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Abstract. Avicou, Chalendar and Partington proved in [4] that an (unbounded) operator
Af = G · f ′ on the classical Hardy space generates a C0 semigroup of composition operators if
and only if it generates a quasicontractive semigroup. Here we prove that if such an operator
A generates a C0 semigroup, then it is automatically a semigroup of composition operators, so
that the condition of quasicontractivity of the semigroup in the cited result is not necessary.
Our result applies to a rather general class of Banach spaces of analytic functions in the unit
disc.

1. Introduction

Let B denote a Banach space. We recall that a one parameter family {Tt}t≥0 of bounded
linear operators acting on B is called a semigroup if T0 = I and TtTs = Tt+s for all t, s ≥ 0. It
is called a C0-semigroup if it is strongly continuous, that is, limt→0+ Ttf = f for any f ∈ B.
Given a C0-semigroup {Tt}t≥0, its generator A is defined by

Af = lim
t→0+

Ttf − f

t

for f ∈ D(A) = {f ∈ B : limt→0+
Ttf−f

t
exists}. It is a closed and densely defined linear

operator on B, and it determines the semigroup uniquely. Observe, as a consequence of the
uniform boundedness theorem, that if {Tt}t≥0 is a C0-semigroup on B, then there exists ω ∈ R
and M ≥ 1 such that

(1.1) ∥Tt∥ ≤ Meωt for all t ≥ 0,

(see [17, Chapter II] or [1, Chapter 3], for instance). A semigroup satisfying (1.1) with M = 1
is called quasicontractive.
In 1978, Berkson and Porta [7] gave a complete description of the generator A of semigroups

of composition operators acting on the classical Hardy space H2(D) induced by a holomorphic
flow of analytic self-maps of the unit disc D = {z ∈ C : |z| < 1}. Recall that a holomorphic
flow in the open unit disc D is, by definition (see [27] and [26]), a continuous family {φt}t≥0 of
analytic self-mappings of D that has a semigroup property with respect to composition. More
precisely, a holomorphic flow has to meet the following conditions:

1) φ0(z) = z, ∀z ∈ D;
2) φt+s(z) = φt ◦ φs(z), ∀t, s ≥ 0, ∀z ∈ D;
3) For any s ≥ 0 and any z ∈ D, limt→s φt(z) = φs(z).
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The holomorphic flow {φt} gives rise to a semigroup Ttf = f◦φt of linear operators onH2(D),
which is called a semigroup of composition operators. Berkson and Porta [7] noticed that this
semigroup is always strongly continuous on the Hardy space H2(D); the same statement was
proven by Siskakis regarding other classical spaces of analytic functions, such as the Dirichlet
space D. We refer to the survey [28] in this regard.
A straightforward computation shows that, at least for the case of H2(D) or of D, the

generator A of a semigroup of composition operators is of the form Af = Gf ′, where G is an
analytic function in D. Indeed, as Berkson and Porta showed, G is the infinitesimal generator
of the holomorphic flow {φt}, defined by means of the equation

∂φt(z)

∂t
= G(φt(z)), for t ∈ R+ and z ∈ D.

Very recently, Avicou, Chalendar and Partington [4] have provided a complete description of
quasicontractive C0-semigroups of bounded operators acting either on the Hardy space H2(D)
or the Dirichlet space D, whose generator A is of the form Af = Gf ′, where G is an analytic
function in D. Indeed, their Theorems 3.9 and 4.1 in [4] include, in particular, the following
statement:

Theorem A. Let B be either the Hardy space H2(D) or the Dirichlet space D and let Af = G·f ′

for f ∈ D(A) = {f ∈ B : G·f ′ ∈ B}. Then A generates a C0-semigroup of composition operators
on B if and only if A generates a quasicontractive C0-semigroup on B.

In fact, this assertion was stated in [4] under an additional assumption G ∈ B, however, as
the authors observe in [5, p. 549], the same proofs work without this assumption. We refer to
[4, 5] for more details, in particular, to several characterizations of possible functions G that
may appear here.
The question whether there may exist an operator Af = G · f ′, which is a generator of a

C0-semigroup (on H2(D) or on D), which does not consist of composition operators, remained
open.
Our main result in this paper gives an answer to this question not only in the context of the

Hardy space or the Dirichlet space, but also for more general function spaces. As a particular
instance of our main theorem, we will show that an operator Af = G · f ′, is a generator of a
C0-semigroup (on H2(D) or on D) if and only if A generates on these spaces a C0-semigroup of
composition operators.
The paper is organized as follows. In Section 2, after some preliminaries, we prove our main

result. Section 3 contains some discussions, and we also raise some questions there.

