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ABSTRACT. Let C be an algebraically closed field with trivial derivation and
let F denote the differential rational field C(Y;;), with Y;;, 1 < i < n —1,
1 < j < n,i < j, differentially independent indeterminates over C. We
show that there is a Picard-Vessiot extension £ D F for a matrix equation
X' = X A(Y;j), with differential Galois group SOy, with the property that
if F' is any differential field with field of constants C, then there is a Picard-
Vessiot extension E D F with differential Galois group H < SO, if and only
if there are f;; € F with A(f;;) well defined and the equation X’ = XA(f;;)
giving rise to the extension £ D F'.

1. INTRODUCTION

Let C denote an algebraically closed field with trivial derivation, G a linear alge-
braic group over C, and gl,,(-) the Lie algebra of m x m matrices with coefficients
in some specified field. The short form ‘Picard-Vessiot G-extension’ (or sometimes
‘PVE with group G’) will be used for ‘Picard-Vessiot extension (PVE) with dif-
ferential Galois group isomorphic to G’. We consider the differential rational field
F =C{Z,...,Z), where Zy,..., Z, are differentially independent indeterminates
over C.

Definition 1. A Picard-Vessiot G-extension & D F for the equation X' = X A(Z,
co oy Zy), with A(Zy, ..., Zy) € gl,,,(F) for some m, is said to be a generic extension
for G if for every Picard-Vessiot G-extension E D F' there is a specialization
Z; — fi € F, such that the equation X' = X A(f1,..., fr) gives rise to E D F and
any fundamental solution matrix maps to one for the specialized equation.

Note that by making the assumption that G = G(C), we are also assuming that
the base field of a Picard-Vessiot G-extension and the extension itself have field of
constants C.

In this paper we produce generic extensions for the special orthogonal groups
SO,, n > 3. For n = 2 the group is isomorphic to the (cohomologically trivial)
multiplicative group, a case already studied in [5].

The construction that we provide is based on Kolchin’s Structure Theorem,
which describes the possible Picard-Vessiot G-extensions of a differential field I as
function fields of F-irreducible G-torsors [11, Theorem 5.12], [12, Theorem 1.28].
The isomorphism classes of G-torsors, in turn, are in bijective correspondence with
the elements of the first Galois cohomology set H!(F,G) [13, 15]. The latter is
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1146 LOURDES JUAN AND ARNE LEDET

a particularly convenient feature since for the special orthogonal groups the first
cohomology can be described in terms of regular quadratic forms of discriminant 1
(cf. [7]).

In previous work the first author has studied generic extensions in two special
situations. The first was when G is connected and the extension is the function
field of the trivial G-torsor (cf. [5]). The second was when G is the semidirect
product H x GO of its connected component by a finite group H and the extensions
are the function fields of F-irreducible G-torsors of the form W x G°, where W is
an F-irreducible H-torsor (cf. [6]).

In the present paper we turn our attention to the general case, that is, when
H(F,G) is not necessarily trivial. In [7] we showed that in such a situation, it
might be possible to find a Picard-Vessiot G-extension of F' that is the function
field of a non-trivial torsor. We will use the machinery developed there and a
version of a method to construct generic extensions from [5] to attack this general
situation when G is the special orthogonal group SO,,, n > 3. With the description
of the SO,,-torsors in terms of regular quadratic forms of discriminant 1 at our
disposal we can provide a good description of the twisted Lie algebras associated
with the torsors [7], a key ingredient of our construction.

Having a good grasp of the torsors also allows us to show that this extension fully
descends to subgroups of SO, that is, there is a specialization of the parameters
over the base field F yielding a Picard-Vessiot H -extension if and only if H < SO,,.

Finally, we discuss how to proceed with connected groups in general, when a
good description of the torsors is not available. In this case a generic extension
relative to the trivial torsor along with the Trivialization Lemma from Section 3
allows a (not so explicit but quite similar) construction in which the specialization
of the parameters takes place over a finite extension of F' instead of F'.

