time adversary to invert on infinitely many lengths; if it weren't the adversary could discover

a coin-toss sequence that gives rise to (I, w), and the scheme G,,j would be vulnerable. The

303

same remarks apply if we require in both cases that adverjaries fail on all sufficiently high

lengths instead of just infinitely many lengths.

We do not claim that a generation scheme that is invulnerable according to our definition

is necessarily useful in practice. For example, the key-distributor in [6] would certainly like to

know more than that there ezist infinitely many lengths on which a particular polynomially

bounded adversary can be thwarted with high probability; he would also like to know

that such lengths are of practical size and to have a procedure for finding them. Our

defbition of invulnerability does, however, provide a good place to start a compleity-

t heoretic investigation.

Theorem 1 (Completeness): If any N P set is a-invulnerable, for some positive a, then

SAT is also a-invulnerable.

Proof (sketch): The full proof proceeds in three stages. First, we construct a “universal

generation scheme’’ Gu that simulates all possible generation schemes, capturing a constant

fraction of whatever invulnerability is present in any of them. Next we construct a generator

for SAT that applies Cook’s reduction to the set Su generated by Gu in a way that preserves

invulnerability. Finally, we show that the lost fraction of invulnerability can be recaptured.

For the universal generator Gu, we need one program Mu, whose running time is bounded

by a specific polynomial, to simulate infinitely many programs, whose individual running

times may be arbitrarily high degree polynomials. We overcome that obstacle with the

following lemma; it guarantees that we need only consider generators {Gk} in which the

program M runs in quadratic time.

Lemma: If Gi,j is a-invulnerable, then there is an a-invulnerable generation scheme Gi),jt

in which M;, runs in quadratic time.

We cannot use a ugeneric reduction” such as the one used in Cook’s proof of the NP-

Completeness of SAT in order to construct a universal generator. Such a reduction would

not necessarily be length-consistent (i.e., map instances of the same length to instances of the

same length). Furthermore, even if our generic reduction mapped instances of length n to

instances of length nk, it may not preserve invulnerability: informally, if the “hard instances’’

output by a particular generator G, represent a constant fraction a of the probability mass

at length n, their images do not necessarily represent a constant fraction of the probability

mass at length nk, simply because there are so many more irutances of length n k ,

We use a nonstandard pairing function to overcome this difficulty. It partitions the

304

positive integers into "co1umns" as follows: column m, consists of all integers of the form

2m-1 + k .2", where k 2 0. Each input length n falls into exactly one column - the one

whose index is one more than that of the least significant "1"-bit in the binary representation

of n. On input I", GU &st h d s m, the index of the column containing n, then chooses

an integer 1 uniformly from the interval [n - 2"',n). Next, Gu simulates G, on input 1' to

obtain (z , ~) , pads 2, and outputs (z1On-'-',w).

Lemma: If G, is a-invulnerable, then Gu is (a/2")-invulnerable.

Informally, to show that, for all f in PF, there are infinitely many lengths n on which f

fails to "crack" the output of Gu with probability at least a/2m, we show that any such f

corresponds to a function f' that fails to crack the output of G, on infinitely many lengths

n' with probability at least a. The loss of a factor of 2" occurs because the "hard length" n'

(for f' and G,) corresponds to the hard length n (for f and Gu) such that n' E [n - 2", n);

thus Gu only chooses to simulate G, on input 1" with probability 2-". (Note that ~ ~ 1 2 ~

really W a constant, because m is just the (fixed) index of a generator in our enumeration

j G k) *)

To construct an (~/2")- invherable generator G ~ A T for SAT, we use the fact that the

program Mu in generator GU runs in cubic time. We modify Cook's reduction so that,

when applied to N P machines that run in cubic time, it takes instances of length k and

produces instances of length exactly k4. This modified Cook's reduction T also induces a

mapping from witnesses of membership in Su to satisfying assignments of elements of SAT.

Thus GSAT behaves as follows on input In. If n is not a perfect fourth power, it outputs A.

Otherwise, it simulates GU on input Ik, where k4 = n, obtains a pair (z ,w) , and outputs

r((z, w)) . We prove in the full paper that GSAT is at least BS invulnerable as Gu.

Theorem 2, below, guarantees that, if SAT has an (a/2m)-invulnerable generator, then

it also has an a-invulnerable generator.

