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1 Introduction

The discovery of superconformal theories (SCFTs) in six and five dimensions has been one

of the most surprising results emerging from string theory in the past few decades. There

are two types of 6d SCFTs, both of which are classified in terms of singular geometries: N =
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(2, 0) theories [1] and N = (1, 0) theories [2–4]. Given the surprising effectiveness of geome-

try in describing 6d SCFTs, a natural next step is to attempt to classify 5d SCFTs in terms

of singular geometries. In some ways, 5d SCFTs are more rigid as there is only a single type

of 5d SCFT corresponding to the 5d N = 1 (i.e. eight supercharges) superconformal alge-

bra. Many examples of 5d SCFTs have been realized in string theory using brane probes [5],

M-theory on local Calabi-Yau 3-folds [6–8], and type IIB (p, q) 5-brane webs [9–12].

The classification of 6d N = (1, 0) theories led to a picture involving generalized

‘quiver-like’ theories whose structures could by and large be anticipated from field theoretic

reasoning. There are of course exceptions to this idea and explicit geometric constructions

in F-theory clarified which possible exceptions arise that evade field theoretic analysis [2, 3].

Similarly, in the 5d case, one might expect field theoretic reasoning to be a powerful, albeit

incomplete guide. Indeed, as spearheaded in [8] it has been clear for a long time that field

theoretic tools combined with the constraints of supersymmetry provide an unexpectedly

powerful method for deducing the existence of interacting UV fixed points. More recently it

was found in [13] that relaxing some of the constraints in [8] can resolve the conflict between

the necessity of assumptions in [8] with some known stringy constructions. However, it is

unclear whether or not there are additional conditions needed to guarantee the existence

of gauge theories as consistent 5d SCFTs. Moreover, there are known cases in which a 5d

SCFT is not a gauge theory (for example, M-theory on a local P2 embedded in a Calabi-Yau

3-fold).1 A reasonable follow-up to the field theoretic approach, then, is to try to check if the

necessary gauge theoretic consistency conditions described in [13] are in fact also sufficient,

by using other string constructions to engineer the same theories. The main aim of this

paper is to use geometric constructions of 5d SCFTs, realized as M-theory compactified on

local Calabi-Yau (CY) 3-fold (and cross checked with dual constructions involving (p, q)

5-brane webs), to devise a classification scheme for 5d SCFTs. As a byproduct of our

efforts, we are led to either validate or exclude various candidate 5d SCFTs predicted by

the perturbative gauge theoretic analysis.

The basic mathematical setup leading to 5d SCFTs from M-theory on CY 3-folds in-

volves studying how all compact 4-cycles (compact complex surfaces) inside a non-compact

3-fold can be shrunk to a point at a finite distance in moduli space; we call CY 3-folds

engineering 5d SCFTs in this manner ‘shrinkable’ 3-folds. This geometric picture can be

schematically represented by a graph whose nodes are 4-cycles (surfaces) and whose edges

denote the resulting intersecting 2-cycles (curves). We note that a systematic study of the

consistency conditions needed to construct such geometries has not been undertaken in the

mathematics literature. Starting from a collapsed set of 4-cycles, the condition that one

can resolve the singularities and thereby bring the 4-cycles to finite volume restricts the

admissible types of Kähler surfaces (i.e. the nodes of the graph). We call the number of

nodes of such a graph the rank of the 5d SCFT. In particular, we show that the nodes of

the graph must be rational or ruled surfaces (possibly blown up at a positive number of

1Despite the fact that these cases do not admit a Lagrangian description, they can nevertheless be

obtained from a gauge theory by passing through phases where some non-perturbative degrees of freedom

become massless.
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Figure 1. Graphical representation of a rank r Kähler surface S = ∪Si ⊂ X embedded in

local Calabi-Yau 3-fold X. The nodes of the graph correspond to 4-cycles Si, while the edges

Ci,i+1 = Si ∩ Si+1 correspond to 2-cycles along which the nodes intersect.

points)2 in the rank 2 case, and further conjecture this to be true for arbitrary rank. The

Calabi-Yau condition and the requirement of positive volumes place further restrictions

on the allowed intersections of the surfaces (i.e. the edges of the graph; see figure 1). We

thus devise a set of necessary critieria which must be satisfied for a 3-fold to engineer a

5d SCFT and conjecture that these criteria are sufficient to guarantee the existence of a

5d SCFT; this conjecture is supported by various cross checks using (p, q) 5-brane webs.

