
March 1992 Report No. STAN-CS-92-1416

Thesis

PB96-149166

On Geometric Assembly Planning

by

Randall H. Wilson

PgffilBüTIOr? S?A?£M£JCT Ä
I Appiovec re Appiovec tor p-ociic rsieoa«

Department of Computer Science

Stanford University

Stanford, California 94305

19970609 042
[DUG QUALITY INSPECTS© S'

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

1a REPORT SECURITY CLASSIFICATION lb RESTRICTIVE MARKINGS

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

2b. DECLASSIFICATION / DOWNGRADING SCHEDULE

4. PERFORMING ORGANIZATION REPORT NUMBER(S)

STAN-CS-92-1416
5. MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION

Stanford University

6b. OFFICE SYMBOL
(If applicable)

7a. NAME OF MONITORING ORGANIZATION

6c ADDRESS {City, State, and ZIP Code)

Stanford, CA 94305

7b. ADDRESS (City, State, and ZIP Code)

8a. NAME OF FUNDING/SPONSORING
ORGANIZATION

NAVY

8b. OFFICE SYMBOL
(If applicable)

9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

N00014-88-K0620

8c. ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS

PROGRAM
ELEMENT NO

PROJECT
NO.

TASK
NO

WORK UNIT
ACCESSION NO.

11 TITLE (Include Security Classification)

On Geometric Assembly Planning

12. PERSONAL AUTHOR(S)
Randall H. Wilson

13a. TYPE OF REPORT
research

13b TIME COVERED

FROM TO

14. DATE OF REPORT (Year, Month, Day)
15 w E COUNT

16 SUPPLEMENTARY NOTATION

17 COSATI CODES

FIELD GROUP SUB-GROUP

18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

19 ABSTRACT (Continue on reverse if necessary and identify by block number)

20 DISTRIBUTION/AVAILABILITY OF ABSTRACT

CD UNCLASSIFIED/UNLIMITED D SAME AS RPT. □ DTIC USERS

22a NAME OF RESPONSIBLE INDIVIDUAL

Jean-Claude Latombe

21. ABSTRACT SECURITY CLASSIFICATION

unclassified

22b TELEPHONE (Include Area Code)

415-723-0748
22c OFFICE SYMBOL

DD Form 1473. JUN 86 Previous editions are obsolete.

S/N 0102-LF-014-6603

SECURITY CLASSIFICATION OF THIS PAGE

ON GEOMETRIC ASSEMBLY PLANNING

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

By

Randall H. Wilson

March 1992

ünCQTJMJTY INSPECTED 3

© Copyright 1992

by

Randall H. Wilson

Abstract

This dissertation addresses the problem of generating feasible assembly sequences for a

mechanical product from a geometric model of the product. An operation specifies a motion

to bring two subassemblies together to make a larger subassembly. An assembly sequence

is a sequence of operations that construct the product from the individual parts.

I introduce the non-directional blocking graph, a succinct characterization of the block-

ing relationships between parts in an assembly. I describe efficient algorithms to identify

removable subassemblies by constructing and analyzing the NDBG.

For an assembly A of n parts and m part-part contacts equivalent to k contact points,

a subassembly that can translate a small distance from the rest of A can be identified

in 0{mk2) time. When rotations are allowed as well, the time bound is 0(mk5). Both

algorithms are extended to find connected subassemblies in the same time bounds. All free

subassemblies can be identified in output-dependent polynomial time.

Another algorithm based on the NDBG identifies subassemblies that can be completely

removed by a single translation. For a polyhedral assembly with v vertices, the algorithm

finds a removable subassembly and direction in 0(n2v4) time. When applied to find the set

of translations separating two parts, the algorithm is optimal.

A final method accelerates the generation of linear assembly sequences, in which each

operation mates a single part with a subassembly. The results of geometric calculations are

stored in logical expressions and later retrieved to answer similar geometric queries. Several

types of expressions with increasing descriptive power are given.

An assembly sequencing testbed called GRASP was implemented using the above meth-

ods. From a standard three-dimensional model of a product, GRASP finds part contacts

and motion constraints, and constructs an AND/OR graph representing a set of geomet-

rically feasible assembly sequences for the product. Experimental results are shown for

several complex products.

IV

Acknowledgements

This research could never have been accomplished without the strong guidance and encour-

agement of my advisor, Professor Jean-Claude Latombe. He helped me focus on the key

issues and pushed me to learn more. I hope I can live up to his example.

I thank the other members of my reading committee, Professor Mark Cutkosky, Pro-

fessor Leo Guibas, and Dr. Marty Tenenbaum, for serving on the committee, for their

encouragement, and for many helpful discussions. I look forward to working more with

them in the future.

The vibrant atmosphere at the Robotics Laboratory was ideal for doing research in

geometry and motion. I am especially grateful to Jean-Francois Rit, Achim Schweikard,

and Toshi Matsui, with whom I worked closely.

Special thanks must go to my parents, Howard and Virginia Wilson, who taught me the

value of education and lit the flame of curiosity, and to Cheryl and Brian, who didn't snuff

it.

Last but not least, I thank Ramey for being supportive, tolerant, and impelling, and for

keeping my life going while I wrote.

Financial support for this work was provided by a fellowship from the National Science

Foundation, DARPA contract N00014-88-K-0620 (Office of Naval Research), the Stanford

Integrated Manufacturing Association (SIMA), and Digital Equipment Corporation.

Contents

Abstract »v

Acknowledgements v

1 Introduction 1

1.1 Assembly Planning 2

1.2 Assembly Sequencing 4

1.3 Previous Work 5

1.3.1 Artificial Intelligence Planning 6

1.3.2 Assembly Sequencing 6

1.3.3 Motion Planning 8

1.3.4 Computational Geometry 8

1.4 Contribution 9

1.5 Outline 11

2 Geometric Assembly Planning 13

2.1 Manipulation Planning 13

2.1.1 Configuration Space 14

2.1.2 Grasping and Stability 15

2.1.3 Manipulation Paths 17

2.2 Assembly Planning 19

2.3 Assembly Sequencing 20

2.3.1 Definition 21

2.3.2 Relation to Other Work 21

2.3.3 Relation to Assembly Planning 22

vi

2.4 Types of Assembly Sequences 23

2.4.1 Number of Hands 23

2.4.2 Monotonicity 24

2.4.3 Linearity 27

2.4.4 Connectedness 28

2.5 Representations of Assembly Sequences 29

2.5.1 Equivalence Classes of Assembly Sequences 29

2.5.2 State Graphs 31

2.5.3 AND/OR Graphs 33

2.5.4 Implicit Representations 33

2.6 Assumptions 35

3 A Basic Assembly Sequencing Approach 37

3.1 The Assembly Description 38

3.1.1 Local Motion 38

3.1.2 Contacts 39

3.1.3 Representing Polyhedral Contacts 40

3.1.4 Representing Nonpolyhedral Contacts 42

3.1.5 The Connection Graph 44

3.2 Generating Assembly Sequences 45

3.2.1 Building the AND/OR Graph 45

3.2.2 Procedure DECOMPOSE 46

3.2.3 Generating Partitionings 47

3.2.4 Procedure SEPARABLE 49

3.3 Local Motion 50

3.3.1 Local Freedom 51

3.3.2 Useful Motions 52

3.3.3 Computing Local Freedom 54

3.4 Extended Motion 55

3.4.1 Global Freedom 55

3.4.2 Sweeping 57

3.5 Path Planning 58

3.6 Implementation 60

vii

4 Partitioning for Local Motions 62

4.1 Generate-and-Test 63

4.2 Partitioning for Translations 64

4.2.1 Directional Blocking Graph 64

4.2.2 Non-directional Blocking Graph 65

4.2.3 Finding a Locally Free Subassembly 67

4.3 Partitioning for General Local Motions 69

4.4 Incremental Construction 70

4.5 Connected Subassemblies 72

4.6 Generating All Locally-Free Subassemblies 73

4.6.1 Unconnected Subassemblies 74

4.6.2 Connected Subassemblies 76

4.7 Implementation 79

4.8 Experiments 80

5 Partitioning for Extended Translations 82

5.1 Extended Blocking Graphs 83

5.2 Finding a Removable Subassembly 85

5.3 Finding All Removable Subassemblies 88

5.4 Connectedness 88

5.5 Separating Two Polyhedral Parts 89

5.6 Finding Assembly Sequences 90

5.7 Implementation 90

5.8 Experiments 92

6 Maintaining Geometric Dependencies 94

6.1 Generating Linear Assembly Sequences 94

6.2 Maintaining Movability Dependencies 96

6.2.1 Precedence Expressions 96

6.2.2 Expressing Part Movability 97

6.2.3 Using PEs in Sequencing 98

6.3 Local Precedence Expressions 99

6.3.1 A Simple Sufficient Condition 101

6.3.2 A Necessary Condition on the Constraining Parts 101

viii

6.3.3 Necessary and Sufficient Conditions 102

6.4 Global Precedence Expressions 104

6.4.1 A Simple Sufficient Condition 106

6.4.2 A Necessary Condition on the Constraining Parts 107

6.4.3 Necessary and Sufficient Conditions 108

6.5 Nonlinear Sequencing 109

6.6 Theoretical Complexity 110

6.7 Experiments 112

6.7.1 2D Assemblies 112

6.7.2 3D Assemblies 114

6.7.3 3D Assemblies with Path Planning 115

7 Conclusion 118

7.1 Geometric Assembly Sequencing 118

7.2 Representing Geometric Assembly Constraints 119

7.2.1 AND/OR Graphs 120

7.2.2 Implicit Representations 120

7.2.3 Non-Directional Blocking Graph 121

7.2.4 Precedence Expressions 121

7.3 Other Applications 122

A Input to GRASP 124

A.l The Assembly Description File 124

A.2 Building the Connection Graph 126

B Assemblies 130

B.l The Transmission 130

B.2 The Electric Bell 130

B.3 The Skin Machine 131

B.4 The Engine 133

Bibliography 134

IX

List of Tables

4.1 Experimental timings comparing procedures DECOMPOSE and PARTITION,

in seconds 80

5.1 Computing times for partitioning composite objects consisting of blocks .. 93

6.1 Truth tables for GRASP's three-valued prepositional calculus 97

6.2 Necessary and sufficient conditions represented in a single formula 98

6.3 Planning times for the crate assembly 112

6.4 Planning times for the transmission, with bolts 113

6.5 Planning times for the 22-part electric bell 114

6.6 Path planning experiments with the electric bell 115

6.7 User query count to find a single sequence using PEs 117

List of Figures

1.1 A simple assembly 5

1.2 An Assembly Sequencing Architecture 9

2.1 A robotic workcell 14

2.2 Grasping a subassembly 16

2.3 An unstable arrangement of objects 16

2.4 A configuration between two transfer paths 19

2.5 An assembly that requires n hands to build [48] 24

2.6 An assembly with no monotone binary assembly sequence [68] 25

2.7 An (m + l)-part latch assembly 26

2.8 An intermediate step in assembling the latch 27

2.9 An assembly in which no single part can be removed 28

2.10 An assembly with no connected binary assembly sequence 29

2.11 A liaison diagram for the crate assembly of figure 1.1 32

2.12 A liaison state graph for the crate 32

2.13 A binary AND/OR graph for the crate 34

3.1 The architecture of GRASP 38

3.2 A point-plane contact between two polyhedra 39

3.3 Contacts between polyhedra expressed as point-plane contacts 41

3.4 Polyhedral contacts not considered here 42

3.5 Typical non-polyhedral assembly contacts 43

3.6 A contact that cannot be represented 44

3.7 Main algorithm of GRASP 46

3.8 Procedure DECOMPOSE, following [34] 47

xi

3.9 An algorithm to generate all partitionings of a graph into two connected

components 48

3.10 Procedure SEPARABLE 50

3.11 A 3D local translational freedom cone 51

3.12 Local freedom computation 52

3.13 A 2D rotation to remove a part that cannot translate 52

3.14 A part that can be freed by a twist in 3D 53

3.15 The plate can only rotate around an axis of symmetry of the remaining parts 53

3.16 Two local motions for the part in figure 3.14 55

3.17 A nonconvex cone of removal translations 56

3.18 GRASP's human path planning interface 60

3.19 GRASP in operation 61

4.1 An assembly with 2 feasible decompositions 63

4.2 Two directional blocking graphs for the crate assembly 65

4.3 An arrangement of great circles on the sphere 66

4.4 (a) the connection graph for the crate assembly in figure 1.1 and (b) the

connected components after removal of the box 73

4.5 The procedure to find all locally-free subassemblies for a DBG 75

4.6 The procedure to find all connected, locally-free subassemblies for a DBG . 77

5.1 An assembly of cubes 87

5.2 The arrangement for the assembly in figure 5.1 87

5.3 Extended DBGs for region £(1,4) where (a) Px,..., P4 can be moved inde-

pendently (b) P2 and P4 must be moved simultaneously 88

5.4 Polygons from Pollack et. al. [54] 90

5.5 An intersection event in the sweep-line algorithm 91

5.6 An assembly of eight random blocks 92

6.1 Procedure DECOMPOSE 95

6.2 Procedure MOVABLE 96

6.3 Procedure MOVABLE, using local precedence expressions 100

6.4 Procedure MOVABLE, using global precedence expressions 105

6.5 Three simple types of assemblies HI

xii

6.6 Assembly sequences for the transmission 113

A.l Sample GRASP assembly description 125

A.2 The assembly created by the description file in figure A.l 125

A.3 Two contacts GRASP incorrectly detects 128

A.4 GRASP's contact representation 129

B.l The transmission 131

B.2 Liaison diagram for the transmission 131

B.3 The electric bell 132

B.4 The skin machine 132

B.5 The engine 133

xui

Chapter 1

Introduction

Product creation has traditionally been separated into at least two stages: first a designer

specifies the geometry and physical qualities of the finished product to perform the function

needed, then a manufacturing engineer takes over and tries to find a way to manufacture

the product. If it is too difficult to manufacture, the product is sent back for redesign, and

the cycle repeats. Because the design of the product and the design of the manufacturing

process are only loosely coupled, many cycles may be required to find a satisfactory design,

while the final artifact usually remains more expensive to build than necessary.

Concurrent design of a product and the process to make it is one way to address this

problem. In concurrent design, the manufacturing process is created simultaneously with

the product plans, so that constraints arising from manufacturing can be directly incor-

porated into the design, thereby reducing global iteration. In addition, automated tools

support this process at a high level. Human engineers use computer workstations to build

a shared product model, which is continually updated and critiqued to give the design-

ers manufacturing and servicing feedback about the design. Some of the agents affecting

the developing product model are computer programs, which do process planning, check

for consistency, and perform other tasks previously left to human engineers. Examples of

concurrent engineering systems under development are the NextCut [22, 23] and Design-

World [29] systems.

2 CHAPTER 1. INTRODUCTION

1.1 Assembly Planning

A proficient assembly planner will be an integral part of any concurrent design system. A

good assembly process can reduce assembly time, raise quality and reliability, allow greater

flexibility in responding to equipment failures, and reduce capital costs for robots and

fixtures. Furthermore, many of the manufacturing constraints that influence a design come

from the need to assemble constituent parts. For example, the assembly scheme influences

the tolerances imposed on individual parts, the shape of mating surfaces, and the design of

fasteners.

Assembly planning for production is typically performed by an industrial engineer. Ser-

vice and repair technicians devise reasonably efficient and error-free disassembly and re-

assembly plans on the fly. However, an automated assembly planner would have great

advantages, especially when part of a concurrent design system:

• Assembly planning is complicated and time-consuming for a human. Beside avoiding

the high cost of an engineer's time, an assembly planning program will accelerate

the generation of an assembly plan. With the higher planning speed comes faster

introduction of manufacturing constraints into the design process, as well as shorter

time-to-market.

• Intuition, rules of thumb, and approximate reasoning help human engineers to quickly

find good assembly plans, but they also may lead them to overlook the best assembly

plan. A computer assembly planner could enumerate all feasible assembly plans to

ensure that no better procedure exists. Furthermore, by exploring the set of all plans,

or "plan space," a designer could come to a better understanding of the manufacturing

aspects of the design.

• Current methods for evaluating the manufacturing aspects of a design, such as the De-

sign for Assembly analysis of Boothroyd and Dewhurst [12], require extensive human

judgement, and designers complain that they are tedious to use. A fast, automatic

assembly planner would allow a designer to ask "what if questions, quickly find the

consequences of design decisions, and more easily evaluate the manufacturing impact

of alternative designs.

• Small batch manufacturing requires that assembly machines, people, and processes

switch from one product to another quickly and often. An automated planner could

1.1. ASSEMBLY PLANNING 3

help to merge the assembly schemes for several products and allow faster changeover.

In addition, small batch size only amplifies the importance of low capital costs and

fast creation of a manufacturing process.

• A hybrid system, allowing a human to work in tandem with an automated assembly

planner, could relieve the engineer from much of the repetitive and tedious work of

devising an assembly plan. Meanwhile, the computer would check the human rea-

soning for consistency. A more competent, efficient, and accurate assembly planning

system would result.

An automated assembly planner would have great utility in both concurrent engineering

and more mainstream manufacturing planning. In answer to these needs, a body of work

has arisen in recent years attempting to systematize and automate the assembly planning

process (see below). The concurrent design paradigm imposes the following demands on an

assembly planner, although these qualities are to be desired in any such system:

Autonomy Using the assembly planner must require minimal effort from the designer. A

human will quickly tire of doing detailed geometric reasoning, or even supplementing

the assembly model to help the planner. As a result, the planner should build its

model of the target assembly from readily available data, such as a CAD model of the

product. Furthermore, the program must include automated geometric and physical

reasoning capabilities to allow it to generate assembly plans from just the assembly

model given by a designer. Any required human input should be sparse, be useful to

the designer, and lack tedium.

Accuracy If an assembly planner returns bad assembly plans or fails to find plans when

they exist, it will quickly lose what little trust the human will place in the computer.

Thus the employed geometric reasoning methods cannot ignore important details, the

search algorithms must be correct and complete, and approximations must be relevant

to the assembly planning domain.

Speed If the engineer has to wait a long time to get assembly feedback from the system, it

will be used infrequently, and the advantages of concurrent design will be lost. Thus

the planner must finish its work in seconds or minutes instead of hours or days. To

accomplish this it might need to work incrementally, modifying previous plans instead

of generating new ones from scratch.

4 CHAPTER 1. INTRODUCTION

This dissertation describes progress toward the goal of fulfilling the above demands. Al-

though this work is inspired by the concurrent design framework, the methods described

here have broad application to assembly planning in general.

1.2 Assembly Sequencing

Given a complete description of a target assembly and the resources available for its man-

ufacture, assembly planning refers to the process of creating a detailed manufacturing plan

to create the whole from the separate parts. The assembly planning problem in general in-

cludes such problems as work floor scheduling, fixture design and manipulation, feeder and

tool selection, and robot path planning. A full treatment of assembly planning is beyond

the scope of this work.

This dissertation concerns the subproblem of assembly planning that is commonly called

assembly sequence planning, or assembly sequencing. Assembly sequencing attempts to dis-

cern and represent the constraints on assembly plans that emerge strictly from the geometry

and structure of the product itself, without considering the influence of the "environment"

on the assembly process. The need to grasp parts, influences of fixtures, or movements of

any objects other than the components of the assembly are not considered; only the parts

and their relative positions are significant. Since the results of assembly sequencing are

independent of the technology used to assemble the product, assembly sequencing is well

suited to concurrent design, where manufacturing analysis is needed even though the final

assembly technology may not be known.

The result of assembly sequencing is a set of assembly operations and constraints on

their ordering. Each operation specifies a motion that brings two or more subassemblies

together to make a larger subassembly. Any ordering of the operations that obeys the

sequence constraints is called an assembly sequence. An assembly plan is created from an

assembly sequence by adding details such as fixtures, orientations, and grasping locations,

and taking into account the corresponding new constraints. These added constraints might

make a particular assembly sequence impossible to execute, but any feasible assembly plan

can be generated from its corresponding valid assembly sequence.

I concentrate specifically on geometric assembly sequencing, the automatic generation

of assembly sequences satisfying geometric constraints. From just a geometric model of

the goal assembly and the individual parts, a geometric sequencer computes a set of part

1.3. PREVIOUS WORK

_

ri

■■•...-.

Screw2 |

Lid Cargo

Screwl E r3

Box

Figure 1.1: A simple assembly

motions to construct the product from the parts, such that no parts collide in the process.

Mechanical and physical concerns, such as part tolerances, strains, and clamping forces, are

not addressed. A geometric sequencer must identify subassemblies, analyze part contacts,

find possible directions of motion, and reason about blocking relationships between parts

and subassemblies.

For example, consider the simple crate assembly shown in figure 1.1. The input to the

assembly sequencer consists of just the geometric models of the individual parts and their

final positions as shown. An assembly sequence for the crate is any set of motions that

bring the parts into their final relative positions from separate starting positions. Because

the parts have little interaction in their unassembled configuration, each operation in the

assembly sequence can be specified in terms of the parts involved and their relative motions.

One possible assembly sequence for the crate is as follows:

1. Translate the cargo into the box from the left.

2. Translate the lid into position on the box from above.

3. Screw screwl into the lid and box from the left.

4. Screw screw2 into the lid and box from the left.

1.3 Previous Work

The state of the art in assembly sequencing consists of a broad array of techniques, each

addressing certain aspects of the problem. This work can be roughly divided into Artificial

Intelligence approaches to planning, planners specifically designed for assembly sequencing,

physical reasoning to validate single assembly operations, and computational geometry ap-

proaches. The summary below is an overview of selected work; additional related research

CHAPTER 1. INTRODUCTION

is described where relevant throughout this thesis.

1.3.1 Artificial Intelligence Planning

STRIPS, NOAH, and SIPE are good examples of traditional AI planning systems [28, 57,

62]. The blocks world, an early planning domain in Artificial Intelligence consisting of blocks

that can be stacked and unstacked, is a primitive assembly planning domain. NOAH was

originally aimed at supplying instructions to a human to repair an air compressor, including

disassembly and assembly plans. In typical domains for these planners, actions are quite

varied (for instance moving between rooms, grasping objects, recharging batteries), while

geometric constraints are expressed in a few simple logical predicates, such as 0N(A, B)

or IN (pen, Rooml). In contrast, an assembly planner need only consider a few types of

operations (joining two subassemblies, certain fixturing operations), while the constraints

arising from geometric models are so complicated that expressing them in a logical notation

would be exhausting and inefficient. Hence AI planning techniques seem best suited to

handling the non-geometric parts of the assembly sequencing problem, while other methods

are used to perform geometric reasoning.

1.3.2 Assembly Sequencing

In the last decade, a number of systems have been targeted specifically at assembly se-

quencing. These systems differ both in their representation for assembly sequences and in

the reasoning techniques they use to identify assembly operations that satisfy geometric

and mechanical constraints. Representations for assembly sequences will be discussed in

section 2.5. Several important approaches to verifying assembly operations are described

below.

Bourjault [14] describes an interactive system for generating the assembly sequences for

a product. The method starts with a liaison graph of the assembly, which is a graph of

connections between the parts. Liaisons usually, but not always, involve contact between

the two parts. An assembly sequence corresponds to a particular order in which the liaisons

can be established. Geometric reasoning is supplied by a human, who answers carefully

constructed, yes-no questions about whether certain liaisons can be established before or

after others. From the answers to these questions, the assembly sequences for the product

can be inferred.

1.3. PREVIOUS WORK 7

De Fazio and Whitney [25] drastically reduce the number of questions and answers

required to represent the physical knowledge in Bourjault's method. The user answers

each question with a logical formula characterizing the situations in which a liaison can

be established. Unfortunately, these formulas become complicated and difficult to create

accurately for large assemblies, even for a human.

Baldwin [5] later includes simple geometric checks to answer some questions automati-

cally, further reducing the number of questions to the user in the previous two techniques.

A human is still used as the final judge of assembly operations.

Hörnern de Mello and Sanderson [34, 36] use disassembly planning to automatically

generate assembly sequences. Disassembly planning computes a way to disassemble the

product, then reverses the sequence to produce an assembly sequence. To identify a single

feasible operation, the method generates all possible subassemblies and tests the operation

removing each subassembly from the rest of the assembly. An operation is tested by a

predicate that includes geometric, mechanical, and stability checks. Local freedom is the

main geometric test computed in [34]; a subassembly is locally free when it can move a small

distance relative to the rest of the assembly considered as a solid. In this generate-and-test

approach, a number of candidate operations exponential in the number of parts may be

generated before a feasible operation is found, rendering the approach impractical for large

assemblies.

Wolter [68, 69] computes linear assembly sequences for a product, in which each opera-

tion joins a single part to a subassembly. The sequences are optimized according to certain

criteria. However, the input to the method includes possible motions for each part, and

sets of other parts that interfere with each motion. No systematic way of generating the

possible part motions is given, and the sequencer does no geometric computation.

A number of other approaches to automatic assembly sequencing have been proposed.

Lee and Shin [44] describe a number of heuristics to group parts of an assembly into sub-

assemblies, but parts can only move along the major axes, and some operations may not

be found. Hoffman [33] generates disassembly sequences involving complicated motions.

However, some assembly sequences may be missed, and as in [68] the directions of motion

are given as input.

Efficient methods are needed that operate directly from the geometric models of the

assembly, yet are guaranteed to find an assembly sequence if one exists.

CHAPTER 1. INTRODUCTION

1.3.3 Motion Planning

An assembly sequencing problem can be seen as a motion planning problem with multiple

moving objects. Each part is an independent robot, and a collision-free path must be found

for the individual parts to move from an unassembled state to the assembled state. However,

the general motion planning problem is known to take time exponential in the number of

degrees of freedom; for an assembly of n rigid parts this formulation yields 6n degrees of

freedom, so using a general path planner in this naive way is clearly impractical.

Motion planning plays a more limited role in determining feasible insertion trajecto-

ries for single assembly operations. General motion planning algorithms are described by

Latombe [42]. However, many general methods make assumptions that are not compatible

with assembly planning, while answering more complex questions than are needed. For

instance, some motion planners approximate the shapes of objects or assume the objects

do not come in contact, both drawbacks for assembly planning (see for instance [7]). On

the other hand, relatively simple geometric techniques can test the feasibility of the large

majority of assembly operations accurately (see Chapter 3).

Some motion planning methods have been developed specifically to suit the requirements

of assembly planning. Valade [61] finds disassembly trajectories by calculating the interac-

tions between concavities and objects and trying to reduce those interactions, until the parts

are separated. In the preimage backchaining approach to fine-motion planning [43, 46], the

uncertainty of both sensing and control are modeled explicitly to find guaranteed plans to.

achieve a goal despite the high relative uncertainties present in assembly operations. Lastly,

Pai and Donald [50] present a method for analyzing insertion of flexible parts by modeling

them as compliant connections between rigid bodies.

The above methods are useful to verify the feasibility of individual assembly operations.

Unfortunately, as in [34] they all require that a large number of assembly operations be

generated and then tested; none supply a way to generate only those operations that satisfy

the constraints.

1.3.4 Computational Geometry

Research in computational geometry addresses limited cases of geometric assembly sequenc-

ing. A survey of methods for finding separating motions for parts in two and three dimen-

sions is given in [60]. In [48] lower bounds on the number of simultaneous translations

1.4. CONTRIBUTION

Sequence Manipulator

Candidate
Operations

Feasible/
Infeasible

Physical Reasoner

Figure 1.2: An Assembly Sequencing Architecture

necessary for separating objects are derived. Dawson [24] shows that two or more star-

shaped objects can always be separated by translating the objects in different directions

simultaneously. In addition, it is shown in [24] that for some assemblies of convex polyhedra,

no individual parts are removable by a single translation.

Arkin et al. [3] use the concept of a monotone path between obstacles to deduce a

removable subassembly and a single extended translation to remove it. However, the parts

are limited to polygons in the plane, and the extension to three dimensions is not obvious.

Pollack et al. [54] consider sequences of translations to separate polygons. The algorithm is

limited to planar assemblies of two parts, but is able to find separating motions consisting

of several distinct translations. See [31, 58] for additional special cases of assembly planning

problems. Most of these methods are limited to two dimensions or allow only polyhedral

parts; in addition, it is unclear how additional constraints, for instance arising from clamping

forces or stability, can be included.

1.4 Contribution

Assembly sequences are highly constrained by geometry. However, little of the above re-

search considers the tight interaction between sequencing and geometry explicitly. Some

of the approaches assume geometric reasoning finishes before the sequences are generated

(such as [25, 68]), while others consider geometric reasoning a black box to test operations

(as in [34]). The more powerful geometric techniques are considered tools to test single op-

erations. As a result, the sequence generation and geometric reasoning modules are loosely

coupled, as in figure 1.2. Those systems that consider both sides of the problem simplify

the reasoning or are inefficient for all but the smallest assemblies.

10 CHAPTER 1. INTRODUCTION

An approach is needed that allows efficient generation of assembly sequences that sat-

isfy nontrivial geometric constraints. Geometric techniques must be considered and tested

within the context of assembly sequencing on real assemblies. This thesis describes the

following progress toward the goal of efficient geometric sequencing.

Experimental Testbed I describe a practical approach to generating assembly sequences

strictly from a geometric model of the target assembly. This approach has been implemented

as an assembly sequencing testbed called GRASP. GRASP is organized into modules that

can be replaced individually to test new methods for solving subproblems. Basic modules

accomplish geometric calculations using straightforward procedures. By substituting mod-

ules incorporating the more sophisticated algorithms given below, these new algorithms can

be tested experimentally on real assemblies and compared to results with the basic modules.

GRASP has planned assembly sequences for real assemblies of up to 42 parts.

