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Abstract 

This dissertation addresses the problem of generating feasible assembly sequences for a 

mechanical product from a geometric model of the product. An operation specifies a motion 

to bring two subassemblies together to make a larger subassembly. An assembly sequence 

is a sequence of operations that construct the product from the individual parts. 

I introduce the non-directional blocking graph, a succinct characterization of the block- 

ing relationships between parts in an assembly. I describe efficient algorithms to identify 

removable subassemblies by constructing and analyzing the NDBG. 

For an assembly A of n parts and m part-part contacts equivalent to k contact points, 

a subassembly that can translate a small distance from the rest of A can be identified 

in 0{mk2) time. When rotations are allowed as well, the time bound is 0(mk5). Both 

algorithms are extended to find connected subassemblies in the same time bounds. All free 

subassemblies can be identified in output-dependent polynomial time. 

Another algorithm based on the NDBG identifies subassemblies that can be completely 

removed by a single translation. For a polyhedral assembly with v vertices, the algorithm 

finds a removable subassembly and direction in 0(n2v4) time. When applied to find the set 

of translations separating two parts, the algorithm is optimal. 

A final method accelerates the generation of linear assembly sequences, in which each 

operation mates a single part with a subassembly. The results of geometric calculations are 

stored in logical expressions and later retrieved to answer similar geometric queries. Several 

types of expressions with increasing descriptive power are given. 

An assembly sequencing testbed called GRASP was implemented using the above meth- 

ods. From a standard three-dimensional model of a product, GRASP finds part contacts 

and motion constraints, and constructs an AND/OR graph representing a set of geomet- 

rically feasible assembly sequences for the product. Experimental results are shown for 

several complex products. 

IV 
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Chapter 1 

Introduction 

Product creation has traditionally been separated into at least two stages: first a designer 

specifies the geometry and physical qualities of the finished product to perform the function 

needed, then a manufacturing engineer takes over and tries to find a way to manufacture 

the product. If it is too difficult to manufacture, the product is sent back for redesign, and 

the cycle repeats. Because the design of the product and the design of the manufacturing 

process are only loosely coupled, many cycles may be required to find a satisfactory design, 

while the final artifact usually remains more expensive to build than necessary. 

Concurrent design of a product and the process to make it is one way to address this 

problem. In concurrent design, the manufacturing process is created simultaneously with 

the product plans, so that constraints arising from manufacturing can be directly incor- 

porated into the design, thereby reducing global iteration. In addition, automated tools 

support this process at a high level. Human engineers use computer workstations to build 

a shared product model, which is continually updated and critiqued to give the design- 

ers manufacturing and servicing feedback about the design. Some of the agents affecting 

the developing product model are computer programs, which do process planning, check 

for consistency, and perform other tasks previously left to human engineers. Examples of 

concurrent engineering systems under development are the NextCut [22, 23] and Design- 

World [29] systems. 
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1.1    Assembly Planning 

A proficient assembly planner will be an integral part of any concurrent design system. A 

good assembly process can reduce assembly time, raise quality and reliability, allow greater 

flexibility in responding to equipment failures, and reduce capital costs for robots and 

fixtures. Furthermore, many of the manufacturing constraints that influence a design come 

from the need to assemble constituent parts. For example, the assembly scheme influences 

the tolerances imposed on individual parts, the shape of mating surfaces, and the design of 

fasteners. 

Assembly planning for production is typically performed by an industrial engineer. Ser- 

vice and repair technicians devise reasonably efficient and error-free disassembly and re- 

assembly plans on the fly. However, an automated assembly planner would have great 

advantages, especially when part of a concurrent design system: 

• Assembly planning is complicated and time-consuming for a human. Beside avoiding 

the high cost of an engineer's time, an assembly planning program will accelerate 

the generation of an assembly plan. With the higher planning speed comes faster 

introduction of manufacturing constraints into the design process, as well as shorter 

time-to-market. 

• Intuition, rules of thumb, and approximate reasoning help human engineers to quickly 

find good assembly plans, but they also may lead them to overlook the best assembly 

plan. A computer assembly planner could enumerate all feasible assembly plans to 

ensure that no better procedure exists. Furthermore, by exploring the set of all plans, 

or "plan space," a designer could come to a better understanding of the manufacturing 

aspects of the design. 

• Current methods for evaluating the manufacturing aspects of a design, such as the De- 

sign for Assembly analysis of Boothroyd and Dewhurst [12], require extensive human 

judgement, and designers complain that they are tedious to use. A fast, automatic 

assembly planner would allow a designer to ask "what if questions, quickly find the 

consequences of design decisions, and more easily evaluate the manufacturing impact 

of alternative designs. 

• Small batch manufacturing requires that assembly machines, people, and processes 

switch from one product to another quickly and often. An automated planner could 



1.1.   ASSEMBLY PLANNING 3 

help to merge the assembly schemes for several products and allow faster changeover. 

In addition, small batch size only amplifies the importance of low capital costs and 

fast creation of a manufacturing process. 

• A hybrid system, allowing a human to work in tandem with an automated assembly 

planner, could relieve the engineer from much of the repetitive and tedious work of 

devising an assembly plan. Meanwhile, the computer would check the human rea- 

soning for consistency. A more competent, efficient, and accurate assembly planning 

system would result. 

An automated assembly planner would have great utility in both concurrent engineering 

and more mainstream manufacturing planning. In answer to these needs, a body of work 

has arisen in recent years attempting to systematize and automate the assembly planning 

process (see below). The concurrent design paradigm imposes the following demands on an 

assembly planner, although these qualities are to be desired in any such system: 

Autonomy Using the assembly planner must require minimal effort from the designer. A 

human will quickly tire of doing detailed geometric reasoning, or even supplementing 

the assembly model to help the planner. As a result, the planner should build its 

model of the target assembly from readily available data, such as a CAD model of the 

product. Furthermore, the program must include automated geometric and physical 

reasoning capabilities to allow it to generate assembly plans from just the assembly 

model given by a designer. Any required human input should be sparse, be useful to 

the designer, and lack tedium. 

Accuracy If an assembly planner returns bad assembly plans or fails to find plans when 

they exist, it will quickly lose what little trust the human will place in the computer. 

Thus the employed geometric reasoning methods cannot ignore important details, the 

search algorithms must be correct and complete, and approximations must be relevant 

to the assembly planning domain. 

Speed If the engineer has to wait a long time to get assembly feedback from the system, it 

will be used infrequently, and the advantages of concurrent design will be lost. Thus 

the planner must finish its work in seconds or minutes instead of hours or days. To 

accomplish this it might need to work incrementally, modifying previous plans instead 

of generating new ones from scratch. 
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This dissertation describes progress toward the goal of fulfilling the above demands. Al- 

though this work is inspired by the concurrent design framework, the methods described 

here have broad application to assembly planning in general. 

1.2    Assembly Sequencing 

Given a complete description of a target assembly and the resources available for its man- 

ufacture, assembly planning refers to the process of creating a detailed manufacturing plan 

to create the whole from the separate parts. The assembly planning problem in general in- 

cludes such problems as work floor scheduling, fixture design and manipulation, feeder and 

tool selection, and robot path planning. A full treatment of assembly planning is beyond 

the scope of this work. 

This dissertation concerns the subproblem of assembly planning that is commonly called 

assembly sequence planning, or assembly sequencing. Assembly sequencing attempts to dis- 

cern and represent the constraints on assembly plans that emerge strictly from the geometry 

and structure of the product itself, without considering the influence of the "environment" 

on the assembly process. The need to grasp parts, influences of fixtures, or movements of 

any objects other than the components of the assembly are not considered; only the parts 

and their relative positions are significant. Since the results of assembly sequencing are 

independent of the technology used to assemble the product, assembly sequencing is well 

suited to concurrent design, where manufacturing analysis is needed even though the final 

assembly technology may not be known. 

The result of assembly sequencing is a set of assembly operations and constraints on 

their ordering. Each operation specifies a motion that brings two or more subassemblies 

together to make a larger subassembly. Any ordering of the operations that obeys the 

sequence constraints is called an assembly sequence. An assembly plan is created from an 

assembly sequence by adding details such as fixtures, orientations, and grasping locations, 

and taking into account the corresponding new constraints. These added constraints might 

make a particular assembly sequence impossible to execute, but any feasible assembly plan 

can be generated from its corresponding valid assembly sequence. 

I concentrate specifically on geometric assembly sequencing, the automatic generation 

of assembly sequences satisfying geometric constraints. From just a geometric model of 

the goal assembly and the individual parts, a geometric sequencer computes a set of part 



1.3.   PREVIOUS WORK 

_ 

ri 

■■•...-. 

Screw2 | 

Lid Cargo 

Screwl E r3 

Box 

Figure 1.1: A simple assembly 

motions to construct the product from the parts, such that no parts collide in the process. 

Mechanical and physical concerns, such as part tolerances, strains, and clamping forces, are 

not addressed. A geometric sequencer must identify subassemblies, analyze part contacts, 

find possible directions of motion, and reason about blocking relationships between parts 

and subassemblies. 

For example, consider the simple crate assembly shown in figure 1.1. The input to the 

assembly sequencer consists of just the geometric models of the individual parts and their 

final positions as shown. An assembly sequence for the crate is any set of motions that 

bring the parts into their final relative positions from separate starting positions. Because 

the parts have little interaction in their unassembled configuration, each operation in the 

assembly sequence can be specified in terms of the parts involved and their relative motions. 

One possible assembly sequence for the crate is as follows: 

1. Translate the cargo into the box from the left. 

2. Translate the lid into position on the box from above. 

3. Screw screwl into the lid and box from the left. 

4. Screw screw2 into the lid and box from the left. 

1.3    Previous Work 

The state of the art in assembly sequencing consists of a broad array of techniques, each 

addressing certain aspects of the problem. This work can be roughly divided into Artificial 

Intelligence approaches to planning, planners specifically designed for assembly sequencing, 

physical reasoning to validate single assembly operations, and computational geometry ap- 

proaches. The summary below is an overview of selected work; additional related research 
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is described where relevant throughout this thesis. 

1.3.1 Artificial Intelligence Planning 

STRIPS, NOAH, and SIPE are good examples of traditional AI planning systems [28, 57, 

62]. The blocks world, an early planning domain in Artificial Intelligence consisting of blocks 

that can be stacked and unstacked, is a primitive assembly planning domain. NOAH was 

originally aimed at supplying instructions to a human to repair an air compressor, including 

disassembly and assembly plans. In typical domains for these planners, actions are quite 

varied (for instance moving between rooms, grasping objects, recharging batteries), while 

geometric constraints are expressed in a few simple logical predicates, such as 0N(A, B) 

or IN (pen, Rooml). In contrast, an assembly planner need only consider a few types of 

operations (joining two subassemblies, certain fixturing operations), while the constraints 

arising from geometric models are so complicated that expressing them in a logical notation 

would be exhausting and inefficient. Hence AI planning techniques seem best suited to 

handling the non-geometric parts of the assembly sequencing problem, while other methods 

are used to perform geometric reasoning. 

1.3.2 Assembly Sequencing 

In the last decade, a number of systems have been targeted specifically at assembly se- 

quencing. These systems differ both in their representation for assembly sequences and in 

the reasoning techniques they use to identify assembly operations that satisfy geometric 

and mechanical constraints. Representations for assembly sequences will be discussed in 

section 2.5. Several important approaches to verifying assembly operations are described 

below. 

Bourjault [14] describes an interactive system for generating the assembly sequences for 

a product. The method starts with a liaison graph of the assembly, which is a graph of 

connections between the parts. Liaisons usually, but not always, involve contact between 

the two parts. An assembly sequence corresponds to a particular order in which the liaisons 

can be established. Geometric reasoning is supplied by a human, who answers carefully 

constructed, yes-no questions about whether certain liaisons can be established before or 

after others. From the answers to these questions, the assembly sequences for the product 

can be inferred. 
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De Fazio and Whitney [25] drastically reduce the number of questions and answers 

required to represent the physical knowledge in Bourjault's method. The user answers 

each question with a logical formula characterizing the situations in which a liaison can 

be established. Unfortunately, these formulas become complicated and difficult to create 

accurately for large assemblies, even for a human. 

Baldwin [5] later includes simple geometric checks to answer some questions automati- 

cally, further reducing the number of questions to the user in the previous two techniques. 

A human is still used as the final judge of assembly operations. 

Hörnern de Mello and Sanderson [34, 36] use disassembly planning to automatically 

generate assembly sequences. Disassembly planning computes a way to disassemble the 

product, then reverses the sequence to produce an assembly sequence. To identify a single 

feasible operation, the method generates all possible subassemblies and tests the operation 

removing each subassembly from the rest of the assembly. An operation is tested by a 

predicate that includes geometric, mechanical, and stability checks. Local freedom is the 

main geometric test computed in [34]; a subassembly is locally free when it can move a small 

distance relative to the rest of the assembly considered as a solid. In this generate-and-test 

approach, a number of candidate operations exponential in the number of parts may be 

generated before a feasible operation is found, rendering the approach impractical for large 

assemblies. 

Wolter [68, 69] computes linear assembly sequences for a product, in which each opera- 

tion joins a single part to a subassembly. The sequences are optimized according to certain 

criteria. However, the input to the method includes possible motions for each part, and 

sets of other parts that interfere with each motion. No systematic way of generating the 

possible part motions is given, and the sequencer does no geometric computation. 

A number of other approaches to automatic assembly sequencing have been proposed. 

Lee and Shin [44] describe a number of heuristics to group parts of an assembly into sub- 

assemblies, but parts can only move along the major axes, and some operations may not 

be found. Hoffman [33] generates disassembly sequences involving complicated motions. 

However, some assembly sequences may be missed, and as in [68] the directions of motion 

are given as input. 

Efficient methods are needed that operate directly from the geometric models of the 

assembly, yet are guaranteed to find an assembly sequence if one exists. 
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1.3.3 Motion Planning 

An assembly sequencing problem can be seen as a motion planning problem with multiple 

moving objects. Each part is an independent robot, and a collision-free path must be found 

for the individual parts to move from an unassembled state to the assembled state. However, 

the general motion planning problem is known to take time exponential in the number of 

degrees of freedom; for an assembly of n rigid parts this formulation yields 6n degrees of 

freedom, so using a general path planner in this naive way is clearly impractical. 

Motion planning plays a more limited role in determining feasible insertion trajecto- 

ries for single assembly operations. General motion planning algorithms are described by 

Latombe [42]. However, many general methods make assumptions that are not compatible 

with assembly planning, while answering more complex questions than are needed. For 

instance, some motion planners approximate the shapes of objects or assume the objects 

do not come in contact, both drawbacks for assembly planning (see for instance [7]). On 

the other hand, relatively simple geometric techniques can test the feasibility of the large 

majority of assembly operations accurately (see Chapter 3). 

Some motion planning methods have been developed specifically to suit the requirements 

of assembly planning. Valade [61] finds disassembly trajectories by calculating the interac- 

tions between concavities and objects and trying to reduce those interactions, until the parts 

are separated. In the preimage backchaining approach to fine-motion planning [43, 46], the 

uncertainty of both sensing and control are modeled explicitly to find guaranteed plans to. 

achieve a goal despite the high relative uncertainties present in assembly operations. Lastly, 

Pai and Donald [50] present a method for analyzing insertion of flexible parts by modeling 

them as compliant connections between rigid bodies. 

The above methods are useful to verify the feasibility of individual assembly operations. 

Unfortunately, as in [34] they all require that a large number of assembly operations be 

generated and then tested; none supply a way to generate only those operations that satisfy 

the constraints. 

1.3.4 Computational Geometry 

Research in computational geometry addresses limited cases of geometric assembly sequenc- 

ing. A survey of methods for finding separating motions for parts in two and three dimen- 

sions is given in [60].   In [48] lower bounds on the number of simultaneous translations 
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Figure 1.2: An Assembly Sequencing Architecture 

necessary for separating objects are derived. Dawson [24] shows that two or more star- 

shaped objects can always be separated by translating the objects in different directions 

simultaneously. In addition, it is shown in [24] that for some assemblies of convex polyhedra, 

no individual parts are removable by a single translation. 

Arkin et al. [3] use the concept of a monotone path between obstacles to deduce a 

removable subassembly and a single extended translation to remove it. However, the parts 

are limited to polygons in the plane, and the extension to three dimensions is not obvious. 

Pollack et al. [54] consider sequences of translations to separate polygons. The algorithm is 

limited to planar assemblies of two parts, but is able to find separating motions consisting 

of several distinct translations. See [31, 58] for additional special cases of assembly planning 

problems. Most of these methods are limited to two dimensions or allow only polyhedral 

parts; in addition, it is unclear how additional constraints, for instance arising from clamping 

forces or stability, can be included. 

1.4    Contribution 

Assembly sequences are highly constrained by geometry. However, little of the above re- 

search considers the tight interaction between sequencing and geometry explicitly. Some 

of the approaches assume geometric reasoning finishes before the sequences are generated 

(such as [25, 68]), while others consider geometric reasoning a black box to test operations 

(as in [34]). The more powerful geometric techniques are considered tools to test single op- 

erations. As a result, the sequence generation and geometric reasoning modules are loosely 

coupled, as in figure 1.2. Those systems that consider both sides of the problem simplify 

the reasoning or are inefficient for all but the smallest assemblies. 
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An approach is needed that allows efficient generation of assembly sequences that sat- 

isfy nontrivial geometric constraints. Geometric techniques must be considered and tested 

within the context of assembly sequencing on real assemblies. This thesis describes the 

following progress toward the goal of efficient geometric sequencing. 

Experimental Testbed I describe a practical approach to generating assembly sequences 

strictly from a geometric model of the target assembly. This approach has been implemented 

as an assembly sequencing testbed called GRASP. GRASP is organized into modules that 

can be replaced individually to test new methods for solving subproblems. Basic modules 

accomplish geometric calculations using straightforward procedures. By substituting mod- 

ules incorporating the more sophisticated algorithms given below, these new algorithms can 

be tested experimentally on real assemblies and compared to results with the basic modules. 

GRASP has planned assembly sequences for real assemblies of up to 42 parts. 

Partitioning for Local Motions I introduce a succinct representation of the blocking 

relationships between parts in an assembly, called the non-directional blocking graph (or 

NDBG). An efficient algorithm is given to identify subassemblies that are locally free in 

an assembly, by constructing and analyzing a NDBG for the assembly. Local freedom is 

a necessary constraint on assembly operations, and in experiments it has proven to be a 

powerful pruning constraint. Specifically, consider an assembly A of n parts, with m con- 

tacts between them that can be described as k point-plane contact constraints. This type 

of contact includes most contacts in real assemblies. The procedure PA RTITION determines 

whether a locally free subassembly of A exists, and finds one such subassembly and a le- 

gal motion direction in 0(mk2) time when motions are restricted to translations, and in 

0(mk5) time for general rigid motions including rotations. When desired, both subassem- 

blies can be constrained to be connected with the same time bound. The set of all s locally 

free subassemblies can be found in output-dependent time 0(msk2) for translations and 

0{msk5) time for general rigid motions. PARTITION performs well in experiments on real 

assemblies. 

Partitioning for Extended Motions I describe a variation of the PARTITION proce- 

dure that identifies a subassembly that can be completely removed by a single extended 

translation, for polyhedral assemblies. This procedure uses an extension of the NDBG. 

When the n parts of the assembly have a total of v vertices, the algorithm identifies a 
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single removable subassembly in time 0(n2v4). When applied to find the set of translations 

separating two parts, the algorithm requires time 0(v4), which is optimal in the worst case. 

Re-using Geometric Results Finally, a method is given to re-use geometric results, 

thereby reducing the geometric computation required to produce linear assembly sequences. 

Salient information is extracted from each geometric test and stored in a propositional logic 

expression based on the presence and absence of individual parts. The expressions are stored 

and later retrieved to answer similar geometric queries. The method can also be used to 

reduce the number of questions to a human when doing interactive assembly sequencing. 

Several versions of the expressions with increasing descriptive power have been implemented 

and tested as plug-in modules for GRASP, resulting in large gains in assembly sequencing 

speed. 

1.5    Outline 

The rest of this dissertation is organized as follows: 

In Chapter 2,1 define the geometric assembly planning and assembly sequencing prob- 

lems using a configuration space formalization. Within this framework, I further define 

notions such as assembly operations, subassemblies, and several classes of assembly se- 

quences. Representations of assembly sequences are described and their corresponding 

classes of sequences identified. 

Chapter 3 describes a basic approach to geometric assembly sequencing and its im- 

plementation in an assembly sequencing testbed. From the three dimensional geometric 

models of a product, a contact graph is constructed and used to build an AND/OR graph 

representing possible assembly sequences. Geometric calculations test assembly operations 

for feasibility. An interface to an engineer incorporates human expertise when desired. The 

techniques are implemented in GRASP, a geometric assembly sequencing testbed used to 

perform experiments using different sequencing methods. 

The next three chapters describe methods that can be used instead of the basic proce- 

dures to make the assembly sequencing process more efficient. Chapter 4 describes PAR- 

TITION, an algorithm to find all ways to feasibly decompose an assembly into two sub- 

assemblies according to local motion constraints arising from the contacts between parts. 
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The algorithm allows either translational or general rigid motions, and can impose a con- 

nectedness constraint on the subassemblies produced. Experiments on real assemblies are 

described for an implementation of the algorithm that is well-suited for practical use. 

Chapter 5 describes a variation of the PARTITION algorithm that identifies a subassem- 

bly that can be removed by a single extended translation. The special case of finding 

separating motions between two polyhedra is shown to be worst-case optimal. An imple- 

mentation and experiments with randomly generated assemblies are described. 

Chapter 6 concentrates on linear assembly sequences, where one of the two subassemblies 

in each assembly task is restricted to be a single part. In this domain I describe precedence 

expressions (or PEs), whereby the geometric reasoner returns a symbolic description of the 

reasons for each result, allowing re-use of previous results. I give two versions of the method: 

one in which the PEs are inherited from assembly to subassembly, and one in which they 

are stored globally. The global PEs are a compact, implicit representation of the set of 

assembly sequences. Several types of PEs with increasing descriptive power are given. I 

analyze the theoretical complexity of the methods for limited cases, and show experimental 

results on real assemblies. 

Finally, in Chapter 7 I conclude, stress the limitations and contributions of the work 

described here, and identify promising directions for future research. 



Chapter 2 

Geometric Assembly Planning 

Assembly tasks are a particular case of manipulation tasks, which consist of a robot mov- 

ing objects into a desired goal configuration. In this chapter I present a formal geometric 

definition of the manipulation planning problem, and then specialize it to yield a definition 

of the assembly planning problem. An assembly plan can then be defined as a solution to 

an assembly planning problem. A subproblem of assembly planning called the assembly se- 

quencing problem is then described. While an assembly plan is a complete plan to construct 

a product from its constituent parts given a certain manufacturing environment, assembly 

sequencing only identifies the constraints arising strictly from the geometry and character- 

istics of the goal product itself. Thus assembly sequencing is independent of any particular 

set of assembly fixtures, robots or workers, and tools, but a given assembly sequence may 

not be feasible in a particular environment. In this framework, I define several subclasses 

of assembly plans and sequences, and describe some simple results about them. Finally, 

several representations of assembly sequences are given and their corresponding types of 

sequences identified. 

2.1    Manipulation Planning 

Robotic assembly occurs in a workcell similar to that shown in figure 2.1. A robot with 

the ability to affect other objects causes the objects to move from their initial positions 

into a goal configuration through a sequence of reaching, grasping, and carrying operations. 

An important feature of the workcell is that the objects cannot move on their own; they 

must be manipulated by the robot. Given a robot and other objects in an initial position, 

13 
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Figure 2.1: A robotic workcell 

a manipulation task requires the robot to achieve a specified goal position through legal 

moves. The following formulation of the manipulation planning problem borrows heavily 

from [2] and [42]. 

2.1.1    Configuration Space 

Consider a robot with r degrees of freedom, a set 0 = {Pi, ...,Pm} of m rigid objects, and 

s fixed obstacles in a 3-dimensional workspace W. Let 

• 7Z be the r-dimensional configuration space of the robot. 

• Vi be the 6-dimensional configuration space of object Pi, for 1 < i < m. 

• V = V\ x V?. x • • • x Vm be the 6n-dimensional configuration space of all the objects. 

• C = TZ x V be the configuration space of the whole system. A configuration q € C 

thus specifies the positions of the robot and all the objects. 

Attach a reference frame F{ to each object P,, and define Fi \ Fj to be the relative 

transformation between F, and Fj. Let Ei(q) give the position off1, in the world coordinate 

system in configuration q. Similarly attach a reference frame FT to the gripper of the robot, 

and let Er{q) give the position of Fr in the world coordinate system in configuration q. R(q) 

and Pi(q) denote the subsets of W occupied by the robot and object Pt-, respectively, in 

configuration q. R(q) and P;(g) are bounded three-dimensional manifolds with boundary1. 
SA subset M of W is an m-dimensional manifold with boundary if every point x £ M has a neighborhood 

V such that the set V n M is homeomorphic to either an open ball of Äm or a closed half-space of Rm
. This 

restriction rules out some pathological cases of part geometry. 
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Although this formulation applies only to a single robot, multiple robots could be included 

with some added complication. 

Two objects P, and Pj interfere when their interiors intersect, i.e. in configurations q 

for which int(Pi(q)) n int(Pj(q)) / 0; they are in contact if they do not interfere and their 

boundaries intersect, or bound(Pi(q)) (~l bound(Pj(q)) ^ 0. The same relations are defined 

similarly for the robot and an object. Then ILLEGAL is the open subset of C in which an 

object interferes with an obstacle, another object, or the robot. Let LEGAL = C- ILLEGAL 

be the closed set of all non-interfering configurations. 

2.1.2    Grasping and Stability 

Because the objects cannot move on their own, two constraints must be expressed: the ob- 

jects only move when moved by the robot, and they must be in stable configurations when 

not grasped by the robot. Assume that the robot can only move an object by grasping it 

rigidly; for example, no pushing or dropping actions are allowed. In general, the graspa- 

bility of any one object might depend on the locations of all the other objects. In a given 

configuration the robot might be able to grasp and move different sets of objects, including 

the empty set (no objects), depending on the forces exerted. Let GRASPABLE(g) be the 

set of all sets of objects that the robot can grasp in configuration q. Since the robot can 

always choose to grasp no objects, the empty set 0 is always in GRASPABLE(g). To affix a 

set of objects 5 € GRASPABLE(g) to the robot gripper, the robot executes the operation 

GRASP(S). To release the objects, the robot simply executes GRASP(0).2 

Figure 2.2 shows part of a configuration (call it q{) that illustrates the definition and 

use of the function GRASPABLE. From its position in qi, the robot cannot grasp A or B 

alone, but it can grip the two of them together by exerting an inward force on its jaws. 