Furthermore, we conjecture that all 5d SCFTs can be realized in M-theory on CY 3-folds

satisfying these criteria. Similar to the 6d case, where F-theory compactified on elliptic

3-folds was used to classify N = (1, 0) theories and it was subsequently found that for a few

exotic cases frozen singularities are necessary to realize O7+ planes in F-theory [14, 15], we

find that in the M-theory case it is also necessary to include frozen singularities to obtain

a complete classification of 5d SCFTs.

A complete classification of such CY 3-folds appears to be a rather daunting task.

For example, it is unknown whether or not the list of possible 5d SCFTs is finite for a

given rank. Luckily, it turns out that the rank 2 case is finite, permitting an exhaustive

classification of physically distinct SCFTs.

By classifying rank 2 SCFTs in terms of Calabi-Yau geometry, we learn that all rank

2 gauge theories predicted in [13], except for one family, are realized.3 Additionally, we are

also able to pinpoint the non-perturbative physics missing in the gauge theoretic approach

of [13] responsible for excluding this family of SCFTs. Furthermore, the geometric ap-

proach allows us to identify additional non-Lagrangian SCFTs whose existence motivates

the existence of dual (p, q) 5-brane web configurations.

2Rational and ruled surfaces are equivalent to (respectively) P
2 and ruled surfaces over genus g curves

(which we argue can be restricted to g = 0)—see section 3.5.1 for additional details.
3We conjecture that all SCFTs admit at least one Coulomb branch parameter at the CFT point. The

missing family which is represented by SU(3) at Chern-Simons level k = 8 has no Coulomb branch parameter

at the would-be CFT point and that is why we rule it out. This family would have led to a putative CFT

which allows a Coulomb branch deformation only after a mass deformation (i.e. turning on 1/g2).

– 3 –
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Given the significant practical challenges presented by this classification program, it is

natural to ask if the insight we have gained from the rank 2 case can be used to streamline

the classification of higher rank cases. Indeed, a careful examination of the list of rank 2

theories reveals a beautifully simple picture: rank 2 SCFTs in 5d can be organized into four

distinct families, related and interconnected by RG flows triggered by mass deformations —

see figure 16. Each family of 5d SCFTs has a parent 6d SCFT, where the parent 6d SCFT is

related to a 5d descendant by circle compactification, up to a choice of automorphism twist

(see [16] for work on classifying such automorphism twists, and see [17] for a discussion

of additional discrete data characterizing circle compactifications of 6d SCFTs.) Thus the

rank 2 classification could have been anticipated entirely from the 6d perspective! This

result echoes a well-known property of rank 1 SCFTs: rank 1 5d SCFTs belong to a single

family which descends from the 6d E-string theory via circle compactification.

We thus conjecture that all 5d SCFTs arise from 6d SCFTs compactified on a circle,

possibly up to an automorphism twist. More precisely, we anticipate that all 5d SCFTs can

be organized into distinct families, each of which arises from a 6d theory. For a fixed rank

in 5d, the possible 6d SCFT parents are rather limited. For example (ignoring the possible

automorphism twist), the 6d SCFTs leading to rank r 5d SCFTs will have r−k dimensional

tensor branches with rank k gauge algebra. This suggests a practical method to classify 5d

SCFT families starting with the 6d classification: compactifying a 6d SCFT on a circle pro-

duces a 5d theory with a Kaluza Klein (KK) tower of states. We call such theories ‘5d KK

theories’; these theories are in some sense analogous to 6d little string theories. To obtain

non-trivial 5d SCFTs from 5d KK theories we need to turn on holonomies suitably tuned to

trigger an RG flow to a nontrivial 5d SCFT in the infrared. Aspects of the phase structure

of 5d theories arising from circle compactifications of 6d SCFTs were analyzed in [18].

