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Abstract

The cumulative distribution function (CDF) of the T-X family is given by R{W(F(x))},

where R is the CDF of a random variable T, F is the CDF of X and W is an increasing

function defined on [0, 1] having the support of T as its range. This family provides a

new method of generating univariate distributions. Different choices of the R, F and

W functions naturally lead to different families of distributions. This paper proposes

the use of quantile functions to define the W function. Some general properties of

this T-X system of distributions are studied. It is shown that several existing methods

of generating univariate continuous distributions can be derived using this T-X system.

Three new distributions of the T-X family are derived, namely, the normal-Weibull

based on the quantile of Cauchy distribution, normal-Weibull based on the quantile

of logistic distribution, and Weibull-uniform based on the quantile of log-logistic

distribution. Two real data sets are applied to illustrate the flexibility of the

distributions.

Keywords: Beta-family; Generalized distribution; Survival function; T-X families;

Moments

1. Introduction

Statistical distributions are important for parametric inferences and applications to fit

real world phenomena. Many methods have been developed to generate statistical dis-

tributions in the literature. Some well-known methods in the early days for generating

univariate continuous distributions include methods based on differential equations

developed by Pearson (1895), methods of translation developed by Johnson (1949), and

the methods based on quantile functions developed by Tukey (1960). The interest in

developing new methods for generating new or more flexible distributions continues

to be active in the recent decades. Lee et al. (2013) indicated that the majority of

methods developed after 1980s are the methods of ‘combination’ for the reason that

these new methods are based on the idea of combining two existing distributions or by

adding extra parameters to an existing distribution to generate a new family of distri-

butions. A brief summary of some methods in the literature that are related to the

method proposed in this article is provided.

McDonald (1984) introduced the generalized beta distributions of the first and second

kinds (GB1 and GB2). Subsequently, a further generalization named the generalized beta

distribution (GBD) was given by McDonald and Xu (1995), which consists of more than

30 special cases or limiting distributions of GBD, including GB1 and GB2.
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Azzalini (1985) introduced a family of skew-normal distributions, SN (λ), defined as

g(x; λ) = 2ϕ(x)Φ(λx), where ϕ and Φ are probability density function (PDF) and cumu-

lative distribution function (CDF) of N(0, 1), respectively. The skewness is character-

ized by the parameter λ. For a review of skew-symmetric distributions, one may refer

to Kotz and Vicari (2005). Ferreira and Steel (2006) introduced a general framework

for generating a family of skewed distributions based on a symmetric distribution. The

PDF of the new family has the form

g x f ; pÞ ¼ f xð Þp F xð Þð Þ;jð ð1:1Þ

where F is the CDF of a symmetric PDF f and p is a skewed PDF defined on [0, 1].

Marshall and Olkin (1997) proposed a general method for generating a new family of

life distributions defined in terms of survival function as

�G x; αð Þ ¼ α�F xð Þ
1−�α�F xð Þ ¼

α�F xð Þ
F xð Þ þ α�F xð Þ ;−∞ < x < ∞; a > 0; ð1:2Þ

where �α ¼ 1−α and �F ¼ 1−F is the survival function of the random variable X. For de-

tails about life distributions, one may refer to Marshall and Olkin (2010) and Lai

(2013).

Eugene et al. (2002) proposed the beta-generated family of distributions, where beta

distribution with PDF b is used as the generator. The CDF of the beta generated distri-

bution is defined as G xð Þ ¼
Z F xð Þ

0

b tð Þdt , where F is the CDF of any random variable.

If X is continuous, the corresponding PDF of the beta generated distribution is

g xð Þ ¼ f xð Þ
B α; βð Þ F

α−1 xð Þ 1−F xð Þð Þβ−1; a > 0; β > 0; ð1:3Þ

where B(α, β) is the beta function. The PDF in (1.3) can be considered as a

generalization of the distribution of order statistic (Eugene et al. 2002; Jones 2004).

Many researchers have studied the beta generated distributions and their applications

by applying different F in Equation (1.3). Examples include Famoye et al. (2004),

Akinsete et al. (2008), Cordeiro and Lemonte (2011), and Alshawarbeh et al. (2012).

Jones (2009) and Cordeiro and de Castro (2011) extended the beta-generated family

of distributions by using Kumaraswamy distribution b(t) = αβ tα − 1(1 − tα)β − 1, t ∈ (0, 1)

(Kumaraswamy 1980), instead of the beta distribution. The PDF for Kumaraswamy-

generated (Kw-G) family of distributions is defined by

g xð Þ ¼ αβ f xð ÞFα−1 xð Þ 1−Fα xð Þð Þβ−1; a > 0; β > 0: ð1:4Þ

Some examples of the Kw-G distributions are the Kw-Weibull (Cordeiro et al. 2010)

and Kw-Gumbel (Cordeiro et al. 2011).

Recently, Alexander et al. (2012) studied the generalized beta-X family by considering

b(t) = cB(a, b)− 1tac − 1(1 − tc)b − 1, 0 < t < 1, the generalized beta distribution of the first

kind introduced by McDonald (1984). The new family is called generalized beta-
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generated (GBG) family of distributions. The PDF for GBG family of distributions is

given by

g x; τ; a; b; cð Þ ¼ cB a; bð Þ−1f x; τð ÞF x; τð Þac−1 1−F x; τð Þc½ �b−1: ð1:5Þ

When c = 1, the family in (1.5) reduces to the beta-X family in (1.3), and when a = 1,

(1.5) reduces to the Kw-G family in (1.4).