However, moving {A,B} will necessarily move object C, so the set {A,B} cannot be included 

in GRASPABLE(gi). Hence GRASPABLE(gx) = {{A,B,C},0}. 

When an object is not currently being grasped, it must be in a stable position in the 

environment. However, once again the stability of an object could depend on the locations 

of all the other objects. For any set of objects 5, let Vs = YlPies'Pi be tne sPace of config- 

urations of the objects in 5, and let STABLEs denote the subset of stable, noninterfering 

configurations of Vs- In other words, STABLEs is the set of stable configurations for objects 

2 In reality, physical actions are needed to grip an assembly, such as exerting a gripping force or turning 
on a suction gripper. However, I approximate grasping as an on-off switch. 
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Figure 2.2: Grasping a subassembly 
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Figure 2.3: An unstable arrangement of objects 

S, without the support of any other object. Then let ns : C -> Vs be a function mapping 

configurations of the workcell into configurations of the objects in S. To grasp a set of parts 

5, the robot must be in a configuration where the rest of the objects 0 \ S are stable, i.e. a 

configuration q such that ir0\s(g) € STABLE0\s- Note that STABLEo is the set of object 

configurations in which all the objects are in stable configurations, so to execute GRASP(0) 

(an ungrasp), the current object configuration vo(q) must be in STABLEo- 

Figure 2.3 shows a partial configuration qi of objects to illustrate the sets STABLE5. 

With no influence from the robot, object D is heavy enough to tip B and C over; hence 

*o(qi) is not in STABLEo- However, the configuration consisting of blocks A, B, and C is 

stable. Hence, if the robot were grasping block D, the configuration would be stable, so 

*0\{D}(fc) € STABLE0\{D}- 

GRASPABLE(g) contains all the sets of objects that can be grasped in a configuration 

q, while STABLE0\s gives the configurations of stable objects when set S is grasped. A 

configuration q is stable if it is in LEGAL and if grasping one of the graspable sets leaves 
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the ungrasped objects stable. Define STABLE as the set of such configurations: 

STABLE = {q € LEGAL | 35 € GRASPABLE(g),   *o\s(q) € STABLE0\s} 

In the real world, objects also need to be stable when undergoing motion and when insertion 

forces are applied; these constraints are not considered here. 

The computation of GRASPABLE and STABLEs will not be discussed in depth here. A 

great deal of literature addresses grasping issues (see for instance [20, 37, 53]), although few 

papers consider grasping of possibly-unstable assemblies. Palmer [51] shows that checking 

the stability of a set of polygonal objects in a vertical plane is NP-hard both with and without 

friction. Boneschanscher et al. [11] give a stability test for limited types of contact that runs 

in polynomial time, and Blum et al. [9] describe a numerical stability test whose behavior 

is hard to characterize. However, it is clear that practical stability tests for "normal'' 

assemblies must be developed before truly autonomous assembly planning can be realized. 

We can impose the simple necessary condition on grasp configurations that the union 

of the grasped objects and the robot must be connected. If the union of the obstacles is a 

connected set (as in real robotic workcells), then the union of the ungrasped objects and 

the obstacles must be connected in stable configurations. However these constraints are 

obviously not sufficient for stability. 

2.1.3    Manipulation Paths 

Two distinct types of motions can be performed in this system, depending on whether the 

robot is grasping any objects during the motion. In a transit path, the robot moves without 

affecting the positions of the objects, which must be in a stable arrangement. During a 

transfer path, a subset of the objects is grasped and moves with the robot. The grasped 

objects stay rigidly attached to the end effector of the robot throughout the transfer path, 

while the ungrasped objects do not move and must be stable. A manipulation path is 

an alternating sequence of transit and transfer paths, in which the endpoint of one path 

coincides with the starting point of the following one. Formally, 

Definition 2.1 A transit path is a continuous map r : [0,1] —► STABLE such that: 

• Vs € [0,1]: Jro(r(s)) = TTO(T(0)) (the objects do not move). 

• *O(T(0)) € STABLEo (the objects are all stable). 
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Definition 2.2 A transfer path is a continuous map r : [0,1] -»• STABLE for which there 

exists a grasped set of objects S such that: 

• Vs € [0,1]: 5 e GRASPABLE(r(s)) (the grasped set is graspable). 

• Vs € [0,1]: xo\s(T(s)) € STABLEo\s (the ungrasped objects are stable). 

• Vs G [0,1]: n0\s(T(s)) = 5rO\s(r(0)) (^e ungrasped objects do not move). 

• For each P{ G S, there exists a constant transformation T{ such that Vs € [0,1] : 

E{(T(S)) \ ET(T(S)) = Ti (the grasped set is rigidly attached to the robot gripper). 

Every transit and transfer path lies in a submanifold of STABLE whose dimension is r. 

Definition 2.3 A manipulation path is an finite alternating sequence (TI,T2, .. .,r2p+i) 

such that: 

• Vj € [l,2p]: Tj(l) = r,+i(0) (the endpoint of one path is the start of the next). 

• ri> r3i • • • 7 T2p+i are transit paths'. 

• T2> r4> • • • ? i"2P are transfer paths. 

At the beginning of every transit path, the robot executes a GRASP(0) operation.   At the 

beginning of every transfer path, the robot grasps the grasped set for that path. 

A manipulation path consists of alternating move and carry actions by the robot. Note 

that another formulation might allow two transfer paths to follow one another. For instance, 

in figure 2.4 the robot has been grasping the set {A,B}, and in the configuration shown it 

executes GRASP({A}) (setting B down on C and D) and continues the downward motion, 

holding A. A transit path cannot intercede because A is not in a stable position. Such motions 

will not be considered here, although the extension to handle them is straightforward. 

A manipulation planning problem is specified by an initial configuration qi and a set of 

acceptable goal configurations QQ C STABLE. A solution to the problem is a manipulation 

path (rj,...,TP) such that Ti(0) = qi and rp(l) 6 QG- 

For examples of manipulation problems, see [2] and [42, chap. 11]. 
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Figure 2.4: A configuration between two transfer paths 

2.2    Assembly Planning 

An assembly planning problem is an instance of the manipulation planning problem. Some 

of the objects are distinguished as parts of the goal assembly, while the rest are tools to 

be used to assemble the parts3. The initial configuration presents the parts in an initial, 

unassembled state along with the other objects. The goal is any configuration in which the 

product is completely assembled, with no other objects stuck inside it. 

The m objects are divided into an assembly A of n parts, and m — n tools, which include 

fixtures, clamps, wrenches, etc. For convenience, let the parts be objects P\,...,Pn and the 

tools Pn+i,...,Pm. In their initial position, the parts are unassembled—far enough away to 

be out of the influence of each other and the tools. To formalize this, let two sets of objects 

5i and 52 be separated in configuration q when there exists a plane such that UigSi ^»(tf) 

is on one side of the plane, and U16S2 ^i^i)ls on tne °tner side of the plane. We allow the 

objects to touch the separating plane, so that objects in contact can still be separated. The 

robot is separated from a set of objects when a parallel condition holds. 

The initial configuration in an assembly planning problem is a configuration qi such 

that the set of all parts is separated from the set of all tools and from the robot in qi, and 

furthermore all pairs of parts P,, Pj € A,i •£ j are separated in qj. 

In an assembly planning problem, all the parts must be in their final relative positions 

in a goal configuration. In addition, the other objects, the robot, and the fixed obstacles 

must not be "stuck" inside the assembled parts. The latter constraint holds when a path 

3In an extended view of the assembly planning problem, the selection and design of the tools could be 
included in the planning process. Here I considei only the simpler problem when the tools are specified. 
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exists to remove the assembly from the rest of the system while moving neither the parts 

relative to each other nor the robot and tools. I will use part Pi as a reference to define 

the positions of the rest of the parts in the goal configuration. For each part P,, i e [2, n], 

let 71/3 be a transformation relating the position of part P, to part Pj in the final assembly. 

Then ASSEMBLED is the set of all configurations q in STABLE such that: 

• Vt € [2, n], Ei(q) \ Ei(q) = Tf1 (the parts are in their final relative positions). 

• A path exists in LEGAL to rigidly move the assembly from its position in q to a 

position separated from the robot, tools, and obstacles. 

In a real assembly workcell, the tools must also be left in a state that allows them to be 

used to construct the next assembly. This constraint is not formulated here. 

An assembly planning problem is a manipulation planning problem with n distin- 

guished parts, where the initial configuration satisfies the constraints above and the goal is 

ASSEMBLED. An assembly plan is a solution to an assembly planning problem. 

Because it is just a special case, the assembly planning problem can obviously be reduced 

to the manipulation planning problem, and thus a general manipulation planner could solve 

an assembly planning problem (if one existed). 

2.3    Assembly Sequencing 

In this section I describe assembly sequencing, in which the motions of the parts of an 

assembly are planned only with respect to each other, without considering the abilities of 

the robot or the effects of the fixtures. Assembly sequencing identifies the constraints on 

assembly plans arising strictly from the geometry and characteristics of the product itself; 

it is independent of any particular set of assembly fixtures, robots or workers, assembly 

orientation, and tools. As a result, the existence of a feasible assembly sequence for an 

assembly does not guarantee it can be manufactured, since only a subset of the constraints 

are taken into account. On the other hand, assembly sequence analysis can be applied early 

in the design process, before a manufacturing scheme is chosen, and possibly even when the 

assembly design is not finished. I describe the relation between assembly sequencing and 

assembly planning, and define several types of assembly sequences. 
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2.3.1 Definition 

Consider an assembly of n rigid parts A = {Pi,...,P„} in a 3-dimensional workspace WA 

with no obstacles. Because there are no obstacles in WA, only the relative positions of the 

parts are significant. Let V = V2 x V3 x • • • x Vn be the 6(n - l)-dimensional composite 

configuration space of the parts of A in WA with respect to the coordinate frame attached to 

part Pi. Let LEGAL(P) be the subset of V in which the interiors of no two parts intersect. 

An assembly path is a continuous map r : [0,1] -»■ LEGAL(7>). 

Define the part position functions £,(</) and the separated predicate for configurations 

q € V in the same way as for C in the previous two sections. Then an unassembled configu- 

ration for an assembly sequencing problem is a configuration in which all parts are pairwise 

separated; call the set of such configurations Q\. Because the position of part Px is fixed, 

the parts are all in their relative goal positions for one qo € V. The assembled configuration 

qG£Vis such that Vt € [2, n], £,{«?) = if. 

An assembly sequencing problem is specified by an assembly A of n parts and an as- 

sembled configuration qo- A solution to an assembly sequencing problem consists of an 

unassembled configuration qi € Qi and an assembly path r such that r(0) = qi and 

r(l) = qQ. A solution to an assembly sequencing problem is called an assembly sequence. 

Note that the unassembled configuration qi can be chosen as part of an assembly se- 

quence. In the real world this corresponds to placing the part feeders in the most convenient 

locations. Formally, since the parts must be pairwise separated by planes, any initial con- 

figuration could be transformed to any other by spreading the parts far enough apart and 

swapping their positions until the desired configuration is reached, then contracting them 

back in. Hereafter I will consider an assembly sequencing problem to be specified by just 

the goal assembly A. 

2.3.2 Relation to Other Work 

The assembly sequencing problem as stated here is purely geometric. Similar problems are 

called "assembly sequence planning" by Hörnern de Mello [34] and "assembly planning" by 

Wolter [68]. Hörnern de Mello takes a more applied approach to the problem, including 

stability and "mechanical" as well as geometric constraints on assembly sequences. How- 

ever, only very weak stability constraints can be applied to an assembly sequence without 

information about the environment in which it is executed.  For instance, many unstable 
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assemblies are stable in some orientations, in a stabilizing fixture, or when grasped cor- 

rectly. Requiring that subassemblies be connected is a common constraint associated with 

stability, but even that can be remedied using a fixture: consider a car body being low- 

ered onto two wheel-axle subassemblies. Hörnern de Mello's mechanical constraints concern 

the geometric aspects of fasteners—which are considered individual parts here—and tools, 

as well as physical constraints such as clamping forces that are difficult to formalize but 

obviously important for an applied assembly planning program. 

Wolter defines the assembly sequencing problem in terms of n workspaces. Each part 

starts in a separate workspace, and the parts can be transferred between workspaces to 

assemble them. This more easily formalizes the notion of the parts being separated in their 

initial positions, but weakens the connection to assembly planning with a robot (below). 

The geometric nature of the assembly sequencing problem stated here makes it fully 

reversible. In other words, an assembly sequence is the reverse of a valid disassembly se- 

quence for the same assembly. A number of assembly planners [34, 39, 44, 68], including 

GRASP, take advantage of this fact by planning for disassembly. Another reason for doing 

disassembly planning is that the assembled configuration is more tightly specified than the 

unassembled configuration; this aspect of the state space lends itself to backward planning. 

In the real world, some assembly operations are not the reverse of disassembly operations, 

due to mechanical and stability constraints and non-rigid parts such as springs, snap-fit 

parts, and fluids. However, if a disassembly operation is defined as the reverse of a feasi- 

ble assembly operation, then disassembly planning is a valid approach even for non-rigid 

parts. In most of this thesis, assembly planning and disassembly planning will be discussed 

interchangeably. 

The assembly sequencing problem with an arbitrary number of parts has been shown to 

be PSPACE-hard independently by Natarajan [48] and Wolter [68]. Natarajan [48] shows 

that the problem remains PSPACE-hard when the parts are limited to a constant number 

of vertices. 

Theorem 2.4 The assembly sequencing problem is PSPACE-hard. 

2.3.3    Relation to Assembly Planning 

Given an assembly sequence for a product A and a particular robotic workcell, the robot 

might or might not be able to produce the relative motions required by the assembly se- 

quence. If the robot can realize the relative motions called for in the assembly sequence, the 
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corresponding assembly plan is said to execute the assembly sequence. In fact, a number of 

different robot plans might execute the same assembly sequence. From a different perspec- 

tive, we might consider the set of all robotic workcells that can execute a given assembly 

sequence. A production engineer might take this view when designing a manufacturing cell 

for a product. 

Formally, consider a robotic workcell for A with a particular robot and fixtures (for a 

total of m parts and fixtures) having a composite configuration space C. Let irA : C -*■ V be 

the function projecting a configuration q of the whole system into the configuration *A(q) of 

the parts relative to iV Then an assembly plan TQ executes the assembly sequence r-p of A 

when there exists a continuous nondecreasing function 7 : [0,1] ->• [0,1] such that 7(0) = 0, 

7(1) = 1, and 

V5€[0,l]:^(rc(s)) = 77,(7(5)). 

In other words, the parts follow the same path relative to each other in both the assembly 

sequence and the executing assembly plan. 

2.4    Types of Assembly Sequences 

An assembly sequence r can be divided into an equivalent list of assembly paths (TJ, ..., rm) 

accomplishing the same motions. The n are called operations. This representation allows 

additional restrictions to be placed on the operations r,, thereby defining classes of assem- 

bly sequences. Several such classes will be considered below, including binary, monotone, 

linear, and connected assembly sequences. These are categories of sequences that lend 

themselves both to execution by a robot or human and to automatic generation. Much of 

the terminology below is taken from Natarajan [48] and Wolter [68]. 

2.4.1    Number of Hands 

Let r, be an operation in an assembly sequence for assembly A. A moved set of r, is a 

maximal set of parts S such that the relative positions of parts in S stay constant during r;. 

The moved sets of any operation are a partition of the parts of the assembly. An operation r; 

is m-handed if there are m moved sets of T{. TO execute an m-handed operation would require 

one "hand" to move each set of parts along its trajectory, where the table counts as one hand. 

An assembly sequence is m-handed if it can be divided into m-handed operations. A robotic 

workcell with r independent robots can execute (r + l)-handed sequences. Natarajan [48] 
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Figure 2.5: An assembly that requires n hands to build [48] 

shows that in general n simultaneous motions may be needed to build an assembly of n 

parts (figure 2.5 shows one such assembly made of star-shaped4 parts). However, most real 

products can be built using a much smaller number of hands, usually with just two (a robot 

and a table). An assembly that requires more than two hands to build is a prime candidate 

for redesign [12]. 

A two-handed assembly sequence is also called binary. Generating non-binary assembly 

sequences requires reasoning about the simultaneous relative motions of more than two 

subassemblies. Because such reasoning is difficult and most real products can be built with 

two hands, all assembly planners to date have been restricted to binary assembly sequences. 

Even for a product that cannot be constructed with a binary assembly sequence, maximizing 

the number of binary assembly operations in the sequence will minimize manufacturing 

costs. 

2.4.2    Monotonicity 

The number of hands needed to execute an assembly sequence is only one aspect of its 

difficulty to generate and execute. Another is the number of intermediate positions that 

parts may take before they are placed in their relative goal positions. The class of assembly 

sequences without any intermediate positions is a special case. A subassembly in configu- 

ration q of a sequence r is a maximal set of parts S that are in their final relative positions 

and that stay in those positions until the end of the sequence: 

• For all parts Pi,Pj € S and all configurations q' following q in r, Ei(q) \ Ej(q) = 

if \ Tf. 

*An object 5 is star-shaped il there exists a point p € S such that the line segment connecting p to every 
element of 5 is completely contained in 5. 
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Figure 2.6: An assembly with no monotone binary assembly sequence [68] 

Each part is a trivial subassembly at the start of a sequence, and until it becomes part of 

a larger subassembly. 

An assembly sequence is monotone if each operation requiring m hands joins m sub- 

assemblies to make a larger subassembly. In other words, a monotone sequence consists of 

operations placing parts into their final positions relative to each other. Formally, for each 

operation r, in a monotone sequence, let r, be m-handed. Then there is a set of parts 5, 

such that 

• Si is a subassembly in configuration r,(l). 

• Si is the union of m subassemblies S[,..., S'm in r,(0). 

• All but one of the subassemblies 5{,..., S'm are moved sets of T<. 

Monotone assembly sequences are simpler to compute than nonmonotone sequences, 

because they do not require the identification of intermediate positions for subassemblies. 

In a monotone binary sequence, each operation brings exactly two subassemblies together; 

hence a monotone binary sequence consists of n - 1 operations. 

Note that the monotonicity of a sequence means little unless the number of hands 

is stated. Any assembly sequence for an n-part product can be written as a monotone 

sequence in which all the parts are mated in one long n-handed operation. Consider the 

latch assembly shown in figure 2.6 from [68]. It could be assembled with a non-monotone 

binary sequence placing P2 in Pi, then {P^Pi} inside P3, then sliding P2 right. This same 

set of motions could be described as a single monotone 3-handed operation. 

The relationship between monotonicity and handedness is an interesting one. Let an 

m-handed assembly be an assembly that can be built with m hands, and an m-handed 
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Figure 2.7: An (m + l)-part latch assembly 

monotonic assembly be an assembly for which there exists an m-handed monotonic assembly 

sequence. It can be shown that there is no inclusion relation between the set of m-handed 

monotone assemblies and the set of (m —l)-handed assemblies. In other words, for any m, 

there exists an m-handed monotonic assembly that is not (m-l)-handed, and there is an 

(m—l)-handed assembly that is not m-handed monotonic. 

Natarajan [48] proved the first part by showing that there exist assemblies with m parts 

that cannot be assembled with less than m simultaneous motions (figure 2.5). 

To prove the second part, consider the extended latch assembly shown in figure 2.7. 

It consists of m interlocking pegs fitted inside an outer shell. The latch assembly is a 2- 

handed assembly, since it can be built by inserting the smallest peg into the second smallest, 

inserting the resulting subassembly into the next largest, and so on, then inserting the pegs 

together into the hole, and finally latching each peg assembly in reverse order out into its 

sub-hole. 

However, assume an m-handed monotone sequence exists to assemble the latch. No peg 

can be inserted before the next larger peg, so during some operation r, in the sequence the 

assembly must pass through the configuration q\ shown in figure 2.8. Every operation in a 

monotone sequence creates a subassembly, but no part is in its final position relative to any 

other in q\. Therefore r,- must be the first operation in the sequence. Hence r, has moved 

all m +1 parts from an unassembled configuration to configuration qx. Operation r, is thus 

(m-fl)-handed, which is a contradiction. 

Theorem 2.5 For any m, there is an assembly with m + 1 parts that is 2-handed but not 

m-handed monotonic. 



2.4.   TYPES OF ASSEMBLY SEQUENCES 27 

Figure 2.8: An intermediate step in assembling the latch 

Many assembly sequencers assume monotonicity, but not all. For instance, Hoffman [33] 

describes a system that generates disassembly sequences from the boundary representations 

of the parts. If an assembly cannot be disassembled in a single motion, a subassembly is 

chosen to move to an intermediate position that might allow disassembly. The intermediate 

positions are chosen heuristically based on the geometry of the parts and certain features 

(such as the center of a hole or protrusion) that may be lined up. The method does not 

always succeed, but it works in many practical cases. 

2.4.3    Linearity 

Further restrictions on assembly sequences are possible to simplify the assembly sequencing 

problem. One that is imposed by several assembly planning systems (see [66, 68] and Chap- 

ter 6) is linearity. A binary assembly sequence is linear if one of the two moved sets of each 

operation is a single part. Hence a linear monotone sequence consists of n - 1 operations, 

each mating a single part with a subassembly. Figure 2.9 shows a monotone binary assembly 

with no linear assembly sequence. Under the linear assumption, a disassembly planner need 

only consider removing single parts, instead of identifying removable subassemblies. This 

simplifies the planning process considerably and allows additional optimizations, as will be 

seen in Chapter 6. 
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Figure 2.9: An assembly in which no single part can be removed 

2.4.4    Connectedness 

The restrictions on assembly sequences given above are all based on the type of part mo- 

tions allowed. In contrast, an often useful constraint is that the subassemblies constructed 

in a monotone assembly sequence be connected. Wolter [69] calls such assembly sequences 

contact-coherent. Connected subassemblies make sense for executing a sequence, since it is 

difficult to grasp or maintain the stability of a subassembly when it is not even connected. 

As noted in section 2.1, fixtures can usually be designed to stabilize even unconnected sub- 

assemblies, but connectedness is still a useful heuristic. In addition, enforcing connectedness 

of subassemblies helps to reduce the combinatorics of non-linear sequence planning. For in- 

stance, to find an operation Hörnern de Mello [34] generates all connected subassemblies and 

then tests each for removability; if unconnected subassemblies were allowed, this approach 

would become impractical for much smaller assemblies than when the connected constraint 

is included. Figure 2.10 shows an assembly that cannot be built with a connected binary 

assembly sequence. 

For each category of assembly sequence described in this section, we can define a corre- 

sponding class of assembly plans based on the correspondence between sequences and plans. 

Thus a monotone binary assembly plan is an assembly plan that executes a monotone binary 

assembly sequence. 

Much of the literature on motion of objects has relevance for assembly planning but 

cannot all be summarized here. A survey of methods for separating sets in two and three 

dimensions is given in [60]. For more types of assembly sequences, assemblies that can be 
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Figure 2.10: An assembly with no connected binary assembly sequence 

constructed under various restrictions, and the complexity of certain object-motion prob- 

lems, see for instance [24, 48, 51, 54, 60, 68]. 

2.5    Representations of Assembly Sequences 

In an assembly sequencing system, the choice of representation for assembly sequences 

can be crucial. This section defines several equivalence classes of sequences based on part 

motions, and then describes data structures along with the classes of sequence they can 

represent. 

2.5.1    Equivalence Classes of Assembly Sequences 

Representing a sequence as a continuous function from time into a multi-dimensional space 

of part positions is not adequate. Doing so would give too much detail without making 

explicit the important events in the sequence. As a result, most assembly sequencers define 

equivalence classes of sequences based on the order of part mating operations, and then 

represent equivalence classes of sequences. 

Position Equivalence For many purposes the order of mating operations between parts 

is more important than the exact motions the parts follow in the operations. For instance, 

several subassemblies might be built by separate manufacturers, then shipped to a common 

factory for final assembly. For such a product, constructing the subassemblies individually 

is quite important, while the motions required to build each subassembly can be decided 

by its respective manufacturer. In such cases equivalence classes of assembly sequences can 

be considered based on the parts moved in each operation. 



30 CHAPTER 2.   GEOMETRIC ASSEMBLY PLANNING 

Let r = (TI, ..., rn) and r' = (T[, ..., T£) be two assembly sequences of the same length 

for an assembly A. Then r and r' are position equivalent when respective operations leave 

the assembly in equal states, i.e. when r,(0) = T/(0) for all i € [1, n]. Two position equivalent 

nonmonotone sequences may have different motions but they use the same intermediate 

positions. 

Order Equivalence Position equivalent monotone sequences create the same subassem- 

blies in the same relative positions. However, in monotone assembly sequences the relative 

positions of the subassemblies may not be important either. Define two monotone sequences 

r and r' to be order equivalent when respective operations r, and T\ create the same sub- 

assemblies. 

Many applications do not distinguish between order equivalent sequences, since they 

differ only in the part mating motions for individual operations. These mating tactics can 

sometimes make a large difference in the quality of an assembly sequence, but they only 

affect the difficulty of single operations, and can be optimized individually or left unspecified 

to allow adjustment when the full assembly plan is created. As a result, after this chapter I 

will use the term assembly sequence to refer to a class of order equivalent assembly sequences. 

Most papers on assembly sequencing that consider monotone sequences take this view. 

Subassembly Equivalence Finally, in some applications the order in which subassem- 

blies are created is unimportant. If operation r, mates subassemblies S\ and 52, for instance, 

the order of construction of Si and 52 makes little difference. S\ could be built first, or 

52, or the operations accomplishing their construction could be interweaved. Because the 

sequence is monotone, the parts of S\ and 52 do not interact until TJ. For some products 

it is necessary to perform a measurement or other operation on one subassembly before 

constructing another; this was common practice before the 20th century. However, such 

designs are discouraged in modern manufacturing because they raise the cost of assembly. 

Let two monotone assembly sequences be subassembly equivalent if they create the same 

set of subassemblies, possibly in different orders. A one-to-one correspondence can be made 

between the operations of two subassembly equivalent sequences, in which each pair of 

operations establish the same subassembly from the same smaller subassemblies. 

Other equivalence relations between assembly sequences are possible in practice. For 

instance, one might consider two operations to be equivalent when their respective part 
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motions have the same final trajectory. Another useful view is to define part clusters, such 

that two sequences are equivalent when they place parts from a cluster in different orders. 

For instance, the bolts in a bolt circle rarely need to be placed in a specific order, so it is 

wasteful to generate all possible orders of assembly. Although the part clusters must be 

found heuristically or input by a human, this view can reduce the complexity of assembly 

sequencing in many practical cases (see [10] for example). 

The next subsections consider representations for classes of assembly sequences. 