Corollary: Under the Quadratic Residuceity Assumption, the Discrete Logarithm Assump-

tion, or the Factoring Assumption, there is an a-invulnerable generator for SAT, for some

I

a E (0,l).

Remark 1: For cryptographic purposes, one would really want more than that ?here exists

an infinite set of hard length" for cryptographic purposes. Note that the proof of Theorem

1 gives some hope because, if some G, defeats an adversary on t (n) lengths between 1 and

n, then Gu defeats the corresponding adversary on f l(t(n)) lengths between 1 and n. (This

305

would not have been true had we used a standard pairing function that stretches both of

its arguments quadratically.)

Theorem 2 (Amplification): If an N P set S is &invulnerable, for some positive p, then

S is also a-invulnerable, for all a E (0,l).

Proof (sketch): It s&ces to show that a-invulnerability implies 2a/(l+a)-invulnerability,

because the limit of the sequence defined by a0 = a, ai = 2ai-,/(l+ ai-1) is 1.

Intuitively, we will show how to increase the level of invulnerability in the most natural

way: generate instances, try to crack them, and throw out the cracked ones. Suppose that

Gi,j is a-invulnerable and that S = L(Nj) . If G;,, is (a + (1 - a)/2)-invulnerable, then

we are done, because (a + (1 - a) /2) > (2a/(l + a)); so suppose that it isn't. Then, by

definition, there is some f E PF that wins against Gi,j on all but finitely many inputs 1"

with probability greater than (1 - a)/2.

Consider the generator G;,,j that works as follows on input 1": first it runs Mi on input

I", just as G,,j does. If Mi outputs (2, w}, then G;,,, computes f(z) and checks whether it

is an accepting computation of Nj on input x. If it is, then G,,,j runs Mi again on input

1"; otherwise, Git,j outputs (2, w}. If f wins a s&ciently large number of successive runs

of the game, then G3.j outputs A.

Clearly, G,t,j generates the same set as Gi,j, namely L(N,). In the full paper, we show

that Ge,j is (2 a / (1 + a))-invulnerable and derive a good enough bound on the number of

mm of the game between f and Gi,j that Gp,j has to simulate.

Remark 2: For simplicity, we have modeled the adversary as a deterministic polynomial-

time function. Clearly, in practice one would have to guard against randomized polynomial-

time adversaries. Theorems 1 and 2 as stated hold even if we quantify over all randomized

polynomial-time functions in the definition of invulnerability. We give details in the full

paper.

I

Is it possible, in Theorem 1, to weaken the hypothesis that at least one set in N P is

a-invulnerable? There are clearly oracles relative to which invulnerable generators exist.

Indeed a random oracle will do ([19]). In all of these relativized worlds, P # NP. Is the

assumption that P # NP sufficient to prove that invulnerable generators exist? Our next

theorem shows that such a proof would not relativize.

Theorem 3 (Relativieation): There is an oracle B such that PB # NPB, and invulnerable

generators do not exist relative to B.

306

Proof (sketch): .Let B = QBFeK, where @ is disjoint union, and K is an extremely sparse

set of strings of maximum Kolmogorov complexity. Specifically, K contains one string of

each length ni, where the sequence nl, n 2 , . . . is defined by: nl = 2, ni is triply exponential

in ni-1, for i > 1; if z E K and 1x1 = n, then z has Kolmogorov complexity n. The inclusion

of QBF gives machines with access to B the full power of PSPACE.

It is straightforward to prove that PB # NPB using the techniques in [13].

To show that no invulnerable generators exist relative to B, let G,,, be a generation

scheme that has access to the oracle, and assume that it is a-invulnerable, for some constant

a in (0,l) . We derive a contradiction by producing an adversary f in PFB that can crack a

higher fraction than 1--cr of all of the instances of any length. Here is an informal description

off and why it works:

The generator G;j involves a randomized polynomial-time program M ; and a nondeter-

ministic polynomial-time program N j , both of which can query B at any step. Let nkl and

nk2 be bounds on the running times of M i and N, , and let k be an integer greater than

max(k1,kz). When trying to crack an instance z of length n, f first constructs the set K'

consisting of all elements of K that have length less than log(nck), where c is a suitably

chosen constant. Because K is so sparse, there is at m a t one string r in K\ K' about which

Gi,, may have queried B in generating an z of length n.