All the differential fields that we consider are of characteristic zero and have an
algebraically closed field of constants. We keep the notations C and F' introduced
above.

2. GENERIC EXTENSION VS. GENERIC EQUATION

The SO, case is included among the groups studied by Goldman [3] and Bhandari
and Sankaran [1].

Definition 2 (Goldman [3]). Let G be a linear algebraic group over C and assume
that a faithful representation in GL,,(C) is given. Let L(t,y) = Qo(t1,...,t.)y™ +
s+ Qulty, ..ty € C{tr, ..., tr,y} and write (mq,...,7m,) for a fundamental
system of zeros of L(¢,y) such that C{t1,...,t,, 71,...,m,) isa PVE of C{ty,...,t,)
with group G. Then L(¢,y) = 0 will be called a generic equation with group G if:

(1) t1,...,t. are differentially independent over C, and C(ty,...,t.) C C{my,
ey T

(2) For every specialization (t1,...,t.,T1,...,7n) — (E1,.eslp, T1ye.y )
over C such that C{ty,...,¢r,71,...,7n) is a PVE of C{t1,...,t,) and the
field of constants of the latter is C, the differential Galois group of this
extension is a subgroup of G.

(3) If (w1, .. .,wy,) is a fundamental system of zeros of L(y) = y™ +a;y™=Y +
-+ apy € F{y}, where F is any differential field with field of constants
C, and F(ws,...,wy) is a PVE of F' with differential Galois group H < G,
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then there exists a specialization (¢1,...,t.) — (f1,...,t.) over F with
t; € F such that Q,(#1,...,t.) # 0 and

ai = Qi E)QT (o ),

Goldman shows that a necessary condition for such an equation to exist is that
the number of parameters r equals the order n of the equation [3, Lemma 1, p.
343]. The groups studied in that paper include GL,,, SL,, as well as the orthogonal
and symplectic groups.

Now, let G act on C{y1,...,Yn), where y1,...,y, are differentially independent
indeterminates over C, by o(y;) = Y., ¢ijy; for o0 = (¢i;) € G(C) C GL,,(C). Then

Wi(yl;- ayn)

P, = 1=1,...,n),
! WO(ylv"'7yn) ( )
where
y1 .. yn
(n—.i—l) (n—.i—l)
i Y1 Yn
Wi=(=1)"|"tn—it1 n—i+t1
(=1) YD i)
gy

are invariant under the G action.

The procedure used by Goldman for the groups above first finds n differentially
independent generators t1,...,t, over C of the fixed field C{yi,...,y,)“ and n + 1
differential polynomials Qq(t1,...,tn), ..., Qn(t1,...,tn) € C{t1,...,tn} with

i(t1,...,t
p=Qllut) G
Qo(t1s-- -, tn)
He then shows that a generic equation with group G is given by
(2.1) Lt,y) = Qolt1, - tn)y™ + -+ Qu(tr, ..., tn)y = 0.

This method, however, fails to produce a generic equation for G = SOj3 as
[3, Example 3, p. 355] illustrates.

Bhandari and Sankaran [1] proved that (2.1) is generic for the special orthogonal
groups in a weaker sense, that is, replacing (3) in Goldman’s definition with the
following:

(3") If F is a differential field with field of constants C and F is a PVE of F with
differential Galois group H < G, then there exists a linear differential equation

Ly)=y™ +ay™ Y+ +a,y=0, a€F

such that Q,(t1,...,%.) # 0, a; = Q;(t1,...,t)Q; (t1,...,t.), i = 1,...,n, for
suitable t; € F and E = F(w1,...,wy) for a fundamental system of zeros of L(y).