Alzaatreh et al. (2013b) proposed a general method by replacing the beta PDF with a

PDF r of a continuous random variable and applying a function W(F(x)) that satisfies

some conditions (given in (2.1)) to develop the T-X family. The CDF of the T-X

family is defined as

G xð Þ ¼
Z W F xð Þð Þ

a

r tð Þdt ¼ R W F xð Þð Þf g; ð1:6Þ

where R is the CDF of T. The corresponding PDF (if it exists) of the T-X family of

distributions is

g xð Þ ¼ d

dx
W F xð Þð Þ

� �

r W F xð Þð Þf g: ð1:7Þ

Different W functions generate different families of T-X distributions. Two continuous

distributions of the T-X families that have been studied are Gamma-Pareto distribution

(Alzaatreh et al. 2012a) and Weibull-Pareto distribution (Alzaatreh et al. 2013a). When X

is discrete, the resulting T-X family is discrete. The T-geometric family generates the

discrete analogue to the distribution of any continuous random variable T (Alzaatreh

et al. 2012b). For a review of methods for generating univariate continuous distribu-

tions, one may refer to Lee et al. (2013).

The T-X family provides a new method to generate distributions by using the function

W. A large number of distributions, continuous and discrete, can be generated by applying

any two existing univariate distributions based on this method. Alzaatreh et al. (2013b)

gave several choices of W(λ), including − log(1 − λ), λ/(1 − λ), log(λ/(1 − λ)), log(−log λ). It is

clear that there are other choices that can be defined to generate different T-X families. Is

there a systematic approach to define the W function for the T-X family? This question will

be addressed in this paper.

In Section 2, a method to define the W function for generating T-X families of con-

tinuous probability distributions is presented. The W functions defined in Alzaatreh

et al. (2013b) are special cases of the general approach. In order to distinguish between

the previous T-X family proposed by Alzaatreh et al. (2013b) and the method proposed

in this article, we use the abbreviation T-X(W) family for the previous T-X family and

the abbreviation T-X{Y} for the family defined in Section 2. In Section 3, some proper-

ties of the new families are studied. Relationship between the new families and some

existing families is given. Also in Section 3, the normal-Weibull distribution based on

the quantile function of the Cauchy distribution, the normal-Weibull distribution based

on the quantile function of the logistic distribution and Weibull-uniform distribution
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based on the quantile function of the log-logistic distribution are defined. Some proper-

ties of these three distributions are derived. In Section 4, a general family of life distri-

butions based on survival function using similar methodology of the T-X{Y} family is

presented. Some properties of the family are investigated. In Section 5, two real data

sets are used to illustrate the flexibility of T-X{Y} family of distributions. Conclusions

are given in Section 6.

2. Generating families of continuous probability distributions using quantile

function

The T-X(W) family of distributions in (1.6) is generated by using the function W which

satisfies the following conditions (Alzaatreh et al. 2013b):

i: W F xð Þð Þ∈ a; b½ �;
ii: W is differentiable and monotonically non‐decreasing;
iii:W F xð Þð Þ→a as x→−∞ and W F xð Þð Þ→b as x→∞;

)

ð2:1Þ

where [a, b] is the support of the random variable T for −∞ ≤ a < b ≤ ∞.

In this section, a class of W functions wider than the one defined in (2.1) will be con-

sidered to define a T-X family. Let W : (0, 1)→ (a, b), for −∞ ≤ a < b ≤ ∞, be a right-

continuous and non-decreasing function such that, lim
λ→0þ

W λð Þ ¼ a and lim
λ→1−

W λð Þ ¼ b,

then the composition G(x) = R{W(F(x))}, x ∈ (−∞,∞), is a distribution function, because it

satisfies the following required conditions for a distribution function:

(a) G is non-decreasing,

(b) G is right-continuous,

(c) G(x)→ 0 as x→ − ∞ and G(x)→ 1 as x→∞.

If T has a PDF r with support (a, b), then

G xð Þ ¼
Z W F xð Þð Þ

a

r tð Þdt: ð2:2Þ

Note that if both functions W and F are absolutely continuous, then G in (2.2) is ab-

solutely continuous and has a density function g xð Þ ¼ d
dx
G xð Þ.

A general method to define W function for generating T-X families is now proposed.

It is assumed that the random variable T has support on the interval (a, b). Let P be

the CDF of the random variable Y taking values on (a, b), and define the quantile func-

tion of the distribution P by

QY λð Þ ¼ inf y : P yð Þ≥λf g; λ∈ 0; 1ð Þ:

If P is continuous and strictly increasing then QY = P− 1 is continuous and strictly in-

creasing (Shorack and Wellner 1986). We take W to be the quantile function of a

strictly increasing distribution function P for the random variable Y, namely, W(λ) =QY

(λ), λ ∈ (0, 1), then QY is continuous and non-decreasing, and the CDF of a T-X{Y} fam-

ily using the quantile function QY is defined as

G xð Þ ¼
Z QY F xð Þð Þ

a

r tð Þdt ¼ R QY F xð Þð Þf g; x∈ −∞;∞ð Þ: ð2:3Þ
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If we assume further that Y has a density p(y) > 0 for all y in a neighborhood of QY(λ)

where λ ∈ (0, 1), then d
dλ
QY λð Þ exists and equals [p(QY(λ))]

− 1 (Shorack and Wellner

1986), and hence the corresponding PDF associated with (2.3) is

g xð Þ ¼ f xð Þ
p QY F xð Þð Þf g r QY F xð Þð Þf g: ð2:4Þ

Note that the PDF defined in (2.4) can be easily used to generate a T-X{Y} family of

distributions by applying the quantile function of any existing distribution.

The notation X sometimes represents the random variable with PDF f and sometimes

represents the random variable with PDF g. Where there may be confusion, the notations

Xf for the random variable X with PDF f and Xg for the random variable X with PDF g are

used. The term moment refers to non-central moment, unless otherwise specified.

Lemma 1:

(a) If the random variables Xf and Y have the same distribution with the same

parameters, then G = R.