2.5.2    State Graphs 

State-space graphs [49] can easily be adapted to represent assembly sequences. Salient 

features of an assembly configuration are identified, and the state of the assembly process is 

defined in terms of those features. For instance, the features may be just the positions of the 

parts at the end of an operation. One set of feature values (the unassembled state) represents 

the unassembled configuration, and another set of values (the assembled state) represents 

the assembled configuration. An assembly operation is represented by an arc in the graph 

from one state to another. Any path through the graph from the unassembled state to the 

assembled state represents an assembly sequence. The state graph thus represents a space 

of possible assembly sequences. 

A natural set of features for order equivalent assembly sequences was identified by 

Bourjault [14] and later used by De Fazio and Whitney [25]. They define the state of an 

assembly based on the liaisons that have been established thus far in an assembly sequence. 

When a liaison between two parts is established, the two parts are in their final relative 

position. Thus a set of liaisons that have been established define a set of subassemblies. 

The state with no liaisons established is the unassembled state, and the state with all 

liaisons established is the assembled state. An assembly operation mating two (or more) 

subassemblies is represented by an arc in the graph from one liaison state to another. A 

path from the unassembled state to the assembled state represents a class of order equivalent 

sequences. 

For example, figure 2.11 shows a liaison diagram for the crate assembly of figure 1.1, 

and figure 2.12 shows a state graph representing some binary monotone assembly sequences 

for the crate. Each liaison is established when its corresponding box is filled in. The 

unassembled state is at the bottom of the figure, and the assembled state at the top. States 

that do not occur in any assembly sequence are not shown. 
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Figure 2.11: A liaison diagram for the crate assembly of figure 1.1 
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Figure 2.12: A liaison state graph for the crate 

State-space graphs are not limited to representing monotone sequences. For instance, an 

extra feature or liaison can be created for a subassembly that has an intermediate position. 

This liaison can be established and then broken by a later operation. More generally, each 

feature can represent the position of a part in the assembly configuration; the resulting 

state graph represents position equivalent assembly sequence classes. 

State graphs can require a large amount of storage in some cases. For instance, in a 

liaison state graph, each liaison is either established or not in any one state, yielding a 

maximum of 2m states for m liaisons. For representations in which assembly state features 

take continuous values, the state graph is obviously infinite. 
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2.5.3 AND/OR Graphs 

The AND/OR graph is the standard AI tool to represent problems that can be decomposed 

into subproblems with few or no interactions [49]. Hörnern de Mello and Sanderson first used 

AND/OR graphs to represent subassembly equivalent classes of assembly sequences [35]. 

The state graph differentiates between orders of subassembly construction; the AND/OR 

graph does not, and consequently is usually more compact than the state graph for the 

same product. 

Each node in the AND/OR graph represents a subassembly that might be constructed 

in an assembly sequence for the product. An AND-arc represents the operation bringing 

several child subassemblies together to make the parent, while OR-arcs give different ways 

of creating the same parent subassembly. In a binary AND/OR graph, each AND-arc spec- 

ifies two child subassemblies; only binary AND/OR graphs have been used in assembly 

sequencers to date. The root of the graph is the final assembly and the leaves are sub- 

assemblies with only one part in each. Thus each AND-subtree of a full AND/OR graph 

represents a subassembly equivalant class of assembly sequences. Figure 2.13 shows a bi- 

nary AND/OR graph for the crate representing the same assembly sequences as the state 

graph in figure 2.12. Subassemblies that do not occur in any assembly sequence are not 

shown. GRASP (see the next chapter) adopts binary AND/OR graphs to represent sets of 

assembly sequences. 

In the worst case, an AND/OR graph for an assembly with n parts can have 2n - 1 

nodes. The number of AND-arcs is 0(3n) for binary assembly sequences [68], and higher 

for nonbinary sequences. As with state graphs, the worst case happens with an highly 

unconstrained assembly, such as a printed circuit board and chips that can be placed in any 

order. 

2.5.4 Implicit Representations 

A state graph or AND/OR graph might require a very large amount of storage to represent 

a set of assembly sequences generated by an assembly sequencing program. An alternative 

is to represent the sequences implicitly by a set of sequence rules restricting the operations 

in a sequence. Depending on the assembly and the expressive power of the rules, the set of 

rules may be quite compact. 

Implicit representations of assembly sequences will not be considered in depth here. 
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Figure 2.13: A binary AND/OR graph for the crate 
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Hörnern de Mello [34] describes several implicit representations and shows how they can 

be generated from each other and from state graphs and AND/OR graphs. The rules 

considered there are of three types: 

• rules specifying the states of assembly that can follow other states of assembly. 

• rules specifying the temporal relationship between establishment of one liaison and 

states of the assembly, and 

• rules specifying the temporal relationship between establishment of one liaison and 

the establishment of other liaisons. 

No methods are given in [34] to generate an implicit representation of a set of assembly 

sequences without first constructing an explicit representation. However, generating se- 

quence rules by transformation from an explicit representation results in more complicated 

and more numerous rules than are required. Standard logical simplifications can be applied 

to reduce the complexity of a rule set, but no systematic methods have been applied in 

assembly sequencing applications. 

A preferable method would be to derive the sequence rules directly from the geometric 

and other constraints on assembly sequences. Global precedence expressions, described in 

Chapter 6, are a simple version of sequence rules derived directly from geometric tests. One 

AND/OR graph representing a set of linear assembly sequences has 1509 nodes and 6190 

edges; 34 precedence expressions represent the same set of sequences. However, the.set of 

rules is not always so small, and the entire AND/OR graph must be generated to ensure 

that the precedence expressions cover every state that might arise in an assembly sequence. 

This is discussed more in section 6.4. 

The non-directional blocking graph of chapters 4 and 5 is also an implicit representation 

of sets of assembly sequences. As shown there, an NDBG completely defines the set of all 

assembly sequences using certain types of part trajectories. Although this set of sequences is 

often of exponential size, the NDBG is of polynomial size, can be constructed in polynomial 

time, and allows efficient calculation of a sequence satisfying its constraints. 

2.6    Assumptions 

In the rest of this thesis, the following assumptions hold unless otherwise stated. All assem- 

bly sequences are monotone binary, and every subassembly must be connected. In addition, 
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the parts are modeled as purely geometric objects: the parts are rigid, they have exact ge- 

ometry, and their positions have no tolerances. This has the disadvantage that a sequencer 

cannot accurately reason about springs, snap-fit connections, wires, liquids, or other non- 

rigid parts, or about inaccuracies in sensing, control, and part models that plague real 

assembly plans. However, known reasoning techniques for such problems are quite limited, 

and many such problems can be dealt with for practical purposes using special-purpose 

routines. Furthermore, in monotone assembly sequences for rigid parts a sequencer can 

represent any subassembly of the product as just a set of parts [34]. 



Chapter 3 

A Basic Assembly Sequencing 

Approach 

This chapter outlines a basic approach to automatic assembly sequencing, considering only 

the geometric model of the product. An experimental testbed for assembly sequencing 

called GRASP1 was implemented following this approach. GRASP is organized in modules 

to allow easy replacement of individual modules. The geometric techniques described in 

this chapter are only a starting point, and later chapters give more sophisticated, efficient, 

and in cases less general modules that have been substituted for basic modules to achieve 

higher performance. GRASP is a valuable tool for testing alternative methods of assembly 

sequencing, allowing the methods of the following chapters to be tested on actual assemblies 

under realistic assumptions about their interactions with the rest of the assembly sequencer. 

The basic approach to generating assembly sequences proceeds as follows. The first step 

is to compute a connection graph for the target assembly, detecting the contacts between 

parts and making them explicit. Then an AND/OR graph is constructed that represents a 

set of possible assembly sequences for the product, using geometric calculations to check the 

feasibility of each assembly operation. The geometric calculations used to verify operations 

include contact analysis to find feasible directions of translation and rotation for subassem- 

blies, checking for interference between parts while moving along a single trajectory, and 

general path planning when required. The architecture of GRASP is shown in figure 3.1. 

This basic framework is derived from the work of Hörnern de Mello [34], although several 

'GRASP stands for "Geometric Reasoning Assembly Sequence Planner." It has nothing to do with grasp 
planning. 

37 
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Figure 3.1: The architecture of GRASP 

of the geometric techniques are not included there and some important improvements have 

been made. 

3.1    The Assembly Description 

The input to assembly sequencing is a description of the product giving the geometry and 

relative positions of the parts in the product. In addition, the product description includes 

a connection graph, which contains information about the contacts between parts. 

3.1.1    Local Motion 

The connection graph facilitates computation about small motions of the parts of an assem- 

bly. A local motion is an arbitrarily small rigid motion of a part, or equivalently, a direction 

of rigid motion of the part. The local motions of a part at a given position in space form a 

six-dimensional vector space [13]. For instance, a local motion AX can be described as a 

6-vector with three degrees of translation and three of rotation: 

A-X" = (x,y,i,d,/?,7) 

where Q, ß, and 7 are the rotational components of AX around the x, y, and z axes, 

respectively. 
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Figure 3.2: A point-plane contact between two polyhedra 

The local freedom of a part Pi with respect to a part P2 is the set of local motions AX 

such that part Pa can undergo a finite motion in the direction of AX without interfering with 

P2. The contact between two noninterfering parts is the intersection of their boundaries2. 

It is clear that if the contact between Pi and P2 is null, then the local freedom of Pi with 

respect to P2 is the full space of local motions. 

3.1.2    Contacts 

A contact in the connection graph is represented as a finite conjunctive set C of point-plane 

contact constraints. A typical point-plane constraint between two polyhedra is shown in 

figure 3.2. The constraint c is denned by a vertex of contact vc and the outward normal of 

the face nc. A translation d of vc will cause Pi to penetrate P2 at vc exactly when njd < 0. 

The local motion AX causes a vertex vc of Pi to undergo a translation dc = JCAX, where 

Jc is the constant 3x6 Jacobian matrix that relates the differential motion of Px to the 

motion of vc. Thus AX causes Pi to penetrate P2 at vc exactly when ncJcAX < 0. 

The representation C of a contact between parts Pi and P2 is interpreted as follows. 

For each constraint c € C, a local motion AX can relate to c in three ways, depending on 

the relative motion at the contacting point under the motion: 

• Motion AX violates c if and only if n*JcAX < 0.  In other words, AX violates c 

exactly when part Pi undergoing motion AX penetrates part P2 at contact point vc. 

2 Because I do not consider tolerances on the geometry of the parts, two parts are either in contact or not 
in contact at any point. When tolerances are considered, the notions of contact and of local motion become 

more complicated. 
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• Motion AX breaks c when nJjcAX > 0. In this case, AX causes contact point vc on 

Pi to move away from Pi. 

• Motion AX slides on c when nJjcAX = 0, i.e. when AX causes contact point vc on 

Pi to move in a local tangent to part P2. 

When AX breaks or slides on constraint c, we say that AX obeys c. The set of local motions 

that obey c form a closed half-space bounded by a hyperplane through the origin. 

A local motion AX obeys the contact C if and only if it obeys all constraints in C. C 

describes the contact between Pi and P2 if and only if the set of motions that obey C is 

equal to the local freedom of Pi with respect to P2. In this case the local freedom of Pa is 

given by the intersection of the closed half-spaces defined by the constraints c£C. 

Most of the typical contacts between parts in industrial assemblies can be described 

as finite sets of point-plane constraints. I will first consider contacts between polyhedral 

parts, and then non-polyhedral parts. Note that the point-plane constraints representing 

a contact need not correspond to actual contact points on the parts; the only requirement 

is that the local motions that obey the contact be equal to the local freedom between the 

parts. 

3.1.3    Representing Polyhedral Contacts 

The following types of contact between polyhedra can be described as sets of point-plane 

constraints: 

plane-point The contact c between a planar face of Pi with outward normal nc and vertex 

vc of P2 is given by a constraint at vc between a point of Px and plane of P2 with 

outward normal — nc. 

face—face A contact between two polygonal planar faces is described by a set of point- 

plane constraints at the vertices of the convex hull of their contacting surface area. 

Figure 3.3a shows this case. 

nonaligned convex edges Two convex edges touching at a point p are described by a 

point-plane constraint between p and the plane containing the two edges (figure 3.3b). 

edge—face A contact between a convex edge e and a planar face / is described by two point- 

plane constraints, one at each end of the intersection segment of e and / (figure 3.3c). 
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Figure 3.3: Contacts between polyhedra expressed as point-plane contacts 

convex vertex-concave edge or vertex If a convex vertex v is in contact with a concave 

edge or vertex, the constraint on local motion is equivalent to a set of point constraints 

between v and each of the faces meeting at the edge or vertex (figures 3.3d and 3.3e). 

convex edge-concave edge In a similar way, two edge-face contacts suffice to describe 

the constraint arising from a convex edge contacting a concave edge (figure 3.3f). 

A contact between two polyhedra that includes several of the above can be described as a 

set of constraints C, where C is the union of sets C, each representing one of the above 

simple contacts. 

The remaining possible contacts between polyhedra are convex vertex-convex vertex, 

vertex-convex-edge, and aligned-convex-edges contacts (figure 3.4); these contacts cannot 

be represented using the above scheme. However, such contacts are quite unstable and 

rarely appear in real assemblies. All but aligned-convex-edges contacts can be treated using 

finite disjunctions of point-plane constraints [32]. For instance, in figure 3.4a, the motion of 
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a b c 

Figure 3.4: Polyhedral contacts not considered here 

the contact vertex vc on Pi must obey at least one of the point-plane constraints between 

vc and the planes of Pi that meet at vc. 

3.1.4    Representing Nonpolyhedral Contacts 

In addition to the above contacts between polyhedra, several common contact types in 

non-polyhedral assemblies can be expressed in terms of point-plane constraints: 

cylinder-face A cylinder contacting a plane in a line segment is equivalent for local mo- 

tion purposes to an edge-plane contact along the contact line segment (figure 3.5a). 

Note that although a rolling contact is very different from an edge-plane contact for 

extended motions, they allow the same local motions. 

cylinder-cylinder A round peg in a round hole has the same local freedom as a round 

peg in a triangular hole. Thus a cylinder-cylinder contact can be described as three 

cylinder-plane contacts, i.e. six point-plane contacts (figure 3.5b). 

threaded cylinders A contact between two threaded cylinders can be expressed as shown 

in figure 3.5c. A cylinder-cylinder contact is combined with two point-plane contacts 

that together express the twisting constraint of the threads at a single point. The nor- 

mals of the two thread contact constraints are opposing and have angle a = arctan ^ 

with the axis of the cylinder, where p is the pitch of the threads. In the procedure 

to calculate local freedom described below, this representation of threaded contacts is 

never needed because motion is so strongly constrained. 

Although products often have complicated, curved surface shapes, the great majority of 

contacts between parts fall into the cylindrical, planar, and threaded types above. The main 
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Figure 3.5: Typical non-polyhedral assembly contacts 

exception is when the convex hull of the contact area of a face-face contact is not polygonal 

(see figure 3.5d). Such a contact is equivalent to an infinite number of point-plane contacts 

around the convex hull. A polygonal approximation of the convex hull allows such a contact 

to be described with some loss of accuracy. 

Non-contacting surfaces of parts are often curved to satisfy requirements such as 

strength, aerodynamics, and aesthetics. Thus reasoning about curved surfaces is more 

important when extended motions (instead of local motions) are considered, since then 

these surfaces may interfere with each other. In such cases approximate methods are often 

better suited, such as in [33] and in section 3.4. 

Finally, figure 3.6 shows another type of contact that cannot be represented. Although 

the contact seemingly could be represented by two point-plane constraints, the resulting 

local freedom would allow vertical translation. Any such finite translation will cause a 

collision. This is an additional reason why local freedom is only a necessary condition on 

the movability of a part (section 3.2.4). 
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Figure 3.6: A contact that cannot be represented 

3.1.5    The Connection Graph 

The connection graph of a product is an undirected graph in which a node corresponds 

to a part of the product and a link connects two parts that are in contact. Each link is 

associated with a finite set of point-plane constraints that describes the contact between 

the parts. Formally, 

Definition 3.1 A connection graph is a 4-tuple (P,C,L,f) where 

• P is a set of parts. 

• L C P x P is a set of links between parts. There is one link between each pair of parts 

that are in contact, and no link between uncontacting parts. 

• C is a set of point-plane contact constraints between parts. 

• f : C —► L is a surjective map of constraints onto links. Thus every link between 

two parts is associated with a set of point-plane constraints. No constraint belongs to 

more than one link. 

The links of the connection graph are also referred to as connections or liaisons. Each 

c € C represents the constraint on motion of one part with respect to another; thus a 

contact between parts at a vertex v gives rise to two complementary contact constraints 

C{,Cj € C with opposing constraint vectors. Let C(A) denote the connection graph of an 

assembly A. 

The connection graph is similar to Bourjault's liaison diagram and Hörnern de Mello's 

relational model, both of which are undirected graphs with a node for each part. A liaison 

diagram is a loosely defined graph that does not contain information about the constraints 
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on motion of the parts, and in which liaisons sometimes connect parts that are not in 

contact [14]. The relational model of an assembly describes the connections between parts 

on a more symbolic level—in terms of mechanical attachments, fasteners, and so on—than 

does a connection graph [34]. 

In an integrated environment such as a concurrent design system, the input to an as- 

sembly planner will probably include a connection graph, for several reasons. Although 

computer-aided design tools currently represent best the geometric aspects of a design, 

some commercial CAD systems support feature-based models, from which the connections 

can be easily established. In the future, product models will include such extra-geometric 

information as degrees of freedom, design decisions taken, and the functional requirements 

of a design [40]. The contacts between parts must be known to perform many kinds of anal- 

ysis in design, such as tolerancing and stress and kinematic analysis [8, 38]. Furthermore, 

contact information can often be ambiguous, due to tolerances or small distances between 

parts, requiring explicit human clarification. However, in many instances the sequencing 

system will need to supplement the input model of the assembly for planning purposes. 

Since no tolerances are assumed on the parts and to make the assembly sequencing 

testbed as autonomous as possible, GRASP constructs its connection graph of the product 

automatically from the boundary representations of the individual parts. For techniques to 

accomplish this and a detailed description of the input format for GRASP, see Appendix A. 

3.2    Generating Assembly Sequences 

From the connection graph and solid models of the constituent parts of the assembly, an 

AND/OR graph representing all feasible monotone assembly sequences can be generated. 

3.2.1    Building the AND/OR Graph 

Figure 3.7 gives the main algorithm to generate the AND/OR graph in disassembly plan- 

ning. EXPAND is called first with the goal assembly, and the algorithm builds the AND/OR 

graph from the top down. The goal assembly is decomposed into two subassemblies accord- 

ing to geometric constraints, then those subassemblies are recursively decomposed, and so 

on. A single AND-tree can be found by choosing a single operation at each node, instead 

of expanding them all. 

The entire AND/OR graph of assembly sequences for a product can be very large. A 
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Procedure EXPAND(A) 
unless expanded(A) 

expanded(A) <— true; 
P — DECOMPOSE(A); 
for each partitioning (Si, 52) €. P 

ADD-DECOMPOSITION(A, S1,S2); 
EXPAND^); 

EXPAND(S2); 
end; {for} 

end; {unless} 
end; {procedure} 

Figure 3.7: Main algorithm of GRASP 

single AND-tree could be built instead of the whole graph. However, without considering 

alternatives it is difficult to guarantee any sort of optimal sequence, and a single AND-tree 

leaves very little flexibility to satisfy further constraints in the planning process. During 

sequencing all the criteria for choosing the best sequence might not be available, and so 

a number of solutions should be generated to allow later refinement. Another option is 

to search the implicit AND/OR graph for an optimal AND-tree, using an algorithm such 

as AO* [49]. To use AO*, a pessimistic heuristic must be chosen, and the heuristic will 

greatly influence the search results; in addition, AO* also has the inflexibility of generating 

only one AND-tree. The geometric techniques presented in this thesis are relevant for other 

modes of searching the assembly problem space with only minor modifications. 

3.2.2    Procedure DECOMPOSE 

A partitioning of an assembly A is a pair of non-empty subassemblies (Si,S2) such that 

Si and S2 partition the parts of A. The procedure DECOMPOSE executes the physical 

reasoning necessary to determine a set of feasible partitionings of A: partitionings (Si, S2) 

such that Si and S2 can be brought together in one operation to create A. There are several 

versions of DECOMPOSE, depending on the type of assembly sequences being generated and 

the geometric reasoning to be performed at each step. A basic version is shown in figure 3.8 

for reference. 

In addition to checking for geometric feasibility of the operation, the basic version en- 

sures that both subassemblies are connected; such a partitioning is called connected.  As 
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Procedure DECOMPOSE(A) 
D «- CONN-PARTITIONINGS(A); 
feasible-decompositions «— 0; 
for each decomposition (Si, S2) € D 

if SEPARABLE^!, S2) 
push((5i, 5*2), feasible-decompositions); 

end; {for} 
return(feasible-decompositions); 

end; {procedure} 

Figure 3.8: Procedure DECOMPOSE, following [34] 

noted in section 2.4.4, connected subassemblies are usually easier to handle. In addition, 

the connectedness constraint reduces the combinatorics of the planning process. 

DECOMPOSE follows a generate-and-test approach like GET-FEASIBLE-DECOMPOSI- 

TIONS in [34]. It calls CONN-PARTITIONINGS to generate all connected partitionings of 

the connection graph C(A) of A, then calls procedure SEPARABLE to test each disassembly 

operation—separating the subassemblies corresponding to the two partitions—for geometric 

feasibility (see section 3.2.4). 

3.2.3    Generating Partitionings 

A straightforward way to generate all the connected partitionings of a graph G is to find all 

the cut-sets of G. Any set of edges E whose removal partitions G into exactly two connected 

components is a cut-set, provided no proper subset of E also disconnects G. There is a one- 

to-one correspondence between a graph's cut-sets and its connected partitionings. The cut- 

sets of a graph can be generated from a system of fundamental cut-sets defined by a spanning 

tree of the graph as described in [26]. However, the straightforward implementation of this 

method runs in time ft(2m), where m is the number of links in C(A). 

A simpler algorithm to generate connected partitionings, proposed by Hörnern de 

Mello [34], enumerates connected components S of G and checks whether their comple- 

ments A \ S are connected; if so, (5, A \ S) is a connected partitioning. The complexity of 

this algorithm is 0(2n) in the worst case, where n is the number of parts of A. 

Figure 3.9 shows CONN-PARTITIONINGS, which finds all the connected partitionings of 

the connection graph C(A) in time polynomial in the number of such partitionings. Since 
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Procedure CONN-PARTITIONINGS(A) 

for an arbitrary Po € A 

S - {Po}; 
for each Pi £ A\ {P0} 

CONN-SUPERSETS({Pi}, S); 

5«-5u{fl}; 
end; {for} 
return(-D); 

end; {procedure} 

Procedure CONN-SUPERSETS(SuS2) 
CC «- CONNECTED-COMPONENTS^A \ Si,C(A)); 
if \CC\ > 1 

if for some C, € CC,  C, D S2 

Si <— Si U (Jj^,- Cj-; 
else return; 

end; {if} 
push((5i,i4\5i),i?); 
for each neighbor P, of Si in C(A) such that P, £ 52 

CONN-SUPERSETS(Si U {P},S2); 
S2 - S2 U {P}; 

end; {for} 
end; {procedure} 

Figure 3.9: An algorithm to generate ail partitionings of a graph into two connected com- 
ponents 

two partitionings (Si,S2) and (S2,Si) are equivalent, CONN-PARTITIONINGS chooses an 

arbitrary part Po and finds only those partitionings with Po in the second partition. Each 

remaining part P, divides the partitionings of G into those with p in the first partition and 

those with P,- in the second. Part Pi is called a pivot. Let -D(Si,S2) denote the connected 

partitionings (S^S^) °f C(-^) sucn *na* §[ 5 $1 an<^ ^2 ^ §2- The recursive procedure 

CONN-SUPERSETS(Si, S2) enumerates D(Si, 52). 

At each call of CONN-SUPERSETS(Si,S2), the sets Si and 52 must be disjoint and 

both non-empty, and furthermore Si must be connected. The procedure first computes the 

connected components CC of A \ Si. If A \ Si is connected, then (Si, A \ Si) is a connected 

partitioning.   If \CC\ > 1, then the only supersets S[ of Si that will have a connected 
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complement A \ S{ will include all the CC but one. There are two cases: 

• If S2 intersects more than one of the CC, then all supersets S2 of S2 not intersecting 

Si are unconnected. In this case I>(Si,S2) is empty, so the procedure returns. 

• If 52 is contained in one connected component C,, then that C, cannot be added to 

S\. Clearly then, all components Cj,j # t, must be added to Si, and then (Si, .4 \ Si) 

is a connected partitioning. 

After one partitioning (Si, 52) is found, then each part P, connected to Si and not in S2 

becomes a new pivot. The pivot Pi divides D(Si,S2) into two sets: partitionings containing 

Pi in S[ and those with Pi in S2. Recursive calls to CONN-SUPERSETS enumerate those 

partitionings. If all neighbors P, are in S2, then no superset of Si will be connected. 

Let A have n parts and m connections between them, and let s be the number of 

connected partitionings of C(A). A single call of CONN-SUPERSETS can be performed in 

0(m) time, when the recursive calls are not included. There are n - 2 top-level calls to 

CONN-SUPERSETS; each connected partitioning is followed by at most n - 3 recursive calls, 

so it is called 0(ns) times. Hence CONN-PARTITIONINGS runs in time 0(nms). 

Procedure DECOMPOSE calls procedure SEPARABLE to test the assembly operation 

corresponding to each connected partitioning of A for geometric feasibility. 

3.2.4    Procedure SEPARABLE 

The procedure SEPARABLE encompasses the geometric reasoning module of GRASP. The 

assembly operation mating subassemblies Si and S2 is geometrically feasible if there exists 

a collision-free path to move Si from a position separated from S2 (as denned in Chapter 2) 

into its final position relative to S2, or equivalently, if there exists a path to separate Si 

from S2. Such a path could be computed by calling a general purpose path planner [42]. 

However, calling a path planner is in general very expensive. 

Because of the cost of calling a path planner, procedure SEPARABLE employs much 

simpler techniques to determine the feasibility of most proposed assembly tasks. Both 

necessary and sufficient conditions for the feasibility of an assembly task are checked before 

resorting to path planning: 

• Local motion analysis determines whether Si is fully constrained by its contacts with 

S2. If Si has no local motion, it obviously cannot be removed in this step. Local 

motion analysis prunes many infeasible assembly operations quickly. 
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Procedure SEPARABLE(SX,S2) 
freedom-cone <- LOCAL-FREEDOM (Si, S2); 
motions ♦- USEFUL-DIRECTIONS(fieedom-coue); 
if empty(motions) 

return(/a/se); 
else 

for each direction d € motions 
if VALID-MOTION (Sx,S2,d) 

return( £rue); 
end; {for} 
retum(PATH-PLAN(Si, S2)); 

end; {eke} 
end; {procedure} 

Figure 3.10: Procedure SEPARABLE 

• If Si has a valid local motion, then some simple motion might separate the two 

subassemblies. For instance, if any single collision-free translation can move one sub- 

assembly to infinity, then the operation is feasible. Checking simple extended motions 

proves many assembly operations feasible while requiring little computation. 