Partitioning for Local Motions I introduce a succinct representation of the blocking

relationships between parts in an assembly, called the non-directional blocking graph (or

NDBG). An efficient algorithm is given to identify subassemblies that are locally free in

an assembly, by constructing and analyzing a NDBG for the assembly. Local freedom is

a necessary constraint on assembly operations, and in experiments it has proven to be a

powerful pruning constraint. Specifically, consider an assembly A of n parts, with m con-

tacts between them that can be described as k point-plane contact constraints. This type

of contact includes most contacts in real assemblies. The procedure PA RTITION determines

whether a locally free subassembly of A exists, and finds one such subassembly and a le-

gal motion direction in 0(mk2) time when motions are restricted to translations, and in

0(mk5) time for general rigid motions including rotations. When desired, both subassem-

blies can be constrained to be connected with the same time bound. The set of all s locally

free subassemblies can be found in output-dependent time 0(msk2) for translations and

0{msk5) time for general rigid motions. PARTITION performs well in experiments on real

assemblies.

Partitioning for Extended Motions I describe a variation of the PARTITION proce-

dure that identifies a subassembly that can be completely removed by a single extended

translation, for polyhedral assemblies. This procedure uses an extension of the NDBG.

When the n parts of the assembly have a total of v vertices, the algorithm identifies a

1.5. OUTLINE 11

single removable subassembly in time 0(n2v4). When applied to find the set of translations

separating two parts, the algorithm requires time 0(v4), which is optimal in the worst case.

Re-using Geometric Results Finally, a method is given to re-use geometric results,

thereby reducing the geometric computation required to produce linear assembly sequences.

Salient information is extracted from each geometric test and stored in a propositional logic

expression based on the presence and absence of individual parts. The expressions are stored

and later retrieved to answer similar geometric queries. The method can also be used to

reduce the number of questions to a human when doing interactive assembly sequencing.

Several versions of the expressions with increasing descriptive power have been implemented

and tested as plug-in modules for GRASP, resulting in large gains in assembly sequencing

speed.

1.5 Outline

The rest of this dissertation is organized as follows:

In Chapter 2,1 define the geometric assembly planning and assembly sequencing prob-

lems using a configuration space formalization. Within this framework, I further define

notions such as assembly operations, subassemblies, and several classes of assembly se-

quences. Representations of assembly sequences are described and their corresponding

classes of sequences identified.

Chapter 3 describes a basic approach to geometric assembly sequencing and its im-

plementation in an assembly sequencing testbed. From the three dimensional geometric

models of a product, a contact graph is constructed and used to build an AND/OR graph

representing possible assembly sequences. Geometric calculations test assembly operations

for feasibility. An interface to an engineer incorporates human expertise when desired. The

techniques are implemented in GRASP, a geometric assembly sequencing testbed used to

perform experiments using different sequencing methods.

The next three chapters describe methods that can be used instead of the basic proce-

dures to make the assembly sequencing process more efficient. Chapter 4 describes PAR-

TITION, an algorithm to find all ways to feasibly decompose an assembly into two sub-

assemblies according to local motion constraints arising from the contacts between parts.

12 CHAPTER 1. INTRODUCTION

The algorithm allows either translational or general rigid motions, and can impose a con-

nectedness constraint on the subassemblies produced. Experiments on real assemblies are

described for an implementation of the algorithm that is well-suited for practical use.

Chapter 5 describes a variation of the PARTITION algorithm that identifies a subassem-

bly that can be removed by a single extended translation. The special case of finding

separating motions between two polyhedra is shown to be worst-case optimal. An imple-

mentation and experiments with randomly generated assemblies are described.

Chapter 6 concentrates on linear assembly sequences, where one of the two subassemblies

in each assembly task is restricted to be a single part. In this domain I describe precedence

expressions (or PEs), whereby the geometric reasoner returns a symbolic description of the

reasons for each result, allowing re-use of previous results. I give two versions of the method:

one in which the PEs are inherited from assembly to subassembly, and one in which they

are stored globally. The global PEs are a compact, implicit representation of the set of

assembly sequences. Several types of PEs with increasing descriptive power are given. I

analyze the theoretical complexity of the methods for limited cases, and show experimental

results on real assemblies.

Finally, in Chapter 7 I conclude, stress the limitations and contributions of the work

described here, and identify promising directions for future research.

Chapter 2

Geometric Assembly Planning

Assembly tasks are a particular case of manipulation tasks, which consist of a robot mov-

ing objects into a desired goal configuration. In this chapter I present a formal geometric

definition of the manipulation planning problem, and then specialize it to yield a definition

of the assembly planning problem. An assembly plan can then be defined as a solution to

an assembly planning problem. A subproblem of assembly planning called the assembly se-

quencing problem is then described. While an assembly plan is a complete plan to construct

a product from its constituent parts given a certain manufacturing environment, assembly

sequencing only identifies the constraints arising strictly from the geometry and character-

istics of the goal product itself. Thus assembly sequencing is independent of any particular

set of assembly fixtures, robots or workers, and tools, but a given assembly sequence may

not be feasible in a particular environment. In this framework, I define several subclasses

of assembly plans and sequences, and describe some simple results about them. Finally,

several representations of assembly sequences are given and their corresponding types of

sequences identified.

2.1 Manipulation Planning

Robotic assembly occurs in a workcell similar to that shown in figure 2.1. A robot with

the ability to affect other objects causes the objects to move from their initial positions

into a goal configuration through a sequence of reaching, grasping, and carrying operations.

An important feature of the workcell is that the objects cannot move on their own; they

must be manipulated by the robot. Given a robot and other objects in an initial position,

13

14 CHAPTER 2. GEOMETRIC ASSEMBLY PLANNING

s
^

Figure 2.1: A robotic workcell

a manipulation task requires the robot to achieve a specified goal position through legal

moves. The following formulation of the manipulation planning problem borrows heavily

from [2] and [42].

2.1.1 Configuration Space

Consider a robot with r degrees of freedom, a set 0 = {Pi, ...,Pm} of m rigid objects, and

s fixed obstacles in a 3-dimensional workspace W. Let

• 7Z be the r-dimensional configuration space of the robot.

• Vi be the 6-dimensional configuration space of object Pi, for 1 < i < m.

• V = V\ x V?. x • • • x Vm be the 6n-dimensional configuration space of all the objects.

• C = TZ x V be the configuration space of the whole system. A configuration q € C

thus specifies the positions of the robot and all the objects.

Attach a reference frame F{ to each object P,, and define Fi \ Fj to be the relative

transformation between F, and Fj. Let Ei(q) give the position off1, in the world coordinate

system in configuration q. Similarly attach a reference frame FT to the gripper of the robot,

and let Er{q) give the position of Fr in the world coordinate system in configuration q. R(q)

and Pi(q) denote the subsets of W occupied by the robot and object Pt-, respectively, in

configuration q. R(q) and P;(g) are bounded three-dimensional manifolds with boundary1.
SA subset M of W is an m-dimensional manifold with boundary if every point x £ M has a neighborhood

V such that the set V n M is homeomorphic to either an open ball of Äm or a closed half-space of Rm
. This

restriction rules out some pathological cases of part geometry.

2.1. MANIPULATION PLANNING 15

Although this formulation applies only to a single robot, multiple robots could be included

with some added complication.

Two objects P, and Pj interfere when their interiors intersect, i.e. in configurations q

for which int(Pi(q)) n int(Pj(q)) / 0; they are in contact if they do not interfere and their

boundaries intersect, or bound(Pi(q)) (~l bound(Pj(q)) ^ 0. The same relations are defined

similarly for the robot and an object. Then ILLEGAL is the open subset of C in which an

object interferes with an obstacle, another object, or the robot. Let LEGAL = C- ILLEGAL

be the closed set of all non-interfering configurations.

2.1.2 Grasping and Stability

Because the objects cannot move on their own, two constraints must be expressed: the ob-

jects only move when moved by the robot, and they must be in stable configurations when

not grasped by the robot. Assume that the robot can only move an object by grasping it

rigidly; for example, no pushing or dropping actions are allowed. In general, the graspa-

bility of any one object might depend on the locations of all the other objects. In a given

configuration the robot might be able to grasp and move different sets of objects, including

the empty set (no objects), depending on the forces exerted. Let GRASPABLE(g) be the

set of all sets of objects that the robot can grasp in configuration q. Since the robot can

always choose to grasp no objects, the empty set 0 is always in GRASPABLE(g). To affix a

set of objects 5 € GRASPABLE(g) to the robot gripper, the robot executes the operation

GRASP(S). To release the objects, the robot simply executes GRASP(0).2

Figure 2.2 shows part of a configuration (call it q{) that illustrates the definition and

use of the function GRASPABLE. From its position in qi, the robot cannot grasp A or B

alone, but it can grip the two of them together by exerting an inward force on its jaws.

However, moving {A,B} will necessarily move object C, so the set {A,B} cannot be included

in GRASPABLE(gi). Hence GRASPABLE(gx) = {{A,B,C},0}.

When an object is not currently being grasped, it must be in a stable position in the

environment. However, once again the stability of an object could depend on the locations

of all the other objects. For any set of objects 5, let Vs = YlPies'Pi be tne sPace of config-

urations of the objects in 5, and let STABLEs denote the subset of stable, noninterfering

configurations of Vs- In other words, STABLEs is the set of stable configurations for objects

2 In reality, physical actions are needed to grip an assembly, such as exerting a gripping force or turning
on a suction gripper. However, I approximate grasping as an on-off switch.

16 CHAPTER 2. GEOMETRIC ASSEMBLY PLANNING

Figure 2.2: Grasping a subassembly

/ , 1

D 1 (

B

*)

Figure 2.3: An unstable arrangement of objects

S, without the support of any other object. Then let ns : C -> Vs be a function mapping

configurations of the workcell into configurations of the objects in S. To grasp a set of parts

5, the robot must be in a configuration where the rest of the objects 0 \ S are stable, i.e. a

configuration q such that ir0\s(g) € STABLE0\s- Note that STABLEo is the set of object

configurations in which all the objects are in stable configurations, so to execute GRASP(0)

(an ungrasp), the current object configuration vo(q) must be in STABLEo-

Figure 2.3 shows a partial configuration qi of objects to illustrate the sets STABLE5.

With no influence from the robot, object D is heavy enough to tip B and C over; hence

*o(qi) is not in STABLEo- However, the configuration consisting of blocks A, B, and C is

stable. Hence, if the robot were grasping block D, the configuration would be stable, so

*0\{D}(fc) € STABLE0\{D}-

GRASPABLE(g) contains all the sets of objects that can be grasped in a configuration

q, while STABLE0\s gives the configurations of stable objects when set S is grasped. A

configuration q is stable if it is in LEGAL and if grasping one of the graspable sets leaves

2.1. MANIPULATION PLANNING 17

the ungrasped objects stable. Define STABLE as the set of such configurations:

STABLE = {q € LEGAL | 35 € GRASPABLE(g), *o\s(q) € STABLE0\s}

In the real world, objects also need to be stable when undergoing motion and when insertion

forces are applied; these constraints are not considered here.

The computation of GRASPABLE and STABLEs will not be discussed in depth here. A

great deal of literature addresses grasping issues (see for instance [20, 37, 53]), although few

papers consider grasping of possibly-unstable assemblies. Palmer [51] shows that checking

the stability of a set of polygonal objects in a vertical plane is NP-hard both with and without

friction. Boneschanscher et al. [11] give a stability test for limited types of contact that runs

in polynomial time, and Blum et al. [9] describe a numerical stability test whose behavior

is hard to characterize. However, it is clear that practical stability tests for "normal''

assemblies must be developed before truly autonomous assembly planning can be realized.

We can impose the simple necessary condition on grasp configurations that the union

of the grasped objects and the robot must be connected. If the union of the obstacles is a

connected set (as in real robotic workcells), then the union of the ungrasped objects and

the obstacles must be connected in stable configurations. However these constraints are

obviously not sufficient for stability.

2.1.3 Manipulation Paths

Two distinct types of motions can be performed in this system, depending on whether the

robot is grasping any objects during the motion. In a transit path, the robot moves without

affecting the positions of the objects, which must be in a stable arrangement. During a

transfer path, a subset of the objects is grasped and moves with the robot. The grasped

objects stay rigidly attached to the end effector of the robot throughout the transfer path,

while the ungrasped objects do not move and must be stable. A manipulation path is

an alternating sequence of transit and transfer paths, in which the endpoint of one path

coincides with the starting point of the following one. Formally,

Definition 2.1 A transit path is a continuous map r : [0,1] —► STABLE such that:

• Vs € [0,1]: Jro(r(s)) = TTO(T(0)) (the objects do not move).

• *O(T(0)) € STABLEo (the objects are all stable).

18 CHAPTER 2. GEOMETRIC ASSEMBLY PLANNING

Definition 2.2 A transfer path is a continuous map r : [0,1] -»• STABLE for which there

exists a grasped set of objects S such that:

• Vs € [0,1]: 5 e GRASPABLE(r(s)) (the grasped set is graspable).

• Vs € [0,1]: xo\s(T(s)) € STABLEo\s (the ungrasped objects are stable).

• Vs G [0,1]: n0\s(T(s)) = 5rO\s(r(0)) (^e ungrasped objects do not move).

• For each P{ G S, there exists a constant transformation T{ such that Vs € [0,1] :

E{(T(S)) \ ET(T(S)) = Ti (the grasped set is rigidly attached to the robot gripper).

Every transit and transfer path lies in a submanifold of STABLE whose dimension is r.

Definition 2.3 A manipulation path is an finite alternating sequence (TI,T2, .. .,r2p+i)

such that:

• Vj € [l,2p]: Tj(l) = r,+i(0) (the endpoint of one path is the start of the next).

• ri> r3i • • • 7 T2p+i are transit paths'.

• T2> r4> • • • ? i"2P are transfer paths.

At the beginning of every transit path, the robot executes a GRASP(0) operation. At the

beginning of every transfer path, the robot grasps the grasped set for that path.

A manipulation path consists of alternating move and carry actions by the robot. Note

that another formulation might allow two transfer paths to follow one another. For instance,

in figure 2.4 the robot has been grasping the set {A,B}, and in the configuration shown it

executes GRASP({A}) (setting B down on C and D) and continues the downward motion,

holding A. A transit path cannot intercede because A is not in a stable position. Such motions

will not be considered here, although the extension to handle them is straightforward.

A manipulation planning problem is specified by an initial configuration qi and a set of

acceptable goal configurations QQ C STABLE. A solution to the problem is a manipulation

path (rj,...,TP) such that Ti(0) = qi and rp(l) 6 QG-

For examples of manipulation problems, see [2] and [42, chap. 11].

2.2. ASSEMBLY PLANNING 19

Figure 2.4: A configuration between two transfer paths

2.2 Assembly Planning

An assembly planning problem is an instance of the manipulation planning problem. Some

of the objects are distinguished as parts of the goal assembly, while the rest are tools to

be used to assemble the parts3. The initial configuration presents the parts in an initial,

unassembled state along with the other objects. The goal is any configuration in which the

product is completely assembled, with no other objects stuck inside it.

The m objects are divided into an assembly A of n parts, and m — n tools, which include

fixtures, clamps, wrenches, etc. For convenience, let the parts be objects P\,...,Pn and the

tools Pn+i,...,Pm. In their initial position, the parts are unassembled—far enough away to

be out of the influence of each other and the tools. To formalize this, let two sets of objects

5i and 52 be separated in configuration q when there exists a plane such that UigSi ^»(tf)

is on one side of the plane, and U16S2 ^i^i)ls on tne °tner side of the plane. We allow the

objects to touch the separating plane, so that objects in contact can still be separated. The

robot is separated from a set of objects when a parallel condition holds.

The initial configuration in an assembly planning problem is a configuration qi such

that the set of all parts is separated from the set of all tools and from the robot in qi, and

furthermore all pairs of parts P,, Pj € A,i •£ j are separated in qj.

In an assembly planning problem, all the parts must be in their final relative positions

in a goal configuration. In addition, the other objects, the robot, and the fixed obstacles

must not be "stuck" inside the assembled parts. The latter constraint holds when a path

3In an extended view of the assembly planning problem, the selection and design of the tools could be
included in the planning process. Here I considei only the simpler problem when the tools are specified.

20 CHAPTER 2. GEOMETRIC ASSEMBLY PLANNING

exists to remove the assembly from the rest of the system while moving neither the parts

relative to each other nor the robot and tools. I will use part Pi as a reference to define

the positions of the rest of the parts in the goal configuration. For each part P,, i e [2, n],

let 71/3 be a transformation relating the position of part P, to part Pj in the final assembly.

Then ASSEMBLED is the set of all configurations q in STABLE such that:

• Vt € [2, n], Ei(q) \ Ei(q) = Tf1 (the parts are in their final relative positions).

• A path exists in LEGAL to rigidly move the assembly from its position in q to a

position separated from the robot, tools, and obstacles.

In a real assembly workcell, the tools must also be left in a state that allows them to be

used to construct the next assembly. This constraint is not formulated here.

An assembly planning problem is a manipulation planning problem with n distin-

guished parts, where the initial configuration satisfies the constraints above and the goal is

ASSEMBLED. An assembly plan is a solution to an assembly planning problem.

Because it is just a special case, the assembly planning problem can obviously be reduced

to the manipulation planning problem, and thus a general manipulation planner could solve

an assembly planning problem (if one existed).

2.3 Assembly Sequencing

In this section I describe assembly sequencing, in which the motions of the parts of an

assembly are planned only with respect to each other, without considering the abilities of

the robot or the effects of the fixtures. Assembly sequencing identifies the constraints on

assembly plans arising strictly from the geometry and characteristics of the product itself;

it is independent of any particular set of assembly fixtures, robots or workers, assembly

orientation, and tools. As a result, the existence of a feasible assembly sequence for an

assembly does not guarantee it can be manufactured, since only a subset of the constraints

are taken into account. On the other hand, assembly sequence analysis can be applied early

in the design process, before a manufacturing scheme is chosen, and possibly even when the

assembly design is not finished. I describe the relation between assembly sequencing and

assembly planning, and define several types of assembly sequences.

2.3. ASSEMBLY SEQUENCING 21

2.3.1 Definition

Consider an assembly of n rigid parts A = {Pi,...,P„} in a 3-dimensional workspace WA

with no obstacles. Because there are no obstacles in WA, only the relative positions of the

parts are significant. Let V = V2 x V3 x • • • x Vn be the 6(n - l)-dimensional composite

configuration space of the parts of A in WA with respect to the coordinate frame attached to

part Pi. Let LEGAL(P) be the subset of V in which the interiors of no two parts intersect.

An assembly path is a continuous map r : [0,1] -»■ LEGAL(7>).

Define the part position functions £,(</) and the separated predicate for configurations

q € V in the same way as for C in the previous two sections. Then an unassembled configu-

ration for an assembly sequencing problem is a configuration in which all parts are pairwise

separated; call the set of such configurations Q\. Because the position of part Px is fixed,

the parts are all in their relative goal positions for one qo € V. The assembled configuration

qG£Vis such that Vt € [2, n], £,{«?) = if.

An assembly sequencing problem is specified by an assembly A of n parts and an as-

sembled configuration qo- A solution to an assembly sequencing problem consists of an

unassembled configuration qi € Qi and an assembly path r such that r(0) = qi and

r(l) = qQ. A solution to an assembly sequencing problem is called an assembly sequence.

Note that the unassembled configuration qi can be chosen as part of an assembly se-

quence. In the real world this corresponds to placing the part feeders in the most convenient

locations. Formally, since the parts must be pairwise separated by planes, any initial con-

figuration could be transformed to any other by spreading the parts far enough apart and

swapping their positions until the desired configuration is reached, then contracting them

back in. Hereafter I will consider an assembly sequencing problem to be specified by just

the goal assembly A.

2.3.2 Relation to Other Work

The assembly sequencing problem as stated here is purely geometric. Similar problems are

called "assembly sequence planning" by Hörnern de Mello [34] and "assembly planning" by

Wolter [68]. Hörnern de Mello takes a more applied approach to the problem, including

stability and "mechanical" as well as geometric constraints on assembly sequences. How-

ever, only very weak stability constraints can be applied to an assembly sequence without

information about the environment in which it is executed. For instance, many unstable

22 CHAPTER 2. GEOMETRIC ASSEMBLY PLANNING

assemblies are stable in some orientations, in a stabilizing fixture, or when grasped cor-

rectly. Requiring that subassemblies be connected is a common constraint associated with

stability, but even that can be remedied using a fixture: consider a car body being low-

ered onto two wheel-axle subassemblies. Hörnern de Mello's mechanical constraints concern

the geometric aspects of fasteners—which are considered individual parts here—and tools,

as well as physical constraints such as clamping forces that are difficult to formalize but

obviously important for an applied assembly planning program.

Wolter defines the assembly sequencing problem in terms of n workspaces. Each part

starts in a separate workspace, and the parts can be transferred between workspaces to

assemble them. This more easily formalizes the notion of the parts being separated in their

initial positions, but weakens the connection to assembly planning with a robot (below).

The geometric nature of the assembly sequencing problem stated here makes it fully

reversible. In other words, an assembly sequence is the reverse of a valid disassembly se-

quence for the same assembly. A number of assembly planners [34, 39, 44, 68], including

GRASP, take advantage of this fact by planning for disassembly. Another reason for doing

disassembly planning is that the assembled configuration is more tightly specified than the

unassembled configuration; this aspect of the state space lends itself to backward planning.

In the real world, some assembly operations are not the reverse of disassembly operations,

due to mechanical and stability constraints and non-rigid parts such as springs, snap-fit

parts, and fluids. However, if a disassembly operation is defined as the reverse of a feasi-

ble assembly operation, then disassembly planning is a valid approach even for non-rigid

parts. In most of this thesis, assembly planning and disassembly planning will be discussed

interchangeably.

The assembly sequencing problem with an arbitrary number of parts has been shown to

be PSPACE-hard independently by Natarajan [48] and Wolter [68]. Natarajan [48] shows

that the problem remains PSPACE-hard when the parts are limited to a constant number

of vertices.

Theorem 2.4 The assembly sequencing problem is PSPACE-hard.

2.3.3 Relation to Assembly Planning

Given an assembly sequence for a product A and a particular robotic workcell, the robot

might or might not be able to produce the relative motions required by the assembly se-

quence. If the robot can realize the relative motions called for in the assembly sequence, the

2.4. TYPES OF ASSEMBLY SEQUENCES 23

corresponding assembly plan is said to execute the assembly sequence. In fact, a number of

different robot plans might execute the same assembly sequence. From a different perspec-

tive, we might consider the set of all robotic workcells that can execute a given assembly

sequence. A production engineer might take this view when designing a manufacturing cell

for a product.

Formally, consider a robotic workcell for A with a particular robot and fixtures (for a

total of m parts and fixtures) having a composite configuration space C. Let irA : C -*■ V be

the function projecting a configuration q of the whole system into the configuration *A(q) of

the parts relative to iV Then an assembly plan TQ executes the assembly sequence r-p of A

when there exists a continuous nondecreasing function 7 : [0,1] ->• [0,1] such that 7(0) = 0,

7(1) = 1, and

V5€[0,l]:^(rc(s)) = 77,(7(5)).

In other words, the parts follow the same path relative to each other in both the assembly

sequence and the executing assembly plan.

2.4 Types of Assembly Sequences

An assembly sequence r can be divided into an equivalent list of assembly paths (TJ, ..., rm)

accomplishing the same motions. The n are called operations. This representation allows

additional restrictions to be placed on the operations r,, thereby defining classes of assem-

bly sequences. Several such classes will be considered below, including binary, monotone,

linear, and connected assembly sequences. These are categories of sequences that lend

themselves both to execution by a robot or human and to automatic generation. Much of

the terminology below is taken from Natarajan [48] and Wolter [68].

2.4.1 Number of Hands

Let r, be an operation in an assembly sequence for assembly A. A moved set of r, is a

maximal set of parts S such that the relative positions of parts in S stay constant during r;.

The moved sets of any operation are a partition of the parts of the assembly. An operation r;

is m-handed if there are m moved sets of T{. TO execute an m-handed operation would require

one "hand" to move each set of parts along its trajectory, where the table counts as one hand.

An assembly sequence is m-handed if it can be divided into m-handed operations. A robotic

workcell with r independent robots can execute (r + l)-handed sequences. Natarajan [48]

24 CHAPTER 2. GEOMETRIC ASSEMBLY PLANNING

Figure 2.5: An assembly that requires n hands to build [48]

shows that in general n simultaneous motions may be needed to build an assembly of n

parts (figure 2.5 shows one such assembly made of star-shaped4 parts). However, most real

products can be built using a much smaller number of hands, usually with just two (a robot

and a table). An assembly that requires more than two hands to build is a prime candidate

for redesign [12].

A two-handed assembly sequence is also called binary. Generating non-binary assembly

sequences requires reasoning about the simultaneous relative motions of more than two

subassemblies. Because such reasoning is difficult and most real products can be built with

two hands, all assembly planners to date have been restricted to binary assembly sequences.

Even for a product that cannot be constructed with a binary assembly sequence, maximizing

the number of binary assembly operations in the sequence will minimize manufacturing

costs.

2.4.2 Monotonicity

The number of hands needed to execute an assembly sequence is only one aspect of its

difficulty to generate and execute. Another is the number of intermediate positions that

parts may take before they are placed in their relative goal positions. The class of assembly

sequences without any intermediate positions is a special case. A subassembly in configu-

ration q of a sequence r is a maximal set of parts S that are in their final relative positions

and that stay in those positions until the end of the sequence:

• For all parts Pi,Pj € S and all configurations q' following q in r, Ei(q) \ Ej(q) =

if \ Tf.

*An object 5 is star-shaped il there exists a point p € S such that the line segment connecting p to every
element of 5 is completely contained in 5.

2.4. TYPES OF ASSEMBLY SEQUENCES 25

IK
!D1 r im

m
WVWMMIIIIII I.I 11.11.1.1

pn
Figure 2.6: An assembly with no monotone binary assembly sequence [68]

Each part is a trivial subassembly at the start of a sequence, and until it becomes part of

a larger subassembly.

An assembly sequence is monotone if each operation requiring m hands joins m sub-

assemblies to make a larger subassembly. In other words, a monotone sequence consists of

operations placing parts into their final positions relative to each other. Formally, for each

operation r, in a monotone sequence, let r, be m-handed. Then there is a set of parts 5,

such that

• Si is a subassembly in configuration r,(l).

• Si is the union of m subassemblies S[,..., S'm in r,(0).

• All but one of the subassemblies 5{,..., S'm are moved sets of T<.

Monotone assembly sequences are simpler to compute than nonmonotone sequences,

because they do not require the identification of intermediate positions for subassemblies.

In a monotone binary sequence, each operation brings exactly two subassemblies together;

hence a monotone binary sequence consists of n - 1 operations.

Note that the monotonicity of a sequence means little unless the number of hands

is stated. Any assembly sequence for an n-part product can be written as a monotone

sequence in which all the parts are mated in one long n-handed operation. Consider the

latch assembly shown in figure 2.6 from [68]. It could be assembled with a non-monotone

binary sequence placing P2 in Pi, then {P^Pi} inside P3, then sliding P2 right. This same

set of motions could be described as a single monotone 3-handed operation.

The relationship between monotonicity and handedness is an interesting one. Let an

m-handed assembly be an assembly that can be built with m hands, and an m-handed

26 CHAPTER 2. GEOMETRIC ASSEMBLY PLANNING

m...
■■■■■■■■•■■ ■ ■ ■ ■ ■ ■.■.■■■■■■■ ■■■:■■■■■■■■■■■. ■■■....■■.■...■.■.■

Figure 2.7: An (m + l)-part latch assembly

monotonic assembly be an assembly for which there exists an m-handed monotonic assembly

sequence. It can be shown that there is no inclusion relation between the set of m-handed

monotone assemblies and the set of (m —l)-handed assemblies. In other words, for any m,

there exists an m-handed monotonic assembly that is not (m-l)-handed, and there is an

(m—l)-handed assembly that is not m-handed monotonic.

Natarajan [48] proved the first part by showing that there exist assemblies with m parts

that cannot be assembled with less than m simultaneous motions (figure 2.5).

To prove the second part, consider the extended latch assembly shown in figure 2.7.

It consists of m interlocking pegs fitted inside an outer shell. The latch assembly is a 2-

handed assembly, since it can be built by inserting the smallest peg into the second smallest,

inserting the resulting subassembly into the next largest, and so on, then inserting the pegs

together into the hole, and finally latching each peg assembly in reverse order out into its

sub-hole.

However, assume an m-handed monotone sequence exists to assemble the latch. No peg

can be inserted before the next larger peg, so during some operation r, in the sequence the

assembly must pass through the configuration q\ shown in figure 2.8. Every operation in a

monotone sequence creates a subassembly, but no part is in its final position relative to any

other in q\. Therefore r,- must be the first operation in the sequence. Hence r, has moved

all m +1 parts from an unassembled configuration to configuration qx. Operation r, is thus

(m-fl)-handed, which is a contradiction.

Theorem 2.5 For any m, there is an assembly with m + 1 parts that is 2-handed but not

m-handed monotonic.

2.4. TYPES OF ASSEMBLY SEQUENCES 27

Figure 2.8: An intermediate step in assembling the latch

Many assembly sequencers assume monotonicity, but not all. For instance, Hoffman [33]

describes a system that generates disassembly sequences from the boundary representations

of the parts. If an assembly cannot be disassembled in a single motion, a subassembly is

chosen to move to an intermediate position that might allow disassembly. The intermediate

positions are chosen heuristically based on the geometry of the parts and certain features

(such as the center of a hole or protrusion) that may be lined up. The method does not

always succeed, but it works in many practical cases.

2.4.3 Linearity

Further restrictions on assembly sequences are possible to simplify the assembly sequencing

problem. One that is imposed by several assembly planning systems (see [66, 68] and Chap-

ter 6) is linearity. A binary assembly sequence is linear if one of the two moved sets of each

operation is a single part. Hence a linear monotone sequence consists of n - 1 operations,

each mating a single part with a subassembly. Figure 2.9 shows a monotone binary assembly

with no linear assembly sequence. Under the linear assumption, a disassembly planner need

only consider removing single parts, instead of identifying removable subassemblies. This

simplifies the planning process considerably and allows additional optimizations, as will be

seen in Chapter 6.

28 CHAPTER 2. GEOMETRIC ASSEMBLY PLANNING

Figure 2.9: An assembly in which no single part can be removed

2.4.4 Connectedness

The restrictions on assembly sequences given above are all based on the type of part mo-

tions allowed. In contrast, an often useful constraint is that the subassemblies constructed

in a monotone assembly sequence be connected. Wolter [69] calls such assembly sequences

contact-coherent. Connected subassemblies make sense for executing a sequence, since it is

difficult to grasp or maintain the stability of a subassembly when it is not even connected.