(b) If the random variables T and Y have the same distribution with the same

parameters, then G = F.

Proof: The proofs of (a) and (b) follow from definition (2.4). □

Some properties of the T-X{Y} family:

1. Any PDF f can be represented as the PDF defined in (2.4) by considering QY = R− 1.

2. The support of the new random variable defined in (2.4) is the same as the support

of the random variable with PDF f.

3. If the support of the random variable Y is [c, d] with [a, b]⊂ [c, d], then the PDF

in (2.4) is defined with support [F− 1(P(a)), F− 1(P(b))].

4. The relationship between the random variable Xg with PDF in (2.4) and T is given

by T =QY(F(Xg)) and hence, Xg = F− 1(P(T)) when F− 1 exists, where P is the CDF of

Y with the corresponding quantile function QY. Using this relation, one can

generate the random variable Xg by generating the random variable T and then

computing Xg = F− 1(P(T)). Similarly, one can compute the moments of Xg by using

E Xn
g

� �

¼ E F−1 P Tð Þð Þ
� �n� 	

.

5. The hazard function, hg xð Þ ¼ g xð Þ=�G xð Þ, for the random variable Xg in (2.4) is

given by hg xð Þ ¼ f xð Þ
p QY F xð Þð Þf g hr QY F xð Þð Þf g, where hr is the hazard function for the

random variable T with PDF r.

6. The quantile function of the new random variable in (2.4) is given by QXg
λð Þ ¼ QX f

P QT λð Þð Þf g, λ∈ (0, 1), where QX f
and QT are the quantile functions of the random

variables Xf and T respectively.

3. Some T-X{Y} families and properties

3.1 Some T-X{Y} families based on different quantile functions

The quantile function of a random variable Y may not be explicitly represented. How-

ever, many of the existing continuous random variables are one-to-one functions and

they have explicit quantile functions. The quantile functions of these random variables
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can be used to generate new T-X{Y} families. The following example illustrates how to

derive the T-X{Y} family of distributions.

Example: T-X{log-logistic} family:

Let the random variable Y follow the log-logistic distribution with parameters α and β.

The PDF and quantile function are, respectively, p(y) = (β/α)(y/α)β − 1/(1 + (y/α)β)2, y ≥ 0,

and QY(λ) = α(λ/(1 − λ))1/β, λ ∈ (0, 1). Therefore, p(QY(λ)) = (β/α)λ(β − 1)/β(1 − λ)(β + 1)/β, and

the definition in (2.4) gives the PDF of T-X{log-logistic} family as

g xð Þ ¼ α=βð Þf xð Þ
F β−1ð Þ=β xð Þ 1−F xð Þð Þ βþ1ð Þ=β r α

F xð Þ
1−F xð Þ


 �1=β
( )

: ð3:1Þ

When α = β = 1, the family in (3.1) reduces to g xð Þ ¼ f xð Þ
1−F xð Þð Þ2 r F xð Þ= 1−F xð Þð Þf g. This

PDF can be written in terms of hazard and survival functions of Xf as g xð Þ ¼ hf xð Þ
�F xð Þ

r 1−�F xð Þð Þ=�F xÞgðf , where hf is the hazard function and �F is the survival function

of the random variable Xf.

Table 1 lists the probability density functions of some T-X{Y} families based on differ-

ent quantile functions. Each family g is based on a given quantile function that defines

many subfamilies of distributions.

Table 1 T-X{Y} families based on different quantile functions

Random variable
Y and support of
r(t)

The quantile function QY(λ) Family of probability density function
g(x) defined in (2.4)

Exponential (0,∞) − b log(1 − λ), b > 0
bf xð Þ
1−F xð Þ r −b log 1−F xð Þð Þf g

Weibull (0,∞) γ{−log(1 − λ)}1/c, γ, c > 0
γ f xð Þ r γ − log 1−F xð Þð Þf g1=cf g
c 1−F xð Þð Þ − log 1−F xð Þð Þf g c−1ð Þ=c

Rayleigh (0,∞) {−2b2 log(1 − λ)}1/2, b > 0
bf xð Þ r −2b2 log 1−F xð Þð Þf g1=2

� 	

1−F xð Þð Þ −2 log 1−F xð Þð Þf g1=2

Dagum (0,∞) β λ1=p

1−λ1=p

n o1=α
; α; β; p > 0

βf xð Þ r βF1=αp xð Þ= 1−F1=p xð Þð Þ1=α
� 	

αpF1−1=αp xð Þ 1−F1=p xð Þð Þ1þ1=α

Lomax (0,∞) 1
α

1− 1−λð Þ1=k

1−λð Þ1=k
n o

; α; k > 0
f xð Þ

kα 1−F xð Þð Þ1=kþ1 r
1− 1−F xð Þð Þ1=k

α 1−F xð Þð Þ1=k
n o

Log-logistic (0,∞) α λ
1−λ

� 
1=β
; α; β > 0

αf xð Þr α F xð Þ= 1−F xð Þf gð Þ1=βf g
βF β−1ð Þ=β xð Þ 1−F xð Þð Þ βþ1ð Þ=β

Exponentiated
Exponential (0,∞)

−
1
θ
log 1−λ1=α
� �

; θ; α > 0
f xð Þ r − 1=θð Þ log 1−F1=α xð Þð Þf g

αθ F α−1ð Þ=α xð Þ 1−F1=α xð Þð Þ

Cauchy (−∞,∞) a + b {tan(π(λ − 0.5))}, b > 0
π b f xð Þ r aþb tan π F xð Þ−1=2ð Þf gf g

cos2 π F xð Þ−1=2ð Þf g

Extreme value
(Gumbel) (−∞,∞)

a − b log(−log λ), b > 0
bf xð Þr a−b log − logF xð Þð Þf g

−F xð Þ logF xð Þ

Laplace (−∞,∞)