In industrial assemblies, these special cases correspond to the vast majority of assembly 

operations, so the sequencer can achieve much greater efficiency by explicitly checking for 

them. Where both methods fail, more expensive plan planning methods can be brought to 

bear. 

Figure 3.10 shows procedure SEPARABLE as implemented in GRASP. The next sections 

describe the geometric computation that accomplishes each of the substeps of SEPARABLE. 

3.3    Local Motion 

In an assembly A, the local freedom of a subassembly 5 of A is the set of directions in which 

S can move an infinitesimal distance from its current position, given the geometry of A \ S 

considered as a solid. If 5 can be removed, it can be moved a very small distance; hence, if 

5 has no local motion, it cannot be removed. If S has at least one valid local motion, it is 

called locally free in A. For simplicity I will assume that the reference frames for all parts 

coincide, so that local motions for all parts are in the same coordinate system. 
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Figure 3.11: A 3D local translational freedom cone 

3.3.1    Local Freedom 

As described in section 3.1.2, the motions allowed by a set of point-plane contact constraints 

are the intersection of the motions allowed by each constraint individually. Therefore F, 

the local freedom of S\ allowed by a set C of k point-plane constraints, is given by 

F = pi {AX I n*JcAX > 0} 
cec 

The set of constraints in (3.1) can be rewritten 

CaAX > 0 

(3.1) 

(3.2) 

where Ca '• k x 6 is the matrix whose tth row is n£jC|. The set of solutions to the 

inequalities (3.2) is a polyhedral convex cone F whose shape and dimension vary with 

r = rank(Ca) [30]. The tip of F is a linear subspace of dimension d = 6 - rank(Ca) and 

the edges of the cone are of dimension d + 1. Motions in the tip of F slide on all contacts 

between S\ and 52, while motions in the interior of F break all contacts. 

When local motions are restricted to translation, the set of local motions lie in a three 

dimensional space, and a typical polyhedral convex cone is shown in figure 3.11. For an 

example in two dimensions, consider the possible local translations for part A in figure 3.12. 

Each edge contact of A with part B or C restricts the local translations of A to a half-plane, 

where the inward normal to the half plane is the inward normal of the contacting edge of A. 
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Figure 3.12: Local freedom computation 

Figure 3.13: A 2D rotation to remove a part that cannot translate 

The local translational freedom of A is the intersection of the half-planes of motion, a single 

ray d. This d is the only direction along which A can translate. 

Even if a part is fully constrained for translations, it still might be removable using a 

combination rotation and translation. Figure 3.13 shows a part in 2D that is fully held in 

translation but can be freed by a rotation around the point shown, while figure 3.14 gives 

an example in three dimensions. 

3.3.2    Useful Motions 

A subassembly S of A is fully constrained when the local freedom cone F of S contains only 

the origin. However, some local motions do not contribute to removing S from A \ S: 

• A pure rotation around an axis of symmetry for S simply maps S into itself, thus 

coming no closer to being removed. 
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Figure 3.14: A part that can be freed by a twist in 3D 

Figure 3.15: The plate can only rotate around an axis of symmetry of the remaining parts 

• Similarly, a rotation around an axis of symmetry for A \ S does not contribute to 

disassembly. 

• Let C be the contact between 5 and A \ S. A rotation around an axis of symmetry 

for C will not result in any new freedom, so it cannot contribute to disassembly. 

For instance, figure 3.15 shows a plate on a shaft with two retainers. The plate's local 

freedom cone includes only rotations around the axis of symmetry of the rest of the assembly, 

so the plate is locally free yet impossible to remove. Thus for 5 to be removable F must 

include some motions that are not rotations around axes of symmetry for either S, A\S, 

or their contact C. If a line / is an axis of symmetry for all parts P e S, then it is a axis of 

symmetry for 5. However, the converse does not hold; / can be an axis of symmetry for 5 

without being an axis of symmetry for any part in 5. 
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3.3.3    Computing Local Freedom 

Given a set of point-plane constraints C between 5 and A \ S, finding the 6D local free- 

dom cone F for S is complicated and time-consuming. For instance, the procedure de- 

scribed in [32] takes time 0(k3) for k contacts in some cases. Therefore procedure LOCAL- 

FREEDOM performs several less involved checks to handle the most frequent and simpler 

cases before resorting to the general case: 

• Certain combinations of contacts can be found that constrain S completely; for in- 

stance, two cylindrical or threaded contacts with non-parallel axes allow no local 

motion. 

• In many cases a contact allows only a finite set D of removal directions. For instance, 

a threaded contact allows only two motions, one spiraling in each direction of the 

axis; two parallel cylindrical contacts allow only translation along their axes. In these 

cases, each motion in D can be checked for compatibility with all of the other contacts. 

If every motion in D is incompatible with at least one contact in C, then 5 cannot 

move. Otherwise the local freedom of S is the subset of D compatible with the rest 

of the contacts. 

• If neither of the first two cases hold, then the local translational freedom T of S is 

computed. If a cylindrical contact c is in C, then T includes only translations parallel 

to the axis of c that are compatible with the other contacts in C. If C contains only 

planar and cylinder-plane contacts, T is computed by intersecting the half-spaces of 

freedom given by the planar contacts. With planar contacts T takes the form of a 

polyhedral convex cone as in figure 3.11. For k contacts, T can be computed in time 

©(fclogfc) [55]; Hörnern de Mello and Sanderson [36] implemented another method. If 

T is non-empty then S is locally free. 

• If the previous checks fail, the 6D local freedom F of 5 is computed using a method 

similar to that in [32]. Figure 3.16 shows two local motions found for the assembly of 

figure 3.14. The function USEFUL-DIRECTIONS then determines whether F contains 

at least one infinitesimal motion that displaces the subassembly with respect to the 

rest of the assembly. The symmetries for a subassembly 5 are the intersection of the 

symmetries of its parts P € S, found by COMPLETE-ASSEMBLY (see Appendix A). 
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Figure 3.16: Two local motions for the part in figure 3.14 

If all of the spanning vectors for S's 6D local freedom cone represent rotations around 

symmetries of S or of A \ 5, then S cannot be removed. 

In normal operation, the special cases encompass so many assembly operations that 

the general local freedom computation is usually turned off during assembly sequencing 

using GRASP. When this is done, the 6D local freedom calculation routine always returns 

a null cone, saving the effort of calculating the 6D local freedom cone for every constrained 

subassembly. As a result, a few subassemblies are incorrectly found to be constrained in 

this mode. 

3.4    Extended Motion 

If a subassembly is locally free, then it might be removable along a simple trajectory, such 

as a single translation to infinity or the helical motion followed by a screw in a threaded 

hole. When such a motion is found, the expense of calling a general motion planner can be 

avoided. 

3.4.1    Global JYeedom 

The globally-valid translations to remove a subassembly S\ from an assembly A constitute 

the global translational freedom of Si with respect to its complement 52 = A \ Si. The 

global translational freedom G is the set of directions in which S\ can translate indefinitely 

without intersecting S2. Compared to the local freedom cone, which is always convex, the 
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Figure 3.17: A nonconvex cone of removal translations 

global freedom cone can be nonconvex (figure 3.17). If all parts in A are polyhedral, the 

resulting cone will be polyhedral also. Each face of G that is not in common with the local 

translational freedom cone will arise either from a vertex of Si and an edge of 52, or from 

an edge of S\ and a vertex of 52. 

Krishnan and Sanderson [41] find the extended translations possible for one part with 

respect to another by mapping the set of all unit translations onto a two-dimensional grid, 

and marking grid elements that correspond to collisions between two polyhedra. Any un- 

marked elements then represent valid removal translations. However, this method is only 

accurate to the size of the grid, and cannot be used to find translations involving contacts 

between the two parts. 

A method to calculate G efficiently and accurately is given in Chapter 5. However, for » 

most assembly operations simpler global motion checking procedures will suffice. A locally 

free subassembly 5 can be swept in some of the directions in its local freedom cone, from its 

current position to infinity. If any direction is free of collisions with the rest of the assembly, 

it constitutes a valid removal path for 5. In experiments this method has proven fast and 

accurate in the vast majority of assembly operations. The directions to sweep are chosen 

heuristically by the function USEFUL-DIRECTIONS based on the shape of the local freedom 

cone. For instance: 

• When the translational freedom cone is a half-space, the normal of the plane facing 

into the half-space and four perpendicular directions in the bounding plane of the half 
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space are chosen as sweeping directions. 

• For a cone such as the one in figure 3.11, sweeping is performed along vectors parallel 

to the edges of the cone. 

• When a threaded contact exists, the corresponding twisting motion is extended in 

each direction to infinity. 

• When a 6D local freedom cone has been calculated, the axis of motion and the pitch 

of the rotation about that axis can be extracted for each of the spanning motions of 

the cone, and a twisting motion generated to infinity along the axis. A motion with 

no rotational component is a translation. A pure rotation around an axis of symmetry 

of either S or A \ S is not considered. 

For each direction of sweep, the function VALID-MOTION checks whether the trajectory 

constitutes a collision-free path to separate 5 from A \ S. If one of the chosen trajectories 

is free from collision with all other parts present in the assembly, it constitutes a valid 

insertion path for S. 

3.4.2    Sweeping 

To sweep a subassembly in a direction d, VALID-MOTION sweeps the individual parts 

along d. The problem of collision detection among moving objects has been well studied. 

Canny [15] gives an algorithm for detecting collisions between polyhedra translating and 

rotating in three dimensions that runs in O(n2logn) where n is the total complexity of the 

objects. Although Canny's technique could be used in assembly sequencing, simpler and 

less powerful methods have been implemented in GRASP. 

To sweep a part in translation, the faces of the translating part are compared pairwise 

with the faces of each possible interfering part to check for collision. If the two faces intersect 

when projected into the plane perpendicular to the vector of translation, and the face being 

swept is behind the interfering face at one or more of the points of intersection, then a 

collision exists and the motion is infeasible. 

Rather than sweep a part along a twisting motion, GRASP computes a rotational closure 

of the object about the axis of the path, and sweeps the resulting cylindrical shape in 

translation along the axis. Thus for each vertex v of the moving part with distance d to 

the axis of motion, and for each edge e of a stationary part, if the segment of e above v 
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with respect to the axis comes within d of the axis, a collision is found. Edges of stationary 

parts that represent circular curves are replaced by their circular arcs for this purpose, since 

otherwise Vantage's polyhedral approximation of cylinders would cause incorrect collisions 

to be detected. For trajectories with relatively small absolute pitch, such as those resulting 

from threaded contacts, this sweeping computation approximates quite well the actual swept 

volume of the original twisting path. For larger pitches, however, the calculation is very 

conservative. 

To minimize sweeping computations, GRASP saves the result of each sweep for later re- 

trieval. PREVIOUS-SWEEPS[Pi, P2] is a two-dimensional array of lists of pairs (d, collides). 

When a part Pj needs to be swept against part P2 in direction dx, PREVIOUS-SWEEPS[Pi, 

P2] is searched for a pair whose first element is d\. If one exists, collides is T if P\ hits P2 

in direction d\, and F if not. If no pair (dx, collides) is found, Pi is swept against P2 as 

above, and the result is stored in the table. This technique is called sweep caching. Since 

the same motion of the same part can be attempted in many different subassemblies during 

the planning process, sweep caching accelerates planning considerably. 

3.5    Path Planning 

When a subassembly is locally free, but no simple trajectory can be found to extricate it 

from the assembly, a sequence of translations or a curved path might exist to remove it. 

GRASP has a well-defined interface to a path planner, called through the procedure 

PATH-PLAN. PATH-PLAN (Si, S2) returns one of the following four answers: 

Movable S% can be separated from S2 by a path that is not specified. 

Path S\ can be separated from 52 by a given path. 

Not Movable Si and S2 cannot be separated in one operation. 

Constrained Si and 52 cannot be separated in one operation, and furthermore two sets of 

constraining parts are identified. The constraining parts are subsets S[ C Si, S'2 C 52, 

such that S[ cannot be separated from 52 by any path. 

Thus there are two simple answers, Movable and Not Movable. Path is the same as Movable 

but gives more information, while Constrained gives more information than Not Movable. 

Both types of extra information can be used in the planning process to reduce the number 
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of queries needed to the path planner. Specifically, when a path is returned, it will still 

be valid as long as no parts interfere with it. When constraining sets are returned, any 

subassemblies that include those sets are not separable. See Chapter 6 for more details. 

Both types of additional information should be retrievable from a path planner, with 

some modification. Most path planners return a single feasible path as part of their answer 

if one exists. In addition, an automated path planner can conceivably produce a list of 

parts that together constrain a subassembly Si and S2. The planner must be augmented 

to find this set, and the technique used will depend heavily on the path planning technique 

employed. For instance, if the planner builds an adjacency graph based on a cell decompo- 

sition of the configuration space of Si [42, chapters 5-6], it may return a list of the parts 

contributing boundaries to the connected component of free space that contains the start- 

ing position of Si. If the path planner is based on a local exploration of the configuration 

space [7] it may return the set of parts of Si and S2 that collided during the search process; 

in this case the list of constraining parts may not be complete, however. Although it will 

depend on the exact planner used, the set of constraining parts can conceivably be found 

with little additional computation. 

Path planning can be turned on and off by the user. When path planning is turned off, 

the path planner simply indicates that no motion is feasible. When path planning is on, 

the current implementation asks a human designer to act as the path planning expert. 

The path planning human interface works as follows. A drawing of the two subassemblies 

Si and S2 is presented in a window, along with a question and a set of buttons showing 

appropriate answers (see figure 3.18). The parts of Si are highlighted in green; S2 is in 

white. The message asks the engineer to identify those parts of Si and S2 that prevent Si 

from being separated from S2. The user can then select and unselect parts of A by clicking 

on their edges with the mouse pointer; each part turns red as it is selected. 

The human interface only allows the following three answers: 

Movable Si can be separated from S2. It would be difficult and time-consuming for the 

user to enter a removal path manually, so it has not been implemented. Hence the 

answer Path as defined above is not available in the human interface. 

Not Movable Si and S2 cannot be separated in one operation. This answer can be selected 

if the engineer does not want to answer the question in more depth. 

Constrained The highlighted parts are the constraining sets returned to the sequencer. If 
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Figure 3.18: GRASP's human path planning interface 

S'i or Sj are no* minimal, sequencing will be correct but slower than otherwise. 

The answer returned by the human is the final word on the removability of one subassembly 

from another. 

3.6    Implementation 

GRASP is implemented in Allegro Common Lisp under the Xwindows window system. 

Experimental results are computed on a DEC5000 workstation. A 2D prototype of GRASP 

was written in the same environment, but it does not include many advanced features of 

the full system. Important differences will be stated where experimental results from the 

prototype are given. 

Figure 3.19 shows GRASP planning for the assembly of the electric bell (see Appendix B. 

It has generated the partial AND/OR graph seen in the upper left, and the graphics window 

shows the current operation it is adding to the graph: placement of the battery into its case. 
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Figure 3.19: GRASP in operation 

With motion planning and 6D freedom cones turned off, the AND/OR graph of assembly 

sequences for the bell has 2,320 nodes and 21,315 edges. Using the basic geometric assembly 

sequencing methods described in this chapter, GRASP builds it in 54 minutes, requiring 

40,754 calls to procedure SEPARABLE, including 609 part-part sweeping calculations. A 

single valid assembly sequence is found in 76 seconds and requires 247 geometric calls. 

Clearly, to be used in an interactive environment such as a concurrent design system, or 

to plan for assemblies with many more parts, these techniques must be improved upon. The 

following chapters present new, more efficient and more accurate algorithms that improve 

upon the basic methods given here. 



Chapter 4 

Partitioning for Local Motions 

This chapter improves on one of the basic methods of geometric reasoning for assembly 

sequencing described in Chapter 3. The first test of an assembly partitioning given there 

is local freedom. Local freedom is a powerful constraint, but the method described in 

Chapter 3 follows a generate-and-test approach that might generate a large number of 

partitionings for only a few locally free ones. 

This chapter presents an algorithm called PARTITION that efficiently finds locally free 

subassemblies of an assembly A in both translation and rotation. The algorithm is based 

on a new representation of the blocking relationships between part in A, called the non- 

directional blocking graph of A. Specifically, let A have n parts and let the connection graph 

C(A) have m links and a total of k point-plane contact constraints. Then a subassembly 

S that is locally free in translation can be identified in time 0(mk2), and all s locally free 

subassemblies can be found in time polynomial in s. Thus when there is an exponential 

number of locally free subassemblies, the algorithm requires exponential time. When general 

rigid motions are allowed, a single locally free subassembly can be found in time 0(mk5), 

and all such subassemblies can be identified with a similar output-sensitive time bound. An 

extension of either algorithm yields connected locally free partitionings in the same time 

bounds. 

Some assemblies have a large number of locally free subassemblies, few of which satisfy 

other geometric constraints, such as extended motion freedom. For such assemblies the 

total computing time to find a removable subassembly might be exponential using the 

method given here to generate candidate subassemblies. Chapter 5 describes a variation 

on the algorithm of this chapter to efficiently find subassemblies that are free for extended 

62 
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TrnxExnr 
Figure 4.1: An assembly with 2 feasible decompositions 

translations. However, in experiments local freedom has proven a powerful constraint, 

pruning most impossible operations. Experimental results are shown for an implemented 

hybrid algorithm that combines the low time bound of the translational algorithm with the 

ability to find most assembly operations involving rotations. 

4.1     Generate-and-Test 

The basic approach given in figure 3.8 to find a removable subassembly of A follows a 

generate-and-test scheme. All ways to partition A into two connected subassemblies are 

generated, and each partitioning is tested for local freedom and then extended motion. 

This approach suffers from the fact that there may be an exponential number of can- 

didate partitionings to test, even though few satisfy physical constraints. For instance, 

consider the planar assembly in figure 4.1, consisting of n - 2 interlocking pieces sand- 

wiched between two plates. A connected partitioning will be generated for each way to 

group the center pieces with the two plates, so there are 2n_2 ways to assign the interlock- 

ing pieces and more than 2n~2 connected partitioning. However, there are only two locally 

free subassemblies of the sandwich assembly—the top plate and the bottom plate. 

In addition, there are some times when unconnected partitions may be desired, such as 

when an assembly cannot be built using connected subassemblies. Without the connected- 

ness constraint, the generate-and-test approach is clearly impractical because an exponential 

number of candidate operations will always be generated. 

The generate-and-test approach first identifies subassemblies, and then finds the motions 

that their contacts allow. The method described in this chapter reverses this order, by 

first identifying a critical set of motion directions for the assembly, and then finding the 

subassemblies that are free in each direction. Only a polynomial number of motions need be 

considered, so the algorithm is able to find a locally free subassembly in polynomial time. 

For clarity, section 4.2 first describes the method limiting motions to local translations. 
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Section 4.3 then extends this to the general case of local rotations and translations. 

4.2    Partitioning for Translations 

Let C be the set of all & point-plane contact constraints in the connection graph C{A) of A. 

Remember that a constraint c € C is described by a 6-vector njjc and a pair of contacting 

parts that I will denote (Pci,PC2)- 

I first restrict attention to translational local motions d, where 

d= (x,jr,i). 

A translational local motion d violates contact c,- when nfd < 0. A subassembly S is locally 

free in translation when there exists a translation d that violates no contacts between S and 

A\S. 

4.2.1    Directional Blocking Graph 

The subset of the constraints C violated by a local translation d defines a directional blocking 

graph (or DBG) representing the blocking relationships between the parts in A in direction 

d. The directional blocking graph G{d, A) is a directed graph with nodes representing the 

parts of A. An arc connects parts Pc\ and Pci in G(d, A) if and only if there exists a 

constraint c such that d violates c. In other words, an arc connects part Pi to P? when 

Pi undergoing motion d is blocked by P% (unless Pi also moves). If there are m links in 

C(A) then G(d, A) can have at most 2m arcs. Because it encodes constraints from contacts, 

G(d, A) is called a contact DBG; Chapter 5 considers extended translations, which induce 

extended DBGs. 

Figure 4.2 shows the DBGs induced by a vertical and a horizontal translation in the crate 

assembly of figure 1.1. For instance, in translations to the right , the cargo is constrained 

by its contacts with the box, so an arc connects the cargo node to the box node in the 

DBG of figure 4.2b. Even though in an extended translation to the right the lid would hit 

the cargo, no arc connects the two. 

A subassembly 5 C A is locally free in direction d if and only if (S, A\S) is a directed par- 

titioning ofG(d, A). A directed partitioning of a directed graph G is a pair of subsets (Si, 52) 

such that {Si,S2} is a partition of the nodes of G and no arcs in G connect nodes in 52 to 

nodes in Si. For instance, in the DBG of figure 4.2b, ({lid, screwl, screw2}, {box, cargo}) 
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a b 

Figure 4.2: Two directional blocking graphs for the crate assembly 

is a directed partitioning. If G(d, A) is strongly connected1, then clearly no directed par- 

titioning of G{d,A) exists. If G(d,A) is not strongly connected, then at least one strong 

component of G(d, A) must have no outgoing arcs, and this component is a locally free 

subassembly in direction d.' 

4.2.2    Non-directional Blocking Graph 

Because two motions di and d2 differ only in velocity when di = sd2, s > 0, we restrict 

\d\ = 1. Then the directions of translation d are represented as points on the unit sphere S2. 

Each constraint c in C defines a plane n*d = 0 that cuts the unit sphere along a great circle. 

Translations on the great circle are sliding motions for constraint c, while translations on 

either side represent breaking and violating motions. The set of great circles for all c G C 

determines an arrangement of cells on 52 (figure 4.3). The cells are of three types: 

Vertices lie at the intersection of two or more great circles. 

Edges are maximal open connected arcs of great circles that do not include vertices. 

Faces are maximal open connected components of the sphere not intersecting an edge or 

vertex. 

There are 0(k2) cells in the arrangement. The cells are regular in the following sense: for 

any two local motions da and d2 in the same cell, G(du A) = G{d2, A). This is true because 
1A strongly connected component (or strong component) of a directed graph is a maximal subset of nodes 

such that for any two nodes r»i and n2 in this subset, a path connects tii to m and a path connects n2 to 
m. A graph is strongly connected if it has only one strong component. 
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Figure 4.3: An arrangement of great circles on the sphere 

d\ and «fo lie on the same side of all the great circles in the arrangement; thus they violate 

the same set of contacts. Define the graph G(f) for a cell / to be G(d, A) for motions de f. 

The arrangement on the sphere, together with the DBGs for each cell, constitute a 

non-directional blocking graph (or NDBG) for A. In many cases the NDBG will not be 

constructed explicitly, or it will be constructed incrementally, without storing the whole 

NDBG at any one time. The non-directional blocking graph resembles Wolter's assembly 

constraint graph [68]; however, the ACG represents blocking relationships only in a small, 

heuristically chosen set of directions, and is the input to an assembly sequencer instead of 

being computed. In contrast, the NDBG represents the part blocking relationships in all 

directions, and can be computed directly from the connection graph of A. 

For any two neighboring cells in the NDBG, one of the cells must be on the boundary of 

the other cell. For instance, a vertex bounds the edges and faces adjacent to it, and an edge 

bounds the faces on either side. The following property holds between any two neighboring 

cells: 

Property 4.1 For any two cells f\ and fa such that f\ is on the boundary 0//2, if there 

exists an arc from Pi to Pj in G(f\), this arc also exists in G{ft). 

Proof: Clearly f\ and fi are not on opposite sides of any great circle. In addition, the set 

of great circles intersecting f\ is a superset of the great circles intersecting /2. Therefore 

any contact violated by motions in f\ is violated by motions in /2, so any arc in G(fi) is 

present in <J(/2).E 

In some cases G{f\) = G(fi) for cells f\ on the boundary of fi-, and sometimes the edges 

of G(f\) are a proper subset of the edges of G(f2)- The former case happens when motions 

in cell ft, break the corresponding contacts for the great circles intersecting at f\. When /j 
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is on the violating side of a constraint circle, then points /a on the circle will slide on that 

contact, so G(fi) will not include the corresponding arc of G(/2). 

4.2.3    Finding a Locally Free Subassembly 

Property 4.1 implies that if a graph G(/i) is strongly connected, then for all cells /2 bounded 

by /i, the graphs G(/2) are strongly connected as well. The vertices of the arrangement 

thus correspond to critical motions. If the DBG for a face / is not strongly connected, 

then the graphs G(v) for vertices on the boundary of / are also not strongly connected. 

Hence it suffices to check the strong connectedness of G(d, A) for all critical motions d at 

the intersection of two planes from the set C. If any such graph G(d, A) is not strongly 

connected, then one strong component with no outgoing arcs is a locally free subassembly in 

direction d. The one exception occurs when all the constraint planes in C are parallel, so the 

resulting arrangement has no vertices. In this case Property 4.1 implies that a single point 

p on the great circle can be chosen and G(p, A) checked for connectedness. In fact, a locally 

free subassembly will always be found in such an assembly. Note that the arrangement of 

circles on S2 need not be explicitly computed. 

For an assembly with k point-plane constraints C, there are 0(k2) critical motions at 

the intersection v of two planes. Constructing each graph G(v) requires comparing the 

motion v against every constraint in C, or O(k) steps; since G(v) has at most 2m arcs, 

its strong components can be found in 0(m) time [1]. Hence a translational locally free 

subassembly of A can be found in 0(k3) time. 

This computation can be reduced by noticing that there is little or no change between 

the DBGs of two adjacent regions. This leads to computing the DBG for one cell, then 

performing a systematic traversal over the arrangement and calculating the DBG for each 

new cell from the previous one. To this end, slightly modify the DBG by attaching a weight 

to each arc of the graph. In G(d,A), the weight of the arc from P, to P, is the number of 

constraints c from Pi to P, violated by d. The absence of an arc from P, to P, is treated as 

an arc of weight 0, and vice versa. 

For two cells /, and fj, let the crossing set Cy be the set of contacts violated by motions 

in fj but not by motions in /,. Property 4.1 implies that C„ is empty when fj is on the 

boundary of /,. Then given the DBG of a cell /, on the boundary of cell /,-, the DBG of fj 

can be computed using the following crossing rule: 

Initialize G{fi) to <?(/,). For every c e C,j, add 1 to the weight of the arc from 
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Pa to Pc2 in G(fj). 

