
PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 136, Number 4, April 2008, Pages 1145–1153
S 0002-9939(07)09314-8
Article electronically published on December 27, 2007

ON GENERIC DIFFERENTIAL SOn-EXTENSIONS

LOURDES JUAN AND ARNE LEDET

(Communicated by Martin Lorenz)

Abstract. Let C be an algebraically closed field with trivial derivation and
let F denote the differential rational field C〈Yij〉, with Yij , 1 ≤ i ≤ n − 1,
1 ≤ j ≤ n, i ≤ j, differentially independent indeterminates over C. We
show that there is a Picard-Vessiot extension E ⊃ F for a matrix equation
X′ = XA(Yij), with differential Galois group SOn, with the property that
if F is any differential field with field of constants C, then there is a Picard-
Vessiot extension E ⊃ F with differential Galois group H ≤ SOn if and only
if there are fij ∈ F with A(fij) well defined and the equation X′ = XA(fij)
giving rise to the extension E ⊃ F .

1. Introduction

Let C denote an algebraically closed field with trivial derivation, G a linear alge-
braic group over C, and glm(·) the Lie algebra of m × m matrices with coefficients
in some specified field. The short form ‘Picard-Vessiot G-extension’ (or sometimes
‘PVE with group G’) will be used for ‘Picard-Vessiot extension (PVE) with dif-
ferential Galois group isomorphic to G’. We consider the differential rational field
F = C〈Z1, . . . , Zk〉, where Z1, . . . , Zk are differentially independent indeterminates
over C.

Definition 1. A Picard-Vessiot G-extension E ⊃ F for the equation X ′ = XA(Z1,
. . . , Zk), with A(Z1, . . . , Zk) ∈ glm(F) for some m, is said to be a generic extension
for G if for every Picard-Vessiot G-extension E ⊃ F there is a specialization
Zi → fi ∈ F , such that the equation X ′ = XA(f1, . . . , fk) gives rise to E ⊃ F and
any fundamental solution matrix maps to one for the specialized equation.

Note that by making the assumption that G = G(C), we are also assuming that
the base field of a Picard-Vessiot G-extension and the extension itself have field of
constants C.

In this paper we produce generic extensions for the special orthogonal groups
SOn, n ≥ 3. For n = 2 the group is isomorphic to the (cohomologically trivial)
multiplicative group, a case already studied in [5].

The construction that we provide is based on Kolchin’s Structure Theorem,
which describes the possible Picard-Vessiot G-extensions of a differential field F as
function fields of F -irreducible G-torsors [11, Theorem 5.12], [12, Theorem 1.28].
The isomorphism classes of G-torsors, in turn, are in bijective correspondence with
the elements of the first Galois cohomology set H1(F, G) [13, 15]. The latter is
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1146 LOURDES JUAN AND ARNE LEDET

a particularly convenient feature since for the special orthogonal groups the first
cohomology can be described in terms of regular quadratic forms of discriminant 1
(cf. [7]).

In previous work the first author has studied generic extensions in two special
situations. The first was when G is connected and the extension is the function
field of the trivial G-torsor (cf. [5]). The second was when G is the semidirect
product H �G0 of its connected component by a finite group H and the extensions
are the function fields of F -irreducible G-torsors of the form W × G0, where W is
an F -irreducible H-torsor (cf. [6]).

In the present paper we turn our attention to the general case, that is, when
H1(F, G) is not necessarily trivial. In [7] we showed that in such a situation, it
might be possible to find a Picard-Vessiot G-extension of F that is the function
field of a non-trivial torsor. We will use the machinery developed there and a
version of a method to construct generic extensions from [5] to attack this general
situation when G is the special orthogonal group SOn, n ≥ 3. With the description
of the SOn-torsors in terms of regular quadratic forms of discriminant 1 at our
disposal we can provide a good description of the twisted Lie algebras associated
with the torsors [7], a key ingredient of our construction.