(

aþ b log 2λð Þ; λ < 0:5
a− b log 2 1−λð Þð Þ; λ≥ 0:5

a; b > 0

bf xð Þ r aþ b log 2F xð Þð Þf g
F xð Þ ; F xð Þ < :5

bf xð Þ r a−b log 2 1−F xð Þð Þf gf g
1−F xð Þ ; F xð Þ≥ :5

8

>

>

<

>

>

:

Logistic (−∞,∞) aþ b log λ
1−λ

� 


; b > 0
bf xð Þ r aþb log F xð Þ= 1−F xð Þf gð Þf g

F xð Þ 1−F xð Þð Þ

Generalized logistic
(II) (−∞,∞)

log
1− 1−λð Þ1=α

1−λð Þ1=α
n o

; α > 0
f xð Þ r log 1− 1−F xð Þð Þ1=αf g= 1−F xð Þð Þ1=αð Þf g

α 1−F xð Þð Þ 1− 1−F xð Þð Þ1=αf g
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Common supports of random variables Xf and T are [0, 1], (0,∞), or (−∞,∞). Beta-

X, Kw-G and GBG are T-X{uniform} families with T being defined on [0, 1]. The

W functions given in Alzaatreh et al. (2013b) can be defined by the quantile func-

tions of random variable Y as follows: W(λ) = − log(1 − λ), λ ∈ (0, 1), is the quantile

function of standard exponential distribution, W(λ) = λ/(1 − λ) is the quantile func-

tion of log-logistic distribution with parameters α = β = 1, and W(λ) = log(λ/(1 − λ)) is

the quantile function of logistic distribution with scale parameter b = 1 and location

parameter a = 0. Many other W functions can be defined by using the quantile

function approach. The T-X(W) families defined in Alzaatreh et al. (2013b) derive

their parameters from the random variables T and X and none from the W function.

The T-X(W) can be derived through the T-X{Y} framework by noting that the

W function is the quantile function for the random variable Y. One advantage of

using the T-X{Y} framework is that one can keep one or more parameters from the

distribution of Y. In particular, keeping a shape parameter from Y can add more flexi-

bility to the new distribution.

3.2 Some properties of T-X{Y} families

In the following, we assume (if necessary) the mentioned expectations exist and are

finite.

Theorem 1: Let Xf be a non-negative random variable with PDF f(x), and let E Xn
f

� �

denote the nth moment of Xf, then

E Xn
g

� �

≤E Xn
f

� �

⋅E �P Tð Þf g−1
� �

;

where E Xn
g

� �

is the nth moment of the random variable with density in (2.4), �P ¼ 1−P

is the survival function of the CDF P, and T is the random variable with PDF r.

Proof: By definition,

E Xn
f

� �

¼
Z

∞

0

xnf xð Þdx≥
Z

∞

F−1 P tð Þf g
xnf xð Þdx≥ F−1 P tð Þf g

� 
n
Z

∞

F−1 P tð Þf g
f xð Þdx

¼ F−1 P tð Þf g
� 
n

⋅�P tð Þ:

Hence,

F−1 P tð Þf g
� 
n

≤E Xn
f

� �

�P tð Þf g−1: ð3:2Þ

Using property (4) in Section 2 and (3.2) yields

E Xn
g

� �

¼ E
�

F−1 P Tð Þf g
� �n

�

≤E Xn
f

� �

⋅E �P Tð Þf g−1
� �

: □

The entropy of a random variable is a measure of the variation of uncertainty. Shannon’s

(1948) entropy of the random variable X with density g is defined as E{−log(g(X))}.

Theorem 2: Shannon’s entropy ηXg
of Xg is given by

ηXg
¼ E logqX f

P Tð Þð Þ
n o

þ E logp Tð Þf g þ ηT ;

where ηT is Shannon’s entropy for the random variable T with PDF r, and qX f
is the

quantile density function of Xf.
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Proof: By definition,

ηXg
¼ E − log g Xg

� 
� 
� 	

¼ −E logf Xg

� 
� 	

þ E logp QY F Xg

� 
� 	� 
� 	

−E logr QY F Xg

� 
� 	� 
� 	

:

Note that the random variable T =QY{F(Xg)} has the PDF r, and Xg = F− 1{P(T)}. Thus,

ηXg
¼ −E logf F−1 P Tð Þf g

� 
� 	

þ E logp Tð Þf g þ ηT

¼ E logqX f
P Tð Þð Þ

n o

þ E logp Tð Þf g þ ηT : □

3.3 Relationship between T-X{Y} family and some existing families of distributions

Many existing families of distributions can be generated by using the quantile function

approach defined in (2.4). Four examples are given in the following.

Generalized beta-generated (GBG) family introduced by Alexander et al. (2012):

The GBG family is the generalized beta-X{uniform} family. It can also be derived as

follows: By setting α = β = 1 and p = 1/c in the Dagum quantile function in Table 1, the

PDF of the T-X{Dagum} family is given by

g xð Þ ¼ cf xð Þ r Fc xð Þ= 1−Fc xð Þð Þf g
F1−c xð Þ 1−Fc xð Þð Þ2

: ð3:3Þ

By taking r in (3.3) to be r(t) = {B(a, b)}− 1ta − 1(1 + t)− b − a, t > 0, which is the PDF

of the inverted beta random variable, the family of probability density functions is

obtained as

g xð Þ ¼ cB a; bð Þ−1f xð ÞFca−1 xð Þ 1−F c xð Þð Þb−1; a; b > 0: ð3:4Þ

The family in (3.4) is the generalized beta-generated (GBG) family in (1.5).