Remark. After this work was finished, W. Arendt and I. Chalendar informed us about their
work in progress, where they address the same question and obtain another versions of our
main result, which apply to a class of domains in C. Their conditions on the functional space
are incomparable to ours (we comment on it at the end of the next Section).

2. C0-semigroups on spaces of analytic functions

In what follows, B will be a Banach space of holomorphic functions on the unit disc D. The
space of bounded linear operators on B will be denoted by L(B). We denote by Hol(D) the
space of all holomorphic functions on D and by O(D) the set of all functions, holomorphic on (a
neighborhood of) the closed unit disc D. Both are given a structure of linear topological vector
spaces in a usual way (regarding O(D) see [8, pp. 81], for instance). We impose the following
natural assumption on B:

(⋆) O(D) ↪→ B ↪→ Hol(D), and both embeddings are continuous.
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We remark that, if {φt} is a holomorphic flow on D and the linear operators

Ttf = f ◦ φt

are bounded on B for t ≥ 0, then they form a semigroup of linear operators. In this case, we
will say that it is a semigroup of composition operators. In fact, it is a C0-semigroup whenever
B is reflexive (see Section 3 below).
Under the hypothesis (⋆), the generator of {Tt}t≥0 has the form

Af = G · f ′,

and one has D(A) = {f ∈ B : G · f ′ ∈ B}, see for instance, [9, Theorem 2].

Our main theorem reads as follows:

Main Theorem. Let B be a Banach space of analytic functions on D satisfying hypothesis
(⋆).
Let G be an analytic function in D and let A be given Af = G · f ′ for f ∈ D(A) = {f ∈ B :

G · f ′ ∈ B}. Then A generates a C0-semigroup on B if and only if A generates a C0-semigroup
of composition operators.

In particular, by Theorem A, for the cases of the Hardy space H2(D) and the Dirichlet space
D, this semigroup will be necessarily quasicontractive. (In Section 3, we will give more general
statements.)

Proof of Main Theorem. Assume A generates a C0-semigroup {Tt} on B. Our goal is to show
the existence of a holomorphic flow {φt}t≥0 such that Ttf = f ◦ φt for all functions f ∈ B. Fix
a radius r ∈ (0, 1) and consider the Cauchy problem

(CP )

{
∂φt(z)

∂t
= G(φt(z))

φ0(z) = z
(
z ∈ D(0, r) = {z ∈ D : |z| < r}

)
.

The standard theory of ordinary differential equations in complex domain implies that there
exists t0 > 0 and an analytic solution {φt(z)} of (CP), defined for z ∈ D(0, r) and all complex
t, |t| < t0. See, for instance, [21], Theorems 2.2.1 and 2.8.2 (the Cauchy-Kovalevskaya Theorem
is also applicable here). Moreover, this solution is unique in the class of smooth functions.
We will only need real times t ∈ (−t0, t0). Since the differential equation in (CP) is au-

tonomous, we have the semigroup property: φt+s(z) = φt ◦φs(z) whenever t, s, t+ s ∈ (−t0, t0)
and z, φs(z) ∈ D(0, r). Indeed, by (CP), for fixed s and z, both functions φt+s(z) and φt(φs(z))
satisfy the same differential equation for t ∈ (−t0 + |s|, t0 − |s|) and have the same initial value
at t = 0.
We can also assume that there is some r′ ∈ (0, r) such that φt(z) ∈ D(0, r) whenever

t ∈ (−t0, t0) and z ∈ D(0, r′); this is achieved by substituting t0 with a smaller number.
Therefore

(2.1) φ−t ◦ φt(z) = z if t ∈ (−t0, t0) and z ∈ D(0, r′).

