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Abstract

Results: Here, we present a comprehensive analysis on the reproducibility of computational char-

acterization of genomic variants using high throughput sequencing data. We reanalyzed the same

datasets twice, using the same tools with the same parameters, where we only altered the order of

reads in the input (i.e. FASTQ file). Reshuffling caused the reads from repetitive regions being

mapped to different locations in the second alignment, and we observed similar results when we

only applied a scatter/gather approach for read mapping—without prior shuffling. Our results

show that, some of the most common variation discovery algorithms do not handle the ambiguous

read mappings accurately when random locations are selected. In addition, we also observed that

even when the exact same alignment is used, the GATK HaplotypeCaller generates slightly differ-

ent call sets, which we pinpoint to the variant filtration step. We conclude that, algorithms at each

step of genomic variation discovery and characterization need to treat ambiguous mappings in a

deterministic fashion to ensure full replication of results.

Availability and Implementation: Code, scripts and the generated VCF files are available at

DOI:10.5281/zenodo.32611.

Contact: calkan@cs.bilkent.edu.tr

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The advancements in high throughput sequencing (HTS) technolo-

gies have increased the demand on producing genome sequence data

for many research questions and prompted pilot projects to test its

power in clinical settings (Biesecker et al., 2009). Any ‘medical test’

to be reliably used in the clinic has to be proven to be both accurate

and reproducible. However, the fast-evolving nature of HTS tech-

nologies make it difficult to achieve full reproducibility.

We recently showed that resequencing the same DNA library

with the same model HTS instrument twice and analyzing the data

with the same algorithms may lead to different variation call sets

(Kavak et al., 2015).

Aside from the potential problems in the ‘wet lab’ side, there may

be additional complications in the ‘dry lab’ analysis due to alignment

errors and ambiguities due to genomic repeats. The repetitive nature

of the human genome causes ambiguity in read mapping when the

read length is short (Treangen and Salzberg, 2012). A 100bp read

generated by the Illumina platform may align to hundreds of genome

locations with similar edit distance. The BWA-MEM (Li, 2013) map-

per’s approach to handle such ambiguity is randomly selecting one lo-

cation and assigning the mapping quality to zero to inform the

variant calling algorithms that the alignment may not be accurate.

Although many algorithms exist for HTS data analysis, only a

handful of computational pipelines for read mapping and variant

calling may considered a ‘standard’ such as those that are commonly

used in large scale genome projects such as the 1000 Genomes

Project (The 1000 Genomes Project Consortium, 2015).

Recently, the Genome in a Bottle Project (Zook et al., 2014) was

started to set standards for accurate HTS data analysis for both re-

search and clinical uses by addressing the differences in detection per-

formances of different algorithms and different sequencing platforms.

In this study, we investigated whether some of the commonly used

variant discovery algorithms make use of this mapping quality infor-

mation, and how they react to genomic repeats. Briefly, we aligned two

whole genome shotgun (WGS) datasets, one low and one high coverage

genome sequenced as part of the 1000 Genomes Project (The 1000
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Genomes Project Consortium, 2015) to the human reference genome

(GRCh37) twice using the same parameters. In the second mapping,

we shuffled the order of reads to make sure that the same random num-

bers are not used for the same reads. We then generated two single

nucleotide variant (SNV) and indel call sets each from each genome.

We observed substantial differences in the call sets generated by

all of the variant discovery tools we tested except VariationHunter/

CommonLAW. However, VariationHunter explicitly requires a

deterministic read mapper, therefore we removed it from further

comparisons. GATK’s HaplotypeCaller showed discordancies of

1.06–1.7% in SNV/indel call sets, where Freebayes showed the most

concordancy (up to 99.2%). Genome STRiP showed the greatest

discrepancy in structural variation calls (up to 25%). Our results

raise questions about reproducibility of callsets generated with sev-

eral commonly used genomic variation discovery tools.

2 Methods

2.1 Data acquisition

We downloaded both whole genome and whole exome sequencing

datasets from the 1000 Genomes Project (The 1000 Genomes

Project Consortium, 2015) FTP server.