Having a good grasp of the torsors also allows us to show that this extension fully
descends to subgroups of SOn, that is, there is a specialization of the parameters
over the base field F yielding a Picard-Vessiot H-extension if and only if H ≤ SOn.

Finally, we discuss how to proceed with connected groups in general, when a
good description of the torsors is not available. In this case a generic extension
relative to the trivial torsor along with the Trivialization Lemma from Section 3
allows a (not so explicit but quite similar) construction in which the specialization
of the parameters takes place over a finite extension of F instead of F .

All the differential fields that we consider are of characteristic zero and have an
algebraically closed field of constants. We keep the notations C and F introduced
above.

2. Generic extension vs. generic equation

The SOn case is included among the groups studied by Goldman [3] and Bhandari
and Sankaran [1].

Definition 2 (Goldman [3]). Let G be a linear algebraic group over C and assume
that a faithful representation in GLn(C) is given. Let L(t, y) = Q0(t1, . . . , tr)y(n) +
· · · + Qn(t1, . . . , tr)y ∈ C{t1, . . . , tr, y} and write (π1, . . . , πn) for a fundamental
system of zeros of L(t, y) such that C〈t1, . . . , tr, π1, . . . , πn〉 is a PVE of C〈t1, . . . , tr〉
with group G. Then L(t, y) = 0 will be called a generic equation with group G if:

(1) t1, . . . , tr are differentially independent over C, and C〈t1, . . . , tr〉 ⊂ C〈π1,
. . . , πn〉.

(2) For every specialization (t1, . . . , tr, π1, . . . , πn) → (t̄1, . . . , t̄r, π̄1, . . . , π̄n)
over C such that C〈t̄1, . . . , t̄r, π̄1, . . . , π̄n〉 is a PVE of C〈t̄1, . . . , t̄r〉 and the
field of constants of the latter is C, the differential Galois group of this
extension is a subgroup of G.

(3) If (ω1, . . . , ωn) is a fundamental system of zeros of L(y) = y(n) +a1y
(n−1) +

· · · + any ∈ F{y}, where F is any differential field with field of constants
C, and F 〈ω1, . . . , ωn〉 is a PVE of F with differential Galois group H ≤ G,
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then there exists a specialization (t1, . . . , tr) → (t̄1, . . . , t̄r) over F with
t̄i ∈ F such that Qo(t̄1, . . . , t̄r) 	= 0 and

ai = Qi(t̄1, . . . , t̄r)Q−1
o (t̄1, . . . , t̄r).

Goldman shows that a necessary condition for such an equation to exist is that
the number of parameters r equals the order n of the equation [3, Lemma 1, p.
343]. The groups studied in that paper include GLn, SLn as well as the orthogonal
and symplectic groups.

Now, let G act on C〈y1, . . . , yn〉, where y1, . . . , yn are differentially independent
indeterminates over C, by σ(yi) =

∑n
i=1 cijyj for σ = (cij) ∈ G(C) ⊂ GLn(C). Then

Pi =
Wi(y1, . . . , yn)
W0(y1, . . . , yn)

(i = 1, . . . , n),

where

Wi = (−1)i

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

y1 · · · yn

...
...

y
(n−i−1)
1 y

(n−i−1)
n

y
(n−i+1)
1 y

(n−i+1)
n

...
...

y
(n)
1 · · · y

(n)
n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
are invariant under the G action.

The procedure used by Goldman for the groups above first finds n differentially
independent generators t1, . . . , tn over C of the fixed field C〈y1, . . . , yn〉G and n + 1
differential polynomials Q0(t1, . . . , tn), . . . , Qn(t1, . . . , tn) ∈ C{t1, . . . , tn} with

Pi =
Qi(t1, . . . , tn)
Q0(t1, . . . , tn)

(i = 1, . . . , n).