The organization of this paper is as follows. In section 2 we discuss the preliminaries

of 5d SCFTs, their effective gauge theory descriptions on the Coulomb branch, and their

realizations in M-theory. In section 3 we discuss the mathematics of shrinkable 3-folds and

explain the basic approach of our geometric classification program. In section 4 we repeat

the classification of rank 1 5d SCFTs and extend the same methods to the rank 2 case. We

also discuss the connection to 6d N = (1, 0) SCFTs. Some mathematical results essential

for the rank 2 classification are collected in the appendices: appendix A contains an explicit

description of the Mori cones of blowups of Hirzebruch surfaces; appendix B contains some

numerical bounds constraining rank 2 shrinkable 3-folds; finally, appendix C contains a de-

tailed discussion of some smoothness assumptions which simplify the classification program.

2 Effective description of 5d SCFTs

In this section we discuss some of the preliminaries that set the stage for the classification

of 5d SCFTs later in this paper. The following discussion involves two perspectives on 5d

N = 1 theories: the gauge theoretic perspective, and the geometric perspective of M-theory

compactified on a Calabi-Yau 3-fold.

5d superconformal field theories (SCFTs) are strongly interacting systems with no

marginal deformations [19] and no known Lagrangian description at the CFT fixed point.

– 4 –
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In order to study the physics of these conformal theories, one needs to use rather indirect

approaches. 5d SCFTs admit supersymmetric relevant deformations which lead to several

weakly interacting effective descriptions while preserving some amount of supersymmetry.

Surprisingly, these effective descriptions can be powerful tools for studying the dynamics of

the conformal point. There exist some CFT observables which are rigidly protected under

the renormalization group (RG) flow triggered by these deformations. Many BPS quan-

tities are such observables: for example, the spectrum of BPS operators, supersymmetric

partition functions, effective Lagrangians on the Coulomb branch, the Coulomb branch

of moduli space, etc. In particular, BPS observables are protected by supersymmetry and

thus we expect BPS quantities appearing in the effective theories to be a reliable description

of the corresponding observables at the CFT fixed point.

String theory provides many effective descriptions of 5d SCFTs. Multiple D4-brane

systems in Type IIA string theory and (p, q) 5-brane webs in Type IIB string theory

can engineer various 5d SCFTs as singularities. Away from the singularity, when mass

parameters and gauge couplings are turned on, these brane systems often permit a gauge

theory description of the corresponding 5d theories.

5d SCFTs can also be engineered in M-theory: M-theory on a singular non-compact

Calabi-Yau 3-fold is described at long distances by an SCFT living on the five-dimensional

spacetime transverse to the 3-fold. In familiar cases, the Calabi-Yau singularity can be

resolved by means of various Kähler deformations, which correspond to mass and Coulomb

branch deformations in the corresponding gauge theory.

2.1 Gauge theory description

Gauge theories in five dimensions are non-renormalizable and flow to free fixed points at low

energy. As a result, these theories are typically believed to be ‘trivial’ theories. However,

a large class of 5d gauge theories, mostly engineered in string theory, turn out to have

interacting CFT fixed points in the UV [5]. In such cases, 5d gauge theories are rather

interesting since they can provide low energy effective descriptions of the CFT.

In this paper, we focus primarily on gauge theories which have 5d SCFTs as their UV

completions. These theories preserve N = 1 supersymmetry, and their massless field con-

tent consists of vector multiplets with gauge algebra G and hypermultiplets in a representa-

tion R = ⊕Rj of G. These gauge theories might be further specified by topological data k

corresponding to classical Chern-Simons level, as in the case of G = SU(N ≥ 3), or discrete

θ-angle as in the cases G = Sp(N). We can also consider the cases with product gauge

algebra G =
∏

iGi. Once the data G,R, k is fixed, the low energy gauge theory Lagrangian

is uniquely determined by supersymmetry. Our notation for describing 5d gauge theories is

Gk +
∑

j

NRjRj , (2.1)

where Rj is the representation under which the j-th matter hypermultiplet is charged, NRj

is the number of hypermultiplets in the representation Rj .