2.2 Read mapping, shuffling and BAM file processing

We used Bowtie2 (Langmead et al., 2009), RazerS3 (Weese et al.,

2012), BWA-MEM (Li, 2013) and mrFAST (Alkan et al., 2009)

(Supplementary Table S2) to align the reads generated by the Illumina

platform to human reference genome (GRCh37) using default op-

tions. For testing the effects of read order, we randomly shuffled the

reads in the FASTQ file using an in-house program, while keeping the

relative order of read pairs intact. The reason for reshuffling the reads

is the following. In our small scale test, we noticed that BWA-MEM

uses the same pseudorandom number generator seed in all mapping

experiments. This causes the same ambiguously mapping read to be

randomly assigned to the same position when the read order is kept.

However, when we shuffle the reads, the random number that corres-

ponds to the read changes, causing it to be placed to another random

location. Note that, the DNA molecules are hybridized randomly to

the oligos on the flow cell, thus, our read randomization simulates the

randomness in cluster generation. Next, we used SAMtools (Li et al.,

2009) to merge, sort and index BAM files, and Picard to remove PCR

duplicates (MarkDuplicates). We then followed the GATK’s ‘best

practices’ guide (Van der Auwera et al., 2013) to realign around

indels (RealignerTargetCreator and IndelRealigner) and recalibrate

base quality values (BaseRecalibrator). We used the resulting BAM

files for SNV, indel and structural variation (SV) calling. The names

and version numbers of the tools we used are listed in Supplementary

Table S2.

2.3 SNVs and indels

We used GATK HaplotypeCaller (DePristo et al., 2011), SAMtools

(Li et al., 2009), Freebayes (Garrison and Marth, 2012) and

Platypus (Rimmer et al., 2014) to characterize SNV and indels. We

followed the developers’ recommendations and default parameters

for all variant calling tools, including potential false positive filters.

Specifically, we used both Variant Quality Score Recalibrator and

SnpCluster methods to filter out false positives in GATK call sets,

and for other tools we required a variant quality of at least 30. For

GATK, we used the GATK Resource Bundle version 2.8 as the refer-

ence genome and its annotations, and variant score recalibration

training material.

2.4 Structural variation

For structural variation discovery using the BWA-generated BAM files,

we tested the reproducibility of the calls produced by DELLY (Rausch

et al., 2012), LUMPY (Layer et al., 2014), Genome STRiP (Handsaker

et al., 2015) and VariationHunter/CommonLAW (Hormozdiari et al.,

2009, 2010, 2011). We note that VariationHunter explicitly remaps

reads to the reference genome using mrFAST, which is a deterministic

mapper, therefore we removed it from further comparisons. We used

default parameters for each tool and followed recommendations in

relative documentations.

2.5 Variant annotation and comparison

We downloaded the coordinates for segmental duplications, genes,

coding exons and common repeats from the University of California

Santa Cruz (UCSC) Genome Browser (Kent et al., 2002). We then

used the BEDtools suite (Quinlan and Hall, 2010) and standard

UNIX tools to calculate the discrepancies among the call sets and

their underlying sequence annotations.

2.6 Code and script availability

We released our FASTQ read shuffling tool, shell scripts to map

reads and call variants and the VCF files generated for this study at

the Zenodo data archival site. The DOI for this submission is

10.5281/zenodo.32611.

3 Results

Data and tools. We downloaded two WGS datasets, one at low

coverage (�5X, HG00096) and one at high coverage (�44X,

HG02107), and 12 whole exome shotgun sequence (WES) datasets

with coverage ranging from 120X to 656X from the 1000 Genomes

Project (The 1000 Genomes Project Consortium, 2015)

(Supplementary Table S1). We tested the behaviors of three different

read mappers, four SNV/indel callers and three SV characterization

algorithms (Supplementary Table S2, Section 2).