There are, however, some key differences in our approaches. In constructing
their equations, both Goldman and Bhandari-Sankaran start with the differential
rational field F = C(y1,...,yn), where n is the order of the equation, and find the
differential fixed field C{y1, ..., y,)¢. We start instead with F as our base field and
show that F(Y'), where Y is a generic point of a “general” G-torsor, is a generic PVE
in the sense of Definition 1. Furthermore, it satisfies descent conditions analogous
to (2) and (3') above. In our case, the number n of parameters is given by the
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dimension of the group and the description of the torsors, so it is independent of
the representation of G in a GL,,. By using a general derivation in the function
field of our special G-torsor (that is, a typical element in the twisted Lie algebra)
the specialization of our parameters comes in a very natural and painless fashion,
whereas in the case of the generic equations in [1, 3|, showing that Qo (t1,...,t,) # 0
is quite involved.

In connection with the previous notions of generic equation [1, 3], Juan and
Magid [8] study the ring of generic solutions for a linear monic order n equation,
that is, R = C{P1,..., P,} ®c C[yim, 1<i<n,0<j<n— 1][1110_1]7 where P;, y;,
1 <i < mn, and wy, are as above, with the GL,,(C) action extended from the linear
action on V = Cy; + - -+ 4+ Cy, using the C-basis y1,...,y,. The ring R has the
following properties:

Assume that F D F' is a Picard-Vessiot G-extension and that G has a faithful
representation p in GL,,. Then there is a differential homomorphism ¥ : R — F
such that

1. E is the quotient field of FU(R);
2. ED FisaPVE for

3. U is G-equivariant, so ¥(R%) c E¢ = F.

Conversely, assume that G is an observable subgroup of GL,, and let ¢ : R — F
be a differential F-algebra homomorphism with restriction a to R . Let P be a
maximal differential ideal of R = F' ®, R whose inverse image in R contains the
kernel of ¢, and let E be the fraction field of R/P. Then E is a PVE of F with
differential Galois group contained in G.

The special orthogonal groups are observable (see [4]) and therefore satisfy
the above conditions. We point out that in our construction the coordinate ring
C{Y;;}[Y,1/det(Y)], where Y is a generic point of a general SO,,-torsor, has prop-
erties similar to that of the ring R.

The work in [1, 3, 8] describes equations given by linear differential operators
attached to a representation of the differential Galois group G in GL,,. Our work
describes matrix equations with group G in connection with the structure of the
Picard-Vessiot G-extensions.

3. SO,,-EXTENSIONS

In [7] we saw that every F-irreducible SO,,-torsor has a generic point of the form
Y = X P, where X is a generic point for SO,, and

Jar

Jan

for a; € F* with a1 ---a, = 1 and the roots chosen to have product 1 as well. A
PVE of F with group SO,, corresponding to this torsor, if any, equals the function
field F(Y") of the torsor and has derivation given by Y’ = Y B, where the matrix B
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ON GENERIC DIFFERENTIAL SO, -EXTENSIONS 1149

is of the form

o bis bis ... bi,

’

a a
- a_; b12 2(122 b2/3 PR b2n
—arbiz —2bys 2(1;3 b3n
_aip o _azp  _asy a,
a, Jin an 21 an, 3N 2a.,

forb;; € F,1<i<n-1,2<j<nanda; € I as before. An explicit example was
given there, with Y corresponding to a non-trivial torsor, by making the simplifying
assumption that b; ;41 = a;. We point out that with that assumption, the number
of parameters used in [7] to produce a PVE associated with a non-trivial torsor is
in(n — 1), the dimension of SO,,.

Since our goal here is to produce a generic extension we need to modify that
example in order to retain the %(n —1)(n + 2) parameters in the matrix B.

We assume that aj,...,ap—1,b12,...,by_1, are differentially independent inde-
terminates over C and let F = C{a1,...,an—1,b12,...,bp_1,). We first show that
the equation 1/ = nA over the algebraic closure F of F, with coefficient matrix

has differential Galois group SO,,. From this it will follow that the corresponding
equation n’ = nB over F has the same group.

Let Z;; = @/Ja_jbij, 1<i<n—-1,2<j5<n,i<j. Clearly the Z;; are
differentially independent over C since all the a; and b?j are in the differential field
L = Clay,...,an-1,Z12,..., Zn—1,n), which forces the differential transcendence
degree [10, Definition 3.2.33 and Theorem 5.4.12] of £ over C to be 4(n—1)(n+2).