In what follows, we denote g′(z) = ∂g(z)
∂z

.
Our first goal is to prove the following:

Claim 1: For any f ∈ D(A),

(2.2) Ttf(z) = f ◦ φt(z), z ∈ D(0, r), 0 ≤ t < t0.
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Proof. Fix f ∈ D(A) and denote

ft(z) = Ttf(z), z ∈ D, t ≥ 0.

Then ft ∈ D(A) for all t ≥ 0, and

(2.3)
∂ft(z)

∂t
= Aft(z) = G(z)f ′

t(z), z ∈ D, t ≥ 0.

By (CP), ∂φ−t(z)
∂t

= −G(φ−t(z)). Calculating the derivative of ft ◦ φ−t(z) with respect to t,
using (2.3) and the chain rule we get

∂

∂t

(
ft ◦ φ−t(z)

)
= G(φ−t(z))f

′
t(φ−t(z))− f ′

t(φ−t(z))G(φ−t(z)) = 0, 0 ≤ t < t0.

Therefore for any z ∈ D(0, r) and any t ∈ (0, t0), ft ◦ φ−t(z) = f0 ◦ φ0(z) = f(z). By (2.1),
ft(z) = f ◦φt(z) for z ∈ D(0, r′), which by analyticity of both sides on D(0, r) implies Claim 1.

�

Let us denote by Ez the evaluation functional Ezf
def
= f(z), which is continuous on B for any

z ∈ D by hypotheses. We can write down (2.2) as

Ez(Ttf) = Eφt(z)f, for z ∈ D(0, r) and 0 ≤ t < t0.

Since D(A) is dense in B, a density argument gives that (2.2) holds for any f ∈ B. Now, by
applying (2.2) to the identity function id, id(z) ≡ z, we get (Tt id)(z) = id ◦φt(z) = φt(z) for
|z| < r and 0 ≤ t < t0. Now define

φt(z) := (Tt id)(z), z ∈ D, t ≥ 0.

This agrees with the previous definition if 0 ≤ t < t0 and |z| < r. Moreover, φt ∈ B and in
particular, φt is analytic on D, for any t ≥ 0.
In the same way, (2.2) also gives (Ttz

n)(a) =
(
φt(a)

)n
for 0 ≤ t < t0 (we get it first for |a| < r

and then for all a ∈ D, by analytic continuation).

Claim 2: There is a positive t1 ≤ t0 such that |φt(z)| < 1 for all z ∈ D and all 0 ≤ t < t1.

Proof. Notice that (⋆) implies that limn→∞
(
∥zn∥B

)1/n ≤ 1. Fix some ε > 0. Then there exist
some constants Cε and N such that for any t ∈ [0, t0), a ∈ D and any integer n ≥ N ,

|φt(a)|n = |Tt(z
n)(a)| ≤ ∥Ea∥∥Tt∥∥zn∥B ≤ Cε∥Ea∥∥Tt∥(1 + ε)n.

Taking nth roots, letting n → ∞ and then ε → 0, we get that |φt(a)| ≤ 1 for any a ∈ D.
Since φt(0) depends continuously on t and φ0(0) = 0, there is some t1 ∈ (0, t0] such that

|φt(0)| < 1 for 0 ≤ t < t1. It follows that |φt(z)| < 1 for 0 ≤ t < t1 and all z ∈ D, which
completes the proof of Claim 2. �

It was shown above that the functions φt = Tt id, 0 ≤ t < t1, satisfy φs ◦ φt(z) = φs+t(z) for
s, t ≥ 0, s+ t < t1 and z ∈ D(0, r). Obviously, this equality extends to all z ∈ D. The function
φt(z) = Ez(Tt id) is continuous in t ∈ [0, t1). By [27], Proposition 3.3.1, the family {φt(z)} can
be continued to a holomorphic flow, defined on [0,+∞)× D.
Finally, given any t > 0, fix some N such that t/N < t1. Then, for any f ∈ B it follows