As noted in section 2.1, fixtures can usually be designed to stabilize even unconnected sub-

assemblies, but connectedness is still a useful heuristic. In addition, enforcing connectedness

of subassemblies helps to reduce the combinatorics of non-linear sequence planning. For in-

stance, to find an operation Hörnern de Mello [34] generates all connected subassemblies and

then tests each for removability; if unconnected subassemblies were allowed, this approach

would become impractical for much smaller assemblies than when the connected constraint

is included. Figure 2.10 shows an assembly that cannot be built with a connected binary

assembly sequence.

For each category of assembly sequence described in this section, we can define a corre-

sponding class of assembly plans based on the correspondence between sequences and plans.

Thus a monotone binary assembly plan is an assembly plan that executes a monotone binary

assembly sequence.

Much of the literature on motion of objects has relevance for assembly planning but

cannot all be summarized here. A survey of methods for separating sets in two and three

dimensions is given in [60]. For more types of assembly sequences, assemblies that can be

2.5. REPRESENTATIONS OF ASSEMBLY SEQUENCES 29

> » >

iPf p
mm

K£3iä

EÜ .?&&&Ü$$?yZS-

III! i-^i^-i-w-Ä'

liPl ffflffi^ilMffi^&i

Figure 2.10: An assembly with no connected binary assembly sequence

constructed under various restrictions, and the complexity of certain object-motion prob-

lems, see for instance [24, 48, 51, 54, 60, 68].

2.5 Representations of Assembly Sequences

In an assembly sequencing system, the choice of representation for assembly sequences

can be crucial. This section defines several equivalence classes of sequences based on part

motions, and then describes data structures along with the classes of sequence they can

represent.

2.5.1 Equivalence Classes of Assembly Sequences

Representing a sequence as a continuous function from time into a multi-dimensional space

of part positions is not adequate. Doing so would give too much detail without making

explicit the important events in the sequence. As a result, most assembly sequencers define

equivalence classes of sequences based on the order of part mating operations, and then

represent equivalence classes of sequences.

Position Equivalence For many purposes the order of mating operations between parts

is more important than the exact motions the parts follow in the operations. For instance,

several subassemblies might be built by separate manufacturers, then shipped to a common

factory for final assembly. For such a product, constructing the subassemblies individually

is quite important, while the motions required to build each subassembly can be decided

by its respective manufacturer. In such cases equivalence classes of assembly sequences can

be considered based on the parts moved in each operation.

30 CHAPTER 2. GEOMETRIC ASSEMBLY PLANNING

Let r = (TI, ..., rn) and r' = (T[, ..., T£) be two assembly sequences of the same length

for an assembly A. Then r and r' are position equivalent when respective operations leave

the assembly in equal states, i.e. when r,(0) = T/(0) for all i € [1, n]. Two position equivalent

nonmonotone sequences may have different motions but they use the same intermediate

positions.

Order Equivalence Position equivalent monotone sequences create the same subassem-

blies in the same relative positions. However, in monotone assembly sequences the relative

positions of the subassemblies may not be important either. Define two monotone sequences

r and r' to be order equivalent when respective operations r, and T\ create the same sub-

assemblies.

Many applications do not distinguish between order equivalent sequences, since they

differ only in the part mating motions for individual operations. These mating tactics can

sometimes make a large difference in the quality of an assembly sequence, but they only

affect the difficulty of single operations, and can be optimized individually or left unspecified

to allow adjustment when the full assembly plan is created. As a result, after this chapter I

will use the term assembly sequence to refer to a class of order equivalent assembly sequences.

Most papers on assembly sequencing that consider monotone sequences take this view.

Subassembly Equivalence Finally, in some applications the order in which subassem-

blies are created is unimportant. If operation r, mates subassemblies S\ and 52, for instance,

the order of construction of Si and 52 makes little difference. S\ could be built first, or

52, or the operations accomplishing their construction could be interweaved. Because the

sequence is monotone, the parts of S\ and 52 do not interact until TJ. For some products

it is necessary to perform a measurement or other operation on one subassembly before

constructing another; this was common practice before the 20th century. However, such

designs are discouraged in modern manufacturing because they raise the cost of assembly.

Let two monotone assembly sequences be subassembly equivalent if they create the same

set of subassemblies, possibly in different orders. A one-to-one correspondence can be made

between the operations of two subassembly equivalent sequences, in which each pair of

operations establish the same subassembly from the same smaller subassemblies.

Other equivalence relations between assembly sequences are possible in practice. For

instance, one might consider two operations to be equivalent when their respective part

2.5. REPRESENTATIONS OF ASSEMBLY SEQUENCES 31

motions have the same final trajectory. Another useful view is to define part clusters, such

that two sequences are equivalent when they place parts from a cluster in different orders.

For instance, the bolts in a bolt circle rarely need to be placed in a specific order, so it is

wasteful to generate all possible orders of assembly. Although the part clusters must be

found heuristically or input by a human, this view can reduce the complexity of assembly

sequencing in many practical cases (see [10] for example).

The next subsections consider representations for classes of assembly sequences.

2.5.2 State Graphs

State-space graphs [49] can easily be adapted to represent assembly sequences. Salient

features of an assembly configuration are identified, and the state of the assembly process is

defined in terms of those features. For instance, the features may be just the positions of the

parts at the end of an operation. One set of feature values (the unassembled state) represents

the unassembled configuration, and another set of values (the assembled state) represents

the assembled configuration. An assembly operation is represented by an arc in the graph

from one state to another. Any path through the graph from the unassembled state to the

assembled state represents an assembly sequence. The state graph thus represents a space

of possible assembly sequences.

A natural set of features for order equivalent assembly sequences was identified by

Bourjault [14] and later used by De Fazio and Whitney [25]. They define the state of an

assembly based on the liaisons that have been established thus far in an assembly sequence.

When a liaison between two parts is established, the two parts are in their final relative

position. Thus a set of liaisons that have been established define a set of subassemblies.

The state with no liaisons established is the unassembled state, and the state with all

liaisons established is the assembled state. An assembly operation mating two (or more)

subassemblies is represented by an arc in the graph from one liaison state to another. A

path from the unassembled state to the assembled state represents a class of order equivalent

sequences.

For example, figure 2.11 shows a liaison diagram for the crate assembly of figure 1.1,

and figure 2.12 shows a state graph representing some binary monotone assembly sequences

for the crate. Each liaison is established when its corresponding box is filled in. The

unassembled state is at the bottom of the figure, and the assembled state at the top. States

that do not occur in any assembly sequence are not shown.

32 CHAPTER 2. GEOMETRIC ASSEMBLY PLANNING

Screw2

^ ^

Lid Box

o x >-^—
Screw 1

Figure 2.11: A liaison diagram for the crate assembly of figure 1.1

1 2 3
4 5 6

/ \

m a
\ /

a
I
I

B33
Figure 2.12: A liaison state graph for the crate

State-space graphs are not limited to representing monotone sequences. For instance, an

extra feature or liaison can be created for a subassembly that has an intermediate position.

This liaison can be established and then broken by a later operation. More generally, each

feature can represent the position of a part in the assembly configuration; the resulting

state graph represents position equivalent assembly sequence classes.

State graphs can require a large amount of storage in some cases. For instance, in a

liaison state graph, each liaison is either established or not in any one state, yielding a

maximum of 2m states for m liaisons. For representations in which assembly state features

take continuous values, the state graph is obviously infinite.

2.5. REPRESENTATIONS OF ASSEMBLY SEQUENCES 33

2.5.3 AND/OR Graphs

The AND/OR graph is the standard AI tool to represent problems that can be decomposed

into subproblems with few or no interactions [49]. Hörnern de Mello and Sanderson first used

AND/OR graphs to represent subassembly equivalent classes of assembly sequences [35].

The state graph differentiates between orders of subassembly construction; the AND/OR

graph does not, and consequently is usually more compact than the state graph for the

same product.

Each node in the AND/OR graph represents a subassembly that might be constructed

in an assembly sequence for the product. An AND-arc represents the operation bringing

several child subassemblies together to make the parent, while OR-arcs give different ways

of creating the same parent subassembly. In a binary AND/OR graph, each AND-arc spec-

ifies two child subassemblies; only binary AND/OR graphs have been used in assembly

sequencers to date. The root of the graph is the final assembly and the leaves are sub-

assemblies with only one part in each. Thus each AND-subtree of a full AND/OR graph

represents a subassembly equivalant class of assembly sequences. Figure 2.13 shows a bi-

nary AND/OR graph for the crate representing the same assembly sequences as the state

graph in figure 2.12. Subassemblies that do not occur in any assembly sequence are not

shown. GRASP (see the next chapter) adopts binary AND/OR graphs to represent sets of

assembly sequences.

In the worst case, an AND/OR graph for an assembly with n parts can have 2n - 1

nodes. The number of AND-arcs is 0(3n) for binary assembly sequences [68], and higher

for nonbinary sequences. As with state graphs, the worst case happens with an highly

unconstrained assembly, such as a printed circuit board and chips that can be placed in any

order.

2.5.4 Implicit Representations

A state graph or AND/OR graph might require a very large amount of storage to represent

a set of assembly sequences generated by an assembly sequencing program. An alternative

is to represent the sequences implicitly by a set of sequence rules restricting the operations

in a sequence. Depending on the assembly and the expressive power of the rules, the set of

rules may be quite compact.

Implicit representations of assembly sequences will not be considered in depth here.

34 CHAPTER 2. GEOMETRIC ASSEMBLY PLANNING

s

:rewl
a

3 I

S3

c=
Screw2 S

=

c =

=

Box Cargo

Figure 2.13: A binary AND/OR graph for the crate

2.6. ASSUMPTIONS 35

Hörnern de Mello [34] describes several implicit representations and shows how they can

be generated from each other and from state graphs and AND/OR graphs. The rules

considered there are of three types:

• rules specifying the states of assembly that can follow other states of assembly.

• rules specifying the temporal relationship between establishment of one liaison and

states of the assembly, and

• rules specifying the temporal relationship between establishment of one liaison and

the establishment of other liaisons.

No methods are given in [34] to generate an implicit representation of a set of assembly

sequences without first constructing an explicit representation. However, generating se-

quence rules by transformation from an explicit representation results in more complicated

and more numerous rules than are required. Standard logical simplifications can be applied

to reduce the complexity of a rule set, but no systematic methods have been applied in

assembly sequencing applications.

A preferable method would be to derive the sequence rules directly from the geometric

and other constraints on assembly sequences. Global precedence expressions, described in

Chapter 6, are a simple version of sequence rules derived directly from geometric tests. One

AND/OR graph representing a set of linear assembly sequences has 1509 nodes and 6190

edges; 34 precedence expressions represent the same set of sequences. However, the.set of

rules is not always so small, and the entire AND/OR graph must be generated to ensure

that the precedence expressions cover every state that might arise in an assembly sequence.

This is discussed more in section 6.4.

The non-directional blocking graph of chapters 4 and 5 is also an implicit representation

of sets of assembly sequences. As shown there, an NDBG completely defines the set of all

assembly sequences using certain types of part trajectories. Although this set of sequences is

often of exponential size, the NDBG is of polynomial size, can be constructed in polynomial

time, and allows efficient calculation of a sequence satisfying its constraints.

2.6 Assumptions

In the rest of this thesis, the following assumptions hold unless otherwise stated. All assem-

bly sequences are monotone binary, and every subassembly must be connected. In addition,

36 CHAPTER 2. GEOMETRIC ASSEMBLY PLANNING

the parts are modeled as purely geometric objects: the parts are rigid, they have exact ge-

ometry, and their positions have no tolerances. This has the disadvantage that a sequencer

cannot accurately reason about springs, snap-fit connections, wires, liquids, or other non-

rigid parts, or about inaccuracies in sensing, control, and part models that plague real

assembly plans. However, known reasoning techniques for such problems are quite limited,

and many such problems can be dealt with for practical purposes using special-purpose

routines. Furthermore, in monotone assembly sequences for rigid parts a sequencer can

represent any subassembly of the product as just a set of parts [34].

Chapter 3

A Basic Assembly Sequencing

Approach

This chapter outlines a basic approach to automatic assembly sequencing, considering only

the geometric model of the product. An experimental testbed for assembly sequencing

called GRASP1 was implemented following this approach. GRASP is organized in modules

to allow easy replacement of individual modules. The geometric techniques described in

this chapter are only a starting point, and later chapters give more sophisticated, efficient,

and in cases less general modules that have been substituted for basic modules to achieve

higher performance. GRASP is a valuable tool for testing alternative methods of assembly

sequencing, allowing the methods of the following chapters to be tested on actual assemblies

under realistic assumptions about their interactions with the rest of the assembly sequencer.

The basic approach to generating assembly sequences proceeds as follows. The first step

is to compute a connection graph for the target assembly, detecting the contacts between

parts and making them explicit. Then an AND/OR graph is constructed that represents a

set of possible assembly sequences for the product, using geometric calculations to check the

feasibility of each assembly operation. The geometric calculations used to verify operations

include contact analysis to find feasible directions of translation and rotation for subassem-

blies, checking for interference between parts while moving along a single trajectory, and

general path planning when required. The architecture of GRASP is shown in figure 3.1.

This basic framework is derived from the work of Hörnern de Mello [34], although several

'GRASP stands for "Geometric Reasoning Assembly Sequence Planner." It has nothing to do with grasp
planning.

37

38 CHAPTER 3. A BASIC ASSEMBLY SEQUENCING APPROACH

Pm Geometry
Descriptions

Complete-Assembly
Module

Connection
Graph

Subtsscmblics Decompositions

Geometric Module
t \

AND/OR Module

Local
Motion
Module

Extended
Motion
Module

Path-
Planning
Module

Represen-
tation

Graphics
and

Interaction

k. J L. i

Figure 3.1: The architecture of GRASP

of the geometric techniques are not included there and some important improvements have

been made.

3.1 The Assembly Description

The input to assembly sequencing is a description of the product giving the geometry and

relative positions of the parts in the product. In addition, the product description includes

a connection graph, which contains information about the contacts between parts.

3.1.1 Local Motion

The connection graph facilitates computation about small motions of the parts of an assem-

bly. A local motion is an arbitrarily small rigid motion of a part, or equivalently, a direction

of rigid motion of the part. The local motions of a part at a given position in space form a

six-dimensional vector space [13]. For instance, a local motion AX can be described as a

6-vector with three degrees of translation and three of rotation:

A-X" = (x,y,i,d,/?,7)

where Q, ß, and 7 are the rotational components of AX around the x, y, and z axes,

respectively.

3.1. THE ASSEMBLY DESCRIPTION 39

Figure 3.2: A point-plane contact between two polyhedra

The local freedom of a part Pi with respect to a part P2 is the set of local motions AX

such that part Pa can undergo a finite motion in the direction of AX without interfering with

P2. The contact between two noninterfering parts is the intersection of their boundaries2.

It is clear that if the contact between Pi and P2 is null, then the local freedom of Pi with

respect to P2 is the full space of local motions.

3.1.2 Contacts

A contact in the connection graph is represented as a finite conjunctive set C of point-plane

contact constraints. A typical point-plane constraint between two polyhedra is shown in

figure 3.2. The constraint c is denned by a vertex of contact vc and the outward normal of

the face nc. A translation d of vc will cause Pi to penetrate P2 at vc exactly when njd < 0.

The local motion AX causes a vertex vc of Pi to undergo a translation dc = JCAX, where

Jc is the constant 3x6 Jacobian matrix that relates the differential motion of Px to the

motion of vc. Thus AX causes Pi to penetrate P2 at vc exactly when ncJcAX < 0.

The representation C of a contact between parts Pi and P2 is interpreted as follows.

For each constraint c € C, a local motion AX can relate to c in three ways, depending on

the relative motion at the contacting point under the motion:

• Motion AX violates c if and only if n*JcAX < 0. In other words, AX violates c

exactly when part Pi undergoing motion AX penetrates part P2 at contact point vc.

2 Because I do not consider tolerances on the geometry of the parts, two parts are either in contact or not
in contact at any point. When tolerances are considered, the notions of contact and of local motion become

more complicated.

40 CHAPTER 3. A BASIC ASSEMBLY SEQUENCING APPROACH

• Motion AX breaks c when nJjcAX > 0. In this case, AX causes contact point vc on

Pi to move away from Pi.

• Motion AX slides on c when nJjcAX = 0, i.e. when AX causes contact point vc on

Pi to move in a local tangent to part P2.

When AX breaks or slides on constraint c, we say that AX obeys c. The set of local motions

that obey c form a closed half-space bounded by a hyperplane through the origin.

A local motion AX obeys the contact C if and only if it obeys all constraints in C. C

describes the contact between Pi and P2 if and only if the set of motions that obey C is

equal to the local freedom of Pi with respect to P2. In this case the local freedom of Pa is

given by the intersection of the closed half-spaces defined by the constraints c£C.

Most of the typical contacts between parts in industrial assemblies can be described

as finite sets of point-plane constraints. I will first consider contacts between polyhedral

parts, and then non-polyhedral parts. Note that the point-plane constraints representing

a contact need not correspond to actual contact points on the parts; the only requirement

is that the local motions that obey the contact be equal to the local freedom between the

parts.

3.1.3 Representing Polyhedral Contacts

The following types of contact between polyhedra can be described as sets of point-plane

constraints:

plane-point The contact c between a planar face of Pi with outward normal nc and vertex

vc of P2 is given by a constraint at vc between a point of Px and plane of P2 with

outward normal — nc.

face—face A contact between two polygonal planar faces is described by a set of point-

plane constraints at the vertices of the convex hull of their contacting surface area.

Figure 3.3a shows this case.

nonaligned convex edges Two convex edges touching at a point p are described by a

point-plane constraint between p and the plane containing the two edges (figure 3.3b).

edge—face A contact between a convex edge e and a planar face / is described by two point-

plane constraints, one at each end of the intersection segment of e and / (figure 3.3c).

3.1. THE ASSEMBLY DESCRIPTION 41

Figure 3.3: Contacts between polyhedra expressed as point-plane contacts

convex vertex-concave edge or vertex If a convex vertex v is in contact with a concave

edge or vertex, the constraint on local motion is equivalent to a set of point constraints

between v and each of the faces meeting at the edge or vertex (figures 3.3d and 3.3e).

convex edge-concave edge In a similar way, two edge-face contacts suffice to describe

the constraint arising from a convex edge contacting a concave edge (figure 3.3f).

A contact between two polyhedra that includes several of the above can be described as a

set of constraints C, where C is the union of sets C, each representing one of the above

simple contacts.

The remaining possible contacts between polyhedra are convex vertex-convex vertex,

vertex-convex-edge, and aligned-convex-edges contacts (figure 3.4); these contacts cannot

be represented using the above scheme. However, such contacts are quite unstable and

rarely appear in real assemblies. All but aligned-convex-edges contacts can be treated using

finite disjunctions of point-plane constraints [32]. For instance, in figure 3.4a, the motion of

42 CHAPTER 3. A BASIC ASSEMBLY SEQUENCING APPROACH

a b c

Figure 3.4: Polyhedral contacts not considered here

the contact vertex vc on Pi must obey at least one of the point-plane constraints between

vc and the planes of Pi that meet at vc.

3.1.4 Representing Nonpolyhedral Contacts

In addition to the above contacts between polyhedra, several common contact types in

non-polyhedral assemblies can be expressed in terms of point-plane constraints:

cylinder-face A cylinder contacting a plane in a line segment is equivalent for local mo-

tion purposes to an edge-plane contact along the contact line segment (figure 3.5a).

Note that although a rolling contact is very different from an edge-plane contact for

extended motions, they allow the same local motions.

cylinder-cylinder A round peg in a round hole has the same local freedom as a round

peg in a triangular hole. Thus a cylinder-cylinder contact can be described as three

cylinder-plane contacts, i.e. six point-plane contacts (figure 3.5b).

threaded cylinders A contact between two threaded cylinders can be expressed as shown

in figure 3.5c. A cylinder-cylinder contact is combined with two point-plane contacts

that together express the twisting constraint of the threads at a single point. The nor-

mals of the two thread contact constraints are opposing and have angle a = arctan ^

with the axis of the cylinder, where p is the pitch of the threads. In the procedure

to calculate local freedom described below, this representation of threaded contacts is

never needed because motion is so strongly constrained.

Although products often have complicated, curved surface shapes, the great majority of

contacts between parts fall into the cylindrical, planar, and threaded types above. The main

3.1. THE ASSEMBLY DESCRIPTION 43

A

f;:::^::::;-!-

c d

Figure 3.5: Typical non-polyhedral assembly contacts

exception is when the convex hull of the contact area of a face-face contact is not polygonal

(see figure 3.5d). Such a contact is equivalent to an infinite number of point-plane contacts

around the convex hull. A polygonal approximation of the convex hull allows such a contact

to be described with some loss of accuracy.

Non-contacting surfaces of parts are often curved to satisfy requirements such as

strength, aerodynamics, and aesthetics. Thus reasoning about curved surfaces is more

important when extended motions (instead of local motions) are considered, since then

these surfaces may interfere with each other. In such cases approximate methods are often

better suited, such as in [33] and in section 3.4.

Finally, figure 3.6 shows another type of contact that cannot be represented. Although

the contact seemingly could be represented by two point-plane constraints, the resulting

local freedom would allow vertical translation. Any such finite translation will cause a

collision. This is an additional reason why local freedom is only a necessary condition on

the movability of a part (section 3.2.4).

44 CHAPTER 3. A BASIC ASSEMBLY SEQUENCING APPROACH

Figure 3.6: A contact that cannot be represented

3.1.5 The Connection Graph

The connection graph of a product is an undirected graph in which a node corresponds

to a part of the product and a link connects two parts that are in contact. Each link is

associated with a finite set of point-plane constraints that describes the contact between

the parts. Formally,

Definition 3.1 A connection graph is a 4-tuple (P,C,L,f) where

• P is a set of parts.

• L C P x P is a set of links between parts. There is one link between each pair of parts

that are in contact, and no link between uncontacting parts.

• C is a set of point-plane contact constraints between parts.

• f : C —► L is a surjective map of constraints onto links. Thus every link between

two parts is associated with a set of point-plane constraints. No constraint belongs to

more than one link.

The links of the connection graph are also referred to as connections or liaisons. Each

c € C represents the constraint on motion of one part with respect to another; thus a

contact between parts at a vertex v gives rise to two complementary contact constraints

C{,Cj € C with opposing constraint vectors. Let C(A) denote the connection graph of an

assembly A.

The connection graph is similar to Bourjault's liaison diagram and Hörnern de Mello's

relational model, both of which are undirected graphs with a node for each part. A liaison

diagram is a loosely defined graph that does not contain information about the constraints

3.2. GENERATING ASSEMBLY SEQUENCES 45

on motion of the parts, and in which liaisons sometimes connect parts that are not in

contact [14]. The relational model of an assembly describes the connections between parts

on a more symbolic level—in terms of mechanical attachments, fasteners, and so on—than

does a connection graph [34].

In an integrated environment such as a concurrent design system, the input to an as-

sembly planner will probably include a connection graph, for several reasons. Although

computer-aided design tools currently represent best the geometric aspects of a design,

some commercial CAD systems support feature-based models, from which the connections

can be easily established. In the future, product models will include such extra-geometric

information as degrees of freedom, design decisions taken, and the functional requirements

of a design [40]. The contacts between parts must be known to perform many kinds of anal-

ysis in design, such as tolerancing and stress and kinematic analysis [8, 38]. Furthermore,

contact information can often be ambiguous, due to tolerances or small distances between

parts, requiring explicit human clarification. However, in many instances the sequencing

system will need to supplement the input model of the assembly for planning purposes.

Since no tolerances are assumed on the parts and to make the assembly sequencing

testbed as autonomous as possible, GRASP constructs its connection graph of the product

automatically from the boundary representations of the individual parts. For techniques to

accomplish this and a detailed description of the input format for GRASP, see Appendix A.

3.2 Generating Assembly Sequences

From the connection graph and solid models of the constituent parts of the assembly, an

AND/OR graph representing all feasible monotone assembly sequences can be generated.

3.2.1 Building the AND/OR Graph

Figure 3.7 gives the main algorithm to generate the AND/OR graph in disassembly plan-

ning. EXPAND is called first with the goal assembly, and the algorithm builds the AND/OR

graph from the top down. The goal assembly is decomposed into two subassemblies accord-

ing to geometric constraints, then those subassemblies are recursively decomposed, and so

on. A single AND-tree can be found by choosing a single operation at each node, instead

of expanding them all.

The entire AND/OR graph of assembly sequences for a product can be very large. A

46 CHAPTER 3. A BASIC ASSEMBLY SEQUENCING APPROACH

Procedure EXPAND(A)
unless expanded(A)

expanded(A) <— true;
P — DECOMPOSE(A);
for each partitioning (Si, 52) €. P

ADD-DECOMPOSITION(A, S1,S2);
EXPAND^);

EXPAND(S2);
end; {for}

end; {unless}
end; {procedure}

Figure 3.7: Main algorithm of GRASP

single AND-tree could be built instead of the whole graph. However, without considering

alternatives it is difficult to guarantee any sort of optimal sequence, and a single AND-tree

leaves very little flexibility to satisfy further constraints in the planning process. During

sequencing all the criteria for choosing the best sequence might not be available, and so

a number of solutions should be generated to allow later refinement. Another option is

to search the implicit AND/OR graph for an optimal AND-tree, using an algorithm such

as AO* [49]. To use AO*, a pessimistic heuristic must be chosen, and the heuristic will

greatly influence the search results; in addition, AO* also has the inflexibility of generating

only one AND-tree. The geometric techniques presented in this thesis are relevant for other

modes of searching the assembly problem space with only minor modifications.

3.2.2 Procedure DECOMPOSE

A partitioning of an assembly A is a pair of non-empty subassemblies (Si,S2) such that

Si and S2 partition the parts of A. The procedure DECOMPOSE executes the physical

reasoning necessary to determine a set of feasible partitionings of A: partitionings (Si, S2)

such that Si and S2 can be brought together in one operation to create A. There are several

versions of DECOMPOSE, depending on the type of assembly sequences being generated and

the geometric reasoning to be performed at each step. A basic version is shown in figure 3.8

for reference.

In addition to checking for geometric feasibility of the operation, the basic version en-

sures that both subassemblies are connected; such a partitioning is called connected. As

3.2. GENERATING ASSEMBLY SEQUENCES 47

Procedure DECOMPOSE(A)
D «- CONN-PARTITIONINGS(A);
feasible-decompositions «— 0;
for each decomposition (Si, S2) € D

if SEPARABLE^!, S2)
push((5i, 5*2), feasible-decompositions);

end; {for}
return(feasible-decompositions);

end; {procedure}

Figure 3.8: Procedure DECOMPOSE, following [34]

noted in section 2.4.4, connected subassemblies are usually easier to handle. In addition,

the connectedness constraint reduces the combinatorics of the planning process.

DECOMPOSE follows a generate-and-test approach like GET-FEASIBLE-DECOMPOSI-

TIONS in [34]. It calls CONN-PARTITIONINGS to generate all connected partitionings of

the connection graph C(A) of A, then calls procedure SEPARABLE to test each disassembly

operation—separating the subassemblies corresponding to the two partitions—for geometric

feasibility (see section 3.2.4).

3.2.3 Generating Partitionings

A straightforward way to generate all the connected partitionings of a graph G is to find all

the cut-sets of G. Any set of edges E whose removal partitions G into exactly two connected

components is a cut-set, provided no proper subset of E also disconnects G. There is a one-

to-one correspondence between a graph's cut-sets and its connected partitionings. The cut-

sets of a graph can be generated from a system of fundamental cut-sets defined by a spanning

tree of the graph as described in [26]. However, the straightforward implementation of this

method runs in time ft(2m), where m is the number of links in C(A).

A simpler algorithm to generate connected partitionings, proposed by Hörnern de

Mello [34], enumerates connected components S of G and checks whether their comple-

ments A \ S are connected; if so, (5, A \ S) is a connected partitioning. The complexity of

this algorithm is 0(2n) in the worst case, where n is the number of parts of A.

Figure 3.9 shows CONN-PARTITIONINGS, which finds all the connected partitionings of

the connection graph C(A) in time polynomial in the number of such partitionings. Since

48 CHAPTER 3. A BASIC ASSEMBLY SEQUENCING APPROACH

Procedure CONN-PARTITIONINGS(A)

for an arbitrary Po € A

S - {Po};
for each Pi £ A\ {P0}

CONN-SUPERSETS({Pi}, S);

5«-5u{fl};
end; {for}
return(-D);

end; {procedure}

Procedure CONN-SUPERSETS(SuS2)
CC «- CONNECTED-COMPONENTS^A \ Si,C(A));
if \CC\ > 1

if for some C, € CC, C, D S2

Si <— Si U (Jj^,- Cj-;
else return;

end; {if}
push((5i,i4\5i),i?);
for each neighbor P, of Si in C(A) such that P, £ 52

CONN-SUPERSETS(Si U {P},S2);
S2 - S2 U {P};

end; {for}
end; {procedure}

Figure 3.9: An algorithm to generate ail partitionings of a graph into two connected com-
ponents

two partitionings (Si,S2) and (S2,Si) are equivalent, CONN-PARTITIONINGS chooses an

arbitrary part Po and finds only those partitionings with Po in the second partition. Each

remaining part P, divides the partitionings of G into those with p in the first partition and

those with P,- in the second. Part Pi is called a pivot. Let -D(Si,S2) denote the connected

partitionings (S^S^) °f C(-^) sucn *na* §[5 $1 an<^ ^2 ^ §2- The recursive procedure

CONN-SUPERSETS(Si, S2) enumerates D(Si, 52).