5d N = 1 gauge theories possesses a rich vacuum structure. The moduli space of

vacua is parametrized by expectation values of various local operators. In particular, we

– 5 –



J
H
E
P
0
4
(
2
0
1
8
)
1
0
3

are interested in the Coulomb branch of vacua parametrized by vacuum expectation values

of scalar fields φ in the vector multiplets. Here the scalar field φ takes values in the Cartan

subalgebra of the gauge group G. So the dimension of the moduli space of the Coulomb

branch is given by the rank of group G, r = rank(G). By abuse of notation, we will denote

both a scalar field in the vector multiplet and its expectation value by φ from now on.

There are global symmetries acting on the hypermultiplets. The classical Lagrangian

has global symmetry algebra F rotating the perturbative hypermultiplets and also a topo-

logical U(1)I symmetry for each gauge group. The objects charged under the U(1)I are

non-perturbative particles called ‘instantons’. Surprisingly, this classical global symmetry

is often enhanced in the CFT fixed point by non-perturbative instanton dynamics [5, 7].

The flavor symmetry of the perturbative hypermultiplets can combine with the topological

U(1)I instanton symmetry and enhance to an even larger symmetry algebra in the UV

CFT. One can turn on mass parameters mi associated to the global symmetry. Doing so

breaks some of the global symmetry. In particular, the mass deformation with parameter

g−2 along the U(1)I instanton symmetry leads to a gauge theory description with gauge

coupling g at low energy.

At a generic point in the Coulomb branch, the gauge symmetry G is broken to the

maximal torus U(1)r. Thus the low energy dynamics on the Coulomb branch can be

effectively described by abelian gauge theories. The low energy abelian action is determined

by a prepotential F . The prepotential is 1-loop exact and the full quantum result is a cubic

polynomial of the vector multiplet scalar φ and mass parameters mj , given by [8, 20]:

F =
1

2g2
hijφiφj +

k

6
dijkφiφjφk +

1

12


 ∑

e∈root

|e · φ|2 −
∑

j

∑

w∈Rj

|w · φ+mi|3

 , (2.2)

where by abuse of notation Rj denotes the set of weights of the j-th hypermultiplet rep-

resentation of G, hij = Tr(TiTj), and dijk = 1
2TrF(Ti{Tj , Tk}) with F in the fundamental

representation. The first two terms in the prepotential are from the classical Lagrangian

and the last two terms are 1-loop corrections coming from integrating out charged fermions

in the Coulomb branch. We remark that the prepotential may have different values in the

different sub-chambers (or phases) of the Coulomb branch due to the absolute values in

the 1-loop contributions.

The 1-loop correction to the prepotential renormalizes the gauge coupling. The effec-

tive coupling in the Coulomb branch is simply given by a second derivative of the quantum

prepotential which also fixes the exact metric on the Coulomb branch:

(τeff)ij = (g−2
eff )ij = ∂i∂jF , ds2 = (τeff)ijdφidφj . (2.3)

Interestingly, the exact spectrum of magnetic monopoles on the Coulomb branch can be

easily obtained from the quantum prepotential. Since monopoles are magnetically dual to

electric gauge bosons, tensions of magnetic monopole strings can be computed as

φDi = ∂iF , i = 1, · · · r . (2.4)

– 6 –
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One can also compute Chern-Simons couplings:

kijk = ∂i∂j∂kF . (2.5)

Therefore, we can use F to exactly compute some quantum observables such as the

Coulomb branch metric and monopole spectrum.