He then shows that a generic equation with group G is given by

(2.1) L(t, y) = Q0(t1, . . . , tn)y(n) + · · · + Qn(t1, . . . , tn)y = 0.

This method, however, fails to produce a generic equation for G = SO3 as
[3, Example 3, p. 355] illustrates.

Bhandari and Sankaran [1] proved that (2.1) is generic for the special orthogonal
groups in a weaker sense, that is, replacing (3) in Goldman’s definition with the
following:

(3′) If F is a differential field with field of constants C and E is a PVE of F with
differential Galois group H ≤ G, then there exists a linear differential equation

L(y) = y(n) + a1y
(n−1) + · · · + any = 0, ai ∈ F

such that Qo(t̄1, . . . , t̄r) 	= 0, ai = Qi(t̄1, . . . , t̄r)Q−1
o (t̄1, . . . , t̄r), i = 1, . . . , n, for

suitable t̄i ∈ F and E = F 〈ω1, . . . , ωn〉 for a fundamental system of zeros of L(y).
There are, however, some key differences in our approaches. In constructing

their equations, both Goldman and Bhandari-Sankaran start with the differential
rational field F = C〈y1, . . . , yn〉, where n is the order of the equation, and find the
differential fixed field C〈y1, . . . , yn〉G. We start instead with F as our base field and
show that F〈Y 〉, where Y is a generic point of a “general” G-torsor, is a generic PVE
in the sense of Definition 1. Furthermore, it satisfies descent conditions analogous
to (2) and (3′) above. In our case, the number n of parameters is given by the
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dimension of the group and the description of the torsors, so it is independent of
the representation of G in a GLm. By using a general derivation in the function
field of our special G-torsor (that is, a typical element in the twisted Lie algebra)
the specialization of our parameters comes in a very natural and painless fashion,
whereas in the case of the generic equations in [1, 3], showing that Q0(t1, . . . , tn) 	= 0
is quite involved.

In connection with the previous notions of generic equation [1, 3], Juan and
Magid [8] study the ring of generic solutions for a linear monic order n equation,
that is, R = C{P1, . . . , Pn} ⊗C C[y(j)

i , 1 ≤ i ≤ n, 0 ≤ j ≤ n − 1][w−1
0 ], where Pi, yi,

1 ≤ i ≤ n, and w0, are as above, with the GLn(C) action extended from the linear
action on V = Cy1 + · · · + Cyn using the C-basis y1, . . . , yn. The ring R has the
following properties:

Assume that E ⊃ F is a Picard-Vessiot G-extension and that G has a faithful
representation ρ in GLn. Then there is a differential homomorphism Ψ : R → F
such that

1. E is the quotient field of FΨ(R);
2. E ⊃ F is a PVE for

L(Y ) = Y (n) + Ψ(P1)Y (n−1) + · · · + Ψ(Pn)Y (0);

3. Ψ is G-equivariant, so Ψ(RG) ⊂ EG = F .

Conversely, assume that G is an observable subgroup of GLn and let φ : RG → F
be a differential F -algebra homomorphism with restriction α to RGLn . Let P be a
maximal differential ideal of R = F ⊗α R whose inverse image in R contains the
kernel of φ, and let E be the fraction field of R/P . Then E is a PVE of F with
differential Galois group contained in G.

The special orthogonal groups are observable (see [4]) and therefore satisfy
the above conditions. We point out that in our construction the coordinate ring
C{Yij}[Y, 1/ det(Y )], where Y is a generic point of a general SOn-torsor, has prop-
erties similar to that of the ring R.

The work in [1, 3, 8] describes equations given by linear differential operators
attached to a representation of the differential Galois group G in GLn. Our work
describes matrix equations with group G in connection with the structure of the
Picard-Vessiot G-extensions.