Family of skewed distributions defined in Ferreira and Steel (2006):

The family of skewed distributions in (1.1) defined by Ferreira and Steel (2006) can

be represented in the form of T-X{Y} system by considering the quantile function of a

standard uniform distribution, QY(λ) = λ, where F is the CDF of a symmetric PDF f and

the r is a skewed PDF having support [0, 1].

T-X family defined in Alzaatreh et al. (2013b):

Alzaatreh et al. (2013b) studied the T-X(W) family using W(F(x)) = − log(1 − F(x)). By

using the quantile function approach, let λ = F(x), then W(λ) = − log (1 − λ) is the quan-

tile function of standard exponential distribution. Hence, the T-X family studied

by Alzaatreh et al. (2013b) is the T-X{exponential}. According to the authors, the

T-X{exponential} is a family of distributions arising from the hazard function of Xf. If hf is

the hazard function and Hf is the cumulative hazard function of the random variable Xf,

and the exponential distribution has mean b, the PDF of the T-X{exponential} family is

g(x) = bhf(x)r{bHf(x)}. In a similar way, T-X{Weibull} and T-X{Rayleigh} families can be

considered as families of distributions arising from hazard functions of Xf. The PDF of

the T-X{Weibull} family is g(x) = (γ/c)hf (x)r{γ(Hf (x))
1/c}/(Hf (x))

(c − 1)/c and the PDF of

T-X{Rayleigh} is g(x) = bhf (x)r{(2b
2Hf (x))

1/2}/(2Hf (x))
1/2.

Generalized beta distribution introduced by McDonald and Xu (1995):
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Setting α = β = 1 in the PDF of the T-X{log-logistic} family in (3.1) and taking r(t) = {B

(p, q)}− 1tp − 1(1 + t)− p − q, t > 0, the PDF of the inverted beta random variable with pa-

rameters p and q, yields

g xð Þ ¼ f xð Þ
B p; qð Þ F

p−1 xð Þ 1−F xð Þð Þq−1; p; q≥0: ð3:5Þ

Note that (3.5) is the beta-generated family. By taking F(x) = (x/b)a/(1 + c(x/b)a),

which is the CDF of a truncated log-logistic distribution with 0 < xa < ba/(1 − c), 0 ≤ c < 1, a

and b positive in (3.5), the generalized beta distribution introduced by McDonald and Xu

(1995) is obtained as

GB x; a; b; c; p; qð Þ ¼ axap−1 1− 1−cð Þ x=bð Það Þq−1

bapB p; qð Þ 1þ c x=bð Það Þpþq ; for 0 < xa <
ba

1−c
;

with 0 ≤ c < 1, and a, b, p and q positive.

Taking F(x) in (3.5) to be F(x) = e(x − δ)/σ/(1 + ce(x − δ)/σ), which is the CDF of a truncated

logistic distribution with −∞ < (x − δ)/σ < ln(1/(1 − c)), 0 ≤ c < 1 and σ > 0, yields

g xð Þ ¼ ep x−δð Þ=σ 1− 1−cð Þe x−δð Þ=σ
� �q−1.

σB p; qð Þ 1þ ce x−δð Þ=σ
� �pþq

� �

: ð3:6Þ

The PDF in (3.6) is the exponential generalized beta distribution in McDonald and

Xu (1995).

3.4 Three examples of new distributions derived from T-X{Y} family

Table 1 contains many T-X families based on different quantile functions. Three new

distributions, normal-Weibull{Cauchy}, normal-Weibull{logistic} and Weibull-uniform

{log-logistic} distributions are introduced, and some properties of these distributions

are studied.

Normal-Weibull{Cauchy} distribution:

Setting a = 0 and b = 1 in the T-X{Cauchy} family in Table 1, and letting r be N(μ, σ2),

the normal-X{Cauchy} sub-family is given by

g xð Þ ¼
ffiffiffi

π
p

f xð Þ
σ
ffiffiffi

2
p

cos2 π F xð Þ−1=2ð Þf g
exp

−1

2

tan π F xð Þ−1=2ð Þf g−μ
σ


 �2
( )

: ð3:7Þ

Substituting F(x) = 1 − exp{−(x/γ)c}, the CDF of Weibull distribution in (3.7) yields

g xð Þ ¼
ffiffiffi

π
p

c=γð Þ x=γð Þc−1 exp − x=γð Þcf g
σ
ffiffiffi

2
p

cos2 π 1=2− exp − x=γð Þcf gð Þf g
exp −

tan π 1=2− exp − x=γð Þcf gð Þf g−μ
σ
ffiffiffi

2
p


 �2
( )

;

ð3:8Þ

for x > 0, and σ, c, γ > 0. The random variable with the PDF in (3.8) is said to follow a

four-parameter normal-Weibull{Cauchy} (NW{C}) distribution. A location parameter δ

can be included in (3.8) by writing x as (x − δ) leading to a five-parameter distribution.

Plots of the NW{C} density function for different parameter values are given in Figure 1.

The graphs in Figure 1 show that the NW{C} distribution can be right skewed, left

skewed, unimodal or bimodal.
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Lemma 2: The nth moment of the NW{C} random variable with PDF in (3.8) exists

for any μ, σ > 0, c > 0, γ > 0 and satisfies the inequality

E Xn
g

� �

≤γn Γ 1þ n=cð Þ 4Φ 1ð Þ þ 3
ffiffiffi

π
p

σ

2
ffiffiffi

2
p exp −

1−μð Þ2
2σ2

 !

þ 3πμ

2


 �

1−Φ 1ð Þð Þ
( )

;

ð3:9Þ

where Φ is the CDF of a normal distribution with parameters μ and σ.