Assume that N is the integer closest to n for which there is a string in K of length N .

The difficult case is when log(Nck) 5 n 5 2N/ck; otherwise, f can construct a witness that

x E L(Nj) by using queries to B' = QBF @ K'. So assume, for example, that R = 2N/ck .

The cracker f first uses B' to determine whether there is a coin-toss sequence s that

would cause G;,j to output x on input 1" if G,j were using B'. If such an s exists, then f

can use PSPACE to construct one and in turn to construct a witness; this construction may

or may not involve the discovery of the random string r E K \ K'. If such an s does not

exist, then f is not able to construct a witness. We show, however, that the only time there

is no such s (and hence the only time f fails) is when G;,> actually queried B about the

membership of r in K . We complete the proof with a counting argument that shows that,

if this happens with any constant probability a, then r cannot have maximum Kolmogorov

complexity. I

307

4 Discussion, Related Work, and Open Problems

Let S be an NP set and 5x a specific machine N that accepts S. Recall that w,” is the

set of accepting paths of N on input 2. We say that S is canonically generuble if there

is a randomized polynomial-time program that, on input 1 *, generates pairs (5, w), where

1 1 1 = n, such that the probability accorded x is proportional to IwFI. The straightforward

generation schemes given in Section 1 for Hamiltonian graphs, 3SAT formulas, and Subset

Sum instances are all canonical, with respect to the usual types of witnesses for these sets.

We call these generators canonical mainly because, in a sense, all generators for N P sets

are canonical. If G;,3 is a generation scheme for S, then a coin-toss sequence that causes M ,

to output (z , w) is a witness that z E S, and the probability accorded a particularly z is

clearly proportional to the number of coin-toss sequences that cause it to be output.

The straightforward canonical generation scheme for Hamiltonian graphs has this general

form: generate 2u uniformly and then pick z uniformly from the set of all instances such

that 2u is a witness that z is in S. In fact, many sets in NP (e.g., SAT, graphs with perfect

matchings, graphs with cliques of size IV(G)1/2) have canonical generation schemes of this

form with respect to the usual types of witnesses. This leads naturally to the question of

whether every set in N P has such a canonical generation scheme with respect to every type

of witness. The answer to this question is no, unless the construction problem for N P sets

can always be solved in polynomial time. (The construction problem is: given an instance

I, find a witness if z is a yes-instance, and say that there is no witness if z is a no-instance.)

An interesting area for further research is the relationship between generable (i.e., canon-

ical) distributions and the “hard-on-average” distributions studied by Levin et al. ([17], see

also [12], [15], and, more recently, [22]). Levin’s randomized NP (denoted RNP) is a class

of pairs (D, p) , where D is any decision problem in NP and p is any probability function

on (0 , l) ’ (interpreted as instances of D) for which the cumulative distribution function

p * (z) = Zz<=p(z) is polynomial-time computable. In 1221, Venkatesan and Levin extend the

dehition to construction problems in NP; the distributions they allow are still those with

polynomial-time computable p * .

Venkatesan and Levin exhibit a construction problem that is RNP-hard, i.e., if there

is an algorithm that can solve it in expected polynomial time, then all RNP-construction

problems can be solved in expected polynomial time. The distribution of instances that

they consider is easy to generate; however, it assigns positive probability to no-instances.

308

This suggests some natural questions. Is there an RNP-hard distribution (of instances of

a construction problem) that assigns positive probability only to yes-instances? Can that

distribution be generated efficiently if one insists on generating witnesses along with the

instances? Are the requirements that a distribution be efficiently generable and that it

have an efficiently computable p* mutually exclusive? For example, our canonical genera-

tion scheme for Hamiltonian graphs produces a distribution that probably does not have a

polynomial-time computable p*: if it did, then the #P-Complete problem of computing the

number of Hamiltonian cycles in a graph would be solvable in polynomial time.

Finally, we would like to mention that generation of solved instances has also been

considered by Fbrdin, Tovey, and Pilcher [18]; their goal is the construction of test instances

for heuristic algorithms.

5 Acknowledgements

We thank Mike Foster, Steve Mahaney, Steven Rudich, and Mihalis Yannakakis for helpful

discussions. We are particularly grateful to Laura Sanchis.