For every contact c £ CY, the move from /,• to fj corresponds to a change from sliding on c 

to violating c, so the crossing rule adds one to the weight of the corresponding arc in G(fj). 

By Property 4.1, G(fj) is strongly connected whenever £(/,-) is. 

Similarly, if fj is a cell on the boundary of /,-, a similar crossing rule applies: 

Initialize G(fj) to <?(/„■). For every c € Cj» subtract 1 from the weight of the 

arc from PcX to Pc2 in G(fj). 

In this case, some contacts are changing from violating to sliding contacts. The strong 

components of <?(/,) will be the same as those of <£(/,-) unless an arc is actually deleted in 

applying the crossing rule. 

To take advantage of the crossing rules, the arrangement of great circles on the sphere 

is computed explicitly. A central projection from the origin is used to map S2 onto two 

parallel planes tangent to the sphere and not parallel to any great circle. The arrangement 

of great circles now becomes an arrangement of lines in each plane, where every cell in the 

planar arrangement corresponds to a cell on the sphere. Since a subassembly 5 is locally 

free in direction d exactly when A \ S is locally free in direction -d, it suffices to consider 

one plane. The PARTITION algorithm can now be stated as follows: 

1. Compute the vertices, edges, and faces of the planar arrangement and their adjacency 

relations, storing the set CtJ with the adjacency link between every pair of neighboring 

cells /, and fj. 

2. Compute the DBG for an arbitrary cell /0. 

3. Perform a systematic traversal of the arrangement, computing the DBG for each new 

cell from the preceding cell using crossing rules. If any DBG is not strongly connected, 

one of its strong components is a locally free subassembly in the corresponding direc- 

tion. 

The cells in the plane and their adjacency relations can be computed in optimal 0(Jfc2) 

time using a topological sweep [18, 27]. The cost of executing a crossing rule from cell /, to 

cell fj is proportional to the size of the crossing set C,j (or C,,). Although a single CtJ may 

include k contacts, each contact is only a member of crossing sets along its circle, and only 

those sets on the violating side of the circle. A circle is adjacent to at most 4k regions on 
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one side, so the sum of the sizes of all the crossing sets is bounded by 4k2. Hence the total 

amortized cost to incrementally construct all the DBGs is 0(k2). Finally, checking each 

DBG for strong connectedness requires 0(m) time. We now have the following theorem. 

Theorem 4.2 Let A be an assembly of n parts with m contacts described as k point-plane 

constraints. It can be decided in 0{mk2) steps whether there is a proper subassembly of 

A that is locally free in A for translations. Such a subassembly and a valid direction of 

translation can be computed in the same number of steps. 

In some assemblies with complicated contacts, m < i, and in those cases the more 

complicated algorithm saves significant time. 

4.3    Partitioning for General Local Motions 

Now consider general rigid motions AX, where 

AX = (i,jf,2,d,/3,7). 

A motion AX violates contact c if and only if n*JcAX < 0. As in translation, the subset 

of the constraints C violated by a local motion AX defines a weighted directional blocking 

graph G(AX,A), in which the weight of the arc from part Pt- to part Pj is the number of 

constraints c between P,- and Pj violated by AX. 

Again restrict |AX| = 1, so the set of all local motions AX make up the unit sphere in six 

dimensions S5. Each constraint c in C defines a hyperplane that divides S5 in half. Motions 

AX on the hyperplane are sliding motions for c, and motions on either side are breaking 

and violating motions, respectively. The set of hyperplanes for all constraints C determines 

an arrangement of 0(ks) cells on S5, where the cells consist of open 5-dimensional sets of 

S5 and various relatively open rf-dimensional sets bounding them, for 0 < d < 5 [27]. 

The cells of the arrangement on S5 are regular in the same sense as in the translational 

case: for any two local motions AXi and AX2 in the same cell, G(AXi,A) = G(AX2,A). 

Again define the graph G(f) for a cell / to be G(AX, A) for motions AX € /. The arrange- 

ment on S5 and the corresponding DBGs constitute a non-directional blocking graph of A 

for local rigid motions. Property 4.1 holds equally for two neighboring cells in this NDBG. 

Thus the vertices of the arrangement on S5 (the points at the intersection of 5 or more 

hyperplanes) constitute a set of critical local motions. To find a locally free subassembly of 

A it suffices to check the graphs G(v) for all vertices v in the arrangement on 55. 
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An exception occurs when no set of five hyperplanes from the constraints C define a 

single point, so there are no critical local motions. This happens when rank(C) < 5. In 

this case additional random hyperplanes can be added to C until rank(C) = 5, at which 

time a vertex will arise. Motions in the vertex slide on all the contacts of A, so a removable 

subassembly will be found in the DBG of the vertex. 

Since a critical motion arises from every set of five hyperplanes, there are (£) = 0(k5) 

critical local motions. Constructing and checking each graph requires 0(k) steps, so a 

locally free subassembly of A for general rigid motions can be identified in time 0(kG). 

In addition, the faster algorithm of the section 4.2 can be extended to the case of rigid 

motions. The crossing rules as stated there apply directly to the local rigid motion case. The 

arrangement on S5 can be constructed in 0(k5) time and has 0(k5) cells [27]. The number 

of neighboring cells of a hyperplane is in 0(k4), so each contact is in 0(k4) crossing sets. 

Hence the sum of the sizes of all crossing sets is 0(ks), and the amortized cost of applying 

the crossing rules over the whole NDBG is 0(k5). Checking the strong connectedness of all 

the DBGs requires 0(mks) time, which dominates the other costs. 

Theorem 4.3 Let A be an assembly of n parts with m contacts described as k point-plane 

constraints. It can be decided in 0(mk5) steps whether there is a proper subassembly of A 

that is locally free in A. Such a subassembly and a valid direction of rigid motion can be 

computed in the same number of steps. 

4.4    Incremental Construction 

For some applications it may be advantageous to construct the non-directional blocking 

graph for an assembly A explicitly, and then make incremental changes when the geometry 

of the assembly changes. For instance, in a concurrent engineering system, the assembly 

design will evolve over time, as parts are added or removed or their geometry modified. 

After a small change, the NDBG for the new assembly will bear a strong resemblance to 

the previous NDBG. As a result, the time to generate an assembly sequence after a design 

change can be reduced by updating the NDBG incrementally. The procedures to update 

the NDBG according to several types of changes to the assembly are sketched below. 

Changing contacts Consider first a change in the geometry of a part P, in an n-part 

assembly A, resulting in a new assembly A'. If the new geometry of Pi leaves all previous 
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contacts of P, with other parts unchanged, and introduces no new contacts, then the NDBG 

of A' will be the same as that of A. 

On the other hand, suppose the new geometry of p introduces a contact constraint 

c with part Pj. In fact, any new contact c between P, and Pj will produce a reciprocal 

constraint from P, to P that must be added as well. The line corresponding to c can be 

incrementally added to the planar arrangement in 0(k) time (0(k4) time in the full rigid 

motion case), producing 0(k) (respectively 0(k4)) new cells [18, 27]. In addition, the DBGs 

for all the motions violating constraint c need to be updated; these motions are given by 

the cells on the violating side of the constraint line. For each such cell /, the weight of 

the arc from p to P, in G(f) must be increased by 1, a total of 0(k2) steps (0(k5) for 

rotations). Finally, adding arcs can only increase the strong connectedness of a DBG, so 

the new contact will never allow assembly operations for A' that were not possible for A. 

Contacts can be deleted using similar methods, and changing a contact constraint can 

be performed by deleting the old constraint and adding the new one. 

Adding or deleting parts When a new part Pn+i is added to A, the NDBG can be 

modified in two steps. First Pn+i is added to the DBG for each cell. Then the contacts 

between Pn+i and the initial parts of A are added in the manner above. 

Merging or splitting parts Merging two parts or splitting one part into two smaller 

parts are common operations in assembly design. For instance, if one area of a part is 

subjected to higher stresses than another area, the part can be divided to allow the low- 

stress section to be constructed of lighter or cheaper material. On the other hand, the 

cost of manufacturing a product can often be reduced by merging parts that do not move 

relative to each other in the finished product. The composite part is made as one piece, 

such as with a molding or stamping operation, thereby saving assembly costs. 

Let p and Pj be two contacting parts in A that have been merged in A'. The contact 

constraints between P and P, are no longer relevant, so they can be deleted as above. Then 

for each DBG in the NDBG, Pj is removed and the weights of any arcs incident to it (either 

into or out of Pj) are added to the corresponding arcs of p. For example, if the arc from 

Pj to Ph has weight 3, then 3 is added to the weight of the arc from P, to P, in the new 

DBG. 

When a part is split into two sections, the reverse of the above process is performed. 
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The contacts of the original part are divided into those touching each section. A new node 

is created in each DBG having the corresponding incoming and outgoing arcs, and finally 

the contacts between the two sections are added to the NDBG. 

Whenever the number of contact or part changes is much smaller than the number of 

contacts and parts in the assembly, incrementally updating the NDBG will save considerable 

time. In addition, the updates can be performed in the background while the designer works, 

so that the NDBG is ready when an assembly sequence is requested. These procedures have 

not been implemented in GRASP. 

4.5    Connected Subassemblies 

As noted in section 2.4.4, in many applications it is desirable to generate only connected 

partitionings of the assembly A. The above method can be extended to generate only con- 

nected, locally free partitionings, using the connection graph of A. Clearly the connection 

graph C(A) is related to the graph G(AX, A) for a local motion AX. Specifically, if an arc 

connects P, to Pj in G(AX,A), then a link connects P, and P, in C(A). 

If C(A) is not connected and has exactly two connected components, then they must be 

locally free from each other. Obviously if C(A) has more than two connected components, 

then A cannot be partitioned into two connected subassemblies. For the following, assume 

C(A) is connected. 

If 5 is a locally free subassembly of A in direction AX found with the algorithm above, 

then 5 is a strong component of G(AX, A) and therefore connected in C(A). If A \ S is 

. not connected in C{A), then the connected components d of A \ S have no arcs between 

them in G{AX, A). Hence a new removable subassembly can be constructed by adding all 

but one C, to 5. Furthermore, since A is connected, the removal of S disconnected every 

d from the rest, so 5 must be connected to each C, in A. Therefore choose an arbitrary 

connected component C\. The subassembly A\Ci is connected and locally free from C\ in 

direction AX. 

Theorem 4.4 Let A be an assembly of n parts with m contacts described as k point-plane 

constraints. It can be decided in 0(mk2) steps whether there is a proper subassembly S of 

A such that S and A\S are connected in C(A) and S is locally free in A for translations. 

Such a subassembly and a valid direction of translation can be computed in the same number 

of steps. 
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Figure 4.4: (a) the connection graph for the crate assembly in figure 1.1 and (b) the con- 
nected components after removal of the box 

Theorem 4.5 Let A be an assembly of n parts with m contacts described as k point-plane 

constraints. It can be decided in 0(mk5) steps whether there is a proper subassembly S of A 

such that S and A\S are connected in C{A) and S is locally free in A. Such a subassembly 

and a valid direction of rigid motion can be computed in the same number of steps. 

For example, consider the connection graph for the crate assembly shown in figure 4.4a. 

The subassembly {box} is locally free for motions to the right in the crate. After removing 

{box}, the remaining parts of the crate comprise two connected components of the connec- 

tion graph of the crate (figure 4.4b). Either of these can be added to {box} to make a con- 

nected, locally free subassembly. Thus both {box, cargo} and {box,lid,screwl,screw2} 

are connected, locally free subassemblies of the crate. 

4.6    Generating All Locally-Free Subassemblies 

In most uses of the above algorithms, more than one locally-free subassembly will need to 

be generated. Local freedom is not a sufficient condition for a subassembly to be removable; 

as a result a number of locally free subassemblies might need to be tested against global 

motion constraints to find a valid assembly operation. In addition, more than one removable 

subassembly will need to be found when alternative assembly sequences are desired. This 

section presents procedures to find the set of all locally free, and connected locally free, 

partitionings of an assembly. 
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4.6.1    Unconnected Subassemblies 

First consider the case when the subassemblies are not required to be connected. The set 

of all locally free subassemblies of an assembly A is equal to the union of the sets of locally 

free subassemblies for all directional blocking graphs of A. Thus it suffices to find the set 

of locally free subassemblies for each DBG. 

Figure 4.5 shows procedure ALL-SUBASSEMBLIES, which generates the set of all locally 

free subassemblies in a direction AX, given G = G(AX, A). As in the previous sections, 

parts of A that form a strong component of G must necessarily move together, since they 

are interlocked in direction AX. Accordingly, ALL-SUBASSEMBLIES first calls function 

REDUCE, which computes the reduced graph of the strong components of G. The reduced 

graph R is a directed acyclic graph with a node corresponding to each strong component of 

G. An arc connects node ni to node Ti2 in R if and only if an arc of G connects one of the 

parts of Tij to one of the parts of TI2. Hence the directed partitionings of R correspond one-to- 

one with the directed partitionings of G. In the discussion below and in the algorithms I will 

not distinguish between the nodes of R and the strong components of G. Let PRED(n, R) 

be the set of all predecessors of node n in R (including n), and SUCC(n, R) be the set of all 

successors of n in R (including n). Let D(R) be the set of directed partitionings of R. 

The recursive procedure ALL-REDUCED enumerates D(R). It maintains the following 

invariant: 

At each invocation of ALL-REDUCED, S\ and S2 are disjoint subsets of the nodes 

of R. In addition, 5i is closed under the PRED function, and 52 is closed under 

the SUCC function. 

In other words, S\ is a locally free subassembly of A in direction -AX, and 52 is locally 

free in direction AX. The nodes not in S\ or 52 are undecided nodes. 

ALL-REDUCED(S\, S2) generates all directed partitionings (S^S^) of R such that 5i C 

5j and 52 C 52. If 5i U 52 = A, then (5i,52) is the only such partitioning. Otherwise, any 

undecided node n can act as a pivot: the directed partitionings (S'l,S'2) of R are divided 

into two sets: those with n in S[, and those with n in 52. These two sets are computed by 

recursive calls to ALL-REDUCED. Since 5i must be closed under the PRED function, the 

predecessors of n are added to S\ in the first recursive call; similarly the successors of n 

are added to 52 in the second recursive call. The call ALL-REDUCED(9,ib) thus enumerates 

D(R). 
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Procedure ALL-SUBASSEMBLIES(A,G) 

R «- REDUCE(G); 
ALL-REDUCED(%,$)\ 
return(£>); 

end; {procedure} 

Procedure ALL-REDUCED{SX,S2) 

if 5i U S2 = A 
if 5i ? 0 and S2 ± 0 

push((5i, 52),I>); 
else return; 

else 
choose a node n € [^4 \ (Si U S2)]; 
ALL-REDUCED(Si U PRED(n, R), S2); 
ALL-REDUCED(Si, S2 U SUCC(n, R)); 

end; {else} 
end; {procedure} 

Figure 4.5: The procedure to find all locally-free subassemblies for a DBG 

Since in general there might be a large number of locally free subassemblies, the time 

complexity of ALL-SUBASSEMBLIES is dependent on the number s of directed partitionings 

of G. Consider the binary tree of recursive calls of ALL-REDUCED. Each leaf in the call 

tree corresponds to either a directed partitioning of R or an empty set S\ or S2. The latter 

case can happen at most twice—once when all pivot nodes are placed in Sj, and once when 

all pivot nodes are placed in S2. Hence the call tree has at most s + 2 leaves and at most 

5 + 2-1 internal nodes. The set operations in a single call to ALL-REDUCED can all be 

done in time linear in m, so ALL-REDUCED(9,Hl) requires 0{ms) time. The reduced graph 

of a DBG can be found in time 0(m) [1], so ALL-SUBASSEMBLIES is also 0{ms). 

To find all the locally free subassemblies of A, D{G) must be calculated and combined 

for all DBGs G of A. A locally free subassembly might be found in many DBGs of A, so s 

can be as large as the number of locally free subassemblies of A. Using a trie structure [1] to 

represent the global list of partitionings, D(G) can be merged with the global list in 0(ns) 

time. For local translations there are 0{k2) DBGs to analyze, and for local rigid motions 

0(k5) of them. We now have the following theorems. 
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Theorem 4.6 Let A be an assembly with m contacts described as k point-plane constraints. 

The set of all s locally free subassemblies of A in translation can be found in 0(msk2) time. 

Theorem 4.7 Let A be an assembly with m contacts described as k point-plane constraints. 

The set of all s locally free subassemblies of A can be found in 0(msk5) time. 

4.6.2    Connected Subassemblies 

The locally free connected partitionings of A could be found by generating all locally free 

subassemblies of A (using procedure ALL-SUBASSEMBLIES) and checking each partitioning 

for connectedness. However, this may require testing a large number of partitionings to find 

a few connected ones. 

Assume that C(A) is connected; the other cases are considered in section 4.5. 

Figure 4.6 shows procedure CONN-SUBASSEMBLIES, which combines aspects of ALL- 

SUBASSEMBLIES and CONN-PARTITIONINGS (from figure 3.9) to directly find the locally 

free connected partitionings of a DBG. The strong components of G (i.e. the nodes of Ä), 

as well as the predecessor and successor sets of a node of R, must be connected in C(A), 

because the arcs of G derive from the links of C(A). Since the parts in a node of R are con- 

nected and must move together, each node can be considered a single part for that direction 

of motion. CONN-SUBASSEMBLIES works much the same way as CONN-PARTITIONINGS; 

it continually chooses pivot nodes and generates the partitionings including the pivot in 

either Si or 52- 

After computing the reduced DBG R, CONN-SUBASSEMBLIES chooses pivot nodes n, 

as before to split the directed connected partitionings of R into two sets (line 1). For each 

such set of partitionings, it chooses another pivot node n, to split it again (line 2). This 

is necessary because CONN-REDUCED must be called with two non-empty sets 5i,52. nj 

is chosen so as to keep Si connected in all calls to CONN-REDUCED. For each pivot node 

included in Si, the predecessors of the pivot must also be in Si; for each pivot placed in 52, 

its successors must be in 52 also. Whenever the added predecessors and successors cause 

Si and 52 to intersect, clearly no directed partitionings exist with those pivot choices. 

The following invariant is maintained on each call to CONN-REDUCED: 

Si and 52 are non-empty disjoint subsets of the nodes of R, and closed under 

the PRED and SUCC functions, respectively. In addition, Si is connected in 

C(A). 
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Procedure CONN-SUBASSEMBLIES(A, G) 

D-0; 
R«- REDUCE(G); 

S3*-0; 
(1) while there is a node n, of R, n, £ S3 

Si «- PRED(ni, R); 

(2) while there is a neighbor n, of 5i in C{A) such that «j £ S3 

S2 «- S3USUCC{nj,R); 

if Si n 52 = 0 
CONN-REDUCED(Si, S2); 

5i — SiUPRED(nj,R); 

end; {while} 
S3 «- S3 U 5tf(7Cl(n„ Ä); 

end; {while} 
return(-D); 

end; {procedure} 

Procedure CONN-REDUCED{Si, S2) 

CC «- CONNECTED-COMPONENTS(A \ Si,C(A)); 

if \CC\ > 1 
if for some C, € CC,  dDS2 

Si «- Sj U Ui* Cj; 
else return; 

end; {if} 
push((Si, A \5j ),D); 
for each neighbor n,- of Si in C(A), n, £ S2 

(3) CONN-REDUCED(Siö PREDini,R),S2); 

S2^S2U SUCC[ni, R); 

end; {for} 
end; {procedure} 

Figure 4.6: The procedure to find all connected, locally-free subassemblies for a DBG 
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The procedure CONN-REDUCED works much like CONN-SUPERSETS, with the added con- 

straint that whenever a pivot is added to Si or 52, its predecessors or successors must be 

added, respectively. 

Procedure CONN-REDUCED first computes the connected components CC of A \ Si. If 

A \ Si is connected, then (5i,5j) is a directed connected partitioning. If \CC\ > 1, then 

the only supersets S[ of Si that will have a connected complement A \ S{ will include all 

the CC but one. As before there are two cases: 

• If S2 intersects more than one of the CC, then all supersets S'2 of 52 are unconnected. 

In this case the procedure returns. 

• If 52 is contained in one connected component C,-, then that C, cannot be added to 

Si. Clearly then, all components Cj, j ^ i, must be added to Si, and then (Si, S2) is 

a connected partitioning. 

After one partitioning (5i,52) is found, then each node n, connected to Si and not in 

52 becomes a new pivot. Node n,- divides the superset partitionings (5^,52) into those 

containing n,- in 5J and those with n, in S'2. Recursive calls to CONN-SUPERSETS enumerate 

those partitionings, including the predecessors or successors with n,, respectively. If all 

neighbors n,- are in 52, then no superset of Si will be connected. 

Not counting the time taken in CONN-REDUCED, CONN-SUBASSEMBLIES requires 

time 0(n2m) in a straightforward implementation. However, using a marking scheme to do 

the set operations and PRED and SUCC calculations, this can be reduced to O(nm) time. 

This optimization is straightforward but tedious, and will not be described here. Each call 

to CONN-REDUCED requires time linear in m, not including the recursive calls. There are 

0(n2) initial calls, and 0(ns) calls resulting from line (3). Hence CONN-SUBASSEMBLIES 

executes in time 0(nms). CONN-SUBASSEMBLIES must be called once for each DBG and 

the results combined as for the unconnected case. 

Theorem 4.8 Let A be an assembly of n parts with m contacts described as k point-plane 

constraints. The set of all s connected, locally free partitionings of A in translation can be 

found in 0(nmsk2) time. 

Theorem 4.9 Let A be an assembly of n parts with m contacts described as k point-plane 

constraints. The set of all s connected, locally free partitionings of A can be found in 

0(nmskh) time. 
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4.7    Implementation 

Both the translational and rotational versions of the PARTITION algorithm given above have 

drawbacks for a practical assembly sequencing method. The first is limited to translations, 

which rides out its direct application to the many mechanical assemblies with threaded 

contacts. On the other hand, the rotational version can find any locally free subassembly 

in a rigid assembly, but at the cost of examining 0(k5) DBGs. 

The assemblies of figures 3.13 and 3.14 are anomalies in the real world. Almost all 

rotational motions used in real assemblies are either screwing motions required by threaded 

contacts or pure rotations around the axis of a cylindrical contact. The version of PAR- 

TITION implemented in GRASP is a hybrid algorithm that has the same time complexity 

of the translational version. It finds all locally free subassemblies that the translational 

version does, plus any subassemblies 5 for which the separating motion is suggested by a 

threaded or revolute contact between S and A \ S. In fact, the resulting algorithm finds 

the same set of assemblies as Hörnern de Mello's GET-FEASIBLE-DECOMPOSITIONS does 

for local motions, but with a much lower worst-case time complexity. 

The hybrid algorithm begins by finding all subassemblies that are locally free in trans- 

lation as described in section 4.2. Then it generates a list of suggested motions given by the 

nonplanar contacts of the assembly. For each threaded contact, a twisting trajectory with 

the same axis and pitch as the contact is added to the list of suggested motions. For each 

cylindrical contact, a pure rotation around the axis of the contact cylinder is generated. 

Then for each suggested motion AX, a DBG G(AX, A) is constructed and analyzed for 

connected, locally free partitionings. 

There can be at most 0(k) suggested directions AX, and building the DBG for each AX 

requires examining all k contacts for compatibility with AX. Finding the connected locally 

free partitionings of the DBGs for all suggested directions is completed in time 0(nmsk), 

which is dominated by the 0(nmsk2) time bound of the translational case. 

Even if an assembly sequencer were required to disassemble products such as that in 

figure 3.14, the PARTITION algorithm as implemented in GRASP would be a practical 

first step. Most assemblies would be quickly partitioned, and in the few cases where the 

algorithm could not find a partitioning of the assembly, the full rotational version could be 

invoked. 
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Assembly 
Number 
of Parts 

DECOMPOSE PARTITION 
Node Tree Graph Node Tree    Graph 

Engine 12 1.0 31 48 0.5 30          42 
Bell 17 2.6 18 528 0.9 16        522 
Bell 22 4.7 25 3245 1.4 21       2186 

Engine 30. 4.9 111 — 3.6 112          — 
Skin 36 — — — 3.4 222          — 

Engine 42 74 319 — 8.5 189          — 

Table 4.1: Experimental timings comparing procedures DECOMPOSE and PARTITION, in 
seconds 

4.8    Experiments 

Table 4.1 shows experimental results obtained with the hybrid PARTITION on the assemblies 

described in Appendix B. For each assembly A, three times are given for both procedure 

DECOMPOSE (based on generate-and-test) given in figure 3.8 and PARTITION: 

• the time required to partition the root node (i.e. find all connected locally free parti- 

tionings of A), 

• the time to find one disassembly AND-tree for A, and 

• the time to build the full AND/OR graph for A. For the larger assemblies, the full 

AND/OR graph is too large to generate in practice. 

Several points should be noted about the results in table 4.1. For most assemblies, 

the two procedures are quite competitive in running times. However, the skin machine 

represents a bad case for procedure DECOMPOSE, since its connection graph has a very 

large number of cut-sets. As a result, DECOMPOSE was stopped after two days of trying to 

partition the skin machine. In that time it examined over 100,000 connected partitionings. 

For the assemblies other than the skin machine, a relative advantage of PARTITION in 

decomposing the root node of the graph does not necessarily translate into a large decrease 

in sequencing time. For instance, PARTITION partitioned the 22-part bell in 1.4 seconds 

compared to 4.7 for DECOMPOSE, but the times to generate the whole AND/OR graph were 

2186 and 3245 seconds, respectively. This is due in part to the other costs of sequencing, 

such as checking for global motions. In addition, the generate-and-test method is faster for 

small assemblies, which make up the bulk of the AND/OR graph. 
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The time required for DECOMPOSE to find the locally free subassemblies of the 22-part 

bell is much lower in table 4.1 than the 54 seconds reported in [64]. The previous figure was 

using Hörnern de Mello's cut-set generation algorithm [34], which is much slower in some 

cases than that given in figure 3.9. 



Chapter 5 

Partitioning for Extended 

Translations 

The previous chapter described methods to find locally free subassemblies of an assembly 

in polynomial time. However, local freedom is only a necessary constraint; a globally valid 

path must be found for the removal of any locally free subassembly. In fact, a large number 

of locally free subassemblies might be tried before a globally free one is found. To avoid the 

generate-and-test cycle in such cases, an algorithm is desired that would find globally-free 

subassemblies in an efficient manner. 

In addition, the basic module for extended collision checking in GRASP (section 3.4) 

checks for globally-valid motions by extending several local motions to infinity and checking 

for collisions using a sweeping computation. The translations are chosen heuristically based 

on the shape of the local freedom cone. This method is obviously not complete; in some 

cases a translation that would separate two subassemblies will not be tested. 