Proof: The nth moment for Weibull random variable is E Xn
f

� �

¼ γn Γ 1þ n=cð Þ. The
CDF of standard Cauchy distribution is P(y) = 1/2 + (1/π)tan− 1(y), so 1 − P(T) = 1/2 −

(1/π)tan− 1(T), where −∞ < T <∞. When T ≤ 1, 1 − P(T) ≥ 1/4 and hence (1 − P(T))− 1
≤ 4.

When T > 1 and by using the series tan−1 Tð Þ ¼ π
2
þ
X

∞

n¼1

−1ð Þn

2n−1ð ÞT 2n−1
(Polyanin and

Manzhirov 2008),

1=2− 1=πð Þ tan−1 Tð Þ ¼ 1

2
−

1

π
tan−1 Tð Þ

¼ 1

π

1

T
−

1

3T 3
þ 1

5T 5
−

1

7T 7
þ⋯þ −1ð Þnþ1

2n−1ð ÞT 2n−1
⋯

( )

>
1

π

1

T
−

1

3T 3

� �

¼ 1

π

3T 2
−1

3T 3

� �

¼ 1

π

2T 2 þ T2
−1

3T3

� �

>
2

3πT
:

Hence, (1 − P(T))− 1 < (3π/2)T. Since the random variable T with PDF r has a normal

distribution with parameters μ and σ, then by using Theorem 1

E Xn
g

� �

≤E Xn
f

� �

E
�

1−P Tð Þf g−1
�

≤γn Γ 1þ n=cð Þ
Z 1

−∞

4r tð Þdt þ 3π=2ð Þ
Z

∞

1

t⋅r tð Þdt

 �

;

¼ γn Γ 1þ n=cð Þ
Z 1

−∞

4r tð Þdt þ 3πσ=2ð Þ
Z

∞

1

t−μ

σ
⋅r tð Þdt þ 3π=2ð Þ

Z

∞

1

μ⋅r tð Þdt

 �

;

and the result in (3.9) follows. □

Figure 1 The PDF of normal-Weibull{Cauchy} for various values of μ, σ, c and γ.
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Normal-Weibull{logistic} distribution:

Setting a = 0 and b = 1 in the PDF of the T-X{logistic} family in Table 1, and taking

r to be N(μ, σ), the PDF of normal distribution, and F to be the CDF of Weibull dis-

tribution, F(x) = 1 − exp{−(x/γ)c}, the normal-Weibull{logistic} (NW{L}) distribution

is obtained as

g xð Þ ¼ c x=γð Þc−1 exp x=γð Þcf g
γσ

ffiffiffiffiffiffi

2π
p

exp x=γð Þcf g−1ð Þ
exp −

1

2

log exp x=γð Þc−1f g−μ
σ


 �2
( )

; x > 0; σ; c; γ > 0:

Plots of NW{L} density function for different parameter values are given in Figure 2.

The graphs in Figure 2 show that the NW{L} distribution can be reversed J-shape,

skewed to the right or skewed to the left or bimodal.

Lemma 3: The nth moment of the NW{L} random variable exists for any σ > 0, c >

0, γ > 0 and satisfies the inequality

E Xn
g

� �

≤ γnΓ 1þ n=cð Þ 1þ exp μþ 0:5σ2
� 	� 


: ð3:10Þ

Proof: The nth moment for the Weibull random variable is E
�

Xn
f




¼ γnΓ 1þ n=cð Þ .
The CDF of standard logistic random variable is P(y) = exp(y)/{1 + exp(y)}. Since

the random variable T has normal distribution with parameters μ and σ, then E

({1 − P(T)}− 1) = E(1 + exp(T)) = 1 + exp(μ + 0.5σ2). By using Theorem 1, the result

in (3.10) follows. □

Weibull-uniform{log-logistic} distribution:

Setting α = β = 1 in the PDF of the T-X{log-logistic} family in (3.1), and taking r to

be the PDF of Weibull distribution, r(t) = (c/γ)(x/γ)c − 1 exp{−(x/γ)c} and F to be the

CDF of uniform distribution, F(x) = (x − a)/(b − a), the Weibull-uniform{log-logistic}

(WU{LL}) distribution is obtained as

g xð Þ ¼ c b−að Þ
γ b−xð Þ2

x−a

γ b−xð Þ


 �c−1

exp −

x−a

γ b−xð Þ


 �c� �

; a < x < b; c; γ > 0:

Figure 2 The PDF of Normal-Weibull{logistic} for various values of μ, σ, c and γ.
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Plots of WU{LL} density function for different parameter values are given in Figure 3.

The graphs in Figure 3 show that the WU{LL} distribution can be reversed J-shape,

skewed to the right or skewed to the left or bimodal.

Lemma 4: The nth moment of the WU{LL} random variable exists for any b > a, c >

0, γ > 0 and satisfies the inequality

E Xn
g

� �

≤
bnþ1

−anþ1

nþ 1ð Þ b−að Þ 1þ γ Γ 1þ 1=cð Þð Þ: ð3:11Þ

Proof: The nth moment for the uniform random variable is E
�

Xn
f




¼ bnþ1
−anþ1

nþ1ð Þ b−að Þ . The

CDF of standard log-logistic random variable is P(y) = y/(1 + y). Since the random variable

T has Weibull distribution with parameters c and γ, then E({1 − P(T)}− 1) = E(1 + T) = 1 +

γ Γ(1 + 1/c). By using Theorem 1, the result in (3.11) follows. □

4. The family of T-X{Y} distributions based on survival functions

Instead of using the CDF F in (2.2), one can use the survival function �F and apply similar

method to generate a new family of distributions in terms of survival functions.