References

[I) M. Blum and S. Micali. “HOW to Generate Cryptographically Strong Sequences of

Pseudo-random Bits,” SIAM J. on Comput. (13), 1984, 850-864.

[2] R. Boppana and R. Hirschfeld. “Pseudorandom Generators and Complexity

Classes,” to appear in Advances in Computer Research, Silvio Micali (ed.), JAI

Press (pub.), 1987.

[3] G. Brassard and C. Cripeau. “Non-transitive Transfer of Confidence: A Perfect

Zero-Knowledge Interactive Protocol for SAT and Beyond,” Proceedings of the 27 th

FOCS, IEEE, 1986, 188-195.

[4] G. Brassard and C. Crkpeau. “Zero-Knowledge Simulation of Boolean Circuits,” Ad-

vances in Cqptology - CRYPT086 Proceedings, Andrew Odlyzko (ed.), Springer-

Verlag (pub.), 1987, 223-233.

[5] G. Brassard, D. Chaum, and C. CrCpeau. “Minimum Disclosure Proofs of Knowl-

edge,” to appear.

[6] U. Feige, A. Fiat, and A. Shamir. “Zero Knowledge Proofs of Identity,’’ Proceedings

of the lgth STOC, ACM, 1987, 210-217.

309

[7] 2. Galil, S. Haber, and M. Yung. “Cryptographic Computation: Secure Fault-

Tolerant Protocols and the Public-Key Model,” Advances in Crytology -

CRYPT087 Proceedings, Carl Pomerance (ed.), Springer-Verlag (pub.), 1988, 135-

155.

[8] M. Garey and D. Johnson. Computers and Intractability: A Guide to the Theory of

N P - Completeness, Freeman, San Francisco, 1979.

191 S. Goldwasser and S. Micali. “Probabilistic Encryption,” JCSS (28), 1984, 270-299.

[lo] S. Goldwasser, S. Micali, and C . Rackoff. “The Knowledge Complexity of Interactive

Proof Systems,” t o appear in SIAM J. on Comput.

[11] 0. Goldreich, S. Micali, and A. Wigderson. “Proofs that Yield Nothing but their

Validity and a Method of Cryptographc Protocol Design,” Proceedings of the 27 th

FOCS, IEEE, 1986, 174-187.

[I21 Y. Gurevich. “Complete and Incomplete Randomized N P Problems,” Proceedings

of the 28th FOCS, IEEE, 1987, 111-117.

[13] J. Hartmanis. “Generalized Kolmogorov Complexity and the Structure of Feasible

Computations,” Proceedings of the 24th FOCS, IEEE, 1983, 439445.

I141 M. Jerrum, L. Valiant, and V. Vazirani. ‘‘Fbndom Generation of Combinatorial

Structures from a Uniform Distribution,” TCS (43), 1986, 169-188.

[15] D. Johnson. “The NP-Completeness Column, An Ongoing Guide,” JOA (5) , 1984,

284-299.

I161 J. Lagarias and A. Oldlyzko. “Solving Low-Density Subeet Sum Problems,” JACM

(32), 1985, 229-246.

[17] L. Levin. “Average Case Complete Problems,” SIAM J. on Comput. (15), 1986,

285-286.

[18] R. Rardin, C . Tovey, and M. Pilcher. “Polynomial Constructability and Traveling

Salesman Problems of Intermediate Complexity,” ONR-URI Computational Com-

binatorics Report CC-88-2, Purdue University, November, 1988.

[19] S. Rudich, private communication.

[20] L. Sanchis and M. Fulk. “Efficient Language Instance Generation”, University of

Rochester Computer Science Department TR 235, 1988.

[21] L. Sanchis. “Test Instance Construction for NP-hard Problems,” University of

Rochester Computer Science Department TR 206, 1987.

[22] R. Venkatesan and L. Levin “Random Instances of a Graph Coloring Problem are

Hard,” Proceedings of the 20th STOC, ACM, 1988,217-222.

310

(231 A. C. Yao. “Theory and Applications of Trapdoor Functions,” Proceedings of the

23& FOCS, IEEE, 1982, 80-91.

	Introduction
	Terminology, Notation, and Conventions
	Invulnerable Generators
	Discussion, Related Work, and Open Problems
	Acknowledgements
	References