Now, since 4 = S > iiva ZijAij, where {A;;} is the basis of Lie(SO,)
consisting of the antisymmetric matrices with 1 in the (¢, j)-entry, —1 in the (j,)-
entry and 0 otherwise, by [5, Theorem 4.1.2] it then follows that £(SO,) D L is a
PVE with group SO,, for the equation X' = X A.

Since a;, b7; € £ we have that a;,b;; € £ and thus F = L. Therefore, F(SO,,) D
L(SO,,) is an algebraic extension. Since the field of constants of £(SO,,) is the
algebraically closed field C, F(SO,,) must have no new constants and F(SO,,) D F
is a PVE with group SO,,.
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The discussion in [7, Section 4] implies that the matrix

!
ay

2a; b12 bis3 ceo bin

’

_a1 @2
as b12 2z bg]g Ce bgn

— | —a _a2 a3

B = as bis a5 b3 Jas oo ban
_aip o _azp sy a,
an - 1n an 21 a, 3 2an

defines a derivation on the coordinate ring T' = F[Y] of the SO,,-torsor correspond-
ing to the quadratic form given by the matrix

ai
a2

an

which by [7, Lemma 1] is non-trivial.

Since F(Y) = F(X), as a differential field it will be isomorphic to F(SO,).
Therefore, the field of constants of F(Y) is C. In particular, this implies that
F(Y) D F is a no new constant extension. This shows that the function field of
the (non-trivial) SO,-torsor corresponding to Y is a PVE of F with group SO,,.

We point out for later use that the previous argument can be shown in a more
general setting:

Trivialization Lemma. Let E D F be a Picard-Vessiot G-extension with G con-
nected. Then there are a finite extension k O F and a Picard-Vessiot G-extension
K =kE of k such that K = k(G).

In other words, if there is a PVE of F' with group G, then the trivial G-torsor
can be realized over a finite extension of F'. Although this is a known result (see
[14, p. 142, Corollary]), for the convenience of the reader we include a short proof
using the tools that we develop here.

Proof. Let X be a generic point of G. Then E = F(Y) where Y = XP, for a
matrix P with coefficients in F' [7, Section 3]. Let k denote the field generated
over F' by the entries of P. Then k(X) = k(Y) D F(Y) is an algebraic extension.
Therefore, k(G) = k(X) D k is a no new constant extension and thus a Picard-
Vessiot G-extension. Clearly, K = k(X) = kE. O

4. GENERIC EXTENSIONS

First we introduce the following notion, analogous to one for generic polynomial
equations (see Kemper [9]).

Definition 3. A generic extension £ D F for G is called descent generic when the
following condition holds: for any differential field ' with field of constants C there
is a PVE E D F with group H < G if and only if there are f; € F such that the
matrix A(f1,..., fx) is well defined and the equation X' = X A(f1,..., fx) gives
rise to the extension £ D F'.

Theorem 1. The extension F(Y) D F is a generic PVE for SO,,. Furthermore,
it is descent generic.
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ON GENERIC DIFFERENTIAL SO, -EXTENSIONS 1151

Proof. For convenience, we will use the double subscript notation Y;; for a;, ¢ =
1,...,n—1, and put Y;; = b, i < j. We then let A(Y;;) = B.

Suppose that E D F is a PVE with group H < SO,,. Let X, Xy respectively
denote generic points of SO,, and H. Then E = F(Y), where Y = XyP for
some invertible matrix P with coefficients in F. Moreover, there is an F-algebra
homomorphism of coordinate rings

F[XP,det(XP)™'] - F[XyP,det(XgP)™ .

Since Xy P is a generic point for an H-torsor we have that X P is a generic
point for an SO,-torsor, and therefore the (twisted) Lie algebra associated with
the H-torsor is contained in that for the SO, -torsor. In turn, this implies that the
generic point Y satisfies an equation with matrix B = A(fij) for some f;; € F.