If �P and QY are the survival and quantile functions of the random variable Y, then

�P
−1

F xð Þð Þ ¼ QY 1−F xð Þð Þ ¼ QY
�F xð Þð Þ. A new family T-X{Y} of distributions in terms of

the survival function of X is defined as

�G xð Þ ¼
Z �P

−1
F xð Þð Þ

a

r tð Þdt ¼
Z QY

�F xð Þð Þ

a

r tð Þdt ¼ R QY
�F xð Þð Þf g: ð4:1Þ

The corresponding PDF associated with (4.1) is

g xð Þ ¼ f xð Þ
p QY

�F xð Þð Þf g r QY
�F xð Þð Þf g: ð4:2Þ

The family of life distributions introduced by Marshall and Olkin (1997) can be

derived using (4.1) as follows. By using QY(λ) = a(λ/(1 − λ))1/b, the quantile function

Figure 3 The PDF of Weibull-uniform{log-logistic} for various values of c and γ when a= 0 and b = 5.

Aljarrah et al. Journal of Statistical Distributions and Applications 2014, 1:2 Page 12 of 17

http://www.jsdajournal.com/content/1/1/2



of the log-logistic distribution and R(t) = ηt/(1 + ηt), the CDF of log-logistic distribu-

tion with scale parameter 1/η in (4.1) can be written as

�G xð Þ ¼
η a �F xð Þ= 1−�F xð Þð Þ½ �1=b
n o

1þ η a �F xð Þ= 1−�F xð Þð Þ½ �1=b
n o ¼ ηa�F

1=b
xð Þ

F1=b xð Þ þ ηa�F
1=b

xð Þ
: ð4:3Þ

Letting ηa = α and 1/b = β, (4.3) becomes �G xð Þ ¼ α�F
β
xð Þ

Fβ xð Þþα�F
β
xð Þ
, which reduces to

Marshall-Olkin’s family in (1.2) when β = 1.

The following theorem gives the relation between the moments of the random variables

defined in (2.4) and (4.2) when the PDF f is symmetric.

Theorem 3: Let E1 Xn
g

� �

and E2 Xn
g

� �

denote the nth moments of the random variables

in (2.4) and (4.2) respectively. If f is symmetric, then

E2 Xn
g

� �

¼
X

n

i¼0

−1ð Þi n
i


 �

2mf

� 
n−i
E1 X i

g

� �

;

where mf is the median of the random variable Xf with PDF f.

Proof: The nth moment of (2.4) and (4.2) are E1 Xn
g

� �

¼
Z 1

0

F−1 vð Þ
� 	n

p QY vð Þf g r QY vð Þf gdv

and E2 Xn
g

� �

¼
Z 1

0

F−1 1−uð Þ
� 	n

p QY uð Þf g r QY uð Þf gdu , where the substitutions v = F(x) and

u = 1 − F(x) are applied to (2.4) and (4.2) respectively. When f is symmetric, F− 1

(1 − u) = 2mf − F− 1(u), u ∈ [0, 1]. By using the binomial theorem,

E2 Xn
g

� �

¼
Z 1

0

F−1 1−uð Þ
� 	n

p QY uð Þf g r QY uð Þf gdu

¼
X

n

i¼0

−1ð Þi n
i


 �

2mf

� 
n−i
Z 1

0

F−1 uð Þ
� 	i

p QY uð Þf g r QY uð Þf gdu;

¼
X

n

i¼0

−1ð Þi n
i


 �

2mf

� 
n−i
E1 X i

g

� �

: □

Theorem 4: Let Xf be non-negative random variable with PDF f, and let E Xn
f

� �

denote the nth moment of Xf, then

E Xn
g

� �

≤E Xn
f

� �

⋅E P Tð Þf g−1
� 


;

where E Xn
g

� �

is the nth moment of the random variable with density in (4.2), and T is

the random variable with PDF r.

Proof: The proof is similar to the proof of Theorem 1 after noting that the relation

between the random variables Xg in (4.2) and T is given by Xg ¼ F−1 �P Tð Þð Þ. □

Similar to Theorem 2, Shannon’s entropy ηXg
for random variable Xg with PDF in

(4.2) is given in the following theorem.

Theorem 5: Let Xg be a random variable with density in (4.2). Shannon’s entropy ηXg

is given by ηXg
¼ E logqX f

�P Tð Þð Þ
n o

þ E logp Tð Þf g þ ηT .

Proof: The proof is similar to that of Theorem 2. □
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5. Application

In this section, we apply the NW{C} distribution to fit two data sets. The first data is

the famous Old Faithful Geyser eruption data (n = 272) obtained from Härdle (1991,

p. 201). The data is the duration time of eruption (in minutes) taken during August

1st to August 15th, 1985 (Dekking et al. 2005). The second data set is USS Halfbeak

diesel engine data (n = 71) studied by Ascher and Feingold (1984, p. 75) and Meeker

and Escobar (1998, p. 415). The data is the time of unscheduled maintenance actions

for the USS Halfbeak number 4 main propulsion diesel engine over 25.518 operating

hours (Meeker and Escobar 1998, p. 415).

5.1 The famous old faithful Geyser eruption data

As shown in Figure 4, the data has two distinct modes. A common approach for fitting

such a bimodal data is by using mixture distributions. Arellano-Valle et al. (2010) ap-

plied flexible epsilon-skew-normal distribution to fit the data and their fit is the same

as that of mixture-normal distribution. Four distributions, a four-parameter NW{C} in

(3.8), a five-parameter NW{C}, mixture normal, and beta-normal are applied to fit the

data using maximum likelihood technique. Table 2 contains the estimates, standard errors

of the estimates, log-likelihood values, AIC, K-S test statistics and the corresponding

p-values.

The results in Table 2 indicate that the five-parameter NW{C} provides the best fit

followed by mixture normal based on all three measures, log-likelihood, AIC and K-S

statistic. When bimodality is a population characteristic, it may be more appropriate to

fit the data with one distribution, instead of fitting the data by the mixture of two dis-

tributions. The NW{C} distribution can fit well a wide variety of distribution shapes,

including bimodal data such as Old Faithful Geyser eruption data. Figure 4 displays

the estimated PDF of the distributions that provide adequate fit to the data.