Small scale test for ambiguous mapping. We first sub sampled 1

million reads from HG00096, and mapped it to the human reference

genome (GRCh37) using Bowtie2, RazerS3, mrFAST and BWA-

MEM (Li, 2013). Next, we randomly shuffled the reads in the

FASTQ file (Section 2) and remapped the reordered reads to

GRCh37 using the same tools. The read order randomization simu-

lates the random nature of DNA hybridization on the flow cell. We

confirmed that mrFAST and Bowtie2 generated the same align-

ments, as described in their respective documentations, where BWA-

MEM mapped several reads to different locations due to placing

such reads to random locations (Supplementary Table S3).

However, although Bowtie2 was not affected by read order, it

reported different locations when the read names are changed (Heng

Li, personal communication).

Read mapping in parallel. Due to the large number of reads gen-

erated by HTS platforms, it is a common practice to use scatter/

gather operations (or, its implementation using the MapReduce

framework) to distribute the work load to large number of CPUs in

a cluster. This approach leverages the embarrassingly parallel nature

of read mapping, where the FASTQ files that typically contain>50

million reads are divided into ‘chunks’ with just 1–2 million reads

per file, the reads in each chunk are mapped separately, and the re-

sulting BAM files are combined. Reasoning from our observation of

different random placements of ambiguous reads when the reads are

shuffled, we employed the scatter/gather method to map 1 million

reads twice, using different chunk sizes. In this experiment, we
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divided the reads into chunks of 50 000 and 100000 read pairs,

mapped them using BWA-MEM and observed mapping discordance

ratios similar to that of random shuffling (2.1%, Supplementary

Table S4). We also observed less pronounced differences in read

mapping when different number of threads are used for the same

FASTQ file (0.05%, Supplementary Table S5).

WGS analysis. We then repeated the same mapping strategy to

the full versions of all datasets we downloaded, but we mapped

using only BWA-MEM, since we observed the other mappers to be

deterministic based on the small scale test. We also investigated

BWA-MEM’s behavior of random placements using the HG00096

genome, and interestingly, although BWA-MEM reported zero map-

ping qualities for most of the discrepant read mappings (�97%), it

also assigned high MAPQ values (�30) for a fraction of them

(�0.75%; Supplementary Table S6).

Single nucleotide variants and indels. We used GATK’s

HaplotypeCaller, Freebayes, Platypus and SAMtools to characterize

SNVs and indels within the HG00096 and HG02107 genomes using

recommended parameters for each tool (Section 2). We did not

evaluate GATK UnifiedGenotyper since it is deprecated by its devel-

opers. We then compared each call set generated by the same tools

using the reads in original versus shuffled order using BEDtools

(Quinlan and Hall, 2010), and found up to 1.70% of variants to

be called in one alignment of the same data but not in the other

(Table 1). Next, we investigated the underlying sequence context of

the SNVs and indels differently detected using the same tools with

two different alignments (i.e. original versus shuffled order). As ex-

pected, 72–80% of the discrepant calls were found within common

repeats and segmental duplications (Supplementary Tables S7–S10).

In most genomic analysis studies duplications and repeats are

removed from analyses; however, in this study we observed discrep-

ancies in functionally important regions (i.e. coding exons). For

example, 253–1249 SNVs that were called from one alignment but

not another map to coding exons (Supplementary Table S7).

Furthermore, 1543 of the 1884 (81.9%) discordant exonic SNVs

predicted by GATK HaplotypeCaller (either original or shuffled

order, non-reduntant total) did not intersect with any common re-

peats or segmental duplications. Freebayes, Platypus and

SAMtools predictions were more reproducible, as>98.5% of the

calls were identical, and the number of exonic discrepant SNV calls

were substantially lower than that of GATK’s (Supplementary Table

S8–S10).

Structural variation. Next, we analyzed the deletion calls pre-

dicted using DELLY, LUMPY and Genome STRiP. All three SV de-

tection tools we tested showed 3.5–25.01% difference in call sets

using the original versus shuffled order read datasets (Table 1).