At each call of CONN-SUPERSETS(Si,S2), the sets Si and 52 must be disjoint and

both non-empty, and furthermore Si must be connected. The procedure first computes the

connected components CC of A \ Si. If A \ Si is connected, then (Si, A \ Si) is a connected

partitioning. If \CC\ > 1, then the only supersets S[of Si that will have a connected

3.2. GENERATING ASSEMBLY SEQUENCES 49

complement A \ S{ will include all the CC but one. There are two cases:

• If S2 intersects more than one of the CC, then all supersets S2 of S2 not intersecting

Si are unconnected. In this case I>(Si,S2) is empty, so the procedure returns.

• If 52 is contained in one connected component C,, then that C, cannot be added to

S\. Clearly then, all components Cj,j # t, must be added to Si, and then (Si, .4 \ Si)

is a connected partitioning.

After one partitioning (Si, 52) is found, then each part P, connected to Si and not in S2

becomes a new pivot. The pivot Pi divides D(Si,S2) into two sets: partitionings containing

Pi in S[and those with Pi in S2. Recursive calls to CONN-SUPERSETS enumerate those

partitionings. If all neighbors P, are in S2, then no superset of Si will be connected.

Let A have n parts and m connections between them, and let s be the number of

connected partitionings of C(A). A single call of CONN-SUPERSETS can be performed in

0(m) time, when the recursive calls are not included. There are n - 2 top-level calls to

CONN-SUPERSETS; each connected partitioning is followed by at most n - 3 recursive calls,

so it is called 0(ns) times. Hence CONN-PARTITIONINGS runs in time 0(nms).

Procedure DECOMPOSE calls procedure SEPARABLE to test the assembly operation

corresponding to each connected partitioning of A for geometric feasibility.

3.2.4 Procedure SEPARABLE

The procedure SEPARABLE encompasses the geometric reasoning module of GRASP. The

assembly operation mating subassemblies Si and S2 is geometrically feasible if there exists

a collision-free path to move Si from a position separated from S2 (as denned in Chapter 2)

into its final position relative to S2, or equivalently, if there exists a path to separate Si

from S2. Such a path could be computed by calling a general purpose path planner [42].

However, calling a path planner is in general very expensive.

Because of the cost of calling a path planner, procedure SEPARABLE employs much

simpler techniques to determine the feasibility of most proposed assembly tasks. Both

necessary and sufficient conditions for the feasibility of an assembly task are checked before

resorting to path planning:

• Local motion analysis determines whether Si is fully constrained by its contacts with

S2. If Si has no local motion, it obviously cannot be removed in this step. Local

motion analysis prunes many infeasible assembly operations quickly.

50 CHAPTER 3. A BASIC ASSEMBLY SEQUENCING APPROACH

Procedure SEPARABLE(SX,S2)
freedom-cone <- LOCAL-FREEDOM (Si, S2);
motions ♦- USEFUL-DIRECTIONS(fieedom-coue);
if empty(motions)

return(/a/se);
else

for each direction d € motions
if VALID-MOTION (Sx,S2,d)

return(£rue);
end; {for}
retum(PATH-PLAN(Si, S2));

end; {eke}
end; {procedure}

Figure 3.10: Procedure SEPARABLE

• If Si has a valid local motion, then some simple motion might separate the two

subassemblies. For instance, if any single collision-free translation can move one sub-

assembly to infinity, then the operation is feasible. Checking simple extended motions

proves many assembly operations feasible while requiring little computation.

In industrial assemblies, these special cases correspond to the vast majority of assembly

operations, so the sequencer can achieve much greater efficiency by explicitly checking for

them. Where both methods fail, more expensive plan planning methods can be brought to

bear.

Figure 3.10 shows procedure SEPARABLE as implemented in GRASP. The next sections

describe the geometric computation that accomplishes each of the substeps of SEPARABLE.

3.3 Local Motion

In an assembly A, the local freedom of a subassembly 5 of A is the set of directions in which

S can move an infinitesimal distance from its current position, given the geometry of A \ S

considered as a solid. If 5 can be removed, it can be moved a very small distance; hence, if

5 has no local motion, it cannot be removed. If S has at least one valid local motion, it is

called locally free in A. For simplicity I will assume that the reference frames for all parts

coincide, so that local motions for all parts are in the same coordinate system.

3.3. LOCAL MOTION 51

Figure 3.11: A 3D local translational freedom cone

3.3.1 Local Freedom

As described in section 3.1.2, the motions allowed by a set of point-plane contact constraints

are the intersection of the motions allowed by each constraint individually. Therefore F,

the local freedom of S\ allowed by a set C of k point-plane constraints, is given by

F = pi {AX I n*JcAX > 0}
cec

The set of constraints in (3.1) can be rewritten

CaAX > 0

(3.1)

(3.2)

where Ca '• k x 6 is the matrix whose tth row is n£jC|. The set of solutions to the

inequalities (3.2) is a polyhedral convex cone F whose shape and dimension vary with

r = rank(Ca) [30]. The tip of F is a linear subspace of dimension d = 6 - rank(Ca) and

the edges of the cone are of dimension d + 1. Motions in the tip of F slide on all contacts

between S\ and 52, while motions in the interior of F break all contacts.

When local motions are restricted to translation, the set of local motions lie in a three

dimensional space, and a typical polyhedral convex cone is shown in figure 3.11. For an

example in two dimensions, consider the possible local translations for part A in figure 3.12.

Each edge contact of A with part B or C restricts the local translations of A to a half-plane,

where the inward normal to the half plane is the inward normal of the contacting edge of A.

52 CHAPTER 3. A BASIC ASSEMBLY SEQUENCING APPROACH

Figure 3.12: Local freedom computation

Figure 3.13: A 2D rotation to remove a part that cannot translate

The local translational freedom of A is the intersection of the half-planes of motion, a single

ray d. This d is the only direction along which A can translate.

Even if a part is fully constrained for translations, it still might be removable using a

combination rotation and translation. Figure 3.13 shows a part in 2D that is fully held in

translation but can be freed by a rotation around the point shown, while figure 3.14 gives

an example in three dimensions.

3.3.2 Useful Motions

A subassembly S of A is fully constrained when the local freedom cone F of S contains only

the origin. However, some local motions do not contribute to removing S from A \ S:

• A pure rotation around an axis of symmetry for S simply maps S into itself, thus

coming no closer to being removed.

3.3. LOCAL MOTION 53

Figure 3.14: A part that can be freed by a twist in 3D

Figure 3.15: The plate can only rotate around an axis of symmetry of the remaining parts

• Similarly, a rotation around an axis of symmetry for A \ S does not contribute to

disassembly.

• Let C be the contact between 5 and A \ S. A rotation around an axis of symmetry

for C will not result in any new freedom, so it cannot contribute to disassembly.

For instance, figure 3.15 shows a plate on a shaft with two retainers. The plate's local

freedom cone includes only rotations around the axis of symmetry of the rest of the assembly,

so the plate is locally free yet impossible to remove. Thus for 5 to be removable F must

include some motions that are not rotations around axes of symmetry for either S, A\S,

or their contact C. If a line / is an axis of symmetry for all parts P e S, then it is a axis of

symmetry for 5. However, the converse does not hold; / can be an axis of symmetry for 5

without being an axis of symmetry for any part in 5.

54 CHAPTER 3. A BASIC ASSEMBLY SEQUENCING APPROACH

3.3.3 Computing Local Freedom

Given a set of point-plane constraints C between 5 and A \ S, finding the 6D local free-

dom cone F for S is complicated and time-consuming. For instance, the procedure de-

scribed in [32] takes time 0(k3) for k contacts in some cases. Therefore procedure LOCAL-

FREEDOM performs several less involved checks to handle the most frequent and simpler

cases before resorting to the general case:

• Certain combinations of contacts can be found that constrain S completely; for in-

stance, two cylindrical or threaded contacts with non-parallel axes allow no local

motion.

• In many cases a contact allows only a finite set D of removal directions. For instance,

a threaded contact allows only two motions, one spiraling in each direction of the

axis; two parallel cylindrical contacts allow only translation along their axes. In these

cases, each motion in D can be checked for compatibility with all of the other contacts.

If every motion in D is incompatible with at least one contact in C, then 5 cannot

move. Otherwise the local freedom of S is the subset of D compatible with the rest

of the contacts.

• If neither of the first two cases hold, then the local translational freedom T of S is

computed. If a cylindrical contact c is in C, then T includes only translations parallel

to the axis of c that are compatible with the other contacts in C. If C contains only

planar and cylinder-plane contacts, T is computed by intersecting the half-spaces of

freedom given by the planar contacts. With planar contacts T takes the form of a

polyhedral convex cone as in figure 3.11. For k contacts, T can be computed in time

©(fclogfc) [55]; Hörnern de Mello and Sanderson [36] implemented another method. If

T is non-empty then S is locally free.

• If the previous checks fail, the 6D local freedom F of 5 is computed using a method

similar to that in [32]. Figure 3.16 shows two local motions found for the assembly of

figure 3.14. The function USEFUL-DIRECTIONS then determines whether F contains

at least one infinitesimal motion that displaces the subassembly with respect to the

rest of the assembly. The symmetries for a subassembly 5 are the intersection of the

symmetries of its parts P € S, found by COMPLETE-ASSEMBLY (see Appendix A).

3.4. EXTENDED MOTION 55

Figure 3.16: Two local motions for the part in figure 3.14

If all of the spanning vectors for S's 6D local freedom cone represent rotations around

symmetries of S or of A \ 5, then S cannot be removed.

In normal operation, the special cases encompass so many assembly operations that

the general local freedom computation is usually turned off during assembly sequencing

using GRASP. When this is done, the 6D local freedom calculation routine always returns

a null cone, saving the effort of calculating the 6D local freedom cone for every constrained

subassembly. As a result, a few subassemblies are incorrectly found to be constrained in

this mode.

3.4 Extended Motion

If a subassembly is locally free, then it might be removable along a simple trajectory, such

as a single translation to infinity or the helical motion followed by a screw in a threaded

hole. When such a motion is found, the expense of calling a general motion planner can be

avoided.

3.4.1 Global JYeedom

The globally-valid translations to remove a subassembly S\ from an assembly A constitute

the global translational freedom of Si with respect to its complement 52 = A \ Si. The

global translational freedom G is the set of directions in which S\ can translate indefinitely

without intersecting S2. Compared to the local freedom cone, which is always convex, the

56 CHAPTER 3. A BASIC ASSEMBLY SEQUENCING APPROACH

Figure 3.17: A nonconvex cone of removal translations

global freedom cone can be nonconvex (figure 3.17). If all parts in A are polyhedral, the

resulting cone will be polyhedral also. Each face of G that is not in common with the local

translational freedom cone will arise either from a vertex of Si and an edge of 52, or from

an edge of S\ and a vertex of 52.

Krishnan and Sanderson [41] find the extended translations possible for one part with

respect to another by mapping the set of all unit translations onto a two-dimensional grid,

and marking grid elements that correspond to collisions between two polyhedra. Any un-

marked elements then represent valid removal translations. However, this method is only

accurate to the size of the grid, and cannot be used to find translations involving contacts

between the two parts.

A method to calculate G efficiently and accurately is given in Chapter 5. However, for »

most assembly operations simpler global motion checking procedures will suffice. A locally

free subassembly 5 can be swept in some of the directions in its local freedom cone, from its

current position to infinity. If any direction is free of collisions with the rest of the assembly,

it constitutes a valid removal path for 5. In experiments this method has proven fast and

accurate in the vast majority of assembly operations. The directions to sweep are chosen

heuristically by the function USEFUL-DIRECTIONS based on the shape of the local freedom

cone. For instance:

• When the translational freedom cone is a half-space, the normal of the plane facing

into the half-space and four perpendicular directions in the bounding plane of the half

3.4. EXTENDED MOTION 57

space are chosen as sweeping directions.

• For a cone such as the one in figure 3.11, sweeping is performed along vectors parallel

to the edges of the cone.

• When a threaded contact exists, the corresponding twisting motion is extended in

each direction to infinity.

• When a 6D local freedom cone has been calculated, the axis of motion and the pitch

of the rotation about that axis can be extracted for each of the spanning motions of

the cone, and a twisting motion generated to infinity along the axis. A motion with

no rotational component is a translation. A pure rotation around an axis of symmetry

of either S or A \ S is not considered.

For each direction of sweep, the function VALID-MOTION checks whether the trajectory

constitutes a collision-free path to separate 5 from A \ S. If one of the chosen trajectories

is free from collision with all other parts present in the assembly, it constitutes a valid

insertion path for S.

3.4.2 Sweeping

To sweep a subassembly in a direction d, VALID-MOTION sweeps the individual parts

along d. The problem of collision detection among moving objects has been well studied.

Canny [15] gives an algorithm for detecting collisions between polyhedra translating and

rotating in three dimensions that runs in O(n2logn) where n is the total complexity of the

objects. Although Canny's technique could be used in assembly sequencing, simpler and

less powerful methods have been implemented in GRASP.

To sweep a part in translation, the faces of the translating part are compared pairwise

with the faces of each possible interfering part to check for collision. If the two faces intersect

when projected into the plane perpendicular to the vector of translation, and the face being

swept is behind the interfering face at one or more of the points of intersection, then a

collision exists and the motion is infeasible.

Rather than sweep a part along a twisting motion, GRASP computes a rotational closure

of the object about the axis of the path, and sweeps the resulting cylindrical shape in

translation along the axis. Thus for each vertex v of the moving part with distance d to

the axis of motion, and for each edge e of a stationary part, if the segment of e above v

58 CHAPTER 3. A BASIC ASSEMBLY SEQUENCING APPROACH

with respect to the axis comes within d of the axis, a collision is found. Edges of stationary

parts that represent circular curves are replaced by their circular arcs for this purpose, since

otherwise Vantage's polyhedral approximation of cylinders would cause incorrect collisions

to be detected. For trajectories with relatively small absolute pitch, such as those resulting

from threaded contacts, this sweeping computation approximates quite well the actual swept

volume of the original twisting path. For larger pitches, however, the calculation is very

conservative.

To minimize sweeping computations, GRASP saves the result of each sweep for later re-

trieval. PREVIOUS-SWEEPS[Pi, P2] is a two-dimensional array of lists of pairs (d, collides).

When a part Pj needs to be swept against part P2 in direction dx, PREVIOUS-SWEEPS[Pi,

P2] is searched for a pair whose first element is d\. If one exists, collides is T if P\ hits P2

in direction d\, and F if not. If no pair (dx, collides) is found, Pi is swept against P2 as

above, and the result is stored in the table. This technique is called sweep caching. Since

the same motion of the same part can be attempted in many different subassemblies during

the planning process, sweep caching accelerates planning considerably.

3.5 Path Planning

When a subassembly is locally free, but no simple trajectory can be found to extricate it

from the assembly, a sequence of translations or a curved path might exist to remove it.

GRASP has a well-defined interface to a path planner, called through the procedure

PATH-PLAN. PATH-PLAN (Si, S2) returns one of the following four answers:

Movable S% can be separated from S2 by a path that is not specified.

Path S\ can be separated from 52 by a given path.

Not Movable Si and S2 cannot be separated in one operation.

Constrained Si and 52 cannot be separated in one operation, and furthermore two sets of

constraining parts are identified. The constraining parts are subsets S[C Si, S'2 C 52,

such that S[cannot be separated from 52 by any path.

Thus there are two simple answers, Movable and Not Movable. Path is the same as Movable

but gives more information, while Constrained gives more information than Not Movable.

Both types of extra information can be used in the planning process to reduce the number

3.5. PATH PLANNING 59

of queries needed to the path planner. Specifically, when a path is returned, it will still

be valid as long as no parts interfere with it. When constraining sets are returned, any

subassemblies that include those sets are not separable. See Chapter 6 for more details.

Both types of additional information should be retrievable from a path planner, with

some modification. Most path planners return a single feasible path as part of their answer

if one exists. In addition, an automated path planner can conceivably produce a list of

parts that together constrain a subassembly Si and S2. The planner must be augmented

to find this set, and the technique used will depend heavily on the path planning technique

employed. For instance, if the planner builds an adjacency graph based on a cell decompo-

sition of the configuration space of Si [42, chapters 5-6], it may return a list of the parts

contributing boundaries to the connected component of free space that contains the start-

ing position of Si. If the path planner is based on a local exploration of the configuration

space [7] it may return the set of parts of Si and S2 that collided during the search process;

in this case the list of constraining parts may not be complete, however. Although it will

depend on the exact planner used, the set of constraining parts can conceivably be found

with little additional computation.

Path planning can be turned on and off by the user. When path planning is turned off,

the path planner simply indicates that no motion is feasible. When path planning is on,

the current implementation asks a human designer to act as the path planning expert.

The path planning human interface works as follows. A drawing of the two subassemblies

Si and S2 is presented in a window, along with a question and a set of buttons showing

appropriate answers (see figure 3.18). The parts of Si are highlighted in green; S2 is in

white. The message asks the engineer to identify those parts of Si and S2 that prevent Si

from being separated from S2. The user can then select and unselect parts of A by clicking

on their edges with the mouse pointer; each part turns red as it is selected.

The human interface only allows the following three answers:

Movable Si can be separated from S2. It would be difficult and time-consuming for the

user to enter a removal path manually, so it has not been implemented. Hence the

answer Path as defined above is not available in the human interface.

Not Movable Si and S2 cannot be separated in one operation. This answer can be selected

if the engineer does not want to answer the question in more depth.

Constrained The highlighted parts are the constraining sets returned to the sequencer. If

60 CHAPTER 3. A BASIC ASSEMBLY SEQUENCING APPROACH

n aBBBBBBMBaaaam VÄ«^«A-A-A-A-Äw5 ZJ

Which parts k*cp these subasse*tolics fro* separating?

V.JÄ.V

JO'
■ft- I

r '*
:
. ■:■.

J c Constrained) c Not WvaUi

Figure 3.18: GRASP's human path planning interface

S'i or Sj are no* minimal, sequencing will be correct but slower than otherwise.

The answer returned by the human is the final word on the removability of one subassembly

from another.

3.6 Implementation

GRASP is implemented in Allegro Common Lisp under the Xwindows window system.

Experimental results are computed on a DEC5000 workstation. A 2D prototype of GRASP

was written in the same environment, but it does not include many advanced features of

the full system. Important differences will be stated where experimental results from the

prototype are given.

Figure 3.19 shows GRASP planning for the assembly of the electric bell (see Appendix B.

It has generated the partial AND/OR graph seen in the upper left, and the graphics window

shows the current operation it is adding to the graph: placement of the battery into its case.

3.6. IMPLEMENTATION 61

aag88»wai»«as»ttaffi»^^

Figure 3.19: GRASP in operation

With motion planning and 6D freedom cones turned off, the AND/OR graph of assembly

sequences for the bell has 2,320 nodes and 21,315 edges. Using the basic geometric assembly

sequencing methods described in this chapter, GRASP builds it in 54 minutes, requiring

40,754 calls to procedure SEPARABLE, including 609 part-part sweeping calculations. A

single valid assembly sequence is found in 76 seconds and requires 247 geometric calls.

Clearly, to be used in an interactive environment such as a concurrent design system, or

to plan for assemblies with many more parts, these techniques must be improved upon. The

following chapters present new, more efficient and more accurate algorithms that improve

upon the basic methods given here.

Chapter 4

Partitioning for Local Motions

This chapter improves on one of the basic methods of geometric reasoning for assembly

sequencing described in Chapter 3. The first test of an assembly partitioning given there

is local freedom. Local freedom is a powerful constraint, but the method described in

Chapter 3 follows a generate-and-test approach that might generate a large number of

partitionings for only a few locally free ones.

This chapter presents an algorithm called PARTITION that efficiently finds locally free

subassemblies of an assembly A in both translation and rotation. The algorithm is based

on a new representation of the blocking relationships between part in A, called the non-

directional blocking graph of A. Specifically, let A have n parts and let the connection graph

C(A) have m links and a total of k point-plane contact constraints. Then a subassembly

S that is locally free in translation can be identified in time 0(mk2), and all s locally free

subassemblies can be found in time polynomial in s. Thus when there is an exponential

number of locally free subassemblies, the algorithm requires exponential time. When general

rigid motions are allowed, a single locally free subassembly can be found in time 0(mk5),

and all such subassemblies can be identified with a similar output-sensitive time bound. An

extension of either algorithm yields connected locally free partitionings in the same time

bounds.

Some assemblies have a large number of locally free subassemblies, few of which satisfy

other geometric constraints, such as extended motion freedom. For such assemblies the

total computing time to find a removable subassembly might be exponential using the

method given here to generate candidate subassemblies. Chapter 5 describes a variation

on the algorithm of this chapter to efficiently find subassemblies that are free for extended

62

4.1. GENERATE-AND-TEST 63

TrnxExnr
Figure 4.1: An assembly with 2 feasible decompositions

translations. However, in experiments local freedom has proven a powerful constraint,

pruning most impossible operations. Experimental results are shown for an implemented

hybrid algorithm that combines the low time bound of the translational algorithm with the

ability to find most assembly operations involving rotations.

4.1 Generate-and-Test

The basic approach given in figure 3.8 to find a removable subassembly of A follows a

generate-and-test scheme. All ways to partition A into two connected subassemblies are

generated, and each partitioning is tested for local freedom and then extended motion.

This approach suffers from the fact that there may be an exponential number of can-

didate partitionings to test, even though few satisfy physical constraints. For instance,

consider the planar assembly in figure 4.1, consisting of n - 2 interlocking pieces sand-

wiched between two plates. A connected partitioning will be generated for each way to

group the center pieces with the two plates, so there are 2n_2 ways to assign the interlock-

ing pieces and more than 2n~2 connected partitioning. However, there are only two locally

free subassemblies of the sandwich assembly—the top plate and the bottom plate.

In addition, there are some times when unconnected partitions may be desired, such as

when an assembly cannot be built using connected subassemblies. Without the connected-

ness constraint, the generate-and-test approach is clearly impractical because an exponential

number of candidate operations will always be generated.

The generate-and-test approach first identifies subassemblies, and then finds the motions

that their contacts allow. The method described in this chapter reverses this order, by

first identifying a critical set of motion directions for the assembly, and then finding the

subassemblies that are free in each direction. Only a polynomial number of motions need be

considered, so the algorithm is able to find a locally free subassembly in polynomial time.

For clarity, section 4.2 first describes the method limiting motions to local translations.

64 CHAPTER 4. PARTITIONING FOR LOCAL MOTIONS

Section 4.3 then extends this to the general case of local rotations and translations.

4.2 Partitioning for Translations

Let C be the set of all & point-plane contact constraints in the connection graph C{A) of A.

Remember that a constraint c € C is described by a 6-vector njjc and a pair of contacting

parts that I will denote (Pci,PC2)-

I first restrict attention to translational local motions d, where

d= (x,jr,i).

A translational local motion d violates contact c,- when nfd < 0. A subassembly S is locally

free in translation when there exists a translation d that violates no contacts between S and

A\S.

4.2.1 Directional Blocking Graph

The subset of the constraints C violated by a local translation d defines a directional blocking

graph (or DBG) representing the blocking relationships between the parts in A in direction

d. The directional blocking graph G{d, A) is a directed graph with nodes representing the

parts of A. An arc connects parts Pc\ and Pci in G(d, A) if and only if there exists a

constraint c such that d violates c. In other words, an arc connects part Pi to P? when

Pi undergoing motion d is blocked by P% (unless Pi also moves). If there are m links in

C(A) then G(d, A) can have at most 2m arcs. Because it encodes constraints from contacts,

G(d, A) is called a contact DBG; Chapter 5 considers extended translations, which induce

extended DBGs.

Figure 4.2 shows the DBGs induced by a vertical and a horizontal translation in the crate

assembly of figure 1.1. For instance, in translations to the right , the cargo is constrained

by its contacts with the box, so an arc connects the cargo node to the box node in the

DBG of figure 4.2b. Even though in an extended translation to the right the lid would hit

the cargo, no arc connects the two.

A subassembly 5 C A is locally free in direction d if and only if (S, A\S) is a directed par-

titioning ofG(d, A). A directed partitioning of a directed graph G is a pair of subsets (Si, 52)

such that {Si,S2} is a partition of the nodes of G and no arcs in G connect nodes in 52 to

nodes in Si. For instance, in the DBG of figure 4.2b, ({lid, screwl, screw2}, {box, cargo})

4.2. PARTITIONING FOR TRANSLATIONS 65

a b

Figure 4.2: Two directional blocking graphs for the crate assembly

is a directed partitioning. If G(d, A) is strongly connected1, then clearly no directed par-

titioning of G{d,A) exists. If G(d,A) is not strongly connected, then at least one strong

component of G(d, A) must have no outgoing arcs, and this component is a locally free

subassembly in direction d.'

4.2.2 Non-directional Blocking Graph

Because two motions di and d2 differ only in velocity when di = sd2, s > 0, we restrict

\d\ = 1. Then the directions of translation d are represented as points on the unit sphere S2.

Each constraint c in C defines a plane n*d = 0 that cuts the unit sphere along a great circle.

Translations on the great circle are sliding motions for constraint c, while translations on

either side represent breaking and violating motions. The set of great circles for all c G C

determines an arrangement of cells on 52 (figure 4.3). The cells are of three types:

Vertices lie at the intersection of two or more great circles.

Edges are maximal open connected arcs of great circles that do not include vertices.

Faces are maximal open connected components of the sphere not intersecting an edge or

vertex.

There are 0(k2) cells in the arrangement. The cells are regular in the following sense: for

any two local motions da and d2 in the same cell, G(du A) = G{d2, A). This is true because
1A strongly connected component (or strong component) of a directed graph is a maximal subset of nodes

such that for any two nodes r»i and n2 in this subset, a path connects tii to m and a path connects n2 to
m. A graph is strongly connected if it has only one strong component.

66 CHAPTER 4. PARTITIONING FOR LOCAL MOTIONS

Figure 4.3: An arrangement of great circles on the sphere

d\ and «fo lie on the same side of all the great circles in the arrangement; thus they violate

the same set of contacts. Define the graph G(f) for a cell / to be G(d, A) for motions de f.

The arrangement on the sphere, together with the DBGs for each cell, constitute a

non-directional blocking graph (or NDBG) for A. In many cases the NDBG will not be

constructed explicitly, or it will be constructed incrementally, without storing the whole

NDBG at any one time. The non-directional blocking graph resembles Wolter's assembly

constraint graph [68]; however, the ACG represents blocking relationships only in a small,

heuristically chosen set of directions, and is the input to an assembly sequencer instead of

being computed. In contrast, the NDBG represents the part blocking relationships in all

directions, and can be computed directly from the connection graph of A.

For any two neighboring cells in the NDBG, one of the cells must be on the boundary of

the other cell. For instance, a vertex bounds the edges and faces adjacent to it, and an edge

bounds the faces on either side. The following property holds between any two neighboring

cells:

Property 4.1 For any two cells f\ and fa such that f\ is on the boundary 0//2, if there

exists an arc from Pi to Pj in G(f\), this arc also exists in G{ft).

Proof: Clearly f\ and fi are not on opposite sides of any great circle. In addition, the set

of great circles intersecting f\ is a superset of the great circles intersecting /2. Therefore

any contact violated by motions in f\ is violated by motions in /2, so any arc in G(fi) is

present in <J(/2).E

In some cases G{f\) = G(fi) for cells f\ on the boundary of fi-, and sometimes the edges

of G(f\) are a proper subset of the edges of G(f2)- The former case happens when motions

in cell ft, break the corresponding contacts for the great circles intersecting at f\. When /j

4.2. PARTITIONING FOR TRANSLATIONS 67

is on the violating side of a constraint circle, then points /a on the circle will slide on that

contact, so G(fi) will not include the corresponding arc of G(/2).

4.2.3 Finding a Locally Free Subassembly

Property 4.1 implies that if a graph G(/i) is strongly connected, then for all cells /2 bounded

by /i, the graphs G(/2) are strongly connected as well. The vertices of the arrangement

thus correspond to critical motions. If the DBG for a face / is not strongly connected,

then the graphs G(v) for vertices on the boundary of / are also not strongly connected.

Hence it suffices to check the strong connectedness of G(d, A) for all critical motions d at

the intersection of two planes from the set C. If any such graph G(d, A) is not strongly

connected, then one strong component with no outgoing arcs is a locally free subassembly in

direction d. The one exception occurs when all the constraint planes in C are parallel, so the

resulting arrangement has no vertices. In this case Property 4.1 implies that a single point

p on the great circle can be chosen and G(p, A) checked for connectedness. In fact, a locally

free subassembly will always be found in such an assembly. Note that the arrangement of

circles on S2 need not be explicitly computed.

For an assembly with k point-plane constraints C, there are 0(k2) critical motions at

the intersection v of two planes. Constructing each graph G(v) requires comparing the

motion v against every constraint in C, or O(k) steps; since G(v) has at most 2m arcs,

its strong components can be found in 0(m) time [1]. Hence a translational locally free

subassembly of A can be found in 0(k3) time.

This computation can be reduced by noticing that there is little or no change between

the DBGs of two adjacent regions. This leads to computing the DBG for one cell, then

performing a systematic traversal over the arrangement and calculating the DBG for each

new cell from the previous one. To this end, slightly modify the DBG by attaching a weight

to each arc of the graph. In G(d,A), the weight of the arc from P, to P, is the number of

constraints c from Pi to P, violated by d. The absence of an arc from P, to P, is treated as

an arc of weight 0, and vice versa.

For two cells /, and fj, let the crossing set Cy be the set of contacts violated by motions

in fj but not by motions in /,. Property 4.1 implies that C„ is empty when fj is on the

boundary of /,. Then given the DBG of a cell /, on the boundary of cell /,-, the DBG of fj

can be computed using the following crossing rule:

Initialize G{fi) to <?(/,). For every c e C,j, add 1 to the weight of the arc from

68 CHAPTER 4. PARTITIONING FOR LOCAL MOTIONS

Pa to Pc2 in G(fj).

For every contact c £ CY, the move from /,• to fj corresponds to a change from sliding on c

to violating c, so the crossing rule adds one to the weight of the corresponding arc in G(fj).

By Property 4.1, G(fj) is strongly connected whenever £(/,-) is.

Similarly, if fj is a cell on the boundary of /,-, a similar crossing rule applies:

Initialize G(fj) to <?(/„■). For every c € Cj» subtract 1 from the weight of the

arc from PcX to Pc2 in G(fj).