Likewise, a specialization A(f;;) of A(Y;;) with f;; € F gives a derivation on
the coordinate ring F[X P, det(X P)~!] of an SO,,-torsor. When extended to the
quotient field this derivation may have new constants. We get a PVE of F' by
taking the quotient field of the factor ring

F[XP,det(XP)™']/M,

where M is a maximal differential ideal. The differential Galois group in this case
is the closed subgroup of SO,, consisting of those elements that stabilize M.
Finally, it is clear that a fundamental matrix for the equation 7' = nA(Y;;)
specializes to one for 7" = nA(f;;) since, on the one hand, a solution of ' = nA(Y;;)
is given by a generic point X P of the SO,-torsor corresponding to the quadratic

form
Y
Yoo
Q =
]./Y11 . Yn—l,n—l
with
Y1
vaes
P =

\/1/Y11 . Yn—l,n—l
and X a generic point of SO,,.
On the other hand, a solution of ' = n.A(fi;) is given by a generic point X P(f;;)
of the SO,,-torsor corresponding to the quadratic form

fu

f
Q(fij) = ”

1/f11 cee fn—l,n—l
with
vam
Vi

P(fi;) = . ) O

VI/fir o facin—
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1152 LOURDES JUAN AND ARNE LEDET

Note. In the case of SO3 we can exhibit a generic point using the classical Euler

parametrization:
1 22 +y? - 22 —w? 2zxw + 2yz 2yw — 22z
= 2yz — 2xw 22 —y? + 22 —w? 2xy + 2zw
24,21 2.2 )
eyt tw 2xz 4 2yw 2zw — 2zy 22—y — 22 +w?

obtained by interpreting the quaternion x + yi+ zj +wk as an isometry by conjuga-
tion on the quadratic space with basis i, j, k, where z, y, z and w are indeterminates
[2, Theorem 3, Chapter 3]. A generic point for the torsor is then

Y=XP= ! X
2 +y? 4 22 +w?
(22 +y? — 22 —w?)Va 2(zw + y2)vV/b 2(yw — xz)/Vab
2(yz — zw)+/a (22 — % + 22 —w?)VD 2(zy + zw) /v ab
2(zz + yw)y/a 2(zw — zy) Vb (22 —y? — 22+ w?)/Vab

Clearly, this matrix permits specialization of a and b to any non-zero values.

Remark. Observe that when the f;; are all 1, the matrix A(f;;) then has the form

0 fi2 fis ... fin
—fi2 0 fes .. fon
—fis —fas 0 oo ban | e Lie(SO,,).
_chln _,].c2n _f37L e 0

Therefore this situation corresponds to the trivial torsor case. In general, if the
fi: are (not all equal) constants, the torsor associated to the quadratic form will
still be trivial and the specialized matrix will be in a Lie algebra isomorphic to

Lie(SOy).

5. REMARKS ON THE GENERAL CASE

In general, when the matrices P parametrizing the G-torsors are not known, it
will not be possible to carry out the same kind of explicit construction done here
for SO,,. In such a situation we can use the generic extension relative to the trivial
torsor [6, Definition 3.1, Theorem 3.3] and obtain the extensions corresponding to
non-trivial G-torsors indirectly:

Assume that G is connected and let £ D F be a generic extension for G relative
to the trivial G-torsor, with equation Z' = A(Y;)Z.

Theorem 2. Let F' be a differential field with field of constants C. There is a
PVE FE D F with differential Galois group H < G if and only if there are a finite
extension k D F, a matrix P with coefficients in k and a specialization Y; — f; € k,
such that the equation Z' = Z(P~YA(f;)P + P~1P’) gives rise to the extension
EDF.

Proof. As before, we let X denote a generic point for G and write Y = X P for
a generic point of the G-torsor with E = F(Y). The proof then follows from the
description of the twisted Lie algebras [7, Section 3] and the Trivialization Lemma
shown in Section 3 of this paper. O
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