This chapter presents an algorithm that corrects both of these inadequacies for as- 

semblies of polyhedral parts and global motions consisting of single extended translations. 

Specifically, the following problems are addressed: 

1. Given an assembly A of n polyhedral parts, decide whether there is a direction d and 

a subassembly S C A such that a translation along d separates 5 from the remaining 

parts A \ S, and if so identify d and S. 

2. For an assembly A of polyhedra, return a list of all subassemblies 5 C A that can be 

separated from A \ S by a single translation. 

82 
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A method is given below to solve the first problem in polynomial time and the second 

problem in output-sensitive polynomial time. 

Arkin, Connelly and Mitchell [3] address a planar version of problem 1 above. They 

use the concept of monotone paths among polygonal obstacles to identify a removable 

subassembly of simple polygons in the plane. The methods in [3] do not extend directly 

to the three-dimensional case. However, Mitchell has independently shown that extended 

translations for partitioning an assembly can be found in polynomial time [47]. 

For an assembly with n parts and v total vertices, I give an algorithm to identify a 

removable subassembly in 0(n2v4) time. The algorithm is closely related to the method 

given in the previous chapter. When applied to two polyhedral parts or subassemblies, the 

procedure becomes an algorithm to find the set of all translations separating the parts in 

0(v4) time, which is optimal in the worst case. Complete translational assembly sequences 

for polyhedral parts can easily be computed by recursive application of the method. I 

describe an implementation of the procedure and the results of various assembly planning 

experiments using the program. 

5.1    Extended Blocking Graphs 

The algorithm to find a subassembly of A that can be separated from the rest of A by a 

single translation is quite similar to the partitioning algorithm presented in the previous 

chapter. The set of translations is represented as the points on the unit sphere S2, which 

is divided into regions based on which parts block the motions of others in each region. In 

this case extended translations are considered instead of local motions. A weighted blocking 

graph is associated with each region, crossing rules are defined, and the sphere is searched 

for a region whose blocking graph has a free subassembly. 

Let A = {Pi,.. .,Pn} be an assembly of n polyhedral parts with a total of v vertices. 

Assume for now that the parts are not in contact; this restriction is removed below. A part 

Pi collides with another part Pj in direction d if there exists a point x in the interior of P, 

such that x + td is in the interior of Pj for some value t in [0, oo). A translation separating 

a subassembly Si from subassembly 52 is a vector d such that no parts of Si collide with 

parts of S2 in direction d. Let G(d, A) denote the extended directional blocking graph of 

assembly A in direction d. G(d, A) is a directed graph whose nodes are the parts of A, in 

which an arc connects part Pj to P, if and only if P, collides with Pj in direction d. Clearly 
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d separates subassemblies S and A \ S exactly when (5, A \ S) is a directed partitioning of 

G{d,A). 

The set of all translation directions d can be represented by the points on the unit sphere 

S2 in three-dimensional space. For each pair of parts P,,Pj, the configuration obstacle 

C(Pi,Pj) = PjB Pi = {aj - bi | aj € Pj, 6, € P} 

is the set of placements of P, such that Pi intersects Pj [45]. Let PtJ be the projection of 

C(P{,Pj) on the unit sphere using a central projection centered at the origin. The interior 

of the region P,j is the set of translations along which P, collides with Pj. 

Since P, and Pj are polyhedral parts, the C-obstacles C(Pi,Pj) are also polyhedra [42, 

45]. In a central projection, any line segment in space projects to an arc of a great circle 

on S2, so the regions Rij are bounded by arcs of great circles. Consider the set C of all 

bounding arcs of regions Rij. C determines an arrangement of cells on 52 of three types: 

Vertices lie at the intersection of two or more arcs.   Since the arcs are boundaries of 

regions, no arc ends without intersecting another. 

Edges are maximal open connected arcs that do not include vertices. 

Faces are maximal open connected components of the sphere not intersecting an edge or 

vertex. 

The cells are regular in the following sense: for any two translations d\ and d2 in a cell, the 

extended DBGs G(di, A) and G(d2, A) are equal. Define G(f) for a cell / to be G(d, A) for 

translations d in /. The arrangement on the sphere and the corresponding DBGs constitute 

an extended non-directional blocking graph. A parallel property to Property 4.1 holds for 

the cells in this arrangement. 

If two parts are in contact in their initial positions, then the C-obstacle C(Pi,Pj) in- 

cludes the origin, and in this case the projection Rij is undefined. Because the extended 

translations allowed by such a contact correspond to the local translations it allows, con- 

tact constraints can be added to the NDBG as with the contact DBGs of section 4.2. The 

non-contacting sections of Pj and Pj are then treated as described here. Including contact 

constraints does not add to the computing times of the methods in this chapter, but to 

clarify the presentation they will not be considered. 
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5.2    Finding a Removable Subassembly 

The projected configuration obstacles Rij need not be computed explicitly. The faces of 

Pi and Pj can be triangulated, and the configuration obstacle for each pair of triangles 

computed. Although the union of the triangle C-obstacles is not always equal to C(Pi,Pj), 

Rij is always equal to the union of their projections onto the sphere. To each arc in G(d, A), 

attach a weight equal to the number of pairs of triangles from the two parts that collide for 

translation d. An arc of weight 0 is the same as the absence of an arc. The arrangement 

is then composed of regions Tij corresponding to collisions between triangles T,- and T,-; the 

DBGs for two translations in a cell of this new arrangement are equal. 

As in the local motion case, the DBGs for neighboring cells of the arrangement differ 

only slightly. Let the crossing set Cij be the set of regions Thk such that cell fj is in the 

interior of Thk but cell fi is not. Crossing from /, to fj steps into the interior of the regions 

in Cij or out of the regions in Cji (either Cij or Cji will be empty depending on whether fi 

is on the boundary of fj or vice versa). 

If G{fi) is known for a cell /,• on the boundary of a cell /_,, then G(fj) can be computed 

using the following crossing rule: 

Initialize G(fj) to (?(/,). For every region Thk € Cij, add one to the weight of 

the arc from Pa to Pb, where triangle 7), belongs to part Pa and 7* belongs to 

Pb- 

Conversely, when (?(/,•) is known and fj is on the boundary of /,: 

Initialize G(fj) to G(fi). For every region Thk € Cji, decrease the weight of the 

arc from Pa to Pt, by one, where triangle Th belongs to part Pa and 7* belongs 

toPb. 

To find a subassembly of A removable by an extended translation, the sphere is mapped 

to two parallel planes using a central projection from the origin. However, S can be sep- 

arated from A \ S in direction d exactly when A \ S can be removed from 5 in direction 

—d. Thus it suffices to search only one planar arrangement. This gives rise to the following 

algorithm for finding a removable subassembly: 

1. Triangulate the faces of the parts. 

2. For each pair of triangles 7i, Tj from different parts, compute the projection Tij of 

C{Ti,Tj) on the plane. 
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3. Calculate the arrangement of boundary line segments of the regions Tij. 

4. Compute the crossing sets Chk by traversing the boundary of every T^. For each cell 

/ on the line, a pointer to T,j is deposited in each Chk toward the interior of Tij. 

5. For an arbitrarily selected cell /0, compute G(f0) by comparing /0 to every region Tij. 

6. Perform a depth-first traversal of all the cells in the arrangement by crossing from f0 

to neighboring cells. To step from a cell fi to a neighboring cell /,, calculate G(fj) 

from G(fi) using the crossing rules above. After visiting a cell, it is marked and not 

visited again. If G{fi) is not strongly connected for any cell /,, output a direction d 

in /,- and the strong component of G{fi) with no outgoing arcs. 

The faces of a part with v vertices can be divided into O(v) triangles in optimal 0(D) 

time [16] or in expected 0(vlog* v) time using a simpler randomized algorithm [59]. There 

are 0(v2) regions Tij, each with a constant number of edges, so step 2 requires 0(v2) 

operations. The arrangement induced by m line segments in the plane has O(k) cells, where 

k < (21) is the number of intersections between segments. The arrangement, including the 

adjacency relations between its cells, can be computed in optimal 0(mlogm + k) time [17] 

and in expected 0(m log m + k) time using a simple randomized algorithm [19]. Here 

m = 0{v2), so the number of cells and the computing time for step 3 are 0(v4) in the worst 

case. 

The 0(v2) edges in each segment have a total of 0{v2) neighbors, so step 4 costs 0(v4), 

and the sum of the sizes of all crossing sets is 0(v4). Testing the initial face /o for inclusion 

in all regions requires 0(v2) operations. The cost of computing the DBGs using the crossing 

rules is proportional to the number of regions in all crossing sets, so it is also 0(v4). Finally, 

a DBG may have n(n — 1) arcs, so computing the strong components of all DBGs can be 

done in 0(n2v4) time, which dominates the other times. 

Theorem 5.1 Let A be an assembly of n polyhedral parts with a total of v vertices. It 

can be decided in 0(n2v4) steps whether there is a proper subassembly of A that can be 

translated to infinity without intersecting the remaining parts. An appropriate subassembly 

and direction can be computed in the same number of steps. 

As an example, consider the simple configuration of four cubes aligned along the z-axis 

in figure 5.1. The corresponding planar arrangement consists of 12 polygons; several of these 
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Figure 5.1: An assembly of cubes 

Figure 5.2: The arrangement for the assembly in figure 5.1 

polygons coincide. Figure 5.2 shows the planar arrangement. The projected configuration 

obstacle corresponding to cubes Px and PA is the region marked £(1,4) and is bounded by 

a line segment and two rays. 

Figure 5.3a shows the directional blocking graph G(f) for cell / = £(1,4). £(1,4) is 

contained in £(1,2) and £(1,3), so there are arcs in the graph from node 1 to nodes 2, 3, 

and 4, each of weight 1. £(1,4) is contained in £(2,4), £(2,3), and £(3,4). Since node 4 

has no successors, it is a removable subassembly for translations in £(1,4). If cubes £2 

and P4 represent a single part P24, the DBG in figure 5.3b results. Nodes 24 and 3 form 

a strongly connected component, so cubes 2, 3, and 4 must be removed simultaneously for 

translations in £(1,4). 
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Figure 5.3: Extended DBGs for region £(1,4) where (a) Pi,..., P4 can be moved indepen- 
dently (b) P2 and P4 must be moved simultaneously 

5.3    Finding All Removable Subassemblies 

In some cases, finding a single removable subassembly is not sufficient. For instance, to 

construct the AND/OR graph of all assembly sequences, at each node the set of all removable 

subassemblies must be found. The operations may also be subject to additional, non- 

geometric constraints in an assembly sequencing system, requiring alternatives to be found 

and tested. For these purposes, the set of all subassemblies removable by an extended 

translation can be computed by applying the algorithm ALL-SUB ASSEMBLIES of figure 4.5 

to the extended blocking graph G(d, A). In this application, ALL-SUBASSEMBLIES finds 

all s subassemblies removable in a single extended DBG in time 0{n2s). This calculation 

must be done for each DBG, resulting in the following theorem. 

Theorem 5.2 Let A be an assembly of n polyhedral parts with a total of v vertices. The 

set of all s proper subassemblies of A removable by a single translation can be computed in 

0(n2vAs) time. 

5.4    Connectedness 

Some assemblies have no connected monotone assembly operation to create them, yet have 

unconnected subassemblies that can be mated by a single translation. An example is shown 

in figure 2.10. As a result, the straightforward application of the method of section 4.5 

cannot succeed for an extended DBG. In addition, the procedure CONN-SUBASSEMBLIES 

of figure 4.6 cannot be directly applied to an extended DBG. Both rely on the fact that the 

arcs in a DBG are a subset of the arcs in the connection graph for the same assembly. This 

relationship holds between the connection graph of an assembly and the contact DBGs of 

that assembly, but does not hold between connection graphs and extended DBGs. I have 
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found no polynomial time algorithm to solve this problem. 

Two generate-and-test methods can be used to find connected subassemblies removable 

in translation, but they both may require testing an exponential number of candidate op- 

erations in the worst case. The first generates removable subassemblies S and tests 5 and 

A \ S for connectedness; the second generates locally free connected partitionings of A and 

then checks them for extended translations using the method of the next section. For many 

assemblies these methods will work, but guaranteed polynomial time algorithms are needed. 

5.5    Separating Two Polyhedral Parts 

The extended partitioning algorithm above can be applied in a straightforward manner to 

find the set of all extended translations separating two polyhedral parts or subassemblies. 

For instance, this algorithm could be used instead of the sweeping method described in 

section 3.4. There, a subassembly S is swept to find collisions with other parts, in directions 

chosen heuristically based on the shape of the local freedom cone of S. In contrast, the 

method here is guaranteed to find a separating translation if one exists. 

Each subassembly is considered a single part. The arrangement on the sphere is built 

and searched, and all cells /,• in which one subassembly is removable from the other are 

collected. The translations in these cells are the set of all separating motions for the two 

subassemblies. Because n = 2, the above algorithm runs in time 0(v4) for this case. 

In fact, this algorithm is optimal in the worst case. The optimality directly follows from 

an example given by Pollack, Sharir and Sifrony [54]. The example in [54] concerns two 

polygons P and Q with r and 5 edges respectively; the number of connected components 

in the complement of the configuration obstacle corresponding to P and Q is proportional 

to rV (figure 5.4). In our case the polygons P and Q are regarded as polyhedral parts 

of zero volume, and r, s = v; the following holds equally if P and Q are sufficiently thin 

polyhedra. Place P in a plane p and Q in a plane parallel to p, but distinct from p. Then 

the plane containing the configuration obstacle of P with respect to Q does not contain 

the origin, so the projection of the configuration obstacle of P with respect to Q on the 

sphere S2 partitions 52 into H(n4) connected components. Therefore the set of translations 

separating P from Q consists of ft(w4) connected components. 

Theorem 5.3 The set of all translations separating two polyhedral parts with v vertices can 

be found in time 0(v4), and this is optimal. 
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i : ■V.V.V.S-: w. w.wm... A .% 

Figure 5.4: Polygons from Pollack et. al. [54] 

5.6    Finding Assembly Sequences 

The above method can be used to efficiently build an AND-tree representing a binary mono- 

tone assembly sequence for a polyhedral assembly in which the operations are restricted to 

single extended translations. The method of Theorem 5.1 is simply applied recursively 

to subassemblies. Since a monotone binary assembly sequence has n - 1 operations, the 

method is applied n — 1 times. 

Theorem 5.4 Given an assembly Aofn polyhedral parts with v vertices, it can be decided 

in 0(n3v4) steps whether a binary monotone assembly sequence exists for A using only 

extended translations. 

5.7    Implementation 

A drawback of the algorithm above is the storage requirement: the arrangement may take 

0(v4) space to store, which is impractical for complicated assemblies. The implementation 

reduces the space requirement by performing a simpler vertical line sweep [42, 56] over the 

arrangement of 0(v2) line segments. This algorithm works as follows. 

An imaginary vertical line passes over the arrangement. The cells cut by the sweep line 

in its current position are kept in a sorted list; the initial list is found by sorting the lines 

by slope. Start points and end points of segments and intersections between two segments 

are events, kept in a priority queue sorted by i-value. As the sweep-line moves from left 
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Sweep Line 

Figure 5.5: An intersection event in the sweep-line algorithm 

to right, events are processed and the list of cut cells is changed accordingly. Each event 

can be processed in 0(log m) time, so the total running time is 0({m + k) log m), where k 

is the number of intersection events. In this case m = v2, so the arrangement calculation 

requires 0((v2 + k)log v) steps, where k = 0(v4). 

The sweep-line algorithm maintains the graph G(f) for each cell cut by the vertical 

line. The graphs for cells intersecting the initial sweep-line are propagated down from an 

initial cell at the top of the sweep-line. To process an event, the graph for a new cell is 

calculated by stepping from the cell above it in the vertical line. Thus the graphs for all 

cells in the arrangement are calculated and checked without keeping the whole arrangement 

in memory. The total computing time for finding an appropriate subassembly using the 

modified algorithm is 0(n2v4 + v* log v). 

Figure 5.5 illustrates the processing of an intersection event. The interior of region 

£(2,3) is below edge eu and edge e2 is the lower boundary of region £(1,3). The graphs 

for cells /i, /2, and /3 have already been computed; all the graph links have weight one. 

When the sweep line processes the intersection of ei and e2 at point p, the cell /4 is entered. 

Edge e2 is between /i and /4 in the new sweep line, so G(/4) is computed by stepping 

over e2 from G(/i). The interior of £(1,3) is above e2, so G(/4) is obtained from G(h) by 

deleting the link from node 1 to node 3. Nodes 1 and 2 form a stongly connected component 

of G(/4), so the corresponding parts are a removable subassembly. 
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Figure 5.6: An assembly of eight random blocks 

The implementation is written in C, and generates configuration obstacles for blocks 

instead of tetrahedra; however, the arrangement computation applies to the general case. 

The algorithm has not been implemented as a module in GRASP. 

5.8    Experiments 

To evaluate the practical computing bounds on the implementation, k random disjoint 

blocks were generated and linked together to form n complex objects for values of k ranging 

between 4 and 128 and n ranging between 2 and 16 (figure 5.6). Since each block has 

8 vertices, v = 8fc ranges from 32 to 1024. Links were generated at random. A link 

between two blocks signifies that the blocks can only be moved simultaneously. Removable 

subassemblies were identified for these assemblies using the described implementation of 

the above method. 

Table 5.1 shows the computing times and storage requirements observed. For each value 

of Jfc and n, 32 samples were run and the average, minimum, and maximum running times 

recorded (t, tmin, and tmax, respectively), along with the maximum storage needed (smax)- 

In all cases the entire arrangement and all graphs were computed instead of stopping at the 

first removable subassembly found. 
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V n t lOH/n* ''min ''■max ämar 

32 2 0.2 0.78 0.1 0.2 16210 

64 4 0.6 0.15 0.5 0.6 19644 

128 4 5.1 0.078 4.7 5.4 30908 

256 8 48.7 0.046 39.4 48.7 44163 

512 8 283.6 0.016 281.0 284.2 61816 

1024 16 1150.7 0.0042 1120.8 1243.7 88264 

Table 5.1: Computing times for partitioning composite objects consisting of blocks (units: 
seconds of CPU-time and 1024 Bytes) 



Chapter 6 

Maintaining Geometric 

Dependencies 

The previous two chapters described algorithms to efficiently find all the ways to partition 

an assembly into two subassemblies that can be mated in a single operation. However, if 

we are willing to restrict the type of assembly operations allowed in our sequences further, 

it is possible to gain even greater planning efficiency. In this chapter, assembly sequences 

are restricted to be linear, so that every operation mates a single part with a subassembly. 

Under this restriction, the generate-and-test paradigm works well, since for an assembly 

of n parts, only n candidate operations (one removing each part) are considered for each 

subassembly to be partitioned. 

Within the context of generating linear assembly sequences, I propose methods to extract 

extra information from each geometric calculation and save justifications for the results in a 

logical form called a precedence expression. Later geometric calculations can be avoided by 

evaluating whether the results are still valid in different assemblies from the ones where they 

were originally derived. Experimental results show large acceleration of assembly sequencing 

over the basic method for linear sequences. 

6.1    Generating Linear Assembly Sequences 

Generating only the linear assembly sequences for a product might be desirable in some 

situations. Adding a single part at a time could simplify factory layout or reduce the 

dexterity needed to place one subassembly into another. To quickly generate one assembly 

94 
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Procedure DECOMPOSE(A) 
feasible-decompositions <- {}; 
for each part P € A 

A' <— A \ {P}; 
if CONNECTED(A') and MOVABLE(P, A) 

push(({P}, A'), feasible-decompositions); 

end; {for} 
return(feasible-decompositions); 

end; {procedure} 

Figure 6.1: Procedure DECOMPOSE 

tree, each subassembly could be tested for single-part removal first, only proceeding to 

the more time-consuming general case if no single-part operation is feasible. In addition, 

Baldwin [5] found that first computing the linear assembly sequences for a product was a 

useful heuristic to better order questions to a human designer; a parallel might be found in 

automated sequencing. 

To find single parts that are removable from an assembly, the methods of the previous 

two sections could be applied, and only single-part subassemblies identified. A part P is 

removable in direction d if and only if in the directional blocking graph G(d, A), P has no 

outgoing arcs. The approach used in this chapter is more efficient in practice for linear 

sequencing; the two approaches will be compared in section 6.5. 

To generate an AND/OR graph representing all the feasible linear assembly sequences 

for an assembly A, procedure DECOMPOSE from figure 3.8 is changed as shown in figure 6.1. 

Each part in A is simply tested for removability from the rest of the parts using procedure 

MOVABLE, which is similar to SEPARABLE. To comprise a valid subassembly, the comple- 

ment A' must be exactly one connected component. A basic version of MOVABLE is shown 

in figure 6.2. Since now the algorithm just tests one assembly task for each part in A, it 

can operate much more quickly. The AND/OR graph created is a subset of the non-linear 

AND/OR graph. 

When the linear assembly sequences are generated for the 22-part electric bell (fig- 

ure B.3) with 6D cones and path planning turned off, the resulting AND/OR graph has 

1509 nodes and 6190 edges, and takes 15 minutes to build. 12,169 calls to procedure MOV- 

ABLE are performed. This chapter describes ways to achieve the same set of sequences with 
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Procedure MOVABLE{P, A) 
TetuTn(SEPARABLE({P}, A \ {P})); 

end; {procedure} 

Figure 6.2: Procedure MOVABLE 

a radically smaller amount of reasoning, and correspondingly lower sequencing times. 

6.2    Maintaining Movability Dependencies 

The obvious algorithm given above for generating the linear AND/OR graph just checks 

the movability of each part at each node in the AND/OR graph. However, this repeats 

a great deal of computation about the geometry of the assemblies. Because there is little 

change in geometry between assemblies and their children in the AND/OR graph, most of 

the geometric reasoning about the movability of parts in the parent assembly should still 

be valid for the same parts in each child subassembly. For instance, in the crate assembly 

of figure 1.1, screw2 is movable whether screwl is present or not, while the cargo is not 

movable as long as the box and the lid are there, independent of screwl and screw2. 

Essentially, we would like to exploit similarities in the geometry of assemblies and their 

subassemblies to reduce the geometric computation necessary to plan assembly sequences. 

6.2.1    Precedence Expressions 

In the algorithm above there is a very weak link between the geometric reasoning modules 

and the symbolic reasoner constructing the AND/OR graph. For each query about the 

movability of a part in an assembly, MOVABLE replies only that yes, the part is movable, 

or no, it is not. We can significantly reduce the number of geometric reasoning steps by 

having the geometric module return an expression stating the conditions under which the 

given part would be movable, called a precedence expression or PE. When this PE is still 

valid in other assemblies in the AND/OR graph, evaluating it should be much faster than 

performing a full geometric check. 

In general, a PE cannot fully describe the conditions of movability for a part. It only 

gives some sufficient and some necessary conditions. In order to manage this easily, I use 

a direct extension of the classical propositional calculus where each expression can take 
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OR T ? F 
T T T T 
? T 7 ? 

F T ? F 

AND T ? F 
T T 1 F 
1 ? 1 F 
F F F F 

NOT 
T F 
1 ? 

F T 

Table 6.1: Truth tables for GRASP's three-valued prepositional calculus 

one of three values: T, F, and ? (true, false, and maybe). PEs are constructed from 

atomic propositions P,, each of which represents the assertion that part p, is present in the 

assembly under consideration. These P,, along with the reified value ?, are connected with 

the standard logical connectors to make precedence expressions. The truth tables of this 

calculus are given in table 6.1. I will use M(p, S) to denote the movability of a part p in an 

assembly 5, and will write Ev to mean a PE for the movability of p. 

Definition 6.1 A precedence expression is defined recursively as follows: 

• Any atomic proposition Pi is a PE. The constant ? is a PE. 

• IfE is a PE, then -*E is a PE. 

• If Ei and E2 are PEs, then the expressions {Ex A E2) and (Ei V E2) are PEs. 

6.2.2    Expressing Part Movability 

Consider the movability of the cargo in figure 1.1. After calculating that the box allows 

the cargo only to move left, where it collides with the lid, the geometric reasoner might 

construct the PE 

■'cargo = (?A--JW)V-«flw. 

When the box and lid are both present, Ecargo evaluates to F, so we conclude that the 

cargo is not movable. Whenever the lid is missing, Ecargo evaluates to T, signaling that 

the cargo can be removed to the left. Finally, if the lid is present but the box is not, 

evaluates to ?, and so .Ecaroo does not give a definitive answer on the removal of the Jcargo 

cargo in that assembly. 

In general, a PE can express the movability of a part in an assembly that was not 

considered in deriving the PE. In an AND/OR graph for an assembly A, each subassembly 

S C A is equivalent to a truth assignment from the atomic propositions Pi to the values 
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M S {thN)\/S 
T T T 
T F 1 

F T T 
F F F 

Table 6.2: Necessary and sufficient conditions represented in a single formula. 

{T,F}, where 

-{ 
T when i € S 

F when i £ S 

To evaluate a PE in an assembly S means to compute the truth value of the PE under 

the truth assignment 5, using the truth tables in figure 6.1. I will write EP(S) to indicate 

evaluation of Ep in assembly 5. 

The main property that I use to construct PEs is the following. Let (iV,j;e/ be neces- 

sary conditions for the movability of part p, and let (SJ)J^J be sufficient conditions for its 

movability. Then the expression 

£p = (?A/\j\r.)v V Sj (6.1) 
iei j€J 

will be T whenever one of the Sj is true, F whenever one of the JV, is false, and ? in 

all other cases (figure 6.2). When no necessary or sufficient conditions are present, the 

necessary (AT) and sufficient (<S) conditions are set respectively to T and F. Furthermore, 

only proven necessary and sufficient conditions are used; thus the third line of table 6.2, 

which should return a contradiction, will never arise. Expression 6.1 is the standard form 

of all the types of PEs that I use below. 

6.2.3    Using PEs in Sequencing 

The basic idea of geometric dependency maintenance is to keep a set of PEs characterizing 

the movability of each part in different assemblies. When a PE evaluates to T or F in 

the current assembly, no geometric reasoning is necessary. When all the PEs for a part 

evaluate to ?, geometric reasoning must be performed to generate a PE to cover the current 

assembly. At this point, there are two issues to address: 

1. A large number of PEs might be generated during planning. How will they be orga- 

nized to quickly find one that applies in a given assembly? 
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2. How much extra work should be done to make each PE applicable in other assemblies 

than the immediate one? 

I have developed and tested two approaches to answering these questions, called local and 

global precedence expressions. 

With local, or inherited precedence expressions, only one PE is kept for each part, and 

the PEs are inherited by subassemblies from their parents. No extra reasoning is required 

to construct them. Using global precedence expressions, all PEs applying to a part are 

kept in a list which might grow quite long, but they are valid throughout the AND/OR 

graph. A small amount of extra geometric reasoning is required to ensure their validity in 

non-subassemblies of the current assembly. Local PEs are described in the next section and 

global PEs are discussed in section 6.4. 