Similarly, the discrepancies were mostly found within repeats and

duplications, however, only a couple of deletion calls intersected

with coding exons (Supplementary Tables S11, S15 and S16).

Using DELLY, we predicted �3% of deletion, �4% of tandem

duplication, �6% of inversion and �3.6% of translocation calls to

be specific to a single alignment, and>91% of these differences

intersected with common repeats. Owing to the difficulties in pre-

dicting these types of SVs, more discrepant calls intersected with

functionally important regions (i.e. genes and coding exons;

Supplementary Tables S12–S14).

Reusing the same alignments. More interestingly, when we ran

GATK’s HaplotypeCaller on the same BAM file twice we observed

discrepant calls similar to using two different BAM files generated

from original versus shuffled read order (Supplementary Table S17).

Other tools produced no discrepancies (Supplementary Tables S18–

S26). Detailed analysis of these discordancies revealed that 21 497

of the 21510 (>99.9%) ‘second-run specific’ HaplotypeCaller calls

were initially found in the first run, however, filtered in the variant

Table 1. Summary of SNV, small indel and deletion calls

Tool HG00096

Original Shuffled Diff (%)

All Private All Private

HaplotypeCaller 2 279 678 10 898 2 294 808 26 028 1.06

Freebayes 2 400 545 992 2 400 595 1042 0.08

SAMtools 2 277 691 2683 2 277 674 2666 0.24

Platypus 2 022 412 2342 2 022 294 2224 0.23

DELLY 1325 37 1323 35 5.29

LUMPY 1366 12 1363 9 1.55

Genome STRiP 1218 25 1212 25 4.04

HG02107

Original Shuffled Diff (%)

All Private All Private

HaplotypeCaller 4 654 338 54 051 4 625 648 25 361 1.70

Freebayes 5 174 644 4715 5 189 285 19 356 0.46

SAMtools 5 355 604 9838 5 355 053 9287 0.36

Platypus 4 642 336 6200 4 642 300 6164 0.27

DELLY 13 517 831 13 505 819 11.51

LUMPY 9786 182 9853 249 4.49

Genome STRiP 3452 482 3477 508 25.01

We list the number of SNV, small indel and deletion calls in the genomes of HG00096 and HG02107 characterized by different tools using the reads in the ori-

ginal (i.e. as released by 1000 Genomes Project) and shuffled order. Calls that are specific to one order of reads are listed as Private. The difference percentage is

calculated as the total number of Private calls divided by the number of calls in the union set (i.e. jðOnSÞ [ ðSnOÞj
jO[Sj ; O, original; S, shuffled).

aDeletions> 100 bp only.
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quality score recalibration (VQSR) step. Similarly, 10631 of the

10 646 ‘first-run specific’ HaplotypeCaller calls were eliminated by

VQSR in the second run. We then performed a line-by-line analysis

in such calls and found that the VQSLOD score was calculated dif-

ferently, although the training data were the same in both runs. We

speculate that this is due to the random sampling of the training

data to reduce computational burden (This random subsampling

can be seen in the GATK code VariantDataManager.java at https://

github.com/broadgsa/gatk-protected/(commit ID: 8ea4dcab8-

d78e7a7d573fcdc519bd0947a875c06, line 255).). We then con-

firmed our observation by rerunning the VQSR filter on one of the

VCF files five times. Each iteration of the VQSR filtering generated

a different set of VQSLOD values, causing different variants to be

filtered. However this effect seems to be diminished when multiple

samples are used simultaneously.

Exome analysis. Finally, we tested the effect of discordant call

sets generated by GATK even with the same alignment files using 12

WES datasets from the 1000 Genomes Project (Supplementary

Table S1). We followed the same alignment, post-processing for the

WES datasets. We then generated two call sets each using

HaplotypeCaller on the same BAM files, followed with VQSR filter-

ing. In this experiment, we used the multisample calling options.

HaplotypeCaller produced discordant calls at 1–3% rate

(Supplementary Tables S17 and S27).