In this case, some contacts are changing from violating to sliding contacts. The strong

components of <?(/,) will be the same as those of <£(/,-) unless an arc is actually deleted in

applying the crossing rule.

To take advantage of the crossing rules, the arrangement of great circles on the sphere

is computed explicitly. A central projection from the origin is used to map S2 onto two

parallel planes tangent to the sphere and not parallel to any great circle. The arrangement

of great circles now becomes an arrangement of lines in each plane, where every cell in the

planar arrangement corresponds to a cell on the sphere. Since a subassembly 5 is locally

free in direction d exactly when A \ S is locally free in direction -d, it suffices to consider

one plane. The PARTITION algorithm can now be stated as follows:

1. Compute the vertices, edges, and faces of the planar arrangement and their adjacency

relations, storing the set CtJ with the adjacency link between every pair of neighboring

cells /, and fj.

2. Compute the DBG for an arbitrary cell /0.

3. Perform a systematic traversal of the arrangement, computing the DBG for each new

cell from the preceding cell using crossing rules. If any DBG is not strongly connected,

one of its strong components is a locally free subassembly in the corresponding direc-

tion.

The cells in the plane and their adjacency relations can be computed in optimal 0(Jfc2)

time using a topological sweep [18, 27]. The cost of executing a crossing rule from cell /, to

cell fj is proportional to the size of the crossing set C,j (or C,,). Although a single CtJ may

include k contacts, each contact is only a member of crossing sets along its circle, and only

those sets on the violating side of the circle. A circle is adjacent to at most 4k regions on

4.3. PARTITIONING FOR GENERAL LOCAL MOTIONS 69

one side, so the sum of the sizes of all the crossing sets is bounded by 4k2. Hence the total

amortized cost to incrementally construct all the DBGs is 0(k2). Finally, checking each

DBG for strong connectedness requires 0(m) time. We now have the following theorem.

Theorem 4.2 Let A be an assembly of n parts with m contacts described as k point-plane

constraints. It can be decided in 0{mk2) steps whether there is a proper subassembly of

A that is locally free in A for translations. Such a subassembly and a valid direction of

translation can be computed in the same number of steps.

In some assemblies with complicated contacts, m < i, and in those cases the more

complicated algorithm saves significant time.

4.3 Partitioning for General Local Motions

Now consider general rigid motions AX, where

AX = (i,jf,2,d,/3,7).

A motion AX violates contact c if and only if n*JcAX < 0. As in translation, the subset

of the constraints C violated by a local motion AX defines a weighted directional blocking

graph G(AX,A), in which the weight of the arc from part Pt- to part Pj is the number of

constraints c between P,- and Pj violated by AX.

Again restrict |AX| = 1, so the set of all local motions AX make up the unit sphere in six

dimensions S5. Each constraint c in C defines a hyperplane that divides S5 in half. Motions

AX on the hyperplane are sliding motions for c, and motions on either side are breaking

and violating motions, respectively. The set of hyperplanes for all constraints C determines

an arrangement of 0(ks) cells on S5, where the cells consist of open 5-dimensional sets of

S5 and various relatively open rf-dimensional sets bounding them, for 0 < d < 5 [27].

The cells of the arrangement on S5 are regular in the same sense as in the translational

case: for any two local motions AXi and AX2 in the same cell, G(AXi,A) = G(AX2,A).

Again define the graph G(f) for a cell / to be G(AX, A) for motions AX € /. The arrange-

ment on S5 and the corresponding DBGs constitute a non-directional blocking graph of A

for local rigid motions. Property 4.1 holds equally for two neighboring cells in this NDBG.

Thus the vertices of the arrangement on S5 (the points at the intersection of 5 or more

hyperplanes) constitute a set of critical local motions. To find a locally free subassembly of

A it suffices to check the graphs G(v) for all vertices v in the arrangement on 55.

70 CHAPTER 4. PARTITIONING FOR LOCAL MOTIONS

An exception occurs when no set of five hyperplanes from the constraints C define a

single point, so there are no critical local motions. This happens when rank(C) < 5. In

this case additional random hyperplanes can be added to C until rank(C) = 5, at which

time a vertex will arise. Motions in the vertex slide on all the contacts of A, so a removable

subassembly will be found in the DBG of the vertex.

Since a critical motion arises from every set of five hyperplanes, there are (£) = 0(k5)

critical local motions. Constructing and checking each graph requires 0(k) steps, so a

locally free subassembly of A for general rigid motions can be identified in time 0(kG).

In addition, the faster algorithm of the section 4.2 can be extended to the case of rigid

motions. The crossing rules as stated there apply directly to the local rigid motion case. The

arrangement on S5 can be constructed in 0(k5) time and has 0(k5) cells [27]. The number

of neighboring cells of a hyperplane is in 0(k4), so each contact is in 0(k4) crossing sets.

Hence the sum of the sizes of all crossing sets is 0(ks), and the amortized cost of applying

the crossing rules over the whole NDBG is 0(k5). Checking the strong connectedness of all

the DBGs requires 0(mks) time, which dominates the other costs.

Theorem 4.3 Let A be an assembly of n parts with m contacts described as k point-plane

constraints. It can be decided in 0(mk5) steps whether there is a proper subassembly of A

that is locally free in A. Such a subassembly and a valid direction of rigid motion can be

computed in the same number of steps.

4.4 Incremental Construction

For some applications it may be advantageous to construct the non-directional blocking

graph for an assembly A explicitly, and then make incremental changes when the geometry

of the assembly changes. For instance, in a concurrent engineering system, the assembly

design will evolve over time, as parts are added or removed or their geometry modified.

After a small change, the NDBG for the new assembly will bear a strong resemblance to

the previous NDBG. As a result, the time to generate an assembly sequence after a design

change can be reduced by updating the NDBG incrementally. The procedures to update

the NDBG according to several types of changes to the assembly are sketched below.

Changing contacts Consider first a change in the geometry of a part P, in an n-part

assembly A, resulting in a new assembly A'. If the new geometry of Pi leaves all previous

4.4. INCREMENTAL CONSTRUCTION 71

contacts of P, with other parts unchanged, and introduces no new contacts, then the NDBG

of A' will be the same as that of A.

On the other hand, suppose the new geometry of p introduces a contact constraint

c with part Pj. In fact, any new contact c between P, and Pj will produce a reciprocal

constraint from P, to P that must be added as well. The line corresponding to c can be

incrementally added to the planar arrangement in 0(k) time (0(k4) time in the full rigid

motion case), producing 0(k) (respectively 0(k4)) new cells [18, 27]. In addition, the DBGs

for all the motions violating constraint c need to be updated; these motions are given by

the cells on the violating side of the constraint line. For each such cell /, the weight of

the arc from p to P, in G(f) must be increased by 1, a total of 0(k2) steps (0(k5) for

rotations). Finally, adding arcs can only increase the strong connectedness of a DBG, so

the new contact will never allow assembly operations for A' that were not possible for A.

Contacts can be deleted using similar methods, and changing a contact constraint can

be performed by deleting the old constraint and adding the new one.

Adding or deleting parts When a new part Pn+i is added to A, the NDBG can be

modified in two steps. First Pn+i is added to the DBG for each cell. Then the contacts

between Pn+i and the initial parts of A are added in the manner above.

Merging or splitting parts Merging two parts or splitting one part into two smaller

parts are common operations in assembly design. For instance, if one area of a part is

subjected to higher stresses than another area, the part can be divided to allow the low-

stress section to be constructed of lighter or cheaper material. On the other hand, the

cost of manufacturing a product can often be reduced by merging parts that do not move

relative to each other in the finished product. The composite part is made as one piece,

such as with a molding or stamping operation, thereby saving assembly costs.

Let p and Pj be two contacting parts in A that have been merged in A'. The contact

constraints between P and P, are no longer relevant, so they can be deleted as above. Then

for each DBG in the NDBG, Pj is removed and the weights of any arcs incident to it (either

into or out of Pj) are added to the corresponding arcs of p. For example, if the arc from

Pj to Ph has weight 3, then 3 is added to the weight of the arc from P, to P, in the new

DBG.

When a part is split into two sections, the reverse of the above process is performed.

72 CHAPTER 4. PARTITIONING FOR LOCAL MOTIONS

The contacts of the original part are divided into those touching each section. A new node

is created in each DBG having the corresponding incoming and outgoing arcs, and finally

the contacts between the two sections are added to the NDBG.

Whenever the number of contact or part changes is much smaller than the number of

contacts and parts in the assembly, incrementally updating the NDBG will save considerable

time. In addition, the updates can be performed in the background while the designer works,

so that the NDBG is ready when an assembly sequence is requested. These procedures have

not been implemented in GRASP.

4.5 Connected Subassemblies

As noted in section 2.4.4, in many applications it is desirable to generate only connected

partitionings of the assembly A. The above method can be extended to generate only con-

nected, locally free partitionings, using the connection graph of A. Clearly the connection

graph C(A) is related to the graph G(AX, A) for a local motion AX. Specifically, if an arc

connects P, to Pj in G(AX,A), then a link connects P, and P, in C(A).

If C(A) is not connected and has exactly two connected components, then they must be

locally free from each other. Obviously if C(A) has more than two connected components,

then A cannot be partitioned into two connected subassemblies. For the following, assume

C(A) is connected.

If 5 is a locally free subassembly of A in direction AX found with the algorithm above,

then 5 is a strong component of G(AX, A) and therefore connected in C(A). If A \ S is

. not connected in C{A), then the connected components d of A \ S have no arcs between

them in G{AX, A). Hence a new removable subassembly can be constructed by adding all

but one C, to 5. Furthermore, since A is connected, the removal of S disconnected every

d from the rest, so 5 must be connected to each C, in A. Therefore choose an arbitrary

connected component C\. The subassembly A\Ci is connected and locally free from C\ in

direction AX.

Theorem 4.4 Let A be an assembly of n parts with m contacts described as k point-plane

constraints. It can be decided in 0(mk2) steps whether there is a proper subassembly S of

A such that S and A\S are connected in C(A) and S is locally free in A for translations.

Such a subassembly and a valid direction of translation can be computed in the same number

of steps.

4.6. GENERATING ALL LOCALLY-FREE SUBASSEMBLIES 73

Figure 4.4: (a) the connection graph for the crate assembly in figure 1.1 and (b) the con-
nected components after removal of the box

Theorem 4.5 Let A be an assembly of n parts with m contacts described as k point-plane

constraints. It can be decided in 0(mk5) steps whether there is a proper subassembly S of A

such that S and A\S are connected in C{A) and S is locally free in A. Such a subassembly

and a valid direction of rigid motion can be computed in the same number of steps.

For example, consider the connection graph for the crate assembly shown in figure 4.4a.

The subassembly {box} is locally free for motions to the right in the crate. After removing

{box}, the remaining parts of the crate comprise two connected components of the connec-

tion graph of the crate (figure 4.4b). Either of these can be added to {box} to make a con-

nected, locally free subassembly. Thus both {box, cargo} and {box,lid,screwl,screw2}

are connected, locally free subassemblies of the crate.

4.6 Generating All Locally-Free Subassemblies

In most uses of the above algorithms, more than one locally-free subassembly will need to

be generated. Local freedom is not a sufficient condition for a subassembly to be removable;

as a result a number of locally free subassemblies might need to be tested against global

motion constraints to find a valid assembly operation. In addition, more than one removable

subassembly will need to be found when alternative assembly sequences are desired. This

section presents procedures to find the set of all locally free, and connected locally free,

partitionings of an assembly.

74 CHAPTER 4. PARTITIONING FOR LOCAL MOTIONS

4.6.1 Unconnected Subassemblies

First consider the case when the subassemblies are not required to be connected. The set

of all locally free subassemblies of an assembly A is equal to the union of the sets of locally

free subassemblies for all directional blocking graphs of A. Thus it suffices to find the set

of locally free subassemblies for each DBG.

Figure 4.5 shows procedure ALL-SUBASSEMBLIES, which generates the set of all locally

free subassemblies in a direction AX, given G = G(AX, A). As in the previous sections,

parts of A that form a strong component of G must necessarily move together, since they

are interlocked in direction AX. Accordingly, ALL-SUBASSEMBLIES first calls function

REDUCE, which computes the reduced graph of the strong components of G. The reduced

graph R is a directed acyclic graph with a node corresponding to each strong component of

G. An arc connects node ni to node Ti2 in R if and only if an arc of G connects one of the

parts of Tij to one of the parts of TI2. Hence the directed partitionings of R correspond one-to-

one with the directed partitionings of G. In the discussion below and in the algorithms I will

not distinguish between the nodes of R and the strong components of G. Let PRED(n, R)

be the set of all predecessors of node n in R (including n), and SUCC(n, R) be the set of all

successors of n in R (including n). Let D(R) be the set of directed partitionings of R.

The recursive procedure ALL-REDUCED enumerates D(R). It maintains the following

invariant:

At each invocation of ALL-REDUCED, S\ and S2 are disjoint subsets of the nodes

of R. In addition, 5i is closed under the PRED function, and 52 is closed under

the SUCC function.

In other words, S\ is a locally free subassembly of A in direction -AX, and 52 is locally

free in direction AX. The nodes not in S\ or 52 are undecided nodes.

ALL-REDUCED(S\, S2) generates all directed partitionings (S^S^) of R such that 5i C

5j and 52 C 52. If 5i U 52 = A, then (5i,52) is the only such partitioning. Otherwise, any

undecided node n can act as a pivot: the directed partitionings (S'l,S'2) of R are divided

into two sets: those with n in S[, and those with n in 52. These two sets are computed by

recursive calls to ALL-REDUCED. Since 5i must be closed under the PRED function, the

predecessors of n are added to S\ in the first recursive call; similarly the successors of n

are added to 52 in the second recursive call. The call ALL-REDUCED(9,ib) thus enumerates

D(R).

4.6. GENERATING ALL LOCALLY-FREE SUBASSEMBLIES 75

Procedure ALL-SUBASSEMBLIES(A,G)

R «- REDUCE(G);
ALL-REDUCED(%,$)\
return(£>);

end; {procedure}

Procedure ALL-REDUCED{SX,S2)

if 5i U S2 = A
if 5i ? 0 and S2 ± 0

push((5i, 52),I>);
else return;

else
choose a node n € [^4 \ (Si U S2)];
ALL-REDUCED(Si U PRED(n, R), S2);
ALL-REDUCED(Si, S2 U SUCC(n, R));

end; {else}
end; {procedure}

Figure 4.5: The procedure to find all locally-free subassemblies for a DBG

Since in general there might be a large number of locally free subassemblies, the time

complexity of ALL-SUBASSEMBLIES is dependent on the number s of directed partitionings

of G. Consider the binary tree of recursive calls of ALL-REDUCED. Each leaf in the call

tree corresponds to either a directed partitioning of R or an empty set S\ or S2. The latter

case can happen at most twice—once when all pivot nodes are placed in Sj, and once when

all pivot nodes are placed in S2. Hence the call tree has at most s + 2 leaves and at most

5 + 2-1 internal nodes. The set operations in a single call to ALL-REDUCED can all be

done in time linear in m, so ALL-REDUCED(9,Hl) requires 0{ms) time. The reduced graph

of a DBG can be found in time 0(m) [1], so ALL-SUBASSEMBLIES is also 0{ms).

To find all the locally free subassemblies of A, D{G) must be calculated and combined

for all DBGs G of A. A locally free subassembly might be found in many DBGs of A, so s

can be as large as the number of locally free subassemblies of A. Using a trie structure [1] to

represent the global list of partitionings, D(G) can be merged with the global list in 0(ns)

time. For local translations there are 0{k2) DBGs to analyze, and for local rigid motions

0(k5) of them. We now have the following theorems.

76 CHAPTER 4. PARTITIONING FOR LOCAL MOTIONS

Theorem 4.6 Let A be an assembly with m contacts described as k point-plane constraints.

The set of all s locally free subassemblies of A in translation can be found in 0(msk2) time.

Theorem 4.7 Let A be an assembly with m contacts described as k point-plane constraints.

The set of all s locally free subassemblies of A can be found in 0(msk5) time.

4.6.2 Connected Subassemblies

The locally free connected partitionings of A could be found by generating all locally free

subassemblies of A (using procedure ALL-SUBASSEMBLIES) and checking each partitioning

for connectedness. However, this may require testing a large number of partitionings to find

a few connected ones.

Assume that C(A) is connected; the other cases are considered in section 4.5.

Figure 4.6 shows procedure CONN-SUBASSEMBLIES, which combines aspects of ALL-

SUBASSEMBLIES and CONN-PARTITIONINGS (from figure 3.9) to directly find the locally

free connected partitionings of a DBG. The strong components of G (i.e. the nodes of Ä),

as well as the predecessor and successor sets of a node of R, must be connected in C(A),

because the arcs of G derive from the links of C(A). Since the parts in a node of R are con-

nected and must move together, each node can be considered a single part for that direction

of motion. CONN-SUBASSEMBLIES works much the same way as CONN-PARTITIONINGS;

it continually chooses pivot nodes and generates the partitionings including the pivot in

either Si or 52-

After computing the reduced DBG R, CONN-SUBASSEMBLIES chooses pivot nodes n,

as before to split the directed connected partitionings of R into two sets (line 1). For each

such set of partitionings, it chooses another pivot node n, to split it again (line 2). This

is necessary because CONN-REDUCED must be called with two non-empty sets 5i,52. nj

is chosen so as to keep Si connected in all calls to CONN-REDUCED. For each pivot node

included in Si, the predecessors of the pivot must also be in Si; for each pivot placed in 52,

its successors must be in 52 also. Whenever the added predecessors and successors cause

Si and 52 to intersect, clearly no directed partitionings exist with those pivot choices.

The following invariant is maintained on each call to CONN-REDUCED:

Si and 52 are non-empty disjoint subsets of the nodes of R, and closed under

the PRED and SUCC functions, respectively. In addition, Si is connected in

C(A).

4.6. GENERATING ALL LOCALLY-FREE SUBASSEMBLIES 77

Procedure CONN-SUBASSEMBLIES(A, G)

D-0;
R«- REDUCE(G);

S3*-0;
(1) while there is a node n, of R, n, £ S3

Si «- PRED(ni, R);

(2) while there is a neighbor n, of 5i in C{A) such that «j £ S3

S2 «- S3USUCC{nj,R);

if Si n 52 = 0
CONN-REDUCED(Si, S2);

5i — SiUPRED(nj,R);

end; {while}
S3 «- S3 U 5tf(7Cl(n„ Ä);

end; {while}
return(-D);

end; {procedure}

Procedure CONN-REDUCED{Si, S2)

CC «- CONNECTED-COMPONENTS(A \ Si,C(A));

if \CC\ > 1
if for some C, € CC, dDS2

Si «- Sj U Ui* Cj;
else return;

end; {if}
push((Si, A \5j),D);
for each neighbor n,- of Si in C(A), n, £ S2

(3) CONN-REDUCED(Siö PREDini,R),S2);

S2^S2U SUCC[ni, R);

end; {for}
end; {procedure}

Figure 4.6: The procedure to find all connected, locally-free subassemblies for a DBG

78 CHAPTER 4. PARTITIONING FOR LOCAL MOTIONS

The procedure CONN-REDUCED works much like CONN-SUPERSETS, with the added con-

straint that whenever a pivot is added to Si or 52, its predecessors or successors must be

added, respectively.

Procedure CONN-REDUCED first computes the connected components CC of A \ Si. If

A \ Si is connected, then (5i,5j) is a directed connected partitioning. If \CC\ > 1, then

the only supersets S[of Si that will have a connected complement A \ S{ will include all

the CC but one. As before there are two cases:

• If S2 intersects more than one of the CC, then all supersets S'2 of 52 are unconnected.

In this case the procedure returns.

• If 52 is contained in one connected component C,-, then that C, cannot be added to

Si. Clearly then, all components Cj, j ^ i, must be added to Si, and then (Si, S2) is

a connected partitioning.

After one partitioning (5i,52) is found, then each node n, connected to Si and not in

52 becomes a new pivot. Node n,- divides the superset partitionings (5^,52) into those

containing n,- in 5J and those with n, in S'2. Recursive calls to CONN-SUPERSETS enumerate

those partitionings, including the predecessors or successors with n,, respectively. If all

neighbors n,- are in 52, then no superset of Si will be connected.

Not counting the time taken in CONN-REDUCED, CONN-SUBASSEMBLIES requires

time 0(n2m) in a straightforward implementation. However, using a marking scheme to do

the set operations and PRED and SUCC calculations, this can be reduced to O(nm) time.

This optimization is straightforward but tedious, and will not be described here. Each call

to CONN-REDUCED requires time linear in m, not including the recursive calls. There are

0(n2) initial calls, and 0(ns) calls resulting from line (3). Hence CONN-SUBASSEMBLIES

executes in time 0(nms). CONN-SUBASSEMBLIES must be called once for each DBG and

the results combined as for the unconnected case.

Theorem 4.8 Let A be an assembly of n parts with m contacts described as k point-plane

constraints. The set of all s connected, locally free partitionings of A in translation can be

found in 0(nmsk2) time.

Theorem 4.9 Let A be an assembly of n parts with m contacts described as k point-plane

constraints. The set of all s connected, locally free partitionings of A can be found in

0(nmskh) time.

4.7. IMPLEMENTATION 79

4.7 Implementation

Both the translational and rotational versions of the PARTITION algorithm given above have

drawbacks for a practical assembly sequencing method. The first is limited to translations,

which rides out its direct application to the many mechanical assemblies with threaded

contacts. On the other hand, the rotational version can find any locally free subassembly

in a rigid assembly, but at the cost of examining 0(k5) DBGs.

The assemblies of figures 3.13 and 3.14 are anomalies in the real world. Almost all

rotational motions used in real assemblies are either screwing motions required by threaded

contacts or pure rotations around the axis of a cylindrical contact. The version of PAR-

TITION implemented in GRASP is a hybrid algorithm that has the same time complexity

of the translational version. It finds all locally free subassemblies that the translational

version does, plus any subassemblies 5 for which the separating motion is suggested by a

threaded or revolute contact between S and A \ S. In fact, the resulting algorithm finds

the same set of assemblies as Hörnern de Mello's GET-FEASIBLE-DECOMPOSITIONS does

for local motions, but with a much lower worst-case time complexity.

The hybrid algorithm begins by finding all subassemblies that are locally free in trans-

lation as described in section 4.2. Then it generates a list of suggested motions given by the

nonplanar contacts of the assembly. For each threaded contact, a twisting trajectory with

the same axis and pitch as the contact is added to the list of suggested motions. For each

cylindrical contact, a pure rotation around the axis of the contact cylinder is generated.

Then for each suggested motion AX, a DBG G(AX, A) is constructed and analyzed for

connected, locally free partitionings.

There can be at most 0(k) suggested directions AX, and building the DBG for each AX

requires examining all k contacts for compatibility with AX. Finding the connected locally

free partitionings of the DBGs for all suggested directions is completed in time 0(nmsk),

which is dominated by the 0(nmsk2) time bound of the translational case.

Even if an assembly sequencer were required to disassemble products such as that in

figure 3.14, the PARTITION algorithm as implemented in GRASP would be a practical

first step. Most assemblies would be quickly partitioned, and in the few cases where the

algorithm could not find a partitioning of the assembly, the full rotational version could be

invoked.

80 CHAPTER 4. PARTITIONING FOR LOCAL MOTIONS

Assembly
Number
of Parts

DECOMPOSE PARTITION
Node Tree Graph Node Tree Graph

Engine 12 1.0 31 48 0.5 30 42
Bell 17 2.6 18 528 0.9 16 522
Bell 22 4.7 25 3245 1.4 21 2186

Engine 30. 4.9 111 — 3.6 112 —
Skin 36 — — — 3.4 222 —

Engine 42 74 319 — 8.5 189 —

Table 4.1: Experimental timings comparing procedures DECOMPOSE and PARTITION, in
seconds

4.8 Experiments

Table 4.1 shows experimental results obtained with the hybrid PARTITION on the assemblies

described in Appendix B. For each assembly A, three times are given for both procedure

DECOMPOSE (based on generate-and-test) given in figure 3.8 and PARTITION:

• the time required to partition the root node (i.e. find all connected locally free parti-

tionings of A),

• the time to find one disassembly AND-tree for A, and

• the time to build the full AND/OR graph for A. For the larger assemblies, the full

AND/OR graph is too large to generate in practice.

Several points should be noted about the results in table 4.1. For most assemblies,

the two procedures are quite competitive in running times. However, the skin machine

represents a bad case for procedure DECOMPOSE, since its connection graph has a very

large number of cut-sets. As a result, DECOMPOSE was stopped after two days of trying to

partition the skin machine. In that time it examined over 100,000 connected partitionings.

For the assemblies other than the skin machine, a relative advantage of PARTITION in

decomposing the root node of the graph does not necessarily translate into a large decrease

in sequencing time. For instance, PARTITION partitioned the 22-part bell in 1.4 seconds

compared to 4.7 for DECOMPOSE, but the times to generate the whole AND/OR graph were

2186 and 3245 seconds, respectively. This is due in part to the other costs of sequencing,

such as checking for global motions. In addition, the generate-and-test method is faster for

small assemblies, which make up the bulk of the AND/OR graph.

4.8. EXPERIMENTS 81

The time required for DECOMPOSE to find the locally free subassemblies of the 22-part

bell is much lower in table 4.1 than the 54 seconds reported in [64]. The previous figure was

using Hörnern de Mello's cut-set generation algorithm [34], which is much slower in some

cases than that given in figure 3.9.

Chapter 5

Partitioning for Extended

Translations

The previous chapter described methods to find locally free subassemblies of an assembly

in polynomial time. However, local freedom is only a necessary constraint; a globally valid

path must be found for the removal of any locally free subassembly. In fact, a large number

of locally free subassemblies might be tried before a globally free one is found. To avoid the

generate-and-test cycle in such cases, an algorithm is desired that would find globally-free

subassemblies in an efficient manner.

In addition, the basic module for extended collision checking in GRASP (section 3.4)

checks for globally-valid motions by extending several local motions to infinity and checking

for collisions using a sweeping computation. The translations are chosen heuristically based

on the shape of the local freedom cone. This method is obviously not complete; in some

cases a translation that would separate two subassemblies will not be tested.

This chapter presents an algorithm that corrects both of these inadequacies for as-

semblies of polyhedral parts and global motions consisting of single extended translations.

Specifically, the following problems are addressed:

1. Given an assembly A of n polyhedral parts, decide whether there is a direction d and

a subassembly S C A such that a translation along d separates 5 from the remaining

parts A \ S, and if so identify d and S.

2. For an assembly A of polyhedra, return a list of all subassemblies 5 C A that can be

separated from A \ S by a single translation.

82

5.1. EXTENDED BLOCKING GRAPHS 83

A method is given below to solve the first problem in polynomial time and the second

problem in output-sensitive polynomial time.

Arkin, Connelly and Mitchell [3] address a planar version of problem 1 above. They

use the concept of monotone paths among polygonal obstacles to identify a removable

subassembly of simple polygons in the plane. The methods in [3] do not extend directly

to the three-dimensional case. However, Mitchell has independently shown that extended

translations for partitioning an assembly can be found in polynomial time [47].

For an assembly with n parts and v total vertices, I give an algorithm to identify a

removable subassembly in 0(n2v4) time. The algorithm is closely related to the method

given in the previous chapter. When applied to two polyhedral parts or subassemblies, the

procedure becomes an algorithm to find the set of all translations separating the parts in

0(v4) time, which is optimal in the worst case. Complete translational assembly sequences

for polyhedral parts can easily be computed by recursive application of the method. I

describe an implementation of the procedure and the results of various assembly planning

experiments using the program.

5.1 Extended Blocking Graphs

The algorithm to find a subassembly of A that can be separated from the rest of A by a

single translation is quite similar to the partitioning algorithm presented in the previous

chapter. The set of translations is represented as the points on the unit sphere S2, which

is divided into regions based on which parts block the motions of others in each region. In

this case extended translations are considered instead of local motions. A weighted blocking

graph is associated with each region, crossing rules are defined, and the sphere is searched

for a region whose blocking graph has a free subassembly.

Let A = {Pi,.. .,Pn} be an assembly of n polyhedral parts with a total of v vertices.

Assume for now that the parts are not in contact; this restriction is removed below. A part

Pi collides with another part Pj in direction d if there exists a point x in the interior of P,

such that x + td is in the interior of Pj for some value t in [0, oo). A translation separating

a subassembly Si from subassembly 52 is a vector d such that no parts of Si collide with

parts of S2 in direction d. Let G(d, A) denote the extended directional blocking graph of

assembly A in direction d. G(d, A) is a directed graph whose nodes are the parts of A, in

which an arc connects part Pj to P, if and only if P, collides with Pj in direction d. Clearly

84 CHAPTER 5. PARTITIONING FOR EXTENDED TRANSLATIONS

d separates subassemblies S and A \ S exactly when (5, A \ S) is a directed partitioning of

G{d,A).

The set of all translation directions d can be represented by the points on the unit sphere

S2 in three-dimensional space. For each pair of parts P,,Pj, the configuration obstacle

C(Pi,Pj) = PjB Pi = {aj - bi | aj € Pj, 6, € P}

is the set of placements of P, such that Pi intersects Pj [45]. Let PtJ be the projection of

C(P{,Pj) on the unit sphere using a central projection centered at the origin. The interior

of the region P,j is the set of translations along which P, collides with Pj.

Since P, and Pj are polyhedral parts, the C-obstacles C(Pi,Pj) are also polyhedra [42,

45]. In a central projection, any line segment in space projects to an arc of a great circle

on S2, so the regions Rij are bounded by arcs of great circles. Consider the set C of all

bounding arcs of regions Rij. C determines an arrangement of cells on 52 of three types:

Vertices lie at the intersection of two or more arcs. Since the arcs are boundaries of

regions, no arc ends without intersecting another.

Edges are maximal open connected arcs that do not include vertices.

Faces are maximal open connected components of the sphere not intersecting an edge or

vertex.