From Figure 4, the addition of the fifth parameter, which is a measure of location,

has some effect on the fit. By using either a likelihood ratio test or the Wald test for

the significance of the parameter δ, we observe that the parameter is significantly different

from zero. Thus, a five-parameter NW{C} (and not a four-parameter NW{C}) should be

used to fit the bivariate data. According to Johnson et al. (1994, p. 12), four-parameter

Figure 4 PDFs for the famous Old Faithful Geyser eruption data.
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distributions should be sufficient for most practical purposes. The authors went on to

state and we quote “… but it is doubtful whether the improvement obtained by including

a fifth or sixth parameter is commensurate with the extra labor involved”. For this applica-

tion, adding the fifth parameter to the NW{C} improves the fit with an increase of more

than 22 points in the log-likelihood value. Furthermore, the fifth parameter δ is signifi-

cantly different from zero.

5.2 USS Halfbeak diesel engine data

Marciano et al. (2012) used the data to illustrate the application of the McDonald-

gamma distribution (Mc-ΓD). The distribution of the data is highly skewed to the left

and platykurtic (skewness = −1.576 and kurtosis = 1.653). The MLEs (with correspond-

ing standard errors in parentheses) of the parameters of NW{C} distribution and the

statistics AIC, the log-likelihood value and K-S and the corresponding p-values are

given in Table 3. The values of AIC, log-likelihood and K-S statistics for Mc-ΓD,

Kumaraswamy-gamma distribution (Kw-ΓD) are taken from Marciano et al. (2012).

The other results in Table 3 are obtained by using NLMIXED procedure in SAS and

the MATLAB software.

The NW{C} distribution has the smallest AIC and K-S statistics, and the largest

log-likelihood value, which indicates NW{C} is superior to the other distributions in

Table 3. Figure 5 displays the estimated PDF of the NW{C}, Mc-Γ and Kw-Γ

Table 3 Parameter estimate (standard error in parentheses) for USS Halfbeak diesel

engine data

Four-parameter NW{C} McDonald-gamma Kumaraswamy-gamma

MLE (SEb) μ̂ =6.072 (1.514) α̂ = 99.865 (0.294) α̂ = 6.384 (0.992)

σ̂ =4.217 (1.207) β̂ = 2.030 (0.022) β̂ = 0.1996 (0.040)

ĉ = 1.448 (0.161) â = 0.0421 (0.006) b̂ = 2.403 (0.001)

γ̂ = 10.073 (0.936) b̂ =200.040 (60.178) ĉ =0.0013 (0.000)

ĉ =0.2796 (0.014)

Log-likelihood −196.45 −217.35 −239.2

AIC 400.9 444.7 486.4

K-S 0.0811 0.2635 0.2849

P-value 0.739 1.045e-04 1.974e-05

b: standard error of the MLE.

Table 2 The MLEs and goodness-of-fit statistics for the famous Old Faithful Eruption

data

Five-parameter NW{C} Mixture-normala Four-parameter NW{C} Beta-normal

MLE (SEb) μ̂ = 1.883 (0.447) μ̂1 = 4.273 (0.034) μ̂ = 0.644 (0.288) μ̂ = 3.163 (0.007)

σ̂ = 5.156 (0.645) σ̂1 = 0.437 (0.027) σ̂ = 3.756 (0.438) σ̂ = 0.238 (0.001)

ĉ = 2.032 (0.150) μ̂2 = 2.019 (0.026) ĉ = 3.899 (0.168) â = 0.083 (0.007)

γ̂ = 1.885 (0.116) σ̂2 = 0.236 (0.023) γ̂ = 3.623 (0.031) b̂ = 0.060 (0.004)

δ̂ = 1.343 (0.060) p̂ = 0.652 (0.029)

Log-likelihood −270.0 −276.35 −292.3 −372.566

AIC 550.0 562.7 592.6 753.1

K-S statistic 0.042 0.049 0.075 0.151

p-value 0.712 0.539 0.096 8.908e-06

aMixture normal is defined as pN(μ1, σ1) + (1 − p)N(μ2, σ2);
bSE: standard error of the MLE.

Aljarrah et al. Journal of Statistical Distributions and Applications 2014, 1:2 Page 15 of 17

http://www.jsdajournal.com/content/1/1/2



distributions. The figure shows that the NW{C} distribution provides the best fit to

the data compared to other distributions.

6. Conclusions

This paper presents a method to generate the T-X(W) families of distributions intro-

duced in Alzaatreh et al. (2013b) by defining the W function using the quantile

function of another random variable Y. Table 1 contains some T-X{Y} families based

on different quantile functions. The T-X{Y} framework provides an easy way for gener-

ating distributions of the T-X(W) family introduced by Alzaatreh et al. (2013b).

Existing methods like the methods of combination reviewed in Lee et al. (2013) for

generating univariate continuous distributions can be derived using the T-X{Y} frame-

work. T-X{exponential}, T-X{Weibull} and T-X{Rayleigh} can be viewed as families of

distributions arising from hazard functions. The T-X{Y} family is extended by using sur-

vival function of X. The family of life distributions derived by Marshall and Olkin

(1997) can be derived using the T-X{Y} family based on survival functions. Three new

distributions in the family, normal-Weibull{Cauchy}, normal-Weibull{logistic} and

Weibull-uniform{log-logistic} distributions are defined. These distributions are very

flexible and are capable of fitting various types of data. The Old Faithful Geyser

eruption data are used to illustrate that the NW{C} distribution fits bimodal data very

well, which typically can only be adequately fitted using mixture distributions.
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Figure 5 The fitted PDFs for the USS Halfbeak diesel engine data.
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