4 Discussion

In this article, we documented the effects of different approaches to

handle ambiguities in read mapping due to genomic repeats. We

focused on more widely used computational tools for read mapping

and variant calling and observed that random placement of ambigu-

ously mapping reads have an effect on called variants. Although dis-

cordancies within repeats are less of a concern due to their relatively

negligible effects to phenotype, we also discovered hundreds to thou-

sands variants differently detected within coding exons.

HaplotypeCaller showed the most discrepancies, where the discord-

ant calls were less pronounced in Freebayes and Platypus results.

Using the same alignments twice, we found that the callers themselves

are deterministic, however, they return different call sets when the

same data is remapped. Interestingly, we observed differences in call

sets generated using HaplotypeCaller even when the same alignments

and variant filtration training datasets were provided. Although we

could not fully characterize the reasons of this observation with

GATK, since HaplotypeCaller algorithm is yet unpublished, we

observed that the differences were mainly due to differences in calcu-

lation of the VQSLOD score by the VQSR filter (Section 3).

Therefore, a second source of randomness we observed is within the

training step of the VQSR filter, which is specific to GATK.

Recommendations. We, point out that randomized algorithms may

achieve better accuracy in practice, albeit without 100% reproducibil-

ity. Full reproducibility could only be achieved through using determin-

istic methods. Therefore, for full reproducibility, we recommend to opt

for a deterministic read mapper, such as RazerS3 mrFAST, etc., and a

deterministic variant caller, such as Platypus or Freebayes for SNV and

indels. We note that all SV calling algorithms we surveyed in this article

are deterministic algorithms; therefore, the SV call sets can be fully re-

producible when they are used together with a deterministic mapper.

Another approach may be more strict filtering of variants that map to

repeats and duplications, however, this may result in lower detection

power in functionally important duplicated genes such as the MHC

and KIR loci. It may be possible to work around the GATK’s

VQSLOD calculation problem outlined above either by analyzing mul-

tiple samples simultaneously, or by setting the maxNumTrainingData

parameter and other downsampling parameters to high values, how-

ever, we recommend disabling these randomizations by default to be a

better practice for uninformed users. In our tests, changing only the

maxNumTrainingData parameter did not fully resolve the variant fil-

tration problem, which points that there may be other downsampling

and/or randomization step within the VQSR filter.

Conclusion. Mapping short reads to repetitive regions accurately

still remains an open problem (Treangen and Salzberg, 2012).

RazerS3 and mrFAST use edit distance and paired-end span distance

to deterministically assign a single ‘best’ map location to ambigu-

ously mapping reads, where BWA-MEM selects a random map loca-

tion all mapping properties are calculated the same. BWA-MEM

assigns a zero mapping quality to such randomly selected align-

ments. This approach is still valid since it informs the downstream

analysis tools for problematic alignments, however, as we have

documented in this article, several variant discovery tools do not

fully utilize this information. Complete analysis of the reasons for

these discrepancies may warrant code inspection and full disclosure

of every algorithmic detail.

The differences in call sets we observed in this study have similar

accuracy when compared to 1000 Genomes data (Supplementary

Tables S28 and S29). In addition a recent study did not find any sig-

nificant difference between deterministic and non-deterministic

mappers in terms of accuracy (Cornish and Guda, 2015). It is still

expected to have differences between different algorithms and/or

parameters but obtaining different results should not be due to the

order of independently generated reads in the input file. We may

simply count these discordancies as false positives and negatives,

and such discordancies may not have any adverse effects in practice,

however, we argue that computational predictions should not be af-

fected by luck, and inaccuracies in computational results should be

deterministic so they can be better understood and characterized.

We are in exciting times in biological research thanks to the develop-

ment of HTS technologies. However, under the shining lights of the

discoveries we make in this ‘big biology’ revolution, it can be easy to

overlook that the methods matter. No genomic variant characteriza-

tion algorithm achieves 100% accuracy yet, even with simulation

data, but it is only possible to analyze and understand the shortcom-

ings of deterministic algorithms, and impossible to fully understand

how an algorithm performs if it makes random choices.
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