The cells are regular in the following sense: for any two translations d\ and d2 in a cell, the

extended DBGs G(di, A) and G(d2, A) are equal. Define G(f) for a cell / to be G(d, A) for

translations d in /. The arrangement on the sphere and the corresponding DBGs constitute

an extended non-directional blocking graph. A parallel property to Property 4.1 holds for

the cells in this arrangement.

If two parts are in contact in their initial positions, then the C-obstacle C(Pi,Pj) in-

cludes the origin, and in this case the projection Rij is undefined. Because the extended

translations allowed by such a contact correspond to the local translations it allows, con-

tact constraints can be added to the NDBG as with the contact DBGs of section 4.2. The

non-contacting sections of Pj and Pj are then treated as described here. Including contact

constraints does not add to the computing times of the methods in this chapter, but to

clarify the presentation they will not be considered.

5.2. FINDING A REMOVABLE SUBASSEMBLY 85

5.2 Finding a Removable Subassembly

The projected configuration obstacles Rij need not be computed explicitly. The faces of

Pi and Pj can be triangulated, and the configuration obstacle for each pair of triangles

computed. Although the union of the triangle C-obstacles is not always equal to C(Pi,Pj),

Rij is always equal to the union of their projections onto the sphere. To each arc in G(d, A),

attach a weight equal to the number of pairs of triangles from the two parts that collide for

translation d. An arc of weight 0 is the same as the absence of an arc. The arrangement

is then composed of regions Tij corresponding to collisions between triangles T,- and T,-; the

DBGs for two translations in a cell of this new arrangement are equal.

As in the local motion case, the DBGs for neighboring cells of the arrangement differ

only slightly. Let the crossing set Cij be the set of regions Thk such that cell fj is in the

interior of Thk but cell fi is not. Crossing from /, to fj steps into the interior of the regions

in Cij or out of the regions in Cji (either Cij or Cji will be empty depending on whether fi

is on the boundary of fj or vice versa).

If G{fi) is known for a cell /,• on the boundary of a cell /_,, then G(fj) can be computed

using the following crossing rule:

Initialize G(fj) to (?(/,). For every region Thk € Cij, add one to the weight of

the arc from Pa to Pb, where triangle 7), belongs to part Pa and 7* belongs to

Pb-

Conversely, when (?(/,•) is known and fj is on the boundary of /,:

Initialize G(fj) to G(fi). For every region Thk € Cji, decrease the weight of the

arc from Pa to Pt, by one, where triangle Th belongs to part Pa and 7* belongs

toPb.

To find a subassembly of A removable by an extended translation, the sphere is mapped

to two parallel planes using a central projection from the origin. However, S can be sep-

arated from A \ S in direction d exactly when A \ S can be removed from 5 in direction

—d. Thus it suffices to search only one planar arrangement. This gives rise to the following

algorithm for finding a removable subassembly:

1. Triangulate the faces of the parts.

2. For each pair of triangles 7i, Tj from different parts, compute the projection Tij of

C{Ti,Tj) on the plane.

86 CHAPTER 5. PARTITIONING FOR EXTENDED TRANSLATIONS

3. Calculate the arrangement of boundary line segments of the regions Tij.

4. Compute the crossing sets Chk by traversing the boundary of every T^. For each cell

/ on the line, a pointer to T,j is deposited in each Chk toward the interior of Tij.

5. For an arbitrarily selected cell /0, compute G(f0) by comparing /0 to every region Tij.

6. Perform a depth-first traversal of all the cells in the arrangement by crossing from f0

to neighboring cells. To step from a cell fi to a neighboring cell /,, calculate G(fj)

from G(fi) using the crossing rules above. After visiting a cell, it is marked and not

visited again. If G{fi) is not strongly connected for any cell /,, output a direction d

in /,- and the strong component of G{fi) with no outgoing arcs.

The faces of a part with v vertices can be divided into O(v) triangles in optimal 0(D)

time [16] or in expected 0(vlog* v) time using a simpler randomized algorithm [59]. There

are 0(v2) regions Tij, each with a constant number of edges, so step 2 requires 0(v2)

operations. The arrangement induced by m line segments in the plane has O(k) cells, where

k < (21) is the number of intersections between segments. The arrangement, including the

adjacency relations between its cells, can be computed in optimal 0(mlogm + k) time [17]

and in expected 0(m log m + k) time using a simple randomized algorithm [19]. Here

m = 0{v2), so the number of cells and the computing time for step 3 are 0(v4) in the worst

case.

The 0(v2) edges in each segment have a total of 0{v2) neighbors, so step 4 costs 0(v4),

and the sum of the sizes of all crossing sets is 0(v4). Testing the initial face /o for inclusion

in all regions requires 0(v2) operations. The cost of computing the DBGs using the crossing

rules is proportional to the number of regions in all crossing sets, so it is also 0(v4). Finally,

a DBG may have n(n — 1) arcs, so computing the strong components of all DBGs can be

done in 0(n2v4) time, which dominates the other times.

Theorem 5.1 Let A be an assembly of n polyhedral parts with a total of v vertices. It

can be decided in 0(n2v4) steps whether there is a proper subassembly of A that can be

translated to infinity without intersecting the remaining parts. An appropriate subassembly

and direction can be computed in the same number of steps.

As an example, consider the simple configuration of four cubes aligned along the z-axis

in figure 5.1. The corresponding planar arrangement consists of 12 polygons; several of these

5.2. FINDING A REMOVABLE SUBASSEMBLY 87

Figure 5.1: An assembly of cubes

Figure 5.2: The arrangement for the assembly in figure 5.1

polygons coincide. Figure 5.2 shows the planar arrangement. The projected configuration

obstacle corresponding to cubes Px and PA is the region marked £(1,4) and is bounded by

a line segment and two rays.

Figure 5.3a shows the directional blocking graph G(f) for cell / = £(1,4). £(1,4) is

contained in £(1,2) and £(1,3), so there are arcs in the graph from node 1 to nodes 2, 3,

and 4, each of weight 1. £(1,4) is contained in £(2,4), £(2,3), and £(3,4). Since node 4

has no successors, it is a removable subassembly for translations in £(1,4). If cubes £2

and P4 represent a single part P24, the DBG in figure 5.3b results. Nodes 24 and 3 form

a strongly connected component, so cubes 2, 3, and 4 must be removed simultaneously for

translations in £(1,4).

88 CHAPTER 5. PARTITIONING FOR EXTENDED TRANSLATIONS

Figure 5.3: Extended DBGs for region £(1,4) where (a) Pi,..., P4 can be moved indepen-
dently (b) P2 and P4 must be moved simultaneously

5.3 Finding All Removable Subassemblies

In some cases, finding a single removable subassembly is not sufficient. For instance, to

construct the AND/OR graph of all assembly sequences, at each node the set of all removable

subassemblies must be found. The operations may also be subject to additional, non-

geometric constraints in an assembly sequencing system, requiring alternatives to be found

and tested. For these purposes, the set of all subassemblies removable by an extended

translation can be computed by applying the algorithm ALL-SUB ASSEMBLIES of figure 4.5

to the extended blocking graph G(d, A). In this application, ALL-SUBASSEMBLIES finds

all s subassemblies removable in a single extended DBG in time 0{n2s). This calculation

must be done for each DBG, resulting in the following theorem.

Theorem 5.2 Let A be an assembly of n polyhedral parts with a total of v vertices. The

set of all s proper subassemblies of A removable by a single translation can be computed in

0(n2vAs) time.

5.4 Connectedness

Some assemblies have no connected monotone assembly operation to create them, yet have

unconnected subassemblies that can be mated by a single translation. An example is shown

in figure 2.10. As a result, the straightforward application of the method of section 4.5

cannot succeed for an extended DBG. In addition, the procedure CONN-SUBASSEMBLIES

of figure 4.6 cannot be directly applied to an extended DBG. Both rely on the fact that the

arcs in a DBG are a subset of the arcs in the connection graph for the same assembly. This

relationship holds between the connection graph of an assembly and the contact DBGs of

that assembly, but does not hold between connection graphs and extended DBGs. I have

5.5. SEPARATING TWO POLYHEDRAL PARTS 89

found no polynomial time algorithm to solve this problem.

Two generate-and-test methods can be used to find connected subassemblies removable

in translation, but they both may require testing an exponential number of candidate op-

erations in the worst case. The first generates removable subassemblies S and tests 5 and

A \ S for connectedness; the second generates locally free connected partitionings of A and

then checks them for extended translations using the method of the next section. For many

assemblies these methods will work, but guaranteed polynomial time algorithms are needed.

5.5 Separating Two Polyhedral Parts

The extended partitioning algorithm above can be applied in a straightforward manner to

find the set of all extended translations separating two polyhedral parts or subassemblies.

For instance, this algorithm could be used instead of the sweeping method described in

section 3.4. There, a subassembly S is swept to find collisions with other parts, in directions

chosen heuristically based on the shape of the local freedom cone of S. In contrast, the

method here is guaranteed to find a separating translation if one exists.

Each subassembly is considered a single part. The arrangement on the sphere is built

and searched, and all cells /,• in which one subassembly is removable from the other are

collected. The translations in these cells are the set of all separating motions for the two

subassemblies. Because n = 2, the above algorithm runs in time 0(v4) for this case.

In fact, this algorithm is optimal in the worst case. The optimality directly follows from

an example given by Pollack, Sharir and Sifrony [54]. The example in [54] concerns two

polygons P and Q with r and 5 edges respectively; the number of connected components

in the complement of the configuration obstacle corresponding to P and Q is proportional

to rV (figure 5.4). In our case the polygons P and Q are regarded as polyhedral parts

of zero volume, and r, s = v; the following holds equally if P and Q are sufficiently thin

polyhedra. Place P in a plane p and Q in a plane parallel to p, but distinct from p. Then

the plane containing the configuration obstacle of P with respect to Q does not contain

the origin, so the projection of the configuration obstacle of P with respect to Q on the

sphere S2 partitions 52 into H(n4) connected components. Therefore the set of translations

separating P from Q consists of ft(w4) connected components.

Theorem 5.3 The set of all translations separating two polyhedral parts with v vertices can

be found in time 0(v4), and this is optimal.

90 CHAPTER 5. PARTITIONING FOR EXTENDED TRANSLATIONS

i : ■V.V.V.S-: w. w.wm... A .%

Figure 5.4: Polygons from Pollack et. al. [54]

5.6 Finding Assembly Sequences

The above method can be used to efficiently build an AND-tree representing a binary mono-

tone assembly sequence for a polyhedral assembly in which the operations are restricted to

single extended translations. The method of Theorem 5.1 is simply applied recursively

to subassemblies. Since a monotone binary assembly sequence has n - 1 operations, the

method is applied n — 1 times.

Theorem 5.4 Given an assembly Aofn polyhedral parts with v vertices, it can be decided

in 0(n3v4) steps whether a binary monotone assembly sequence exists for A using only

extended translations.

5.7 Implementation

A drawback of the algorithm above is the storage requirement: the arrangement may take

0(v4) space to store, which is impractical for complicated assemblies. The implementation

reduces the space requirement by performing a simpler vertical line sweep [42, 56] over the

arrangement of 0(v2) line segments. This algorithm works as follows.

An imaginary vertical line passes over the arrangement. The cells cut by the sweep line

in its current position are kept in a sorted list; the initial list is found by sorting the lines

by slope. Start points and end points of segments and intersections between two segments

are events, kept in a priority queue sorted by i-value. As the sweep-line moves from left

5.7. IMPLEMENTATION 91

Sweep Line

Figure 5.5: An intersection event in the sweep-line algorithm

to right, events are processed and the list of cut cells is changed accordingly. Each event

can be processed in 0(log m) time, so the total running time is 0({m + k) log m), where k

is the number of intersection events. In this case m = v2, so the arrangement calculation

requires 0((v2 + k)log v) steps, where k = 0(v4).

The sweep-line algorithm maintains the graph G(f) for each cell cut by the vertical

line. The graphs for cells intersecting the initial sweep-line are propagated down from an

initial cell at the top of the sweep-line. To process an event, the graph for a new cell is

calculated by stepping from the cell above it in the vertical line. Thus the graphs for all

cells in the arrangement are calculated and checked without keeping the whole arrangement

in memory. The total computing time for finding an appropriate subassembly using the

modified algorithm is 0(n2v4 + v* log v).

Figure 5.5 illustrates the processing of an intersection event. The interior of region

£(2,3) is below edge eu and edge e2 is the lower boundary of region £(1,3). The graphs

for cells /i, /2, and /3 have already been computed; all the graph links have weight one.

When the sweep line processes the intersection of ei and e2 at point p, the cell /4 is entered.

Edge e2 is between /i and /4 in the new sweep line, so G(/4) is computed by stepping

over e2 from G(/i). The interior of £(1,3) is above e2, so G(/4) is obtained from G(h) by

deleting the link from node 1 to node 3. Nodes 1 and 2 form a stongly connected component

of G(/4), so the corresponding parts are a removable subassembly.

92 CHAPTER 5. PARTITIONING FOR EXTENDED TRANSLATIONS

Figure 5.6: An assembly of eight random blocks

The implementation is written in C, and generates configuration obstacles for blocks

instead of tetrahedra; however, the arrangement computation applies to the general case.

The algorithm has not been implemented as a module in GRASP.

5.8 Experiments

To evaluate the practical computing bounds on the implementation, k random disjoint

blocks were generated and linked together to form n complex objects for values of k ranging

between 4 and 128 and n ranging between 2 and 16 (figure 5.6). Since each block has

8 vertices, v = 8fc ranges from 32 to 1024. Links were generated at random. A link

between two blocks signifies that the blocks can only be moved simultaneously. Removable

subassemblies were identified for these assemblies using the described implementation of

the above method.

Table 5.1 shows the computing times and storage requirements observed. For each value

of Jfc and n, 32 samples were run and the average, minimum, and maximum running times

recorded (t, tmin, and tmax, respectively), along with the maximum storage needed (smax)-

In all cases the entire arrangement and all graphs were computed instead of stopping at the

first removable subassembly found.

5.8. EXPERIMENTS 93

V n t lOH/n* ''min ''■max ämar

32 2 0.2 0.78 0.1 0.2 16210

64 4 0.6 0.15 0.5 0.6 19644

128 4 5.1 0.078 4.7 5.4 30908

256 8 48.7 0.046 39.4 48.7 44163

512 8 283.6 0.016 281.0 284.2 61816

1024 16 1150.7 0.0042 1120.8 1243.7 88264

Table 5.1: Computing times for partitioning composite objects consisting of blocks (units:
seconds of CPU-time and 1024 Bytes)

Chapter 6

Maintaining Geometric

Dependencies

The previous two chapters described algorithms to efficiently find all the ways to partition

an assembly into two subassemblies that can be mated in a single operation. However, if

we are willing to restrict the type of assembly operations allowed in our sequences further,

it is possible to gain even greater planning efficiency. In this chapter, assembly sequences

are restricted to be linear, so that every operation mates a single part with a subassembly.

Under this restriction, the generate-and-test paradigm works well, since for an assembly

of n parts, only n candidate operations (one removing each part) are considered for each

subassembly to be partitioned.

Within the context of generating linear assembly sequences, I propose methods to extract

extra information from each geometric calculation and save justifications for the results in a

logical form called a precedence expression. Later geometric calculations can be avoided by

evaluating whether the results are still valid in different assemblies from the ones where they

were originally derived. Experimental results show large acceleration of assembly sequencing

over the basic method for linear sequences.

6.1 Generating Linear Assembly Sequences

Generating only the linear assembly sequences for a product might be desirable in some

situations. Adding a single part at a time could simplify factory layout or reduce the

dexterity needed to place one subassembly into another. To quickly generate one assembly

94

6.1. GENERATING LINEAR ASSEMBLY SEQUENCES 95

Procedure DECOMPOSE(A)
feasible-decompositions <- {};
for each part P € A

A' <— A \ {P};
if CONNECTED(A') and MOVABLE(P, A)

push(({P}, A'), feasible-decompositions);

end; {for}
return(feasible-decompositions);

end; {procedure}

Figure 6.1: Procedure DECOMPOSE

tree, each subassembly could be tested for single-part removal first, only proceeding to

the more time-consuming general case if no single-part operation is feasible. In addition,

Baldwin [5] found that first computing the linear assembly sequences for a product was a

useful heuristic to better order questions to a human designer; a parallel might be found in

automated sequencing.

To find single parts that are removable from an assembly, the methods of the previous

two sections could be applied, and only single-part subassemblies identified. A part P is

removable in direction d if and only if in the directional blocking graph G(d, A), P has no

outgoing arcs. The approach used in this chapter is more efficient in practice for linear

sequencing; the two approaches will be compared in section 6.5.

To generate an AND/OR graph representing all the feasible linear assembly sequences

for an assembly A, procedure DECOMPOSE from figure 3.8 is changed as shown in figure 6.1.

Each part in A is simply tested for removability from the rest of the parts using procedure

MOVABLE, which is similar to SEPARABLE. To comprise a valid subassembly, the comple-

ment A' must be exactly one connected component. A basic version of MOVABLE is shown

in figure 6.2. Since now the algorithm just tests one assembly task for each part in A, it

can operate much more quickly. The AND/OR graph created is a subset of the non-linear

AND/OR graph.

When the linear assembly sequences are generated for the 22-part electric bell (fig-

ure B.3) with 6D cones and path planning turned off, the resulting AND/OR graph has

1509 nodes and 6190 edges, and takes 15 minutes to build. 12,169 calls to procedure MOV-

ABLE are performed. This chapter describes ways to achieve the same set of sequences with

96 CHAPTER 6. MAINTAINING GEOMETRIC DEPENDENCIES

Procedure MOVABLE{P, A)
TetuTn(SEPARABLE({P}, A \ {P}));

end; {procedure}

Figure 6.2: Procedure MOVABLE

a radically smaller amount of reasoning, and correspondingly lower sequencing times.

6.2 Maintaining Movability Dependencies

The obvious algorithm given above for generating the linear AND/OR graph just checks

the movability of each part at each node in the AND/OR graph. However, this repeats

a great deal of computation about the geometry of the assemblies. Because there is little

change in geometry between assemblies and their children in the AND/OR graph, most of

the geometric reasoning about the movability of parts in the parent assembly should still

be valid for the same parts in each child subassembly. For instance, in the crate assembly

of figure 1.1, screw2 is movable whether screwl is present or not, while the cargo is not

movable as long as the box and the lid are there, independent of screwl and screw2.

Essentially, we would like to exploit similarities in the geometry of assemblies and their

subassemblies to reduce the geometric computation necessary to plan assembly sequences.

6.2.1 Precedence Expressions

In the algorithm above there is a very weak link between the geometric reasoning modules

and the symbolic reasoner constructing the AND/OR graph. For each query about the

movability of a part in an assembly, MOVABLE replies only that yes, the part is movable,

or no, it is not. We can significantly reduce the number of geometric reasoning steps by

having the geometric module return an expression stating the conditions under which the

given part would be movable, called a precedence expression or PE. When this PE is still

valid in other assemblies in the AND/OR graph, evaluating it should be much faster than

performing a full geometric check.

In general, a PE cannot fully describe the conditions of movability for a part. It only

gives some sufficient and some necessary conditions. In order to manage this easily, I use

a direct extension of the classical propositional calculus where each expression can take

6.2. MAINTAINING MOVABILITY DEPENDENCIES 97

OR T ? F
T T T T
? T 7 ?

F T ? F

AND T ? F
T T 1 F
1 ? 1 F
F F F F

NOT
T F
1 ?

F T

Table 6.1: Truth tables for GRASP's three-valued prepositional calculus

one of three values: T, F, and ? (true, false, and maybe). PEs are constructed from

atomic propositions P,, each of which represents the assertion that part p, is present in the

assembly under consideration. These P,, along with the reified value ?, are connected with

the standard logical connectors to make precedence expressions. The truth tables of this

calculus are given in table 6.1. I will use M(p, S) to denote the movability of a part p in an

assembly 5, and will write Ev to mean a PE for the movability of p.

Definition 6.1 A precedence expression is defined recursively as follows:

• Any atomic proposition Pi is a PE. The constant ? is a PE.

• IfE is a PE, then -*E is a PE.

• If Ei and E2 are PEs, then the expressions {Ex A E2) and (Ei V E2) are PEs.

6.2.2 Expressing Part Movability

Consider the movability of the cargo in figure 1.1. After calculating that the box allows

the cargo only to move left, where it collides with the lid, the geometric reasoner might

construct the PE

■'cargo = (?A--JW)V-«flw.

When the box and lid are both present, Ecargo evaluates to F, so we conclude that the

cargo is not movable. Whenever the lid is missing, Ecargo evaluates to T, signaling that

the cargo can be removed to the left. Finally, if the lid is present but the box is not,

evaluates to ?, and so .Ecaroo does not give a definitive answer on the removal of the Jcargo

cargo in that assembly.

In general, a PE can express the movability of a part in an assembly that was not

considered in deriving the PE. In an AND/OR graph for an assembly A, each subassembly

S C A is equivalent to a truth assignment from the atomic propositions Pi to the values

98 CHAPTER 6. MAINTAINING GEOMETRIC DEPENDENCIES

M S {thN)\/S
T T T
T F 1

F T T
F F F

Table 6.2: Necessary and sufficient conditions represented in a single formula.

{T,F}, where

-{
T when i € S

F when i £ S

To evaluate a PE in an assembly S means to compute the truth value of the PE under

the truth assignment 5, using the truth tables in figure 6.1. I will write EP(S) to indicate

evaluation of Ep in assembly 5.

The main property that I use to construct PEs is the following. Let (iV,j;e/ be neces-

sary conditions for the movability of part p, and let (SJ)J^J be sufficient conditions for its

movability. Then the expression

£p = (?A/\j\r.)v V Sj (6.1)
iei j€J

will be T whenever one of the Sj is true, F whenever one of the JV, is false, and ? in

all other cases (figure 6.2). When no necessary or sufficient conditions are present, the

necessary (AT) and sufficient (<S) conditions are set respectively to T and F. Furthermore,

only proven necessary and sufficient conditions are used; thus the third line of table 6.2,

which should return a contradiction, will never arise. Expression 6.1 is the standard form

of all the types of PEs that I use below.

6.2.3 Using PEs in Sequencing

The basic idea of geometric dependency maintenance is to keep a set of PEs characterizing

the movability of each part in different assemblies. When a PE evaluates to T or F in

the current assembly, no geometric reasoning is necessary. When all the PEs for a part

evaluate to ?, geometric reasoning must be performed to generate a PE to cover the current

assembly. At this point, there are two issues to address:

1. A large number of PEs might be generated during planning. How will they be orga-

nized to quickly find one that applies in a given assembly?

6.3. LOCAL PRECEDENCE EXPRESSIONS 99

2. How much extra work should be done to make each PE applicable in other assemblies

than the immediate one?

I have developed and tested two approaches to answering these questions, called local and

global precedence expressions.

With local, or inherited precedence expressions, only one PE is kept for each part, and

the PEs are inherited by subassemblies from their parents. No extra reasoning is required

to construct them. Using global precedence expressions, all PEs applying to a part are

kept in a list which might grow quite long, but they are valid throughout the AND/OR

graph. A small amount of extra geometric reasoning is required to ensure their validity in

non-subassemblies of the current assembly. Local PEs are described in the next section and

global PEs are discussed in section 6.4.

Precedence expressions are closely related to the common sense rules used by Hoffman

to reduce computation in the assembly sequencer BRAEN [33]. BRAEN generates non-

monotone assembly sequences for curved shapes, a task which requires large amounts of

geometric calculation. Rules such as the following are used:

• If part P can translate a distance x in direction d, and P is moved y units along d,

then P can now translate x — y in direction d.

• The freedom of part P is unchanged when parts that do not interfere with the motion

of P are moved such that they still do not interfere with its motion.

These simple rules save an order of magnitude in computation. Since GRASP is limited

to monotone sequences, PEs need only express whether a part is removable or not, instead

of how far it can be moved. However, because the assemblies considered are much more

complicated than those in [33], more attention must be paid to how PEs are constructed

and organized, to ensure maximum use of geometric results.

6.3 Local Precedence Expressions

Passing down movability properties from an assembly to its subassemblies can be imple-

mented by passing down precedence expressions. To prove that the PE Ep, inherited by a

subassembly S C A, still denotes movability in S, we only need implications of the form:

V5 C A, S => EP(S)

-rf =* -.£„(5) (6.2)

100 CHAPTER 6. MAINTAINING GEOMETRIC DEPENDENCIES

Procedure MOVABLE(p, S)

A «- A-PARENT-OF(S);
Es «- EA-

if Ep(S) evaluates to
T: return(T);
F: return(F);
?: El — LOCAL-PE(p, 5);

if £f (S) evaluates to T
return(T);

else return(F);
end; {if}

end; {procedure}

Figure 6.3: Procedure MOVABLE, using local precedence expressions

where M and S are necessary and sufficient conditions on the movability of p in A. Several

types of expressions of this form are given in the next section.

The MOVABLE procedure of figure 6.2 is replaced by a more sophisticated version given

in figure 6.3. MOVABLE still must return T if a part p is removable from an assembly 5 and

F if it is not. The new version also has the side effect of setting the PE of a part. The PEs

of all parts are ? in the initial assembly node. There is one PE associated with every part

in each node of the AND/OR graph; E% denotes the PE for movability of part p stored in

assembly S. Real geometric computation only occurs in the LOCAL-PE procedure, which is

called when the movability of the part cannot be deduced symbolically from the inherited

PE. LOCAL-PE mirrors the old MOVABLE procedure, but instead of just returning T or

F, it constructs a PE describing the movability of p in the assembly and its subassemblies.

Local PEs are only evaluated in subassemblies of the assembly for which they were created,

and their constructions below take advantage of this fact.

Notice that in general, each node in the AND/OR graph has many parents, and so the

choice of parent assembly from which to inherit is arbitrary. It would be possible to combine

the PEs from the different parents for the child node's expression, sometimes saving more

geometric computation than with the single-inheritance method. However, it is not clear

that the savings would outweigh the extra overhead and complexity of combining PEs.

I have developed and tested three kinds of local PEs, called simple, contact, and

6.3. LOCAL PRECEDENCE EXPRESSIONS 101

descriptive1 precedence expressions. They axe increasingly complex and accurate in de-

scribing symbolically when a part is movable.

6.3.1 A Simple Sufficient Condition

When parts are removed from an assembly of rigid parts A, the free space for the remaining

parts is increased. Thus if a part is movable in A it is guaranteed to be movable in any

subassembly S of A:

V5CA, VpG5, M(p,A)=>M{p,S) (6.3)

The simple type of PE takes advantage of this fact. Simple PEs are similar to the subset

rule of Bourjault and others [14, 5]. Hörnern de Mello [34, page 168] also mentions the

possibility of performing a check similar to the one that simple PEs achieve, but does not

elaborate.

From relation 6.3, whenever a part p is movable in an assembly A, T is a sufficient

condition for M(p,S). Therefore, from expression 6.1, the local PE is set trivially to T.

When subassemblies inherit their PEs from A, geometric computation will not have to be

done for parts that were movable in A. On the other hand, the movability calculation

will need to be redone in subassemblies of A for each unmovable part. For instance, after

expanding the root node in the crate assembly in figure 1.1, the simple precedence expression

EaCrtw2 will be T, and will not need to be recomputed in the subassembly with screwl

removed.

6.3.2 A Necessary Condition on the Constraining Parts

In the next version, contact precedence expressions, the geometric module supplies the

planner with a list of parts that constrain a part p in the assembly A. The set of constraining

parts C(p, A) is the set of all parts p' in A such that

• p' is in contact with p, or

• in an extended motion allowed by the contacts, p collides with p', or

• p' is one of the parts returned by the path planner as constraining p.

'In previous work [65, 66] descriptive local PEs were just called local PEs. With the advent of global

PEs, a new term was required.

102 CHAPTER 6. MAINTAINING GEOMETRIC DEPENDENCIES

See section 3.5 for a description of the interface to a path planner. In subassemblies of

A, movability does not need to be recomputed when all of these parts are still in the

subassembly:

VS C A, Vp € 5, -.Af(p, A) A (C(p, A)CS) =*> ^M(p, S) (6.4)

From relations 6.2 and 6.4, we can infer that when p is not movable in A, LOCAL-

PE(p, A) must return an expression

£PU) = ?A- A P<-
q€C(p,A)

When inherited by a subassembly S C A, Ep will evaluate to F as long as all of the original

constraining parts C(p, A) are present in S. When one of them is removed, the truth value

of a Pq will become F, causing EP(S) to evaluate to ?. Geometric computation will then

have to be done for p in S.

In addition, LOCAL-PE(p, A) returns Ep = T when p is movable, so the simple sufficient

condition of the previous section is maintained.

For instance, after expanding the root node A in the crate assembly, the contact prece-

dence expression for the cargo in A will be

Ecargo = ? A ->(Pbox A P/,<f)

because the cargo is constrained to move left by the box, and sweeps into the lid in that

direction. In subassemblies resulting from removing either or both screws, the cargo will

still be unmovable but no geometric calculation will be done.

6.3.3 Necessary and Sufficient Conditions

In the final and most complicated version, descriptive precedence expressions, the geometric

reasoner returns a local PE even more closely stating the conditions under which a part

might be movable. The parts in contact with p in A are grouped such that all the parts in

a group constrain the local freedom of p in the same way, either along the same plane or

in parallel cylindrical contacts. Moreover, the parts swept into along one direction are also

grouped together. In subassemblies of A, p will not be movable unless all of the parts in one

such group are missing. Furthermore, if all swept-into parts in one direction are missing, a

sweep in that direction must be collision-free, and so p is guaranteed to be movable. Finally,

6.3. LOCAL PRECEDENCE EXPRESSIONS 103

the constraining parts returned by the path planner are grouped together, and if all of these

are present, p cannot be movable:

V5Cil,Vp€5,

^M(p, A) A [A/€*(M) V,€/ 9 € S

A[Ad€P(M)Vr6dr€S]

hV{p,A)CS =*-M(p,S) (6.5)

Vd€D(M)-V.€^€5 =>M(p,S) (6.6)

T(p, A) is a set indexed by facets of the local freedom cone of p in A, where / is the set

of parts constraining a given facet; V(p, A) is a set indexed by directions of sweep, d being

the set of parts swept into when p moves along one given direction; and V(p, A) is the set

of parts returned by PATH-PLAN as constraining p in A.