Precedence expressions are closely related to the common sense rules used by Hoffman 

to reduce computation in the assembly sequencer BRAEN [33]. BRAEN generates non- 

monotone assembly sequences for curved shapes, a task which requires large amounts of 

geometric calculation. Rules such as the following are used: 

• If part P can translate a distance x in direction d, and P is moved y units along d, 

then P can now translate x — y in direction d. 

• The freedom of part P is unchanged when parts that do not interfere with the motion 

of P are moved such that they still do not interfere with its motion. 

These simple rules save an order of magnitude in computation. Since GRASP is limited 

to monotone sequences, PEs need only express whether a part is removable or not, instead 

of how far it can be moved. However, because the assemblies considered are much more 

complicated than those in [33], more attention must be paid to how PEs are constructed 

and organized, to ensure maximum use of geometric results. 

6.3    Local Precedence Expressions 

Passing down movability properties from an assembly to its subassemblies can be imple- 

mented by passing down precedence expressions. To prove that the PE Ep, inherited by a 

subassembly S C A, still denotes movability in S, we only need implications of the form: 

V5 C A,      S => EP(S) 

-rf =* -.£„(5) (6.2) 
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Procedure MOVABLE(p, S) 

A «- A-PARENT-OF(S); 
Es «- EA- 

if Ep(S) evaluates to 
T: return(T); 
F: return(F); 
?: El — LOCAL-PE(p, 5); 

if £f (S) evaluates to T 
return(T); 

else return(F); 
end; {if} 

end; {procedure} 

Figure 6.3: Procedure MOVABLE, using local precedence expressions 

where M and S are necessary and sufficient conditions on the movability of p in A. Several 

types of expressions of this form are given in the next section. 

The MOVABLE procedure of figure 6.2 is replaced by a more sophisticated version given 

in figure 6.3. MOVABLE still must return T if a part p is removable from an assembly 5 and 

F if it is not. The new version also has the side effect of setting the PE of a part. The PEs 

of all parts are ? in the initial assembly node. There is one PE associated with every part 

in each node of the AND/OR graph; E% denotes the PE for movability of part p stored in 

assembly S. Real geometric computation only occurs in the LOCAL-PE procedure, which is 

called when the movability of the part cannot be deduced symbolically from the inherited 

PE. LOCAL-PE mirrors the old MOVABLE procedure, but instead of just returning T or 

F, it constructs a PE describing the movability of p in the assembly and its subassemblies. 

Local PEs are only evaluated in subassemblies of the assembly for which they were created, 

and their constructions below take advantage of this fact. 

Notice that in general, each node in the AND/OR graph has many parents, and so the 

choice of parent assembly from which to inherit is arbitrary. It would be possible to combine 

the PEs from the different parents for the child node's expression, sometimes saving more 

geometric computation than with the single-inheritance method. However, it is not clear 

that the savings would outweigh the extra overhead and complexity of combining PEs. 

I have developed and tested three kinds of local PEs, called simple, contact, and 
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descriptive1 precedence expressions. They axe increasingly complex and accurate in de- 

scribing symbolically when a part is movable. 

6.3.1 A Simple Sufficient Condition 

When parts are removed from an assembly of rigid parts A, the free space for the remaining 

parts is increased. Thus if a part is movable in A it is guaranteed to be movable in any 

subassembly S of A: 

V5CA, VpG5,   M(p,A)=>M{p,S) (6.3) 

The simple type of PE takes advantage of this fact. Simple PEs are similar to the subset 

rule of Bourjault and others [14, 5]. Hörnern de Mello [34, page 168] also mentions the 

possibility of performing a check similar to the one that simple PEs achieve, but does not 

elaborate. 

From relation 6.3, whenever a part p is movable in an assembly A, T is a sufficient 

condition for M(p,S). Therefore, from expression 6.1, the local PE is set trivially to T. 

When subassemblies inherit their PEs from A, geometric computation will not have to be 

done for parts that were movable in A. On the other hand, the movability calculation 

will need to be redone in subassemblies of A for each unmovable part. For instance, after 

expanding the root node in the crate assembly in figure 1.1, the simple precedence expression 

EaCrtw2 will be T, and will not need to be recomputed in the subassembly with screwl 

removed. 

6.3.2 A Necessary Condition on the Constraining Parts 

In the next version, contact precedence expressions, the geometric module supplies the 

planner with a list of parts that constrain a part p in the assembly A. The set of constraining 

parts C(p, A) is the set of all parts p' in A such that 

• p' is in contact with p, or 

• in an extended motion allowed by the contacts, p collides with p', or 

• p' is one of the parts returned by the path planner as constraining p. 

'In previous work [65, 66] descriptive local PEs were just called local PEs.  With the advent of global 

PEs, a new term was required. 
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See section 3.5 for a description of the interface to a path planner. In subassemblies of 

A, movability does not need to be recomputed when all of these parts are still in the 

subassembly: 

VS C A, Vp € 5,   -.Af(p, A) A (C(p, A)CS) =*> ^M(p, S) (6.4) 

From relations 6.2 and 6.4, we can infer that when p is not movable in A, LOCAL- 

PE(p, A) must return an expression 

£PU) = ?A-    A    P<- 
q€C(p,A) 

When inherited by a subassembly S C A, Ep will evaluate to F as long as all of the original 

constraining parts C(p, A) are present in S. When one of them is removed, the truth value 

of a Pq will become F, causing EP(S) to evaluate to ?. Geometric computation will then 

have to be done for p in S. 

In addition, LOCAL-PE(p, A) returns Ep = T when p is movable, so the simple sufficient 

condition of the previous section is maintained. 

For instance, after expanding the root node A in the crate assembly, the contact prece- 

dence expression for the cargo in A will be 

Ecargo = ? A ->(Pbox A P/,<f) 

because the cargo is constrained to move left by the box, and sweeps into the lid in that 

direction. In subassemblies resulting from removing either or both screws, the cargo will 

still be unmovable but no geometric calculation will be done. 

6.3.3    Necessary and Sufficient Conditions 

In the final and most complicated version, descriptive precedence expressions, the geometric 

reasoner returns a local PE even more closely stating the conditions under which a part 

might be movable. The parts in contact with p in A are grouped such that all the parts in 

a group constrain the local freedom of p in the same way, either along the same plane or 

in parallel cylindrical contacts. Moreover, the parts swept into along one direction are also 

grouped together. In subassemblies of A, p will not be movable unless all of the parts in one 

such group are missing. Furthermore, if all swept-into parts in one direction are missing, a 

sweep in that direction must be collision-free, and so p is guaranteed to be movable. Finally, 
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the constraining parts returned by the path planner are grouped together, and if all of these 

are present, p cannot be movable: 

V5Cil,Vp€5, 

^M(p, A)   A [A/€*(M) V,€/ 9 € S 

A[Ad€P(M)Vr6dr€S] 

hV{p,A)CS =*-M(p,S) (6.5) 

Vd€D(M)-V.€^€5    =>M(p,S) (6.6) 

T(p, A) is a set indexed by facets of the local freedom cone of p in A, where / is the set 

of parts constraining a given facet; V(p, A) is a set indexed by directions of sweep, d being 

the set of parts swept into when p moves along one given direction; and V(p, A) is the set 

of parts returned by PATH-PLAN as constraining p in A. 

Thus when a part is not movable, we have one necessary (6.5) and one sufficient (6.6) 

condition, so the full expression 6.1 applies and LOCAL-PE(p, A) should return an expression 

Ep = ?A -( A  V^A A yprA A p) 
\/€^(p,A)<je/ d€V(p,A)r€d t€V(p,A)     I 

v-,  A   Np> 
deV(p,A) »ed 

In fact, LOCAL-PE(p,A) returns an equivalent simplified expression 

Ep = TA-II   A   V^A  A  p< 
\}ZHv,A) 96/ t£V(p,A) 

v-  A   V* 
d£D(p,A) »€d 

In addition, when p is movable in A, LOCAL-PE returns the simple local PE T. 

For example, without calling the path planner, the descriptive local PE for the cargo 

after the expansion of the root node A will be2 

Ecargo = [? A ^Pbox] V -.Jfa 

and the local precedence expression for the lid after expanding A will be 

End = ? A -i[(P,crewl V Pscrewl) A Pbox] 

Since the lid is completely constrained by contacts, no sweep term is included in the 

descriptive PE. Notice that using contact PEs, GRASP would recompute the movability of 

2Actually, GRASP does not simplify its precedence expressions, and so Pfcoi is listed three times because 
the box contributes three facets to the local freedom cone of the lid. 
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the lid after removing one screw; this is avoided with descriptive PEs. Section 6.6 presents 

theoretical and experimental evaluation of the different types of local PEs. 

All three varieties of local PEs given above can be constructed with little additional 

geometric calculation. The parts in contact with the moving part must be calculated, and 

all parts must be checked for collision along each locally free direction tried. Grouping the 

parts according to their facets on the freedom cone can be accomplished while building the 

cone. Finally, a standard path planner might be modified to provide a set of constraining 

parts as discussed in section 3.5. 

6.4    Global Precedence Expressions 

The second type of precedence expressions I have tested are called global PEs. Rather than 

being inherited down the AND/OR graph from assembly to subassembly, global PEs apply 

throughout the AND/OR graph. A list of global PEs is kept, indexed by the part they 

apply to, called PE{p). When procedure MOVABLE is called for a part p in an assembly 5, 

all the PEs in PE(p) must be evaluated. If a PE evaluates to T, it asserts that p is movable 

in 5; if one evaluates to F, the sequencer concludes that p is not movable. Only when all 

the PEs for p evaluate to ? in S is the geometric reasoner called to construct a new PE. 

The new PE for p does not replace any others, but is added to the list PE(p). Obviously, if 

one PE evaluates to T and another to F for the same part in the same assembly, then one 

of the PEs was incorrect; the types of global PEs below are carefully designed to keep this 

from happening. 

The MOVABLE procedure for global PEs is shown in figure 6.4. MOVABLE still must 

return T if a part p is removable from an assembly S and F if it is not. The array PE(p) 

starts out empty for all p. Real geometric computation only occurs in the GLOBAL-PE 

procedure, which is called when the movability of the part cannot be deduced symbolically 

from any of the PEs in PE(p). GLOBAL-PE is much like the procedure LOCAL-PE but it 

must do some extra reasoning to ensure global validity of the resulting PE. 

To prove that a global precedence expression Ep, evaluated in an assembly S in the 

AND/OR graph with root assembly A, correctly denotes movability of p in S, we need 

implications of the form: 

VS C A,     S=> EP(S) 

-v/V => ->Ep(S) (6.7) 
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Procedure MOVABLE{p,S) 
for each Ep € PE(p) 

if EP(S) evaluates to 
T: return(T); 
F: return(F); 

end; {for} 
Ep*- GLOBAL-PE(p,S); 

Vush(Ep,PE(p)); 
if EP(S) evaluates to T 

return(T); 
else return(F); 

end; {procedure} 

Figure 6.4: Procedure MOVABLE, using global precedence expressions 

where Af and S are necessary and sufficient conditions on the movability of p in the root 

assembly A. Note that whereas local PEs need only be valid in subassemblies of the node 

in which they were derived, global PEs must be valid in any assembly. Several types of 

expressions of this form are given below. 

Since all the PEs generated for a part p are kept in a list PE(p), the list might contain 

a very large number of PEs as sequencing progresses. In addition, at each node in the 

AND/OR graph all the expressions in PE(p) must be evaluated to determine whether 

they are informative in the current assembly. If the length of PE(p) becomes very large, 

evaluating all the PEs for p might take as long as the geometric computation itself, and 

possibly far longer. Several schemes are possible to attempt to prune the set of PEs for a 

part. A simple one is to record how often each PE proves "useful"—how often it evaluates 

to T or F—compared to the number of times it is evaluated. If a PE drops below a threshold 

level of usefulness, it could be removed from PE(p). Another method might examine PEs 

to find whether one PE subsumes another. In experiments with real assemblies the number 

of PEs required to generate the entire AND/OR graph has been quite low, and so this 

possible problem has not materialized. 

I have developed and tested three kinds of global PEs analogous to the three kinds of 

local PEs, called simple, contact, and descriptive global precedence expressions. Each bears 

a strong resemblance to the corresponding kind of local PE, but has slight differences due to 

the fact that local PEs implicitly can only be evaluated in subsets of the original assembly, 
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while global PEs must be valid throughout the AND/OR graph. For this reason, each kind 

of global PE must perform some calculations with respect to the root assembly A of the 

AND/OR graph. 

6.4.1    A Simple Sufficient Condition 

Like simple local PEs, a simple global PE represents a sufficient condition on the movability 

of a part p. Given any direction d, there is a set of parts V(p, d, A) constituting all the parts 

of A that prevent p from translating to infinity along d. In any assembly 5 that shares no 

parts with V(p,d,A), p is guaranteed to be removable in direction d: 

Vd, V5 C A, Vp € S,5 n V{p, d,A) = Q=> M(p, S) (6.8) 

Furthermore, if p is removable along d in an assembly A, then the set of swept-into parts 

must be disjoint from A. Using M(p, d, A) to denote the movability of p along direction d 

in assembly A, 

Vd,VACA,VpeA,M(p,d,A)=>Ar\V(p,d,A) = <l) (6.9) 

From equations 6.8 and 6.7, we can infer that when p is movable along direction d in 5, 

GLOBAL-PE(p, A) must return an expression 

Ep = ? V -.      V      Pq 

q€V(p,d^) 

Equation 6.9 ensures that this PE will evaluate to T in A and that once p is found to be 

movable in A, the geometric reasoner need only sweep p against the parts in .4 \ A to con- 

struct Ep. Thus geometric computation will be avoided for p in all assemblies encountered 

later in which d is a valid removal direction: On the other hand, when p is fully constrained 

in A, Ep is set to ?, and contributes nothing to future calculations. For example, the simple 

global PE for the cargo in the assembly {cargo, box} will be 

If path planning is turned on and the path planner returns a valid path for p, then this 

path can be checked for collisions with the parts A \ A and a simple global PE constructed 

in the same way as for a sweep direction d. H a valid path is not returned by the path 

planner, as with the current interface to a human engineer, then a set of constraining parts 

cannot be computed, and a simple global PE cannot be built. 
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Bourjault [14] and Baldwin [5] use a subset rule and its contrapositive the superset rule to 

reduce the number of questions to the human. The subset rule states that if a subassembly 

Si can be removed from subassembly S2 = A \ S, then Si can be removed from any subset 

of S2. This resembles the effect of simple global precedence expressions. Contact global PEs 

(below) resemble the superset rule but are more discerning, because they identify a small 

subset of parts that constrain the part p. In [5,14] the subset and superset rules are used in 

nonlinear sequencing. However, for large assemblies the cost of the generate-and-test cycle 

would make such use prohibitive (see Chapter 4). 

6.4.2    A Necessary Condition on the Constraining Parts 

Contact global PEs are a straightforward extension of contact local PEs. When a part p 

is not movable in assembly A, the geometric module supplies the sequencer with a list of 

constraining parts C(p,A). This list is exactly the same set of parts given in section 6.3.2 

for contact local PEs. Since C{p, A) is sufficient to fully constrain p alone, any superset of 

C(p, A) will also constrain p: 

VA, S C A Vp € A, -M(p, A) A C(p, A)CS=> -M(p, S) (6.10) 

From equations 6.7 and 6.10, we can infer that when p is not movable in A, GLOBAL- 

PE(p, A) must return an expression 

£„ = ?A-    A    Pr 
qeC(p,A) 

In any assembly S C A, Ep will evaluate to F as long as all of the original constraining parts 

C(p, A) are present in S. When one or more are missing, the truth value of a Pq will be F, 

causing EP(S) to evaluate to ?. Ep will thus contribute no knowledge about the movability 

of p in S. 

Note that when p is not movable, the local and global PEs are the same. However, when 

p is movable in A, the GLOBAL-PE(p, A) returns the simple global PE given above. Thus 

the simple sufficient condition of the previous section is maintained. 

Contact global PEs are somewhat similar to the superset rule of Bourjault and others [14, 

5], but limited to single parts and more accurate. The superset rule states that when a 

subassembly Si is not removable from another subassembly S2, then Si is not removable 

from a superset S3 D S2.   Contact global PEs are constructed from the geometrically 
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constraining subset of 52, and thus will capture more cases S3. By deriving the symbolic 

constraints directly from the geometry of the assemblies, a great deal of reasoning is saved 

in some situations. 

6.4.3    Necessary and Sufficient Conditions 

Descriptive global PEs are the most powerful and accurate type of PE I have tested. The 

groups of parts used in their creation are either the same or straightforward extensions of 

the groups for descriptive local PEs: 

• As before, the parts in contact with a part p in an assembly A are grouped according 

to the facets / £ F(p, A) of the local freedom cone to which they contribute. 

• The parts swept into along each attempted sweep direction d are grouped together. 

But instead of being swept against the parts of A, p is swept against all the parts in 

the root assembly A to form a list of directional blocking sets V(p, A). V is used to 

form a condition of global validity for each d. 

• The constraining parts V(p, A) returned by the path planner are grouped together as 

with local PEs. 

In other assemblies S in the AND/OR graph, the presence of subsets of f, V, V become 

sufficient and necessary conditions for the movability of p: 

VA,SCA,Vp<EA, 

M(p,A)   A[A/€;F(M)V,€/9€S] 

A[ArfeD(p,»Vr6dr€S] 

AV(p,A)CS =>^M(p,S) (6.11) 

Vdez>(p,>»)",V.edse5 =>M(p,S) (6.12) 

When a part p is not movable, the necessary (6.11) and sufficient (6.12) conditions can 

be combined in the form of expression 6.1: 

Ep = ?A^(  A   VAA  A  P) v-    A     V^3 
d€V(p,A) aed 

When p is movable in A, a simple global PE is returned. 
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In almost all cases, global PEs require extra geometric computation—sweeping p against 

parts not in the assembly being considered—to construct PEs that are valid anywhere in 

the AND/OR graph. Some of these part-part sweeps would never be checked in building 

the AND/OR graph, were global PEs not in use. In experiments the other savings in 

computation have overshadowed this effect (see below). 

6.5    Nonlinear Sequencing 

So far in this chapter, only linear assembly sequences have been considered. However, 

precedence expressions could in theory be applied to nonlinear sequencing. For instance, a 

subassembly can be considered as a part for the purpose of movability, as long as it remains 

stable throughout the removal motion. From this observation, a straightforward extension 

to the non-linear case was outlined in [66]: instead of keeping a PE Ev for the movability 

of each part p in the assembly A, the planner would maintain expressions Es for each 

subassembly 5 of A. When Es evaluates to T or F in a node A', then S is removable or not 

removable, respectively. The Es could still be constructed from elementary propositions P, 

asserting the presence of parts i. Thus, after expanding the root node in the crate assembly 

of figure 1.1, the precedence expression for the subassembly {box,cargo,screwl} might 

be: 

E{boXicarao^rewl} = ? * -.[(fi« V Ptcrew2) A P,id] (6.13) 

However, in spite of the theoretical validity of maintaining dependencies for subassem- 

blies, this method is impractical. As noted in section 4.1, an exponential number of sub- 

assemblies might be candidates for removal at any one node in the AND/OR graph; keeping 

PEs for all of these is unmanageable. The use of precedence expressions as above depends 

strongly on linear assembly sequences being generated. Thus the partitioning methods of 

Chapters 4 and 5 are far better suited when nonlinear sequences are desired. 

On the other hand, the NDBG encodes more information than is necessary when linear 

sequences are desired. This is because a new cell is created in the NDBG for every possible 

change in the blocking relationships between subassemblies of the product, instead of single 

parts. For instance, consider the translational contact NDBG for an assembly A of n parts, 

each having c contact constraints with other parts, for k = en total constraints. If no two 

constraints generate the same great circle in the arrangement, ü(n2c2) cells will be created. 

To check the local freedom of each part in each cell will then require Q(n3c2) time.  On 
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the other hand, testing all parts individually using the local freedom methods of Chapter 3 

requires only 0(nc log c) time. 

Precedence expressions accelerate linear sequencing even more. For instance, PARTI- 

TION generates the full AND/OR graph of nonlinear assembly sequences for the 22-part 

electric bell in 2186 seconds; using global PEs, the set of linear sequences is found in 51 

seconds (see below). The respective count of AND-arcs in the two graphs is 21,315 and 

6,190, so the numbers are not directly comparable, but precedence expressions clearly work 

faster when linear sequences are desired. 

6.6    Theoretical Complexity 

Precedence expressions were introduced to enrich the communication between the assembly 

sequencer and the geometric reasoning module, in order to speed up the process of assembly 

sequencing. This section presents a theoretical analysis of local PEs for certain simple types 

of assemblies. I have not been able to characterize the types of assemblies in which global 

PEs do better than local PEs; the results in this section also apply to them. I assume 

that the number of calls GC to the geometric reasoner is the overriding factor for the total 

running time of the algorithm to generate the AND/OR graph. This assumption is not fully 

borne out by the experiments in the next section, but for the simple assemblies considered 

here it is a reasonable assumption. 

Because of the complex ways in which the geometry of an assembly can affect the size of 

its AND/OR graph, it is difficult to find meaningful bounds on the computation required 

to build it. For instance, given an assembly with N parts, the number of nodes in the 

AND/OR graph can range from 2N — 1 when there is only one legal sequence, to 2^ - 1 

when all sequences are legal. Below we analyze the complexity for three types of assemblies 

and for each type of local precedence expressions. 

Consider the situation in which all parts are free to move in the initial assembly, but 

only one sequence satisfies stability considerations, as in Figure 6.5a. With N parts, the 

AND/OR graph has N — 1 non-terminal nodes. The time required to generate the graph 

using each type of precedence expression is: 

None At each step in the generation of the AND/OR graph, all of the parts in the sub- 

assembly being considered must be checked for movability. Therefore, without prece- 

dence expressions GC = EÜö1 N-i= ^^ = 0(N2) 
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JJJJ. 
a: A stack of plates        b: A stack in a box      c: A trivial assembly 

Figure 6.5: Three simple types of assemblies 

Simple Using simple precedence expressions, the accessibility will be computed for the 

original N parts, finding each expression to be true. These expressions will be inherited 

downward, and no more geometric reasoning will be necessary. Thus GC = 0(N). 

Contact and Local The complexity is the same as in the simple case. 

In assemblies like the one in Figure 6.5b with N-l plates inside a box, only one sequence 

is valid because just one part is removable in each subassembly. Again the complexity 

depends on the type of precedence used: 

None The obvious algorithm will again require GC = 0(N2) calls to the geometric rea- 

soner. 

Simple In this case simple precedence gains us nothing. In each node, only one part is 

movable, so no true precedence expressions will be inherited. As a result, GC = 

0(N2). 

Contact Since each plate p, is constrained by the box and parts p,_i and p,+i, when we 

remove part p;+i only the contact precedence expressions of the box and part p, will 

evaluate to maybe, forcing a geometric call. Thus the number of calls will be 2 at each 

step except the last where only the box remains, so GC = N + 2JV - 1 = O(N). 

Local The local precedence expressions for the plates will result in the same behavior as 

in the contact case. However, since the last plate p/v-i contributes to each of the 

constraints on the box, the box's precedence expression will not evaluate to maybe 

until pN-i is removed, so GC — N + N - 1 = O(N). 

Finally, consider an assembly in which all sequences of assembly are valid, such as in 

Figure 6.5c. Without precedence expressions, the accessibility of every part in each of the 
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Local Geometric Time in 
Precedence Calls Seconds 

none 14 9.0 
simple 12 8.8 
contact 9 8.5 

local 6 8.9 

Table 6.3: Planning times for the crate assembly 

2 - 1 nodes would be computed. Using simple (or any other) precedence expressions, the 

accessibility would be found to be true for each part in the final assembly. This information 

would be inherited down the tree, making the total number of geometric calls N, even 

though there are 2N - 1 nodes in the AND/OR graph. 

6.7    Experiments 

Precedence expressions of different types have been used to plan the assembly sequences 

for a variety of assemblies, to evaluate their utility in accelerating the sequencing process 

in real assemblies. The assemblies in this section are described in Appendix B. 

6.7.1    2D Assemblies 

The following 2D assemblies were planned for using the 2D prototype of GRASP. Neither 

global PEs nor path planning were implemented in the prototype, so experimental data is 

not available for these techniques on 2D assemblies. In addition, sweep caching (section 3.4) 

was not included in the 2D prototype. 

Table 6.3 shows the number of geometric calls required for the prototype of GRASP 

to generate the full AND/OR graph for the crate assembly in figure 1.1 using each kind 

of local PE. The dedicated reader can check it by hand to help understand the method. 

Note that the time to generate the graph is greater using descriptive local PEs than with 

contact PEs; the geometry is so simple that the time required to create complex precedence 

expressions outweighs the savings. 

A more interesting example is the transmission with which De Fazio and Whitney [25] 

illustrate their method for generating assembly sequences. Figure 6.6 shows the linear 

assembly sequences for the transmission without bolts, represented as a state graph. The 

unassembled state is not shown. Assemblies are shown by filling the box corresponding to 
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Figure 6.6: Assembly sequences for the transmission 

Local Geometric Time in 
Precedence Calls Seconds 

none 2508 1151 
simple 2035 943 
contact 669 445 

local 121 99 

Table 6.4: Planning times for the transmission, with bolts 

each liaison that has been established in that assembly (liaisons 1-6 in the first row, etc.). 

For example, the leftmost assembly in the third row down has all connections established 

except for 4, 5, 16, 17, and 18; this corresponds to the assembly with all parts except K 

and L. 

The set of sequences shown in figure 6.6 is not quite the same as the ones given in [25]. 

These differences are a result of GRASP generating its AND/OR graph from geometry 

alone, while De Fazio and Whitney compute their sequences from precedence constraints 

incorporating human geometric and mechanical insight. For example, they find six possible 

ways to start the assembly process; GRASP finds eight (the bottom row of figure 6.6). One 

of these, the assembly consisting of parts C and D, cannot result in a finished assembly 

because the bolts connecting C to A are not accessible when C and D are connected. Because 

the bolts are not represented explicitly, GRASP cannot take this into account. However, 

when GRASP is run on the full model including bolts, it does not find any sequences using 

the assembly of only C and D. 
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Precedence One Sequence AND/OR Graph 
Type GC Time GC Time 
none 189 28 12169 878 

local 
simple 

contact 
descr 

150 
48 
32 

21 
15 
15 

6757 
950 
718 

458 
98 
83 

global 
simple 

contact 
descr 

150 
48 
32 

22 
22 
22 

6002 
49 
34 

490 
63 
51 

Table 6.5: Planning times for the 22-part electric bell 

The number of geometric calls and the time required for GRASP to generate the 

AND/OR graph for the transmission, with bolts as separate parts, is shown in table 6.4. 