3. SOn-extensions

In [7] we saw that every F -irreducible SOn-torsor has a generic point of the form
Y = XP , where X is a generic point for SOn and

P =

⎛
⎜⎜⎜⎝

√
a1 √

a2

. . . √
an

⎞
⎟⎟⎟⎠ ,

for ai ∈ F ∗ with a1 · · · an = 1 and the roots chosen to have product 1 as well. A
PVE of F with group SOn corresponding to this torsor, if any, equals the function
field F (Y ) of the torsor and has derivation given by Y ′ = Y B, where the matrix B

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



ON GENERIC DIFFERENTIAL SOn-EXTENSIONS 1149

is of the form

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

a′
1

2a1
b12 b13 . . . b1n

−a1
a2

b12
a′
2

2a2
b23 . . . b2n

−a1
a3

b13 −a2
a3

b23
a′
3

2a3
. . . b3n

...
...

...
. . .

...
− a1

an
b1n − a2

an
b2n − a3

an
b3n . . .

a′
n

2an

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

for bij ∈ F , 1 ≤ i ≤ n−1, 2 ≤ j ≤ n and ai ∈ F ∗ as before. An explicit example was
given there, with Y corresponding to a non-trivial torsor, by making the simplifying
assumption that bi,i+1 = ai. We point out that with that assumption, the number
of parameters used in [7] to produce a PVE associated with a non-trivial torsor is
1
2n(n − 1), the dimension of SOn.

Since our goal here is to produce a generic extension we need to modify that
example in order to retain the 1

2 (n − 1)(n + 2) parameters in the matrix B.
We assume that a1, . . . , an−1, b12, . . . , bn−1,n are differentially independent inde-

terminates over C and let F = C〈a1, . . . , an−1, b12, . . . , bn−1,n〉. We first show that
the equation η′ = ηA over the algebraic closure F̄ of F , with coefficient matrix

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
√

a1√
a2

b12

√
a1√
a3

b13 . . .

√
a1√
an

b1n

−
√

a1√
a2

b12 0
√

a2√
a3

b23 . . .

√
a2√
an

b2n

−
√

a1√
a3

b13 −
√

a2√
a3

b23 0 . . .

√
a3√
an

b3n

...
...

...
. . .

...

−
√

a1√
an

b1n −
√

a2√
an

b2n −
√

a3√
an

b3n . . . 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

has differential Galois group SOn. From this it will follow that the corresponding
equation η′ = ηB over F has the same group.

Let Zij =
√

ai/
√

ajbij , 1 ≤ i ≤ n − 1, 2 ≤ j ≤ n, i < j. Clearly the Zij are
differentially independent over C since all the ai and b2

ij are in the differential field
L = C〈a1, . . . , an−1, Z12, . . . , Zn−1,n〉, which forces the differential transcendence
degree [10, Definition 3.2.33 and Theorem 5.4.12] of L over C to be 1

2 (n−1)(n+2).
Now, since A =

∑n−1
i=1

∑n
j=i+2 ZijAij , where {Aij} is the basis of Lie(SOn)

consisting of the antisymmetric matrices with 1 in the (i, j)-entry, −1 in the (j, i)-
entry and 0 otherwise, by [5, Theorem 4.1.2] it then follows that L(SOn) ⊃ L is a
PVE with group SOn for the equation X ′ = XA.

Since ai, b
2
ij ∈ L we have that ai, bij ∈ L̄ and thus F̄ = L̄. Therefore, F̄(SOn) ⊃

L(SOn) is an algebraic extension. Since the field of constants of L(SOn) is the
algebraically closed field C, F̄(SOn) must have no new constants and F̄(SOn) ⊃ F̄
is a PVE with group SOn.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1150 LOURDES JUAN AND ARNE LEDET

The discussion in [7, Section 4] implies that the matrix

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

a′
1

2a1
b12 b13 . . . b1n

−a1
a2

b12
a′
2

2a2
b23 . . . b2n

−a1
a3

b13 −a2
a3

b23
a′
3

2a3
. . . b3n

...
...

...
. . .