Ttf = TN
t/Nf = f ◦ φt/N ◦ · · · ◦ φt/N︸ ︷︷ ︸

N times

= f ◦ φt,

which concludes the proof of the Main Theorem. �
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Let us explain the relationship between our Main Theorem and the results of the paper [2]
by Arendt and Chalendar (which were obtained independently). Our results and those in [2]
are incomparable: their results do not imply ours, and vice versa. The counterparts of our
Main Theorem in [2] are Theorems 3.2 and 4.1. Their statements are similar to the statement
of our main result, the only differences are the requirements on B and also the fact that in [2],
holomorphic flows on a general domain Ω in the complex plane are studied.
Let us first make the comparison for the case when Ω = D. Then Theorem 3.2 in [2] does not

apply to any space B contained in the disc algebra A(D), whereas our main hypothesis (⋆) on
B permits us to deal with many natural spaces of this type (diverse Banach algebras of smooth
analytic functions on D belong to this class). There are also examples of C0 semigroups spaces
B such that our Main Theorem applies while Theorem 4.1 in [2] does not. For a holomorphic
flow {φt} on D, denote by [φt, H

∞] the maximal closed subspace of H∞ on which the operator
semigroup {Cφt} is strongly continuous. We refer to [9, Section 3] for the definition of the
subspaces [φt, X], where X ⊂ Hol(D) is a function space. By [6], Corollary 1.4 and Proposi-
tion 4.3, there exists a flow {φt} such that B := [φt, H

∞] contains a function f which is not
in A(D). If f does not have limit at a point w on the unit circle, then the hypothesis (D) of
Theorem 4.1 in [2] is violated in this point (whereas our Main Theorem does apply to B and
to the infinitesimal generator G of the flow {φt}).
On the other hand, the results of [2] apply to domains different from D, whereas our result

does not. If Ω is simply connected, one can pass from flows on Ω to flows on D by a conformal
transplantation. However, this does not permit one to reduce the results of [2] in the simply
connected case to the special case Ω = D, because the hypotheses there are not conformally in-
variant. We refer to [5, Section 6] for a discussion of the possibility of conformal transplantation
in this context.
Let us also mention that in a recent paper [13], Chalendar and Partington prove some ana-

logues of the results of [4], [5] for generators given by higher order differential expressions in
the disc. The corresponding operator semigroups in general do not have such clear geometric
interpretation as above.

3. On quasicontractive composition semigroups:
Remarks and Questions

As it was mentioned before, if the semigroup Ttf = f ◦ φt, t ≥ 0, is bounded on a reflexive
Banach space B satisfying (⋆), that is, O(D) ↪→ B ↪→ Hol(D) and both embeddings are
continuous, then {Tt} is automatically a C0 semigroup. To prove it, one just notices that
the functionals

Ezf = f(z), z ∈ D
are complete in B∗. Hence condition (⋆) implies that the family {Tt} is weakly continuous. By
[17, theorem 5.8], it is strongly continuous.

In general, if B is not reflexive, not all bounded semigroups of composition operators on
B are C0 semigroups. Moreover, for some spaces B, there is no nontrivial C0 semigroups of
composition operators on B. See [6] for spaces between H∞ and the Bloch space, [3] for certain
mixed norm spaces; in these papers one can find references to earlier results. For non-reflexive
spaces, it would be desirable to find an analogue of our Main Theorem, where the words “C0

semigroup” are substituted by a weaker property, valid for all bounded composition semigroups.

On the other hand, as Avicou, Chalendar and Partington prove in [4], any semigroup of
composition operators on H2(D) is quasicontractive. Their argument extends to a wide range
of Banach spaces B. Consider the following condition
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(⋆⋆) For any univalent function η, which maps D to D and satisfies η(0) = 0, one has
∥f ◦ η∥B ≤ ∥f∥B.

Note that, in particular, (⋆⋆) implies that B is rotation invariant. Moreover, if we denote

αr(z) =
z + r

1 + rz
, r ∈ (0, 1),

it is clear that αr is a hyperbolic disc automorphism and the arguments of [4] yield the following
statement.

Proposition 3.1. Suppose B has the properties (⋆) and (⋆⋆). Then the following holds.

(i) Every holomorphic flow {φt} generates a bounded semigroup of composition operators
on B (not necessarily a C0-semigroup), if and only if the composition operators Cαrf =
f ◦ αr are bounded on B for any r ∈ (0, 1);

(ii) Every holomorphic flow {φt} generates a quasicontractive semigroup of composition
operators on B if and only if the composition operators Cαr are bounded on B for
r ∈ (0, 1) and satisfy an estimate

(3.1) ∥Cαr∥L(B) ≤
(
1 + r

1− r

)a

, r ∈ (0, 1),

for some nonnegative constant a. In this case, for any univalent function φ : D → D
one has

(3.2) ∥Cφ∥B→B ≤
(
1 + |φ(0)|
1− |φ(0)|

)a

.