In [8, 13], the above supersymmetry protected data is used to attempt a classification

of possible 5d SCFTs admitting low energy gauge theory descriptions. The main idea in

these classification programs is that the quantum metric on the Coulomb branch should

be positive semi-definite in the CFT limit, as required by unitarity. In [8], the positivity

condition of the metric was imposed throughout the ‘perturbative’ Coulomb branch and

all sensible gauge theories were subsequently identified using this constraint. In this clas-

sification, the ‘perturbative’ Coulomb branch is determined by forcing only perturbative

particles to have positive masses. Under this condition, the number and type of hyper-

multiplets are strictly constrained and quiver type gauge theories are ruled out; see [8] for

details. We refer to this classification as the ‘IMS classification’.

However, it was pointed out later works [10, 12, 21–23] that string theory can engineer

many 5d gauge theories with non-trivial CFT fixed points not included among the theories

in the IMS classification. It turns out that the condition of metric positivity throughout

the entire perturbative Coulomb branch is too strong [13] and unnecessarily excludes many

non-trivial 5d gauge theories. This suggests that the IMS classification is incomplete, and

the gauge theories exceeding the IMS bounds lead us to revisit the problem of classifying

5d SCFTs.

Let us briefly review the classification of [13]. One of the main results of this analysis

is the observation that the ‘perturbative’ Coulomb branch receives quantum corrections by

light non-perturbative states [10]. It is possible that some of non-perturbative states can

become massless somewhere in the perturbative Coulomb branch. These hyperplanes in

the Coulomb branch where these light states become massless can be thought of as ‘non-

perturbative’ walls. Beyond such walls, the perturbative Coulomb branch breaks down.

One way to see this is to note that the signature of the quantum metric on the Coulomb

branch changes beyond these non-perturbative walls, which implies the metric cannot be

trusted in these regions. However, the classification in [8] imposes metric positivity on the

whole perturbative Coulomb branch, even beyond non-perturbative walls. The result is

that some theories are excluded because of the unreliability of the metric in these regions,

and this leads to an incomplete classification. In order to obtain a complete classification,

metric positivity should be applied only on the ‘physical’ Coulomb branch, which can be

computed by accounting for restrictions introduced by non-perturbative states.

In general, it is difficult to identify the correct physical Coulomb branch after taking

into account non-perturbative effects since this necessarily involves studying the full non-

perturbative spectrum. In particular, it is not easy to analyze the spectrum of gauge theory

instantons. Only when we know a precise UV completion of the instanton moduli space,

such as the ADHM construction, can we compute the exact spectrum using localization.

For most gauge theories, such a convenient construction of the instanton moduli space is

lacking.

– 7 –
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Fortunately, the perturbative prepotential contains part of the exact spectrum of non-

perturbative states. As noted in (2.4), the full monopole spectrum can be obtained from

the prepotential. We can use this information to identify some of the non-perturbative

walls in the perturbative Coulomb branch. By relaxing the metric positivity constraint to

apply only to the region interior to such non-perturbative walls, it was conjectured in [13]

that all gauge theories having interacting CFT fixed points satisfy the metric positivity

condition in the sub-locus of Coulomb branch where perturbative particles and monopole

strings have positive masses. In [13], it was also shown that a large class of known 5d gauge

theories satisfy this criterion. It may be true that all the known 5d gauge theories having

5d SCFT fixed points satisfy this refined condition.

In addition, there are two more conjectures in [13] used to carry out the classification

of 5d gauge theories with simple gauge algebras. The first conjecture is that if all pertur-

bative particles and monopoles have positive masses somewhere in the Coulomb branch,

the gauge theory has a UV CFT fixed point. The second conjecture is that perturbative

prepotentials of all gauge theories with UV CFT fixed points are positive everywhere in the

perturbative Coulomb branch. Note that the first conjecture is not sufficient to guarantee

that all instanton particles have positive mass and also that the metric is positive in the

same region. So this is simply a necessary condition. We will see later that certain theories

predicted by this approach must be excluded because some non-perturbative particles ac-

quire negative masses in the CFT limit. The second conjecture is based on the convergence

of the 1-loop sphere partition function of 5d CFTs, but there is neither physical nor math-

ematical motivation for this conjecture beyond its practical implications. Using these two

conjectures, non-trivial gauge theories with single gauge node were fully classified in [13].