...
− a1

an
b1n − a2

an
b2n − a3

an
b3n . . .

a′
n

2an

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

defines a derivation on the coordinate ring T = F [Y ] of the SOn-torsor correspond-
ing to the quadratic form given by the matrix

Q =

⎛
⎜⎜⎜⎝

a1

a2

. . .
an

⎞
⎟⎟⎟⎠

which by [7, Lemma 1] is non-trivial.
Since F̄(Y ) = F̄(X), as a differential field it will be isomorphic to F̄ (SOn).

Therefore, the field of constants of F̄(Y ) is C. In particular, this implies that
F(Y ) ⊃ F is a no new constant extension. This shows that the function field of
the (non-trivial) SOn-torsor corresponding to Y is a PVE of F with group SOn.

We point out for later use that the previous argument can be shown in a more
general setting:

Trivialization Lemma. Let E ⊃ F be a Picard-Vessiot G-extension with G con-
nected. Then there are a finite extension k ⊃ F and a Picard-Vessiot G-extension
K = kE of k such that K = k(G).

In other words, if there is a PVE of F with group G, then the trivial G-torsor
can be realized over a finite extension of F . Although this is a known result (see
[14, p. 142, Corollary]), for the convenience of the reader we include a short proof
using the tools that we develop here.

Proof. Let X be a generic point of G. Then E = F (Y ) where Y = XP , for a
matrix P with coefficients in F̄ [7, Section 3]. Let k denote the field generated
over F by the entries of P . Then k(X) = k(Y ) ⊃ F (Y ) is an algebraic extension.
Therefore, k(G) = k(X) ⊃ k is a no new constant extension and thus a Picard-
Vessiot G-extension. Clearly, K = k(X) = kE. �

4. Generic extensions

First we introduce the following notion, analogous to one for generic polynomial
equations (see Kemper [9]).

Definition 3. A generic extension E ⊃ F for G is called descent generic when the
following condition holds: for any differential field F with field of constants C there
is a PVE E ⊃ F with group H ≤ G if and only if there are fi ∈ F such that the
matrix A(f1, . . . , fk) is well defined and the equation X ′ = XA(f1, . . . , fk) gives
rise to the extension E ⊃ F .

Theorem 1. The extension F(Y ) ⊃ F is a generic PVE for SOn. Furthermore,
it is descent generic.
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Proof. For convenience, we will use the double subscript notation Yii for ai, i =
1, . . . , n − 1, and put Yij = bij , i < j. We then let A(Yij) = B.

Suppose that E ⊃ F is a PVE with group H ≤ SOn. Let X, XH respectively
denote generic points of SOn and H. Then E = F (Y ), where Y = XHP for
some invertible matrix P with coefficients in F̄ . Moreover, there is an F -algebra
homomorphism of coordinate rings

F [XP, det(XP )−1] � F [XHP, det(XHP )−1].

Since XHP is a generic point for an H-torsor we have that XP is a generic
point for an SOn-torsor, and therefore the (twisted) Lie algebra associated with
the H-torsor is contained in that for the SOn-torsor. In turn, this implies that the
generic point Y satisfies an equation with matrix B̃ = A(fij) for some fij ∈ F .

Likewise, a specialization A(fij) of A(Yij) with fij ∈ F gives a derivation on
the coordinate ring F [XP, det(XP )−1] of an SOn-torsor. When extended to the
quotient field this derivation may have new constants. We get a PVE of F by
taking the quotient field of the factor ring

F [XP, det(XP )−1]/M,

where M is a maximal differential ideal. The differential Galois group in this case
is the closed subgroup of SOn consisting of those elements that stabilize M .