A few words are in order. First, observe that {Cαr}0≤r<1 is a semigroup of operators, if one

makes the change of variables t =
1

2
log

1 + r

1− r
, or, equivalently, r = tanh t. Indeed, we have

that Tt = Cαtanh t
, satisfies TtTs = Tt+s since αrαs = α(r+s)/(1+rs). Inequality (3.1) rewrites

as ∥Tt∥L(B) ≤ e2at, t ≥ 0, therefore it is equivalent to the fact that {Tt} is a quasicontractive
semigroup. By passing to the parameter t, it follows also that if (3.1) holds for r ∈ (0, r0),
where 0 < r0 < 1, then it holds for all r ∈ (0, 1), and (3.2) is true for any value of φ(0).
Let β = {βn} be a sequence of positive numbers. Consider the weighted Hardy space H2(β)

consisting of analytic functions f(z) =
∑∞

n=0 anz
n on a neighborhood of 0 for which the norm

∥f∥β =

( ∞∑
n=0

|an|2β2
n

)1/2

is finite. We assume that lim sup β
1/n
n ≥ 1, then every f ∈ H2(β) is analytic on D.

Consider the quantity

(3.3)

Λ := sup

{
Re

(
β2
0a0a1 +

∞∑
n=1

β2
nan

[
(n+ 1)an+1 − (n− 1)an−1

])
:

∥f∥β = 1, ∥(1− z2)f ′(z)∥ < ∞
}

(where f(z) =
∑

n anz
n). Gallardo-Gutiérrez and Partington proved in [19, Proposition 2.4]

that if B = H2(β) is a weighted Hardy space which contains H2(D), then {Cαr} satisfy (3.1) if
and only if Λ < ∞. Moreover, as they show, the best constant a in the estimate (3.1) equals to
Λ/2. In [19], this was only stated for the case when H2(β) ⊃ H2, but its proof is valid without
this assumption. Our next observation makes their criterion for quasicontractivity of {Cαtanh t

}
more explicit.
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Proposition 3.2. Let H2(β) be a weighted Hardy space. Then {Cαtanh t
}t≥0 is a quasicontrac-

tive C0-semigroup if and only if

(3.4) sup
n

n
∣∣∣1− βn+1

βn

∣∣∣ < ∞.

Proof. Observe that (3.4) is equivalent to

(3.5) sup
n

∣∣∣(n+ 1)
βn

βn+1

− n
βn+1

βn

∣∣∣ < ∞.

Indeed, from (3.4) one deduces that limn
βn+1

βn

= 1 and hence, (3.5) follows. The converse is

analogous.
Assume that {Cαtanh t

}0≤0<∞ is quasicontractive. Hence Λ < ∞, or equivalently

(3.6) sup
{
Re

(β0

β1

x0x1 +
∞∑
n=1

xn

[
(n+ 1)

βn

βn+1

xn+1 − (n− 1)
βn

βn−1

xn−1

])
: x ∈ E

}
< ∞,

where E ⊂ ℓ2 is given by

E =
{
x = {xn}n≥0 : ∥x∥2ℓ2 = 1,

{
(n+ 1)

βn

βn+1

xn+1 − (n− 1)
βn

βn−1

xn−1

}
n≥0

∈ ℓ2
}
.

By considering the vectors x = (ek ± ek+1)/
√
2, k ≥ 0, where {ek}k≥0 is the standard basis of

ℓ2, we get (3.5).

Conversely, let us assume that (3.4) holds. Then 1/2 ≤ βn+1

βn
≤ 2, say, for n ≥ n0. This

allows us to rearrange the summation in (3.6) and rewrite it as follows

sup
{
Re

∞∑
n=1

xn

[
(n+ 1)

βn

βn+1

xnxn+1 − n
βn+1

βn

xnxn+1

]
: x ∈ E

}
< ∞.

This relation is valid, because (3.5) holds and

Re
(
(n+ 1)

βn

βn+1

xnxn+1 − n
βn+1

βn

xnxn+1

)
=

(
(n+ 1)

βn

βn+1

− n
βn+1

βn

)
Re(xnxn+1).