Thus when a part is not movable, we have one necessary (6.5) and one sufficient (6.6)

condition, so the full expression 6.1 applies and LOCAL-PE(p, A) should return an expression

Ep = ?A -(A V^A A yprA A p)
\/€^(p,A)<je/ d€V(p,A)r€d t€V(p,A) I

v-, A Np>
deV(p,A) »ed

In fact, LOCAL-PE(p,A) returns an equivalent simplified expression

Ep = TA-II A V^A A p<
\}ZHv,A) 96/ t£V(p,A)

v- A V*
d£D(p,A) »€d

In addition, when p is movable in A, LOCAL-PE returns the simple local PE T.

For example, without calling the path planner, the descriptive local PE for the cargo

after the expansion of the root node A will be2

Ecargo = [? A ^Pbox] V -.Jfa

and the local precedence expression for the lid after expanding A will be

End = ? A -i[(P,crewl V Pscrewl) A Pbox]

Since the lid is completely constrained by contacts, no sweep term is included in the

descriptive PE. Notice that using contact PEs, GRASP would recompute the movability of

2Actually, GRASP does not simplify its precedence expressions, and so Pfcoi is listed three times because
the box contributes three facets to the local freedom cone of the lid.

104 CHAPTER 6. MAINTAINING GEOMETRIC DEPENDENCIES

the lid after removing one screw; this is avoided with descriptive PEs. Section 6.6 presents

theoretical and experimental evaluation of the different types of local PEs.

All three varieties of local PEs given above can be constructed with little additional

geometric calculation. The parts in contact with the moving part must be calculated, and

all parts must be checked for collision along each locally free direction tried. Grouping the

parts according to their facets on the freedom cone can be accomplished while building the

cone. Finally, a standard path planner might be modified to provide a set of constraining

parts as discussed in section 3.5.

6.4 Global Precedence Expressions

The second type of precedence expressions I have tested are called global PEs. Rather than

being inherited down the AND/OR graph from assembly to subassembly, global PEs apply

throughout the AND/OR graph. A list of global PEs is kept, indexed by the part they

apply to, called PE{p). When procedure MOVABLE is called for a part p in an assembly 5,

all the PEs in PE(p) must be evaluated. If a PE evaluates to T, it asserts that p is movable

in 5; if one evaluates to F, the sequencer concludes that p is not movable. Only when all

the PEs for p evaluate to ? in S is the geometric reasoner called to construct a new PE.

The new PE for p does not replace any others, but is added to the list PE(p). Obviously, if

one PE evaluates to T and another to F for the same part in the same assembly, then one

of the PEs was incorrect; the types of global PEs below are carefully designed to keep this

from happening.

The MOVABLE procedure for global PEs is shown in figure 6.4. MOVABLE still must

return T if a part p is removable from an assembly S and F if it is not. The array PE(p)

starts out empty for all p. Real geometric computation only occurs in the GLOBAL-PE

procedure, which is called when the movability of the part cannot be deduced symbolically

from any of the PEs in PE(p). GLOBAL-PE is much like the procedure LOCAL-PE but it

must do some extra reasoning to ensure global validity of the resulting PE.

To prove that a global precedence expression Ep, evaluated in an assembly S in the

AND/OR graph with root assembly A, correctly denotes movability of p in S, we need

implications of the form:

VS C A, S=> EP(S)

-v/V => ->Ep(S) (6.7)

6.4. GLOBAL PRECEDENCE EXPRESSIONS 105

Procedure MOVABLE{p,S)
for each Ep € PE(p)

if EP(S) evaluates to
T: return(T);
F: return(F);

end; {for}
Ep*- GLOBAL-PE(p,S);

Vush(Ep,PE(p));
if EP(S) evaluates to T

return(T);
else return(F);

end; {procedure}

Figure 6.4: Procedure MOVABLE, using global precedence expressions

where Af and S are necessary and sufficient conditions on the movability of p in the root

assembly A. Note that whereas local PEs need only be valid in subassemblies of the node

in which they were derived, global PEs must be valid in any assembly. Several types of

expressions of this form are given below.

Since all the PEs generated for a part p are kept in a list PE(p), the list might contain

a very large number of PEs as sequencing progresses. In addition, at each node in the

AND/OR graph all the expressions in PE(p) must be evaluated to determine whether

they are informative in the current assembly. If the length of PE(p) becomes very large,

evaluating all the PEs for p might take as long as the geometric computation itself, and

possibly far longer. Several schemes are possible to attempt to prune the set of PEs for a

part. A simple one is to record how often each PE proves "useful"—how often it evaluates

to T or F—compared to the number of times it is evaluated. If a PE drops below a threshold

level of usefulness, it could be removed from PE(p). Another method might examine PEs

to find whether one PE subsumes another. In experiments with real assemblies the number

of PEs required to generate the entire AND/OR graph has been quite low, and so this

possible problem has not materialized.

I have developed and tested three kinds of global PEs analogous to the three kinds of

local PEs, called simple, contact, and descriptive global precedence expressions. Each bears

a strong resemblance to the corresponding kind of local PE, but has slight differences due to

the fact that local PEs implicitly can only be evaluated in subsets of the original assembly,

106 CHAPTER 6. MAINTAINING GEOMETRIC DEPENDENCIES

while global PEs must be valid throughout the AND/OR graph. For this reason, each kind

of global PE must perform some calculations with respect to the root assembly A of the

AND/OR graph.

6.4.1 A Simple Sufficient Condition

Like simple local PEs, a simple global PE represents a sufficient condition on the movability

of a part p. Given any direction d, there is a set of parts V(p, d, A) constituting all the parts

of A that prevent p from translating to infinity along d. In any assembly 5 that shares no

parts with V(p,d,A), p is guaranteed to be removable in direction d:

Vd, V5 C A, Vp € S,5 n V{p, d,A) = Q=> M(p, S) (6.8)

Furthermore, if p is removable along d in an assembly A, then the set of swept-into parts

must be disjoint from A. Using M(p, d, A) to denote the movability of p along direction d

in assembly A,

Vd,VACA,VpeA,M(p,d,A)=>Ar\V(p,d,A) = <l) (6.9)

From equations 6.8 and 6.7, we can infer that when p is movable along direction d in 5,

GLOBAL-PE(p, A) must return an expression

Ep = ? V -. V Pq

q€V(p,d^)

Equation 6.9 ensures that this PE will evaluate to T in A and that once p is found to be

movable in A, the geometric reasoner need only sweep p against the parts in .4 \ A to con-

struct Ep. Thus geometric computation will be avoided for p in all assemblies encountered

later in which d is a valid removal direction: On the other hand, when p is fully constrained

in A, Ep is set to ?, and contributes nothing to future calculations. For example, the simple

global PE for the cargo in the assembly {cargo, box} will be

If path planning is turned on and the path planner returns a valid path for p, then this

path can be checked for collisions with the parts A \ A and a simple global PE constructed

in the same way as for a sweep direction d. H a valid path is not returned by the path

planner, as with the current interface to a human engineer, then a set of constraining parts

cannot be computed, and a simple global PE cannot be built.

6.4. GLOBAL PRECEDENCE EXPRESSIONS 107

Bourjault [14] and Baldwin [5] use a subset rule and its contrapositive the superset rule to

reduce the number of questions to the human. The subset rule states that if a subassembly

Si can be removed from subassembly S2 = A \ S, then Si can be removed from any subset

of S2. This resembles the effect of simple global precedence expressions. Contact global PEs

(below) resemble the superset rule but are more discerning, because they identify a small

subset of parts that constrain the part p. In [5,14] the subset and superset rules are used in

nonlinear sequencing. However, for large assemblies the cost of the generate-and-test cycle

would make such use prohibitive (see Chapter 4).

6.4.2 A Necessary Condition on the Constraining Parts

Contact global PEs are a straightforward extension of contact local PEs. When a part p

is not movable in assembly A, the geometric module supplies the sequencer with a list of

constraining parts C(p,A). This list is exactly the same set of parts given in section 6.3.2

for contact local PEs. Since C{p, A) is sufficient to fully constrain p alone, any superset of

C(p, A) will also constrain p:

VA, S C A Vp € A, -M(p, A) A C(p, A)CS=> -M(p, S) (6.10)

From equations 6.7 and 6.10, we can infer that when p is not movable in A, GLOBAL-

PE(p, A) must return an expression

£„ = ?A- A Pr
qeC(p,A)

In any assembly S C A, Ep will evaluate to F as long as all of the original constraining parts

C(p, A) are present in S. When one or more are missing, the truth value of a Pq will be F,

causing EP(S) to evaluate to ?. Ep will thus contribute no knowledge about the movability

of p in S.

Note that when p is not movable, the local and global PEs are the same. However, when

p is movable in A, the GLOBAL-PE(p, A) returns the simple global PE given above. Thus

the simple sufficient condition of the previous section is maintained.

Contact global PEs are somewhat similar to the superset rule of Bourjault and others [14,

5], but limited to single parts and more accurate. The superset rule states that when a

subassembly Si is not removable from another subassembly S2, then Si is not removable

from a superset S3 D S2. Contact global PEs are constructed from the geometrically

108 CHAPTER 6. MAINTAINING GEOMETRIC DEPENDENCIES

constraining subset of 52, and thus will capture more cases S3. By deriving the symbolic

constraints directly from the geometry of the assemblies, a great deal of reasoning is saved

in some situations.

6.4.3 Necessary and Sufficient Conditions

Descriptive global PEs are the most powerful and accurate type of PE I have tested. The

groups of parts used in their creation are either the same or straightforward extensions of

the groups for descriptive local PEs:

• As before, the parts in contact with a part p in an assembly A are grouped according

to the facets / £ F(p, A) of the local freedom cone to which they contribute.

• The parts swept into along each attempted sweep direction d are grouped together.

But instead of being swept against the parts of A, p is swept against all the parts in

the root assembly A to form a list of directional blocking sets V(p, A). V is used to

form a condition of global validity for each d.

• The constraining parts V(p, A) returned by the path planner are grouped together as

with local PEs.

In other assemblies S in the AND/OR graph, the presence of subsets of f, V, V become

sufficient and necessary conditions for the movability of p:

VA,SCA,Vp<EA,

M(p,A) A[A/€;F(M)V,€/9€S]

A[ArfeD(p,»Vr6dr€S]

AV(p,A)CS =>^M(p,S) (6.11)

Vdez>(p,>»)",V.edse5 =>M(p,S) (6.12)

When a part p is not movable, the necessary (6.11) and sufficient (6.12) conditions can

be combined in the form of expression 6.1:

Ep = ?A^(A VAA A P) v- A V^3
d€V(p,A) aed

When p is movable in A, a simple global PE is returned.

6.5. NONLINEAR SEQUENCING 109

In almost all cases, global PEs require extra geometric computation—sweeping p against

parts not in the assembly being considered—to construct PEs that are valid anywhere in

the AND/OR graph. Some of these part-part sweeps would never be checked in building

the AND/OR graph, were global PEs not in use. In experiments the other savings in

computation have overshadowed this effect (see below).

6.5 Nonlinear Sequencing

So far in this chapter, only linear assembly sequences have been considered. However,

precedence expressions could in theory be applied to nonlinear sequencing. For instance, a

subassembly can be considered as a part for the purpose of movability, as long as it remains

stable throughout the removal motion. From this observation, a straightforward extension

to the non-linear case was outlined in [66]: instead of keeping a PE Ev for the movability

of each part p in the assembly A, the planner would maintain expressions Es for each

subassembly 5 of A. When Es evaluates to T or F in a node A', then S is removable or not

removable, respectively. The Es could still be constructed from elementary propositions P,

asserting the presence of parts i. Thus, after expanding the root node in the crate assembly

of figure 1.1, the precedence expression for the subassembly {box,cargo,screwl} might

be:

E{boXicarao^rewl} = ? * -.[(fi« V Ptcrew2) A P,id] (6.13)

However, in spite of the theoretical validity of maintaining dependencies for subassem-

blies, this method is impractical. As noted in section 4.1, an exponential number of sub-

assemblies might be candidates for removal at any one node in the AND/OR graph; keeping

PEs for all of these is unmanageable. The use of precedence expressions as above depends

strongly on linear assembly sequences being generated. Thus the partitioning methods of

Chapters 4 and 5 are far better suited when nonlinear sequences are desired.

On the other hand, the NDBG encodes more information than is necessary when linear

sequences are desired. This is because a new cell is created in the NDBG for every possible

change in the blocking relationships between subassemblies of the product, instead of single

parts. For instance, consider the translational contact NDBG for an assembly A of n parts,

each having c contact constraints with other parts, for k = en total constraints. If no two

constraints generate the same great circle in the arrangement, ü(n2c2) cells will be created.

To check the local freedom of each part in each cell will then require Q(n3c2) time. On

110 CHAPTER 6. MAINTAINING GEOMETRIC DEPENDENCIES

the other hand, testing all parts individually using the local freedom methods of Chapter 3

requires only 0(nc log c) time.

Precedence expressions accelerate linear sequencing even more. For instance, PARTI-

TION generates the full AND/OR graph of nonlinear assembly sequences for the 22-part

electric bell in 2186 seconds; using global PEs, the set of linear sequences is found in 51

seconds (see below). The respective count of AND-arcs in the two graphs is 21,315 and

6,190, so the numbers are not directly comparable, but precedence expressions clearly work

faster when linear sequences are desired.

6.6 Theoretical Complexity

Precedence expressions were introduced to enrich the communication between the assembly

sequencer and the geometric reasoning module, in order to speed up the process of assembly

sequencing. This section presents a theoretical analysis of local PEs for certain simple types

of assemblies. I have not been able to characterize the types of assemblies in which global

PEs do better than local PEs; the results in this section also apply to them. I assume

that the number of calls GC to the geometric reasoner is the overriding factor for the total

running time of the algorithm to generate the AND/OR graph. This assumption is not fully

borne out by the experiments in the next section, but for the simple assemblies considered

here it is a reasonable assumption.

Because of the complex ways in which the geometry of an assembly can affect the size of

its AND/OR graph, it is difficult to find meaningful bounds on the computation required

to build it. For instance, given an assembly with N parts, the number of nodes in the

AND/OR graph can range from 2N — 1 when there is only one legal sequence, to 2^ - 1

when all sequences are legal. Below we analyze the complexity for three types of assemblies

and for each type of local precedence expressions.

Consider the situation in which all parts are free to move in the initial assembly, but

only one sequence satisfies stability considerations, as in Figure 6.5a. With N parts, the

AND/OR graph has N — 1 non-terminal nodes. The time required to generate the graph

using each type of precedence expression is:

None At each step in the generation of the AND/OR graph, all of the parts in the sub-

assembly being considered must be checked for movability. Therefore, without prece-

dence expressions GC = EÜö1 N-i= ^^ = 0(N2)

6.6. THEORETICAL COMPLEXITY 111

JJJJ.
a: A stack of plates b: A stack in a box c: A trivial assembly

Figure 6.5: Three simple types of assemblies

Simple Using simple precedence expressions, the accessibility will be computed for the

original N parts, finding each expression to be true. These expressions will be inherited

downward, and no more geometric reasoning will be necessary. Thus GC = 0(N).

Contact and Local The complexity is the same as in the simple case.

In assemblies like the one in Figure 6.5b with N-l plates inside a box, only one sequence

is valid because just one part is removable in each subassembly. Again the complexity

depends on the type of precedence used:

None The obvious algorithm will again require GC = 0(N2) calls to the geometric rea-

soner.

Simple In this case simple precedence gains us nothing. In each node, only one part is

movable, so no true precedence expressions will be inherited. As a result, GC =

0(N2).

Contact Since each plate p, is constrained by the box and parts p,_i and p,+i, when we

remove part p;+i only the contact precedence expressions of the box and part p, will

evaluate to maybe, forcing a geometric call. Thus the number of calls will be 2 at each

step except the last where only the box remains, so GC = N + 2JV - 1 = O(N).

Local The local precedence expressions for the plates will result in the same behavior as

in the contact case. However, since the last plate p/v-i contributes to each of the

constraints on the box, the box's precedence expression will not evaluate to maybe

until pN-i is removed, so GC — N + N - 1 = O(N).

Finally, consider an assembly in which all sequences of assembly are valid, such as in

Figure 6.5c. Without precedence expressions, the accessibility of every part in each of the

112 CHAPTER 6. MAINTAINING GEOMETRIC DEPENDENCIES

Local Geometric Time in
Precedence Calls Seconds

none 14 9.0
simple 12 8.8
contact 9 8.5

local 6 8.9

Table 6.3: Planning times for the crate assembly

2 - 1 nodes would be computed. Using simple (or any other) precedence expressions, the

accessibility would be found to be true for each part in the final assembly. This information

would be inherited down the tree, making the total number of geometric calls N, even

though there are 2N - 1 nodes in the AND/OR graph.

6.7 Experiments

Precedence expressions of different types have been used to plan the assembly sequences

for a variety of assemblies, to evaluate their utility in accelerating the sequencing process

in real assemblies. The assemblies in this section are described in Appendix B.

6.7.1 2D Assemblies

The following 2D assemblies were planned for using the 2D prototype of GRASP. Neither

global PEs nor path planning were implemented in the prototype, so experimental data is

not available for these techniques on 2D assemblies. In addition, sweep caching (section 3.4)

was not included in the 2D prototype.

Table 6.3 shows the number of geometric calls required for the prototype of GRASP

to generate the full AND/OR graph for the crate assembly in figure 1.1 using each kind

of local PE. The dedicated reader can check it by hand to help understand the method.

Note that the time to generate the graph is greater using descriptive local PEs than with

contact PEs; the geometry is so simple that the time required to create complex precedence

expressions outweighs the savings.

A more interesting example is the transmission with which De Fazio and Whitney [25]

illustrate their method for generating assembly sequences. Figure 6.6 shows the linear

assembly sequences for the transmission without bolts, represented as a state graph. The

unassembled state is not shown. Assemblies are shown by filling the box corresponding to

6.7. EXPERIMENTS 113

Figure 6.6: Assembly sequences for the transmission

Local Geometric Time in
Precedence Calls Seconds

none 2508 1151
simple 2035 943
contact 669 445

local 121 99

Table 6.4: Planning times for the transmission, with bolts

each liaison that has been established in that assembly (liaisons 1-6 in the first row, etc.).

For example, the leftmost assembly in the third row down has all connections established

except for 4, 5, 16, 17, and 18; this corresponds to the assembly with all parts except K

and L.

The set of sequences shown in figure 6.6 is not quite the same as the ones given in [25].

These differences are a result of GRASP generating its AND/OR graph from geometry

alone, while De Fazio and Whitney compute their sequences from precedence constraints

incorporating human geometric and mechanical insight. For example, they find six possible

ways to start the assembly process; GRASP finds eight (the bottom row of figure 6.6). One

of these, the assembly consisting of parts C and D, cannot result in a finished assembly

because the bolts connecting C to A are not accessible when C and D are connected. Because

the bolts are not represented explicitly, GRASP cannot take this into account. However,

when GRASP is run on the full model including bolts, it does not find any sequences using

the assembly of only C and D.

114 CHAPTER 6. MAINTAINING GEOMETRIC DEPENDENCIES

Precedence One Sequence AND/OR Graph
Type GC Time GC Time
none 189 28 12169 878

local
simple

contact
descr

150
48
32

21
15
15

6757
950
718

458
98
83

global
simple

contact
descr

150
48
32

22
22
22

6002
49
34

490
63
51

Table 6.5: Planning times for the 22-part electric bell

The number of geometric calls and the time required for GRASP to generate the

AND/OR graph for the transmission, with bolts as separate parts, is shown in table 6.4.

The resulting AND/OR graph has 295 subassembly nodes and 668 AND-arcs.

6.7.2 3D Assemblies

Due to the more complicated reasoning required in three dimensions, PEs are more impor-

tant than in 2D to avoid needless recalculations. In the following experiments, GRASP was

run in a fully autonomous mode, with 6D local freedom checking and path planning turned

off. Sweep caching was enabled.

The AND/OR graph representing the linear sequences of assembly for the electric bell

of figure B.3 has 1509 nodes and 6190 AND-arcs. Table 6.5 shows the number-of geometric

calls, the sweeping calculations, and the time required to generate an AND/OR graph for

the bell assembly, using both local and global PEs3.

Several points should be noted about table 6.5. First, precedence expressions do not save

much time when only one sequence is found, since the other costs outweigh the geometric

calculation time. In addition, global PEs take more time to generate a single sequence than

local PEs, due to the extra geometric calculation to construct them.

Note that using global descriptive PEs, about 1.5 calls to the geometric reasoner were

necessary for each part in the bell, on average. This means that for each part, one or two

PEs were sufficient to characterize its movability in all 1509 subassemblies that occur in

linear assembly sequences for the bell. However, the added sweeping and the overhead time

of building the graph made the overall time savings of global over local PEs somewhat

3These figures differ from those in [66] because threaded contacts are considered and an error was corrected
in the model of the bell.

6.7. EXPERIMENTS 115

Precedence
Type Answers

Geometric
Calls

User
Queries

Time in
Minutes

none Yes/No — > 1200 >60
local Yes/No

Constrain 841
> 1200

50
>60

10
global Yes/No

Constrain
298
40

263
6

18
3

Table 6.6: Path planning experiments with the electric bell

smaller.

6.7.3 3D Assemblies with Path Planning

When the path planning module is enabled, precedence expressions become critical. An

automated path planner might take anywhere from a minute to several hours to find a

path for a part, depending on the path planning method employed. When an engineer is

answering path planning questions, each might be answered in a few seconds. However, the

user will never use the assembly sequencer if it requires answering hundreds of questions.

Table 6.6 shows the results of experiments on the 22-part electric bell when path planning

is enabled. The resulting AND/OR graph has 1747 nodes and 6965 edges. The following

five planning methods were tried:

• Using no PEs, each path planning query was answered with Movable or Not Movable—

yes, the part can be removed, or no, it cannot. This is the most straightforward

approach to generating the graph.

• Using descriptive local PEs, yes/no answers were given as before.

• Using descriptive local PEs, the queries were answered by identifying a constraining

set of parts when the part cannot be removed (as described in section 3.5).

• Using descriptive global PEs, each query was answered with a yes/no answer.

• Using descriptive global PEs, constraining sets were identified.

In the first two cases, over 1200 queries were answered over the course of an hour, generating

only a small fraction of the graph, after which the experiments were stopped. Table 6.6

shows the results for the other three cases.

116 CHAPTER 6. MAINTAINING GEOMETRIC DEPENDENCIES

As argued in section 3.5, an automatic path planner could be modified to produce the

list of constraining parts with little extra computation. Since global PEs extract the most

from each geometric calculation, the number of path planning calls will be minimized. For

instance, to generate the full AND/OR graph for the 22-part bell requires only 6 path

planning calls using global PEs.

The values in table 6.6 compare very favorably with the results of other papers in

interactive assembly sequencing:

• Bourjault [14] and Baldwin [5] require yes/no answers to user queries. To reduce

the number of queries, they invoke subset and superset rules that have the same

effect as global contact PEs with yes/no answers. GRASP answers more questions

automatically than either of those systems, yet the query count is still quite high for

large assemblies.

• DeFazio and Whitney [25] ask only 2m questions for an assembly with m liaisons.

However, the answer to each question is a logical expression defining all situations in

which each liaison can be established. These expressions can be very complex, and it

is difficult for a human to answer them accurately.

• Using global PEs with a list of constraining parts is a powerful compromise between

the previous two approaches. A great deal of information is extracted from each

answer. However, the answers are easy to give and accurate, since they only require

the user to reason about the constraining parts in a single situation. As seen in

table 6.6, this results in a very low query count, while maintaining simplicity and

accuracy.

Table 6.7 shows the number of user queries required to find a single assembly sequence

for several additional assemblies. For these assemblies, generating a full AND/OR graph is

not feasible. The sequences were generated using no PEs, global PEs with yes/no answers,

and global PEs with constraining sets identified.

6.7. EXPERIMENTS 117

Number
Assembly of Parts NoPEs Yes/No Constrain

Bell 22 37 37 4

Engine 30 85 85 5

Skin 36 32 32 4

Engine 42 173 144 7

Table 6.7: User query count to find a single sequence using PEs

Chapter 7

Conclusion

In a concurrent engineering system, an automated assembly planner would be invaluable

to give immediate manufacturing feedback. Features that make a product impossible or

difficult to assemble could be identified when they are introduced into the design. The

designer could ask "what if questions and quickly evaluate the impact of design changes

on the assembly process. As a result, the designer would be relieved of the tedium of current

methods to assess the assemblability of the product, while receiving manufacturing feedback

early in the design process, when it can have the most impact.

7.1 Geometric Assembly Sequencing

Because it identifies constraints on assembly plans resulting strictly from the design of

the product, assembly sequencing can give design-for-assembly feedback early in the design

process, when a specific manufacturing scheme has not yet been chosen. However, designers

will not tolerate a design tool that requires them to add tedious details to a product model,

that gives spurious assembly plans, or that only yields results after days of processing.

Therefore, to serve as an interactive design tool, an assembly sequencer will need to be

autonomous, capable, and fast. This thesis presents significant progress toward realizing

such an assembly sequencer.

A basic approach to assembly sequencing directly from geometric models of a product

was described. The approach includes practical methods to assess the geometric feasibility

of assembly operations; these methods are fast in practice yet find the great majority of

assembly operations in real products. GRASP, the implementation of this basic approach,

118

7.2. REPRESENTING GEOMETRIC ASSEMBLY CONSTRAINTS 119

successfully planned for the assembly of a number of real products, and served as a valuable

testbed in which to evaluate the more advanced techniques presented.

A new data structure, the non-directional blocking graph, was introduced to represent

the blocking relationships between parts in an assembly. The NDBG is the basis of sev-

eral polynomial-time methods to efficiently find subassemblies that are removable from the

product under varying constraints on motions. The NDBG is incremental in two ways:

• It can be constructed in an incremental fashion, using crossing rules to compute the

blocking relationships in neighboring cells. In fact, the whole structure need not be

stored at once; each cell can be discarded after traversing it, to minimize storage

requirements.

• On the other hand, the NDBG for a product can be built incrementally as the product

is designed, updating it to account for design changes. When a design change is small,

the change to the NDBG can be computed much more quickly than it can be built

from scratch. Using this incremental construction, a sequencer can respond to user

queries about the assembly process much more quickly.

When applied to the case of general rigid motions, the algorithm efficiently computes the set

of subassemblies that satisfy a powerful, necessary constraint on binary assembly operations

with rigid parts.

Finally, a method was described wherein the results of geometric calculations are saved

in precedence expressions, which are evaluated to answer similar geometric queries later in

the sequencing process. The method results in greatly reduced geometric computation and

a corresponding acceleration in sequencing. When used to represent the constraints on part

motion identified by a path planner, precedence expressions reduce by several orders of

magnitude the number of path planning problems that are necessary to complete assembly

sequencing.

7.2 Representing Geometric Assembly Constraints

The choice of sequence representation is a crucial decision in designing an assembly sequenc-

ing system. This thesis provides several observations about practical methods to represent

sets of geometrically valid assembly sequences.

120 CHAPTER 7. CONCLUSION

7.2.1 AND/OR Graphs

The AND/OR graph is a powerful explicit representation for assembly sequences of small

assemblies, and it is a useful formalization of the space of possible sequences. However, it is

not a practical representation for assembly sequences of complex products with many parts.

For instance, in Chapter 6 the AND/OR graph of linear sequences could not be generated

for experimental assemblies of 30 or more parts.

Several techniques exist to extend the usefulness of explicit AND/OR graphs to some-

what larger assemblies; however, none can completely overcome the combinatorics of rep-

resenting so many subassemblies. For instance, the implicit AND/OR graph of sequences

might be searched for an optimal AND-tree according to some evaluation function, using

a search algorithm such as AO* and an appropriate heuristic [49]. Additional AND-trees

could be produced as needed. The heuristic would have to be quite powerful to avoid gen-

erating a large subset of the AND/OR graph, and such heuristics are usually difficult to

create. Fasteners may be not represented as individual parts in the assembly to reduce the

part count, as in [34]; however, the AND/OR graph will still grow quickly as the "real" part

count increases. Finally, parts and fasteners can be clustered according to heuristics or user

directives into preferred subassemblies, orders of part insertion, and so on, to reduce the size

of the search space [10]. With such clusters, one can no longer guarantee that a sequence

will be found if one exists. Combining the above techniques might yield an AND/OR-based

sequencer that could handle some assemblies of 50 parts, but it is clear that more concise

representations of assembly sequences must be found.

7.2.2 Implicit Representations

Hörnern de Mello [34] describes several implicit representations of assembly sequences. An

implicit representation (briefly discussed in section 2.5) consists of a set of rules restricting

the operations in a sequence. In principal, the set of rules may be quite compact. However,

in [34] the rules are derived from a complete AND/OR graph. Instead of deriving the

constraints from geometry, the geometry is used to validate operations, and the rules are

abstracted from the operations. This has two drawbacks. First, the AND/OR graph must

be constructed explicitly before the rules can be found. Second, the resulting set of rules

is very complex and must be simplified to obtain a concise representation. In contrast,

this thesis has presented two implicit representations that are derived directly from the

7.2. REPRESENTING GEOMETRIC ASSEMBLY CONSTRAINTS 121

geometry of the product itself.

7.2.3 Non-Directional Blocking Graph

By representing the blocking relationships between the parts of an assembly in all direc-

tions, an NDBG implicitly defines a set of assembly sequences for an assembly A. Namely,

an assembly sequence r satisfies the NDBG for A if for every assembly operation in r par-

titioning S into 5i and 52 = 5 \ 5i, there exists a cell / in the NDBG such that no arcs

connect 5a to 52 in G(f). There are often an exponential number of geometrically feasible

sequences for an assembly, yet the NDBG for A is always of polynomial size, and a sequence

satisfying it can be found in polynomial time.