Finally, it is clear that a fundamental matrix for the equation η′ = ηA(Yij)
specializes to one for η′ = ηA(fij) since, on the one hand, a solution of η′ = ηA(Yij)
is given by a generic point XP of the SOn-torsor corresponding to the quadratic
form

Q =

⎛
⎜⎜⎜⎝

Y11

Y22

. . .
1/Y11 . . . Yn−1,n−1

⎞
⎟⎟⎟⎠

with

P =

⎛
⎜⎜⎜⎝

√
Y11 √

Y22

. . . √
1/Y11 . . . Yn−1,n−1

⎞
⎟⎟⎟⎠

and X a generic point of SOn.
On the other hand, a solution of η′ = ηA(fij) is given by a generic point XP (fij)

of the SOn-torsor corresponding to the quadratic form

Q(fij) =

⎛
⎜⎜⎜⎝

f11

f22

. . .
1/f11 . . . fn−1,n−1

⎞
⎟⎟⎟⎠

with

P (fij) =

⎛
⎜⎜⎜⎝

√
f11 √

f22

. . . √
1/f11 . . . fn−1,n−1

⎞
⎟⎟⎟⎠ . �
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Note. In the case of SO3 we can exhibit a generic point using the classical Euler
parametrization:

X =
1

x2+y2+z2+w2

⎛
⎝

x2 + y2 − z2 − w2 2xw + 2yz 2yw − 2xz
2yz − 2xw x2 − y2 + z2 − w2 2xy + 2zw
2xz + 2yw 2zw − 2xy x2−y2−z2+w2

⎞
⎠,

obtained by interpreting the quaternion x+yi+zj +wk as an isometry by conjuga-
tion on the quadratic space with basis i, j, k, where x, y, z and w are indeterminates
[2, Theorem 3, Chapter 3]. A generic point for the torsor is then

Y = XP =
1

x2 + y2 + z2 + w2
×

⎛
⎝

(x2 + y2 − z2 − w2)
√

a 2(xw + yz)
√

b 2(yw − xz)/
√

ab

2(yz − xw)
√

a (x2 − y2 + z2 − w2)
√

b 2(xy + zw)/
√

ab

2(xz + yw)
√

a 2(zw − xy)
√

b (x2 − y2 − z2 + w2)/
√

ab

⎞
⎠ .

Clearly, this matrix permits specialization of a and b to any non-zero values.

Remark. Observe that when the fii are all 1, the matrix A(fij) then has the form
⎛
⎜⎜⎜⎜⎜⎝

0 f12 f13 . . . f1n

−f12 0 f23 . . . f2n

−f13 −f23 0 . . . b3n

...
...

...
. . .

...
−f1n −f2n −f3n . . . 0

⎞
⎟⎟⎟⎟⎟⎠

∈ Lie(SOn).

Therefore this situation corresponds to the trivial torsor case. In general, if the
fii are (not all equal) constants, the torsor associated to the quadratic form will
still be trivial and the specialized matrix will be in a Lie algebra isomorphic to
Lie(SOn).

5. Remarks on the general case

In general, when the matrices P parametrizing the G-torsors are not known, it
will not be possible to carry out the same kind of explicit construction done here
for SOn. In such a situation we can use the generic extension relative to the trivial
torsor [6, Definition 3.1, Theorem 3.3] and obtain the extensions corresponding to
non-trivial G-torsors indirectly:

Assume that G is connected and let E ⊃ F be a generic extension for G relative
to the trivial G-torsor, with equation Z ′ = A(Yi)Z.

Theorem 2. Let F be a differential field with field of constants C. There is a
PVE E ⊃ F with differential Galois group H ≤ G if and only if there are a finite
extension k ⊃ F , a matrix P with coefficients in k and a specialization Yi �→ fi ∈ k,
such that the equation Z ′ = Z(P−1A(fi)P + P−1P ′) gives rise to the extension
E ⊃ F .

Proof. As before, we let X denote a generic point for G and write Y = XP for
a generic point of the G-torsor with E = F (Y ). The proof then follows from the
description of the twisted Lie algebras [7, Section 3] and the Trivialization Lemma
shown in Section 3 of this paper. �
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