So, Λ is finite and therefore,

∥Cαtanh t
∥L(H2(β)) ≤ eΛt,

which shows that {Cαtanh t
}0≤t<∞ is quasicontractive as we wish. �

It is easy to see that whenever Λ is finite, (3.3) is equivalent to the expression (2) for Λ,
given in [19] (where, to be precise, one should add the condition (1− z2)f ′(z) ∈ H2(β), where
f =

∑
n anz

n).
The classical Dirichlet space D corresponds to the weights, given by βn =

√
n for n ≥ 1 and

β0 = 1. This space satisfies (⋆⋆) and, in fact, satisfies the estimate (3.2). (See [29], [18] and [23]
for estimates for the norms of composition operators Cφ on D.) We get the following statement,
which is close to [19], Corollary 2.5.

Proposition 3.3. Let B = H2(β). Suppose that the sequence {βn/
√
n : n ≥ 1} is monotone

decreasing, β0 ≥ β1, and (3.4) holds. Then any holomorphic flow {φt} generates a quasicon-
tractive semigroup of composition operators on B and (3.2) holds for any univalent function
φ : D → D.
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Proof. Assuming the hypotheses, we get from [29] that (⋆⋆) holds for the Dirichlet space. Next,
we apply a result by Cowen [14, Theorem 7], and get ∥Cη∥L(B) ≤ ∥Cη∥L(D) = 1 for any univalent
function η : D → D with η(0) = 0. Hence (⋆⋆) holds for B. Now all our statements follow from
Proposition 3.1. �
We remark that a lemma which implies the cited result by Cowen had been proved in 1972

by Katznel’son [22] (the proofs are different). We refer to [12] for more information and for
other applications of this kind of results.
Notice that, whenever B is contained in the disc algebra A(D), not all holomorphic flows

{φt} induce a bounded semigroup of composition operators on B. This applies, in particular,
to Dirichlet spaces, smaller than D. This follows from the observation that φt ∈ B for all
t > 0 whenever operators Cφt are bounded, but there are flows such that φt(z) does not extend
continuously to the closed unit disc. See also Theorem 4.8 in [15].
There are spaces H2(β) where Cφ is bounded for any univalent φ : D → D but is unbounded

for some non-univalent functions, like the Dirichlet space (see [16], for instance).
On the other side, composition operators induced by the Möbius maps αr are not always

bounded even in spaces H2(β) with fast decreasing weights. See, for instance, Chapter 5 in
[15], in particular, Theorem 5.2.
A key observation regarding Proposition 3.2 is that the quasicontractivity property of com-

position semigroups is very sensitive to changing the norm by an equivalent one. As it follows
from Proposition 3.2, if for some sequence of weights {βn}, the semigroup {Cαtanh t

}0≤t<∞ is
quasicontractive, then it will fail to be quasicontractive for weights

β̃n = (2 + (−1)n)βn,

These weights define an equivalent norm, so that the property of boundedness of our semigroup
(as well as that of any other composition semigroup) will not be affected by this change.
This phenomenon is related to much more general facts proved by Matolcsi in [24]: given

any C0-semigroup on a Banach space, whose generator is unbounded, it can be converted to a
non-quasicontractive one by passing to an equivalent norm on this space. By [25], the same is
true in the context of Hilbert spaces.
Observe that, if B is a Hilbert space, the generator of any quasicontractive semigroup on B

admits an H∞ calculus on a half-plane | arg(z0 − z)| < π/2, see the book [20]. The existence
of an H∞ calculus is not affected if one passes to an equivalent norm on B. This motivates the
following question.

Question. Do there exist weights {βn} such that the generator of the semigroup {Cαtanh t
}0≤t<∞

on H2(β) is bounded, but does not admit an H∞ calculus in a sector | arg(z0 − z)| < θ, where
θ ∈ [π/2, π)?

Finally, we notice that the property (⋆⋆) and estimates like (3.2) are known for many classical
Banach spaces. We refer to [15, Chapter 3] for Hp spaces and to [11] for VMOA. Property (⋆⋆)
also holds true for the case of mixed norm spaces H(p, q, α), see [3].
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