The resulting AND/OR graph has 295 subassembly nodes and 668 AND-arcs. 

6.7.2    3D Assemblies 

Due to the more complicated reasoning required in three dimensions, PEs are more impor- 

tant than in 2D to avoid needless recalculations. In the following experiments, GRASP was 

run in a fully autonomous mode, with 6D local freedom checking and path planning turned 

off. Sweep caching was enabled. 

The AND/OR graph representing the linear sequences of assembly for the electric bell 

of figure B.3 has 1509 nodes and 6190 AND-arcs. Table 6.5 shows the number-of geometric 

calls, the sweeping calculations, and the time required to generate an AND/OR graph for 

the bell assembly, using both local and global PEs3. 

Several points should be noted about table 6.5. First, precedence expressions do not save 

much time when only one sequence is found, since the other costs outweigh the geometric 

calculation time. In addition, global PEs take more time to generate a single sequence than 

local PEs, due to the extra geometric calculation to construct them. 

Note that using global descriptive PEs, about 1.5 calls to the geometric reasoner were 

necessary for each part in the bell, on average. This means that for each part, one or two 

PEs were sufficient to characterize its movability in all 1509 subassemblies that occur in 

linear assembly sequences for the bell. However, the added sweeping and the overhead time 

of building the graph made the overall time savings of global over local PEs somewhat 

3These figures differ from those in [66] because threaded contacts are considered and an error was corrected 
in the model of the bell. 
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Precedence 
Type Answers 

Geometric 
Calls 

User 
Queries 

Time in 
Minutes 

none Yes/No — > 1200 >60 
local Yes/No 

Constrain 841 
> 1200 

50 
>60 

10 
global Yes/No 

Constrain 
298 
40 

263 
6 

18 
3 

Table 6.6: Path planning experiments with the electric bell 

smaller. 

6.7.3    3D Assemblies with Path Planning 

When the path planning module is enabled, precedence expressions become critical. An 

automated path planner might take anywhere from a minute to several hours to find a 

path for a part, depending on the path planning method employed. When an engineer is 

answering path planning questions, each might be answered in a few seconds. However, the 

user will never use the assembly sequencer if it requires answering hundreds of questions. 

Table 6.6 shows the results of experiments on the 22-part electric bell when path planning 

is enabled. The resulting AND/OR graph has 1747 nodes and 6965 edges. The following 

five planning methods were tried: 

• Using no PEs, each path planning query was answered with Movable or Not Movable— 

yes, the part can be removed, or no, it cannot. This is the most straightforward 

approach to generating the graph. 

• Using descriptive local PEs, yes/no answers were given as before. 

• Using descriptive local PEs, the queries were answered by identifying a constraining 

set of parts when the part cannot be removed (as described in section 3.5). 

• Using descriptive global PEs, each query was answered with a yes/no answer. 

• Using descriptive global PEs, constraining sets were identified. 

In the first two cases, over 1200 queries were answered over the course of an hour, generating 

only a small fraction of the graph, after which the experiments were stopped. Table 6.6 

shows the results for the other three cases. 
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As argued in section 3.5, an automatic path planner could be modified to produce the 

list of constraining parts with little extra computation. Since global PEs extract the most 

from each geometric calculation, the number of path planning calls will be minimized. For 

instance, to generate the full AND/OR graph for the 22-part bell requires only 6 path 

planning calls using global PEs. 

The values in table 6.6 compare very favorably with the results of other papers in 

interactive assembly sequencing: 

• Bourjault [14] and Baldwin [5] require yes/no answers to user queries. To reduce 

the number of queries, they invoke subset and superset rules that have the same 

effect as global contact PEs with yes/no answers. GRASP answers more questions 

automatically than either of those systems, yet the query count is still quite high for 

large assemblies. 

• DeFazio and Whitney [25] ask only 2m questions for an assembly with m liaisons. 

However, the answer to each question is a logical expression defining all situations in 

which each liaison can be established. These expressions can be very complex, and it 

is difficult for a human to answer them accurately. 

• Using global PEs with a list of constraining parts is a powerful compromise between 

the previous two approaches. A great deal of information is extracted from each 

answer. However, the answers are easy to give and accurate, since they only require 

the user to reason about the constraining parts in a single situation. As seen in 

table 6.6, this results in a very low query count, while maintaining simplicity and 

accuracy. 

Table 6.7 shows the number of user queries required to find a single assembly sequence 

for several additional assemblies. For these assemblies, generating a full AND/OR graph is 

not feasible. The sequences were generated using no PEs, global PEs with yes/no answers, 

and global PEs with constraining sets identified. 
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Number 
Assembly of Parts NoPEs Yes/No Constrain 

Bell 22 37 37 4 

Engine 30 85 85 5 

Skin 36 32 32 4 

Engine 42 173 144 7 

Table 6.7: User query count to find a single sequence using PEs 



Chapter 7 

Conclusion 

In a concurrent engineering system, an automated assembly planner would be invaluable 

to give immediate manufacturing feedback. Features that make a product impossible or 

difficult to assemble could be identified when they are introduced into the design. The 

designer could ask "what if questions and quickly evaluate the impact of design changes 

on the assembly process. As a result, the designer would be relieved of the tedium of current 

methods to assess the assemblability of the product, while receiving manufacturing feedback 

early in the design process, when it can have the most impact. 

7.1     Geometric Assembly Sequencing 

Because it identifies constraints on assembly plans resulting strictly from the design of 

the product, assembly sequencing can give design-for-assembly feedback early in the design 

process, when a specific manufacturing scheme has not yet been chosen. However, designers 

will not tolerate a design tool that requires them to add tedious details to a product model, 

that gives spurious assembly plans, or that only yields results after days of processing. 

Therefore, to serve as an interactive design tool, an assembly sequencer will need to be 

autonomous, capable, and fast. This thesis presents significant progress toward realizing 

such an assembly sequencer. 

A basic approach to assembly sequencing directly from geometric models of a product 

was described. The approach includes practical methods to assess the geometric feasibility 

of assembly operations; these methods are fast in practice yet find the great majority of 

assembly operations in real products. GRASP, the implementation of this basic approach, 

118 
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successfully planned for the assembly of a number of real products, and served as a valuable 

testbed in which to evaluate the more advanced techniques presented. 

A new data structure, the non-directional blocking graph, was introduced to represent 

the blocking relationships between parts in an assembly. The NDBG is the basis of sev- 

eral polynomial-time methods to efficiently find subassemblies that are removable from the 

product under varying constraints on motions. The NDBG is incremental in two ways: 

• It can be constructed in an incremental fashion, using crossing rules to compute the 

blocking relationships in neighboring cells. In fact, the whole structure need not be 

stored at once; each cell can be discarded after traversing it, to minimize storage 

requirements. 

• On the other hand, the NDBG for a product can be built incrementally as the product 

is designed, updating it to account for design changes. When a design change is small, 

the change to the NDBG can be computed much more quickly than it can be built 

from scratch. Using this incremental construction, a sequencer can respond to user 

queries about the assembly process much more quickly. 

When applied to the case of general rigid motions, the algorithm efficiently computes the set 

of subassemblies that satisfy a powerful, necessary constraint on binary assembly operations 

with rigid parts. 

Finally, a method was described wherein the results of geometric calculations are saved 

in precedence expressions, which are evaluated to answer similar geometric queries later in 

the sequencing process. The method results in greatly reduced geometric computation and 

a corresponding acceleration in sequencing. When used to represent the constraints on part 

motion identified by a path planner, precedence expressions reduce by several orders of 

magnitude the number of path planning problems that are necessary to complete assembly 

sequencing. 

7.2    Representing Geometric Assembly Constraints 

The choice of sequence representation is a crucial decision in designing an assembly sequenc- 

ing system. This thesis provides several observations about practical methods to represent 

sets of geometrically valid assembly sequences. 
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7.2.1 AND/OR Graphs 

The AND/OR graph is a powerful explicit representation for assembly sequences of small 

assemblies, and it is a useful formalization of the space of possible sequences. However, it is 

not a practical representation for assembly sequences of complex products with many parts. 

For instance, in Chapter 6 the AND/OR graph of linear sequences could not be generated 

for experimental assemblies of 30 or more parts. 

Several techniques exist to extend the usefulness of explicit AND/OR graphs to some- 

what larger assemblies; however, none can completely overcome the combinatorics of rep- 

resenting so many subassemblies. For instance, the implicit AND/OR graph of sequences 

might be searched for an optimal AND-tree according to some evaluation function, using 

a search algorithm such as AO* and an appropriate heuristic [49]. Additional AND-trees 

could be produced as needed. The heuristic would have to be quite powerful to avoid gen- 

erating a large subset of the AND/OR graph, and such heuristics are usually difficult to 

create. Fasteners may be not represented as individual parts in the assembly to reduce the 

part count, as in [34]; however, the AND/OR graph will still grow quickly as the "real" part 

count increases. Finally, parts and fasteners can be clustered according to heuristics or user 

directives into preferred subassemblies, orders of part insertion, and so on, to reduce the size 

of the search space [10]. With such clusters, one can no longer guarantee that a sequence 

will be found if one exists. Combining the above techniques might yield an AND/OR-based 

sequencer that could handle some assemblies of 50 parts, but it is clear that more concise 

representations of assembly sequences must be found. 

7.2.2 Implicit Representations 

Hörnern de Mello [34] describes several implicit representations of assembly sequences. An 

implicit representation (briefly discussed in section 2.5) consists of a set of rules restricting 

the operations in a sequence. In principal, the set of rules may be quite compact. However, 

in [34] the rules are derived from a complete AND/OR graph. Instead of deriving the 

constraints from geometry, the geometry is used to validate operations, and the rules are 

abstracted from the operations. This has two drawbacks. First, the AND/OR graph must 

be constructed explicitly before the rules can be found. Second, the resulting set of rules 

is very complex and must be simplified to obtain a concise representation. In contrast, 

this thesis has presented two implicit representations that are derived directly from the 
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geometry of the product itself. 

7.2.3 Non-Directional Blocking Graph 

By representing the blocking relationships between the parts of an assembly in all direc- 

tions, an NDBG implicitly defines a set of assembly sequences for an assembly A. Namely, 

an assembly sequence r satisfies the NDBG for A if for every assembly operation in r par- 

titioning S into 5i and 52 = 5 \ 5i, there exists a cell / in the NDBG such that no arcs 

connect 5a to 52 in G(f). There are often an exponential number of geometrically feasible 

sequences for an assembly, yet the NDBG for A is always of polynomial size, and a sequence 

satisfying it can be found in polynomial time. 

The non-directional blocking graph can be extended in several ways. The most general 

forms described here apply to infinitesimal rigid motions and extended translations, but 

the NDBG is not inherently limited to any type of motion. However, its construction 

for more complex motions may be difficult. An obvious variation would allow extended 

screw motions, i.e. extended rigid motions defined by a translation vector and a rotation 

about a constant axis parallel to the translation. For extended screw motions, the cells 

in the NDBG will no longer be bounded by linear constraints, greatly complicating the 

partitioning algorithm. 

The NDBG might also be extended to support assembly operations that require more 

than two hands. For instance, when a product must be designed in such a way that it 

has no binary assembly sequence, this method could be invoked to find 3-handed assembly 

operations to construct it. Each 3-handed blocking graph G{di,d2,A) will contain infor- 

mation on the blocking relationships between all pairs of parts in A when some parts are 

stationary, others are moving in direction d\, and still others are moving along d2. In this 

case the possible composite motions would reside in a 2<f-dimensional space, where d is the 

dimension of each motion relative to the world coordinate system. For rigid motions and 

extended translations the cells will be bounded by linear constraints; however, analyzing 

each DBG for separable subassembly triples will be more complicated than for the 2-handed 

case. 

7.2.4 Precedence Expressions 

For the special case of linear assembly sequences, global precedence expressions constitute 

another type of implicit representation. After an AND/OR graph has been generated, the 
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final set of PEs capture the results of all geometric calculations performed to construct the 

graph. As a result, the AND/OR graph can be discarded and the set of assembly sequences 

represented by the PEs themselves. This shares the disadvantage with Hörnern de Mello's 

implicit representations that the AND/OR graph must be generated to compute the set of 

PEs. On the other hand, each PE is derived directly from the geometry of a subassembly 

instead of from an operation; as a result the rule set does not need to be simplified. For 

instance, 34 global PEs describe the same set of sequences for the 22-part electric bell as 

an AND/OR graph with 6190 AND-arcs. 

It would be preferable to generate a small set of global PEs for a product without 

explicitly building its AND/OR graph. However, it remains to be seen whether this can be 

accomplished. One practical approach would simply generate them on demand, as when 

building an AND/OR graph. Thus an assembly planner would begin with no PEs, and each 

time a geometric answer is needed, it would first be answered by PEs, and the geometric 

module called when no answers are found there. The first few queries would generate 

geometric calls, but after a short time most constraints would be represented in PEs. 

7.3    Other Applications 

Although the methods described in this thesis were designed for assembly sequencing, some 

have the potential for wider application in reasoning about assemblies and other tasks. 

The non-directional blocking graph has several uses in analyzing the motions of parts 

in an assembly. For instance, the NDBG could be used to efficiently identify motions of 

subassemblies in a product to ensure it will function properly, supplementing the methods 

in [38, 40]. If motions exist that are not desired, the design must be modified. Such 

techniques would be valuable to ensure the safety of toys, for example, since children can 

be ingenious in finding different motions than those intended by the designer [52]. 

Another application of the NDBG is in checking stability of assemblies. Palmer [51] 

showed that guaranteeing stability of a polyhedral assembly is NP-hard; however, stability 

can be determined efficiently for certain practical cases. If a subassembly is locally free, 

then the assembly might be unstable. Specifically, each locally free subassembly could be 

checked against the gravitational force. In practice this would catch many but not all 

unstable assemblies [66]. 

Finally, precedence expressions are general enough to store the results of many types of 
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calculations. For instance, the calculations performed by a grasp planner or stability checker 

could be stored in symbolic form to avoid recomputation when possible. In addition, PEs 

can be seen as a model for communication in a large reasoning system with heterogeneous 

agents. In such a system, queries should be answered with justifications and situations 

in which the answer applies, instead of yes/no answers. For instance, "no, part 17 is not 

graspable because part 4 interferes" is far more useful than "no, part 17 is not graspable." 

To construct these answers, the agents will require techniques similar to those used in 

Chapter 6 to construct precedence expressions. 

Computer tools to evaluate assembly designs are a crucial enabling technology for con- 

current engineering. This thesis has presented several techniques for reasoning about assem- 

blies, specifically with regard to assembly sequencing. These techniques form the beginnings 

of an algorithmic approach to investigate the complexity of assembly designs. 



Appendix A 

Input to GRASP 

In many integrated assembly systems, the connection graph and related information will be 

included as part of the input to an assembly planner. However, some of this information 

may be incomplete, or human input may need to be supplemented by automatic completion 

techniques. Furthermore, constraints on the assembly process could be represented in the 

input model of an assembly. For instance, the virtual contacts in Hörnern de Mello's rela- 

tional model of an assembly [34] give non-contact, part blocking relationships, a large part 

of the geometric reasoning required to do assembly sequencing. For research in planning to 

be clear, an explicit boundary must be drawn between the description of an assembly and 

the reasoning necessary for planning. This appendix details the assembly description files 

used as input to GRASP, and describes the geometric reasoning routines that create the 

connection graph used as the basis of the planning process in Chapter 3. 

A.l    The Assembly Description File 

The input to GRASP consists of geometric descriptions of all parts in the assembly with 

their relative positions, and a list of declarations. The program uses Vantage [4], a three- 

dimensional modeling system, to build solid models of the parts and access geometric infor- 

mation in the models. The user defines the geometry and position of each part in construc- 

tive solid geometry, from which the modeler creates a boundary representation. Figure A.l 

gives a sample input file to GRASP, and the model created is shown in figure A.2. 

Vantage uses primarily a polyhedral boundary representation.   However, it retains a 

small amount of non-planar information that is important to the operation of the assembly 

124 
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(csgnode blockl cube (100 100 50) :trans (0 0 75 0 0 0)) 

(3d-structure blockl) 

(setq blockl (make-part -.name "Block 1" 

:b-rep 'blocklz)) 

(csgnode c2 cube (100 100 100)) 

(csgnode hole cyl (20 50 10) :trans (25 0 0 0 90 0)) 

(csgnode block2 difference (c2 hole)) 

(3d-structure block2) 

(setq block2 (make-part :name "Block 2" 

:b-rep >block2z)) 

(csgnode peg cyl (20 100 10) :trans (50 0 0 0 90 0)) 

(3d-structure peg) 

(setq peg (make-part  :name "Peg" 
:b-rep 'pegz)) 

(setq simple (make-assembly :name "Simple Assembly" 
:parts (list blockl block2 peg) 
:decl  '(threaded (20 0 20) 0.2))) 

(fit-screen block2) 
(complete-assembly simple) 

Figure A.l: Sample GRASP assembly description 

blockl 

peg block2 

Figure A.2: The assembly created by the description file in figure A.l 
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planner. Specifically, a cylinder, sphere, or cone is approximated by a set of planar faces. 

However, Vantage records 

• a parametric description of the original surface that generated a set of planar approx- 

imating faces, and 

• either the simple curve that generated a sequence of line segment edges (such as the 

circle at each end of a cylinder primitive), or the intersection of two surfaces that 

resulted in the edges (such as a cylinder coming out of a plane at an angle, resulting 

in an elliptical intersection curve). 

As a result, GRASP is able to recognize and reason about cylinders, cones, and spheres in 

a competent but limited way. 

Some features of assemblies are not easily expressed in the form of geometric models. 

This information ranges from non-geometric features of the assembly, such as glued or 

press-fit contacts between parts, to geometric information that is more perspicuous and 

usable when represented symbolically, such as threaded surfaces and snap-fit connections. 

Declarations are designed to allow this information to be specified to the assembly sequencer. 

Since GRASP mainly reasons about geometry, only a declaration of threaded connections 

has been implemented; each threaded contact is identified by a point on the threaded 

surfaces and the pitch of the threads (in figure A.l the ":decl" line declares a threaded 

contact between the peg and the hole in block2). 

A.2    Building the Connection Graph 

From the solid models built by Vantage, the procedure COMPLETE-ASSEMBLY deduces all 

the contacts between surfaces of parts and records the contact information in a connection 

graph model of the assembly. No tolerances are assumed on the parts. 

The procedure COMPLETE-ASSEMBLY checks each pair of parts with intersecting 

bounding boxes for possible contacts. For each pair of possibly-touching parts, every pair 

of surfaces from different parts is checked for a possible contact. For every pair of surface 

types, a special-purpose routine determines whether there is contact between an instance 

of each. GRASP uses the following rules to recognize contacts between surfaces: 

Planar A planar contact exists between two planar faces P\ and P? if and only if: 
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• Pi is coplanar with Pi, 

• Pi's normal opposes PJ'S normal, and 

• the projections of Pi and P2 into their common plane intersect. 

The polygon intersection required by the third step must ensure that neither polygon 

is contained in a hole of the other. For each planar contact, GRASP records the 

normal and the vertices of the convex hull of the two faces. 

Cylindrical GRASP considers a cylindrical shaft surface Ci and a cylindrical hole surface 

C2 to be in contact if and only if: 

• C\ and C% have equal radius r, 

• C\ and Ci have a shared axis A, 

• the projections of C\ and C2 onto A overlap in an interval J, and 

• no threaded declaration indicates a point whose distance to A is equal to r and 

whose projection onto A is in /. 

In fact, the third condition is necessary but not sufficient for the cylinders to be in con- 

tact. Figure A.3a shows two cylindrical surface patches that COMPLETE-ASSEMBLY 

will incorrectly record as contacting. To detect such cases would require intersect- 

ing the cylinder surface patches, for instance by projecting the two surfaces onto a 

plane and intersecting the projections. GRASP records the common axis of the two 

cylinders for a cylindrical contact. 

Cylinder-Plane A cylindrical shaft surface C and a planar face P are in contact if and 

only if: 

• the axis of C and the normal of P are perpendicular, 

• the radius of C is equal to the distance from C's axis to the plane of P, and 

• the projection of C's axis intersects with P in its plane 

The third criteria suffers from similar problems as the cylindrical contact test, and 

a counter-example is shown in figure A.3b. For a cylinder-plane contact, GRASP 

records the normal of P and the two endpoints of the line of contact. 
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Figure A.3: Two contacts GRASP incorrectly detects 

Threaded A cylindrical shaft surface C\ and a cylindrical hole surface C2 are in threaded 

contact with thread pitch p if and only if: 

• C\ and Ci have equal radius r, 

• C\ and C2 have a shared axis A, 

• the projections of C\ and C2 onto A overlap in an interval I, and 

• a threaded declaration with pitch p indicates a point whose distance to A is equal 

to r and whose projection onto A is in /. 

For a threaded contact, the axis of the cylinder and the thread pitch are recorded in 

the connection graph. 

Sphere-Plane A sphere 5 is in contact with a planar face P if and only if: 

• the distance from the center of 5 to P is equal to the radius of S, and 

• the projection of the center of S onto P is inside the polygon P. 

The normal of P and the point of contact fully characterize a spherical contact. 

The contact types given above comprise the large majority of contacts in mechanical as- 

semblies. Similar routines could be devised to find other contacts such as point-plane, 

edge-edge, and point-edge contacts. However, the current implementation does not detect 

these contacts. 

For greater efficiency in identifying contacting surfaces, standard methods of geometric 

modeling could be applied. In one scheme, a uniform grid is placed across three-dimensional 

space, dividing it into small cubes. Then only surfaces intersecting the same cube need be 

checked for contact. In another scheme, surfaces could be grouped in bins according to 

characteristic attributes; only surfaces in certain pairs of bins need be checked for contacts. 
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(block2 (name "Block 2") 

(assembly simple) 

(b-rep block2z) 

(part-number 2) 

(links ((peg (threaded-contact (1.0 0.0 0.0) 

(50.0 0.0 0.0) 

0.2) 

(planar-contact (-1.0 0.0 0.0))) 

(blockl (planar-contact (0.0 0.0 -1.0)))))) 

Figure A.4: GRASP's contact representation 

For instance, each planar face could be placed in a unique bin in a three-dimensional array, 

where the bin coordinates are the coordinates of the dual point [18] of the supporting plane 

of the face. Then only faces in the same bin need be tested for possible contact. Similar 

schemes could be used for cylindrical and other types of faces. Such a technique has not 

been implemented in GRASP. 

COMPLETE-ASSEMBLY also finds and records symmetries of individual parts, which 

are used later in assembly sequencing to detect useless motions (see section 3.3). A line L 

is an axis of symmetry for a part p if and only if all cylindrical and conical surfaces of p 

have L as their axis, L passes through the center points of all spherical surfaces of p, and 

all planar faces of p have normals parallel to I. A point C is a point of symmetry for p if 

and only if all surfaces of p are spherical with center C. 

Figure A.4 shows GRASP's representation of block2 and its connections, from fig- 

ure A.2. The points on the convex hull of the planar contacts are not shown. The connec- 

tion graph, along with the boundary representations of the individual parts of the assembly, 

forms the basis of the planning process. 

Vantage requires 155 seconds to generate the boundary representation of the electric 

bell (Appendix B) from the CSG description, and COMPLETE-ASSEMBLY finds all contacts 

between the parts of the bell in another 45 seconds. 
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Assemblies 

This appendix describes several assemblies for which GRASP has generated assembly se- 

quences using the methods described in this thesis. The experimental results are given in the 

chapters where the methods are described. All assemblies but the transmission are described 

using Vantage and are available by email from the author at rwilsonfics.stanford.edu. 

B.l    The Transmission 

The Assembly from Industry is a simplified model of a transmission with which De Fazio 

and Whitney [25] illustrate their method for generating assembly sequences. Figure B.l 

shows the transmission, and figure B.2 shows its liaison diagram. The transmission has 11 

parts, or 21 parts when the the bolts are explicitly represented. It is symmetric around an 

axis of revolution, and as such its geometry can be fully modeled in the two dimensions of 

the GRASP prototype [65]. The prototype of GRASP uses a special purpose representa- 

tion of parts as possibly disconnected polygons in the plane. Experimental results on the 

transmission are given in chapter 6. 

B.2    The Electric Bell 

The electric bell is a 22-part assembly made from a kit. Figure B.3 shows the solid model 

Vantage generates from the bell description file. GRASP does not represent or reason about 

the flexible wires in the real bell. A simplified version of the bell with 17 parts was used for 

some experiments. 
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Figure B.l: The transmission 

D 

Figure B.2: Liaison diagram for the transmission 

B.3    The Skin Machine 

Figure B.4 shows the friction testing machine, or skin machine, a mechanism designed to 

allow precise translational force testing in a single direction. The real skin machine was 

used for experiments described in [21], and it was modeled and used by Konkar et al. [40] in 

a concurrent design system for assemblies. The skin machine consists of 12 main parts and 

24 fastening screws. In some ways it is a bad case for any assembly planner that generates 

a large amount of the AND/OR graph, since the screws can be placed in any order. Even if 

only one sequence is generated, the skin machine is difficult for a decomposition procedure 

based on generating subassemblies and then testing their movability, since more than 216 

candidate subassemblies exist in the first decomposition. 

In addition, the skin machine is designed in such a way that it is severely overconstrained 
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Figure B.3: The electric bell 

Figure B.4: The skin machine 
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Figure B.5: The engine 

kinematically. As a result, it only functions correctly if care is taken during assembly to keep 

certain parts perfectly aligned as the screws are tightened. These manufacturing constraints 

cannot be reasoned about in a purely geometric assembly sequencer such as GRASP. 

B.4    The Engine 

The Enya 09-IV T.V. model aircraft engine is a single-piston internal combustion engine 

with 42 parts. The assembled engine is shown in figure B.5. Several versions of the engine 

model were planned for, including 

• a 12-part model including most of the major parts, 

• a 30-part version with all non-fastener parts included, and 

• the full 42-part model including all fastening bolts. 

It is interesting to note that, contrary to the assumptions of many papers on assem- 

bly planning, the geometry of the fasteners affect the possible assembly sequences for the 

engine. Specifically, two bolts securing the carburetor to the intake manifold obstruct the 

motion of two of the four bolts fastening the crankcase to the engine body. Any assembly 

sequence analysis without explicit geometric models of the fasteners would certainly miss 

this constraint on the assembly orders. In addition, the interference might be an example of 
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a manufacturing feature that could have been detected and corrected using early sequence 

analysis in a concurrent engineering design environment. However, this is hard to determine 

without knowing the design history of the engine. 
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