The non-directional blocking graph can be extended in several ways. The most general

forms described here apply to infinitesimal rigid motions and extended translations, but

the NDBG is not inherently limited to any type of motion. However, its construction

for more complex motions may be difficult. An obvious variation would allow extended

screw motions, i.e. extended rigid motions defined by a translation vector and a rotation

about a constant axis parallel to the translation. For extended screw motions, the cells

in the NDBG will no longer be bounded by linear constraints, greatly complicating the

partitioning algorithm.

The NDBG might also be extended to support assembly operations that require more

than two hands. For instance, when a product must be designed in such a way that it

has no binary assembly sequence, this method could be invoked to find 3-handed assembly

operations to construct it. Each 3-handed blocking graph G{di,d2,A) will contain infor-

mation on the blocking relationships between all pairs of parts in A when some parts are

stationary, others are moving in direction d\, and still others are moving along d2. In this

case the possible composite motions would reside in a 2<f-dimensional space, where d is the

dimension of each motion relative to the world coordinate system. For rigid motions and

extended translations the cells will be bounded by linear constraints; however, analyzing

each DBG for separable subassembly triples will be more complicated than for the 2-handed

case.

7.2.4 Precedence Expressions

For the special case of linear assembly sequences, global precedence expressions constitute

another type of implicit representation. After an AND/OR graph has been generated, the

122 CHAPTER 7. CONCLUSION

final set of PEs capture the results of all geometric calculations performed to construct the

graph. As a result, the AND/OR graph can be discarded and the set of assembly sequences

represented by the PEs themselves. This shares the disadvantage with Hörnern de Mello's

implicit representations that the AND/OR graph must be generated to compute the set of

PEs. On the other hand, each PE is derived directly from the geometry of a subassembly

instead of from an operation; as a result the rule set does not need to be simplified. For

instance, 34 global PEs describe the same set of sequences for the 22-part electric bell as

an AND/OR graph with 6190 AND-arcs.

It would be preferable to generate a small set of global PEs for a product without

explicitly building its AND/OR graph. However, it remains to be seen whether this can be

accomplished. One practical approach would simply generate them on demand, as when

building an AND/OR graph. Thus an assembly planner would begin with no PEs, and each

time a geometric answer is needed, it would first be answered by PEs, and the geometric

module called when no answers are found there. The first few queries would generate

geometric calls, but after a short time most constraints would be represented in PEs.

7.3 Other Applications

Although the methods described in this thesis were designed for assembly sequencing, some

have the potential for wider application in reasoning about assemblies and other tasks.

The non-directional blocking graph has several uses in analyzing the motions of parts

in an assembly. For instance, the NDBG could be used to efficiently identify motions of

subassemblies in a product to ensure it will function properly, supplementing the methods

in [38, 40]. If motions exist that are not desired, the design must be modified. Such

techniques would be valuable to ensure the safety of toys, for example, since children can

be ingenious in finding different motions than those intended by the designer [52].

Another application of the NDBG is in checking stability of assemblies. Palmer [51]

showed that guaranteeing stability of a polyhedral assembly is NP-hard; however, stability

can be determined efficiently for certain practical cases. If a subassembly is locally free,

then the assembly might be unstable. Specifically, each locally free subassembly could be

checked against the gravitational force. In practice this would catch many but not all

unstable assemblies [66].

Finally, precedence expressions are general enough to store the results of many types of

7.3. OTHER APPLICATIONS 123

calculations. For instance, the calculations performed by a grasp planner or stability checker

could be stored in symbolic form to avoid recomputation when possible. In addition, PEs

can be seen as a model for communication in a large reasoning system with heterogeneous

agents. In such a system, queries should be answered with justifications and situations

in which the answer applies, instead of yes/no answers. For instance, "no, part 17 is not

graspable because part 4 interferes" is far more useful than "no, part 17 is not graspable."

To construct these answers, the agents will require techniques similar to those used in

Chapter 6 to construct precedence expressions.

Computer tools to evaluate assembly designs are a crucial enabling technology for con-

current engineering. This thesis has presented several techniques for reasoning about assem-

blies, specifically with regard to assembly sequencing. These techniques form the beginnings

of an algorithmic approach to investigate the complexity of assembly designs.

Appendix A

Input to GRASP

In many integrated assembly systems, the connection graph and related information will be

included as part of the input to an assembly planner. However, some of this information

may be incomplete, or human input may need to be supplemented by automatic completion

techniques. Furthermore, constraints on the assembly process could be represented in the

input model of an assembly. For instance, the virtual contacts in Hörnern de Mello's rela-

tional model of an assembly [34] give non-contact, part blocking relationships, a large part

of the geometric reasoning required to do assembly sequencing. For research in planning to

be clear, an explicit boundary must be drawn between the description of an assembly and

the reasoning necessary for planning. This appendix details the assembly description files

used as input to GRASP, and describes the geometric reasoning routines that create the

connection graph used as the basis of the planning process in Chapter 3.

A.l The Assembly Description File

The input to GRASP consists of geometric descriptions of all parts in the assembly with

their relative positions, and a list of declarations. The program uses Vantage [4], a three-

dimensional modeling system, to build solid models of the parts and access geometric infor-

mation in the models. The user defines the geometry and position of each part in construc-

tive solid geometry, from which the modeler creates a boundary representation. Figure A.l

gives a sample input file to GRASP, and the model created is shown in figure A.2.

Vantage uses primarily a polyhedral boundary representation. However, it retains a

small amount of non-planar information that is important to the operation of the assembly

124

A.l. TEE ASSEMBLY DESCRIPTION FILE 125

(csgnode blockl cube (100 100 50) :trans (0 0 75 0 0 0))

(3d-structure blockl)

(setq blockl (make-part -.name "Block 1"

:b-rep 'blocklz))

(csgnode c2 cube (100 100 100))

(csgnode hole cyl (20 50 10) :trans (25 0 0 0 90 0))

(csgnode block2 difference (c2 hole))

(3d-structure block2)

(setq block2 (make-part :name "Block 2"

:b-rep >block2z))

(csgnode peg cyl (20 100 10) :trans (50 0 0 0 90 0))

(3d-structure peg)

(setq peg (make-part :name "Peg"
:b-rep 'pegz))

(setq simple (make-assembly :name "Simple Assembly"
:parts (list blockl block2 peg)
:decl '(threaded (20 0 20) 0.2)))

(fit-screen block2)
(complete-assembly simple)

Figure A.l: Sample GRASP assembly description

blockl

peg block2

Figure A.2: The assembly created by the description file in figure A.l

126 APPENDIX A. INPUT TO GRASP

planner. Specifically, a cylinder, sphere, or cone is approximated by a set of planar faces.

However, Vantage records

• a parametric description of the original surface that generated a set of planar approx-

imating faces, and

• either the simple curve that generated a sequence of line segment edges (such as the

circle at each end of a cylinder primitive), or the intersection of two surfaces that

resulted in the edges (such as a cylinder coming out of a plane at an angle, resulting

in an elliptical intersection curve).

As a result, GRASP is able to recognize and reason about cylinders, cones, and spheres in

a competent but limited way.

Some features of assemblies are not easily expressed in the form of geometric models.

This information ranges from non-geometric features of the assembly, such as glued or

press-fit contacts between parts, to geometric information that is more perspicuous and

usable when represented symbolically, such as threaded surfaces and snap-fit connections.

Declarations are designed to allow this information to be specified to the assembly sequencer.

Since GRASP mainly reasons about geometry, only a declaration of threaded connections

has been implemented; each threaded contact is identified by a point on the threaded

surfaces and the pitch of the threads (in figure A.l the ":decl" line declares a threaded

contact between the peg and the hole in block2).

A.2 Building the Connection Graph

From the solid models built by Vantage, the procedure COMPLETE-ASSEMBLY deduces all

the contacts between surfaces of parts and records the contact information in a connection

graph model of the assembly. No tolerances are assumed on the parts.

The procedure COMPLETE-ASSEMBLY checks each pair of parts with intersecting

bounding boxes for possible contacts. For each pair of possibly-touching parts, every pair

of surfaces from different parts is checked for a possible contact. For every pair of surface

types, a special-purpose routine determines whether there is contact between an instance

of each. GRASP uses the following rules to recognize contacts between surfaces:

Planar A planar contact exists between two planar faces P\ and P? if and only if:

A.2. BUILDING THE CONNECTION GRAPH 127

• Pi is coplanar with Pi,

• Pi's normal opposes PJ'S normal, and

• the projections of Pi and P2 into their common plane intersect.

The polygon intersection required by the third step must ensure that neither polygon

is contained in a hole of the other. For each planar contact, GRASP records the

normal and the vertices of the convex hull of the two faces.

Cylindrical GRASP considers a cylindrical shaft surface Ci and a cylindrical hole surface

C2 to be in contact if and only if:

• C\ and C% have equal radius r,

• C\ and Ci have a shared axis A,

• the projections of C\ and C2 onto A overlap in an interval J, and

• no threaded declaration indicates a point whose distance to A is equal to r and

whose projection onto A is in /.

In fact, the third condition is necessary but not sufficient for the cylinders to be in con-

tact. Figure A.3a shows two cylindrical surface patches that COMPLETE-ASSEMBLY

will incorrectly record as contacting. To detect such cases would require intersect-

ing the cylinder surface patches, for instance by projecting the two surfaces onto a

plane and intersecting the projections. GRASP records the common axis of the two

cylinders for a cylindrical contact.

Cylinder-Plane A cylindrical shaft surface C and a planar face P are in contact if and

only if:

• the axis of C and the normal of P are perpendicular,

• the radius of C is equal to the distance from C's axis to the plane of P, and

• the projection of C's axis intersects with P in its plane

The third criteria suffers from similar problems as the cylindrical contact test, and

a counter-example is shown in figure A.3b. For a cylinder-plane contact, GRASP

records the normal of P and the two endpoints of the line of contact.

128 APPENDIX A. INPUT TO GRASP

Figure A.3: Two contacts GRASP incorrectly detects

Threaded A cylindrical shaft surface C\ and a cylindrical hole surface C2 are in threaded

contact with thread pitch p if and only if:

• C\ and Ci have equal radius r,

• C\ and C2 have a shared axis A,

• the projections of C\ and C2 onto A overlap in an interval I, and

• a threaded declaration with pitch p indicates a point whose distance to A is equal

to r and whose projection onto A is in /.

For a threaded contact, the axis of the cylinder and the thread pitch are recorded in

the connection graph.

Sphere-Plane A sphere 5 is in contact with a planar face P if and only if:

• the distance from the center of 5 to P is equal to the radius of S, and

• the projection of the center of S onto P is inside the polygon P.

The normal of P and the point of contact fully characterize a spherical contact.

The contact types given above comprise the large majority of contacts in mechanical as-

semblies. Similar routines could be devised to find other contacts such as point-plane,

edge-edge, and point-edge contacts. However, the current implementation does not detect

these contacts.

For greater efficiency in identifying contacting surfaces, standard methods of geometric

modeling could be applied. In one scheme, a uniform grid is placed across three-dimensional

space, dividing it into small cubes. Then only surfaces intersecting the same cube need be

checked for contact. In another scheme, surfaces could be grouped in bins according to

characteristic attributes; only surfaces in certain pairs of bins need be checked for contacts.

A.2. BUILDING THE CONNECTION GRAPH 129

(block2 (name "Block 2")

(assembly simple)

(b-rep block2z)

(part-number 2)

(links ((peg (threaded-contact (1.0 0.0 0.0)

(50.0 0.0 0.0)

0.2)

(planar-contact (-1.0 0.0 0.0)))

(blockl (planar-contact (0.0 0.0 -1.0))))))

Figure A.4: GRASP's contact representation

For instance, each planar face could be placed in a unique bin in a three-dimensional array,

where the bin coordinates are the coordinates of the dual point [18] of the supporting plane

of the face. Then only faces in the same bin need be tested for possible contact. Similar

schemes could be used for cylindrical and other types of faces. Such a technique has not

been implemented in GRASP.

COMPLETE-ASSEMBLY also finds and records symmetries of individual parts, which

are used later in assembly sequencing to detect useless motions (see section 3.3). A line L

is an axis of symmetry for a part p if and only if all cylindrical and conical surfaces of p

have L as their axis, L passes through the center points of all spherical surfaces of p, and

all planar faces of p have normals parallel to I. A point C is a point of symmetry for p if

and only if all surfaces of p are spherical with center C.

Figure A.4 shows GRASP's representation of block2 and its connections, from fig-

ure A.2. The points on the convex hull of the planar contacts are not shown. The connec-

tion graph, along with the boundary representations of the individual parts of the assembly,

forms the basis of the planning process.

Vantage requires 155 seconds to generate the boundary representation of the electric

bell (Appendix B) from the CSG description, and COMPLETE-ASSEMBLY finds all contacts

between the parts of the bell in another 45 seconds.

Appendix B

Assemblies

This appendix describes several assemblies for which GRASP has generated assembly se-

quences using the methods described in this thesis. The experimental results are given in the

chapters where the methods are described. All assemblies but the transmission are described

using Vantage and are available by email from the author at rwilsonfics.stanford.edu.

B.l The Transmission

The Assembly from Industry is a simplified model of a transmission with which De Fazio

and Whitney [25] illustrate their method for generating assembly sequences. Figure B.l

shows the transmission, and figure B.2 shows its liaison diagram. The transmission has 11

parts, or 21 parts when the the bolts are explicitly represented. It is symmetric around an

axis of revolution, and as such its geometry can be fully modeled in the two dimensions of

the GRASP prototype [65]. The prototype of GRASP uses a special purpose representa-

tion of parts as possibly disconnected polygons in the plane. Experimental results on the

transmission are given in chapter 6.

B.2 The Electric Bell

The electric bell is a 22-part assembly made from a kit. Figure B.3 shows the solid model

Vantage generates from the bell description file. GRASP does not represent or reason about

the flexible wires in the real bell. A simplified version of the bell with 17 parts was used for

some experiments.

130

B.3. THE SKIN MACHINE 131

Figure B.l: The transmission

D

Figure B.2: Liaison diagram for the transmission

B.3 The Skin Machine

Figure B.4 shows the friction testing machine, or skin machine, a mechanism designed to

allow precise translational force testing in a single direction. The real skin machine was

used for experiments described in [21], and it was modeled and used by Konkar et al. [40] in

a concurrent design system for assemblies. The skin machine consists of 12 main parts and

24 fastening screws. In some ways it is a bad case for any assembly planner that generates

a large amount of the AND/OR graph, since the screws can be placed in any order. Even if

only one sequence is generated, the skin machine is difficult for a decomposition procedure

based on generating subassemblies and then testing their movability, since more than 216

candidate subassemblies exist in the first decomposition.

In addition, the skin machine is designed in such a way that it is severely overconstrained

132 APPENDIX B. ASSEMBLIES

Figure B.3: The electric bell

Figure B.4: The skin machine

B.4. THE ENGINE 133

Figure B.5: The engine

kinematically. As a result, it only functions correctly if care is taken during assembly to keep

certain parts perfectly aligned as the screws are tightened. These manufacturing constraints

cannot be reasoned about in a purely geometric assembly sequencer such as GRASP.

B.4 The Engine

The Enya 09-IV T.V. model aircraft engine is a single-piston internal combustion engine

with 42 parts. The assembled engine is shown in figure B.5. Several versions of the engine

model were planned for, including

• a 12-part model including most of the major parts,

• a 30-part version with all non-fastener parts included, and

• the full 42-part model including all fastening bolts.

It is interesting to note that, contrary to the assumptions of many papers on assem-

bly planning, the geometry of the fasteners affect the possible assembly sequences for the

engine. Specifically, two bolts securing the carburetor to the intake manifold obstruct the

motion of two of the four bolts fastening the crankcase to the engine body. Any assembly

sequence analysis without explicit geometric models of the fasteners would certainly miss

this constraint on the assembly orders. In addition, the interference might be an example of

134 APPENDIX B. ASSEMBLIES

a manufacturing feature that could have been detected and corrected using early sequence

analysis in a concurrent engineering design environment. However, this is hard to determine

without knowing the design history of the engine.

Bibliography

[1] Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. Data Structures and Algo-

rithms. Addison-Wesley, Reading, Mass., 1983.

[2] Rachid Alami, Thierry Simeon, and Jean-Paul Laumond. A geometrical approach to

planning manipulation tasks. The case of discrete placements and grasps. In Preprints

of the Fifth International Symposium of Robotics Research, pages 113-119, 1989.

[3] Esther M. Arkin, Robert Connelly, and Joseph S. B. Mitchell. On monotone paths

among obstacles, with applications to planning assemblies. In Proceedings of the ACM

Symposium on Computational Geometry, pages 334-343, 1989.

[4] P. Balakumar, Jean-Christophe Robert, Regis Hoffman, Katsuchi Ikeuchi, and Ta-

keo Kanade. VANTAGE: A Frame-Based Geometric Modeling System - Program-

mer/User's Manual V1.0. The Robotics Institute, Carnegie Mellon University, 1989.

[5] Daniel F. Baldwin. Algorithmic methods and software tools for the generation of

mechanical assembly sequences. Master's thesis, Massachusetts Institute of Technology,

1990.

[6] R. S. Ball. A Treatise on the Theory of Screws. Cambridge University Press, Cam-

bridge, 1990.

[7] Jerome Barraquand and Jean-Claude Latombe. Robot motion planning: A distributed

representation approach. International Journal of Robotics Research, 10(6):628-649,

1991.

[8] Thomas Binford, Leonid Frants, Mark Cutkosky, and Jhy-Cherng Tsai. Represention

and propagation of tolerances for cad/cam systems. In Proceedings of IFIP WG5.2

Workshop in Geometric Modeling, June 1990.

135

136 BIBLIOGRAPHY

[9] M. Blum, A. Griffith, and B. Neumann. A stability test for configurations of blocks.

Memo 188, MIT Artificial Intelligence Lab, February 1970.

[10] Nico Boneschanscher and C. J. M. Heemskerk. Grouping parts to reduce the complex-

ity of assembly sequence planning. In E. A. Puente and L. Nemes, editors, Informa-

tion Control Problems in Manufacturing Technology 1989: Selected Papers from the

6th IFAC/IFIP/IFORS/IMACSSymposium, pages 233-238. Pergamon Press, Oxford,

1989.

[11] Nico Boneschanscher, Hans van der Drift, Stephen J. Buckley, and Russell H. Tay-

lor. Subassembly stability. In Proceedings of the National Conference on Artificial

Intelligence, pages 780-785, 1988.

[12] G. Boothroyd and P. Dewhurst. Design for Assembly: A Designer's Handbook.

Boothroyd Dewhurst, Inc., Wakefield, R.I., 1983.

[13] 0. Bottema and B. Roth. Theoretical Kinematics. North-Holland, New York, 1979.

[14] Alain Bourjault. Contribution ä une approche methodologique de l'assemblage au-

tomatise: elaboration automatique des sequences operatoires. PhD thesis, Faculte des

Sciences et des Techniques de l'Universite de Franche-Comte, 1984.

[15] John Canny. Collision detection for moving polyhedra. IEEE Transactions on Pattern

Analysis and Machine Intelligence, PAMI-8(2):200-209, March 1986.

[16] Bernard Chazelle. Triangulating a simple polygon in linear time. Discrete and Com-

putational Geometry, 6(5):485-524,1991.

[17] Bernard Chazelle and Herbert Edelsbrunner. An optimal algorithm for intersecting

line segments in the plane. Journal of the Association for Computing Machinery,

39(l):l-54,1992.

[18] Bernard Chazelle, Leo J. Guibas, and D. T. Lee. The power of geometric duality. BIT,

25:76-90,1985.

[19] Kenneth L. Clarkson. Applications of random sampling in computational geometry,

II. In Proceedings of the J^th Annual ACM Symposium on Computational Geometry,

pages 1-11,1988.

i

[

BIBLIOGRAPHY 137

[20] Mark R. Cutkosky. Robotic Grasping and Fine Manipulation. Kluwer Academic Pub-

lishers, Boston, 1985.

[21] Mark R. Cutkosky, J. M. Jourdain, and P. K. Wright. Skin materials for robotic fingers.

In Proceedings of the IEEE Conference on Robotics and Automation, pages 1649-1654,

March 1987.

[22] Mark R. Cutkosky and Jay M. Tenenbaum. A methodology and computational frame-

work for concurrent product and process design. ASME Journal of Mechanism and

Machine Theory, 25(3):365-381, 1990.

[23] Mark R. Cutkosky and Jay M. Tenenbaum. Toward a framework for concurrent design.

International Journal of Systems, Automation: Research and Applications, 1(3):239-

261,1991.

[24] R. J. Dawson. On removing a ball without disturbing the others. Mathematics Maga-

zine, 57(l):27-30,1984.

[25] Thomas L. De Fazio and Daniel E. Whitney. Simplified generation of all mechanical

assembly sequences. IEEE Journal of Robotics and Automation, RA-3(6):640-658,

December 1987. Errata in RA-4(6):705-708.

[26] Narsingh Deo. Graph Theory with Applications to Engineering and Computer Science.

Prentice-Hall, 1974.

[27] Herbert Edelsbrunner. Algorithms in Combinatorial Geometry. Springer, Heidelberg,

1987.

[28] R. E. Fikes and N. J. Nilsson. Strips: A new approach to the application of theorem

proving to problem solving. Artificial Intelligence, 2:189-208,1971.

[29] Michael Genesereth. Designworld. In Proceedings of the IEEE International Conference

on Robotics and Automation, pages 2785-2788,1991.

[30] A. J. Goldman and A. W. Tucker. Polyhedral convex cones. In H. W. Kuhn and A. W.

Tucker, editors, Linear Inequalities and Related Systems, pages 19-40. Princeton Univ.

Press, 1956.

138 BIBLIOGRAPHY

[31] Leonidas Guibas and F. F. Yao. On translating a set of rectangles. Advances in

Computing Research, 1:235-260,1983.

[32] H. Hirukawa, T. Matsui, and K. Takase. A general algorithm for derivation and analysis

of constraint for motion of polyhedra in contact. In Proceedings of the International

Workshop on Intelligent Robots and Systems, pages 38-43, 1991.

[33] Richard L. Hoffman. A common sense approach to assembly sequence planning. In

Luiz Scaramelli Hörnern de Mello and Sukhan Lee, editors, Computer-Aided Mechanical

Assembly Planning, pages 289-314. Kluwer Academic Publishers, Boston, 1991.

[34] Luiz Scaramelli Hörnern de Mello. Task Sequence Planning for Robotic Assembly. PhD

thesis, Carnegie Mellon University, 1989.

[35] Luiz Scaramelli Hörnern de Mello and Arthur C. Sanderson. AND/OR graph repre-

sentation of assembly plans. Technical Report CMU-RI-TR-86-8, Robotics Institute -

Carnegie-Mellon University, 1986.

[36] Luiz Scaramelli Hörnern de Mello and Arthur C. Sanderson. Automatic generation of

mechanical assembly sequences. Technical Report CMU-RI-TR-88-19, Robotics Insti-

tute - Carnegie-Mellon University, 1988.

[37] J. Jones and T. Lozano-Perez. Planning two-fingered grasps for pick-and-place opera-

tions on polyhedra. In Proceedings of the IEEE International Conference on Robotics

and Automation, pages 683-688,1990.

[38] Leo Joskowicz and Elisha Sacks. Computational kinematics. Artificial Intelligence,

1992. Special Issue on Qualitative Reasoning, to appear.

[39] Heedong Ko and Kunwoo Lee. Automatic assembling procedure generation from mat-

ing conditions. Computer Aided Design, 19(1):3-10, February 1987.

[40] Ranjit R. Konkar, Mark R. Cutkosky, and Jay M. Tenenbaum. Towards an assembly

editor for concurrent product and process design. In Proceedings of the IF IP WG 5.2

Workshop on Geometric Modeling, May 1990.

[41] S. S. Krishnan and Arthur C. Sanderson. Path planning algorithms for assembly

sequence planning. In International Conference on Intelligent Robotics, pages 428-

439, 1991.

>
i

BIBLIOGRAPHY 139

[42] Jean-Claude Latombe. Robot Motion Planning. Kluwer Academic Publishers, Boston,

1991.

[43] Jean-Claude Latombe, Anthony Lazanas, and Shashank Shekhar. Robot motion plan-

ning with uncertainty in control and sensing. Artificial Intelligence, 52:1-47,1991.

[44] Sukhan Lee and Yeong Gil Shin. Assembly planning based on geometric reasoning.

Computation and Graphics, 14(2):237-250,1990.

[45] Thomas Lozano-Perez. Spatial planning: A configuration space approach. IEEE Trans-

actions on Computers, C-32(2): 108-120,1983.

[46] Thomas Lozano-Perez, Matt T. Mason, and R. H. Taylor. Automatic synthesis of fine-

motion strategies for robots. International Journal of Robotics Research, 3(l):3-24,

1984.

[47] Joseph S. B. Mitchell. Personal communication, December 1990.

[48] B. K. Natarajan. On planning assemblies. In Proceedings of the Fourth ACM Sympo-

sium on Computational Geometry, pages 299-308, 1988.

[49] Nils J. Nilsson. Principles of Artificial Intelligence. Springer-Verlag, 1980.

[50] Dinesh K. Pai and Bruce R. Donald. On the motion of compliantly-connected rigid

bodies in contact, part I: The motion prediction problem. Technical Report 89-1047,

Computer Science Department - Cornell University, October 1989.

[51] Richard S. Palmer. Computational Complexity of Motion and Stability of Polygons.

PhD thesis, Department of Computer Science - Cornell University, 1989.

[52] Elisabeth Pate-Cornell. Personal communication, March 1992.

[53] J. Pertin-Troccaz. Grasping: A state of the art. In Khatib, Craig, and Lozano-Perez,

editors, The Robotics Review 1. MIT Press, 1989.

[54] R. Pollack, M. Sharir, and S. Sifrony. Separating two simple polygons by a sequence

of translations. Discrete and Computational Geometry, 3:123-136,1988.

[55] F. P. Preparata and D. E. Müller. Finding the intersection of n halfspaces in time

0(n log n). Theoretical Computer Science, 8:45-55,1979.

140 BIBLIOGRAPHY

[56] Franco P. Preparata and Michael I. Shamos. Computational Geometry: An Introduc-

tion. Springer-Verlag, 1985.

[57] E. Sacerdoti. A Structure for Plans and Behavior. American Elsevier, 1977.

I

[58] Jörg-Rüdiger Sack and Godfried T. Toussaint. Separability of pairs of polygons through

single translations. Robotica, 5:55-63,1987.

[59] Raimund Seidel. A simple and fast incremental randomized algorithm for computing

trapezoidal decompositions and for triangulating polygons. Computational Geometry:

Theory and Applications, 1:51-64,1991.

[60] G. T. Toussaint. Movable separability of sets. In G. T. Toussaint, editor, Computational

Geometry. Elsevier, North Holland, 1985.

[61] Jean-Michele Valade. Geometric reasoning and automatic synthesis of assembly tra-

jectory. In Proceedings of the International Conference on Advanced Robotics, pages

43-50, 1985.

[62] David E. Wilkins. Domain-independent planning: Representation and plan generation.

Artificial Intelligence, 22(3):269-301,1984.

[63] Randall H. Wilson. Efficiently partitioning an assembly. In Proceedings of the IASTED

International Symposium on Robotics and Manufacturing, 1990.

[64] Randall H. Wilson. Efficiently partitioning an assembly. In Luiz Scaramelli Hörnern de

Mello and Sukhan Lee, editors, Computer-Aided Mechanical Assembly Planning, pages

243-262. Kluwer Academic Publishers, Boston, 1991.

[65] Randall H. Wilson and Jean-Francois Rit. Maintaining geometric dependencies in an

assembly planner. In Proceedings of the IEEE International Conference on Robotics >

and Automation, pages 890-895,1990.

[66] Randall H. Wilson and Jean-Francois Rit. Maintaining geometric dependencies in

assembly planning. In Luiz Scaramelli Hörnern de Mello and Sukhan Lee, editors,

Computer-Aided Mechanical Assembly Planning, pages 217-242. Kluwer Academic

Publishers, Boston, 1991.

)

BIBLIOGRAPHY 141

[67] Randall H. Wilson and Achim Schweikard. Assembling polyhedra with single transla-

tions. Technical Report STAN-CS-91-1387, Department of Computer Science, Stanford

University, October 1991.

[68] Jan D. Wolter. On the Automatic Generation of Plans for Mechanical Assembly. PhD

thesis, The University of Michigan, 1988.

[69] Jan D. Wolter. On the automatic generation of assembly plans. In Luiz Scaramelli

Hörnern de Mello and Sukhan Lee, editors, Computer-Aided Mechanical Assembly Plan-

ning, pages 263-288. Kluwer Academic Publishers, Boston, 1991.

Reproduced by NTIS

so' o
T3fc g> >
Q) 0>.£+-

ü£ ü 0)
L <0 0)*"

g > E E
££0)0)
M- a'"'"
0 « ® C)

3 ■■■ ■—

fi S 5 C
EEuO

0) Ü os

0£,Eo

to^^o)

^ c 0) r

rv-E'

National Technical Information Service
Springfield, VA 22161

This report was printed specifically for your order
from nearly 3 million titles available in our collection.

For economy and efficiency, NTIS does not maintain stock of its vast
collection of technical reports. Rather, most documents are printed for
each order. Documents that are not in electronic format are reproduced
from master archival copies and are the best possible reproductions
available. If you have any questions concerning this document or any
order you have placed with NTIS, please call our Customer Service
Department at (703) 487-4660.

About NTIS
NTIS collects scientific, technical, engineering, and business related
information — then organizes, maintains, and disseminates that
information in a variety of formats — from microfiche to online services.
The NTIS collection of nearly 3 million titles includes reports describing
research conducted or sponsored by federal agencies and their
contractors; statistical and business information; U.S. military
publications; audiovisual products; computer software and electronic
databases developed by federal agencies; training tools; and technical
reports prepared by research organizations worldwide. Approximately
100,000 new titles are added and indexed into the NTIS collection
annually.

For more information about NTIS products and services, call NTIS
at (703) 487-4650 and request the free NTIS Catalog of Products

and Services, PR-827LPG, or visit the NTIS Web site
http://www.ntis.gov.

NTIS
Your indispensable resource for government-sponsored

information—U.S. and worldwide