This classification includes all known single gauge node theories and additionally predicts

a large number of new gauge theories.

In this paper, we construct rank 1 and rank 2 CFTs using Calabi-Yau geometry. Rank

1 gauge theories arising from SCFTs were classified in [5, 6, 8, 24]; these theories have

gauge algebra SU(2) with NF ≤ 7. Geometrically, the rank 1 SCFTs can be engineered by

del Pezzo surfaces embedded in a non-compact 3-fold. The families of rank 2 gauge theories

predicted by the classification of [13] are displayed in table 1. The UV completions of the

theories shown in table 1 are all expected to be 6d theories, rather than 5d SCFTs; on

the other hand, their descendants obtained by mass deformations are expected to have 5d

CFT fixed points. Many of these theories in table 1 are new theories, for example SU(3)

with (NF, |k|) = (6, 4), (3, 132 ), (0, 9) in (a).

One of the purposes of this paper is to check if the new rank 2 CFTs predicted in [13]

(or descendants of theories in table 1) can be constructed geometrically. We will see that,

surprisingly, almost all new theories in table 1 admit geometric constructions, therefore

their descendants indeed have interacting CFT fixed points. However, some theories do not

correspond to geometries in their conformal limits due to subtle non-perturbative effects.

Therefore, the geometric constructions of this paper indicate that the criteria described

in [13] require additional non-perturbative corrections in order to be complete. We hope

to revisit the field theoretic approach of [13] in the near future with the benefit of our

improved understanding.
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NSym NF |k|
1 0 3

2

1 1 0

0 10 0

0 9 3
2

0 6 4

0 3 13
2

0 0 9

(a) Marginal SU(3) theories with CS level k,

NSym symmetric and NF fundamental hy-

permultiplets.

NAS NF

3 0

2 4

1 8

0 10

(b) Marginal Sp(2) gauge theories with NAS

anti-symmetric, NF fundamental hypermul-

tiplets. The theory with NAS = 3 can have

θ = 0, π.

NF

6

(c) A marginal G2 gauge theory with NF fun-

damental matters.

Table 1. Rank 2 gauge theories.

2.2 M-theory compactifications

String compactifications are an extraordinarily useful tool for realizing local, non-

perturbative models of gauge sector physics in terms of brane dynamics. Consider in

particular M-theory on a non-compact singular Calabi Yau variety Y , which is conjectured

to be described at low energies by a 5d N = 1 SCFT. We are specifically interested in

studying the Coulomb branch deformations of these 5d SCFTs. The heart of this analysis

is the correspondence between the Coulomb branch C and the extended Kähler cone K(Y )

of the singular threefold Y [20]:

C = K(Y ). (2.6)

The above correspondence is made more precise by establishing a dictionary between

the geometry of the threefold and the BPS spectrum of the associated 5d theory, which we

now describe in detail. Consider a smooth non-compact 3-fold X. The Kähler metric of

X depends on h1,1(X) moduli controlling the sizes of complex p cycles in X. In order to

decouple gravitational interactions, it is necessary to scale the volume of X to be infinitely

large while keeping the volumes of all 2- and 4-cycles at finite size; this has the effect of

sending the 5d Planck mass to infinity. Given a basis Di ∈ H1,1(X), one may therefore

express the Kähler form J as the linear combination

J = φiDi, i = 1, . . . , h1,1(X), (2.7)

where the Kähler moduli φi=1,...,r associated to (cohomology classes dual to) compact

4-cycles Di = Si are identified with Coulomb branch moduli, while the Kähler moduli

φr+j,...,r+M = mj=1,...,M associated to non-compact 4-cycles Dr+j = Nj are interpreted

as mass parameters of the 5d theory. To align the discussion with the 5d field theoretic

– 9 –
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interpretation, we find it useful to partition the Kähler moduli into r Coulomb branch

parameters and M mass parameters:

h1,1(X) = r +M. (2.8)

Note that when the associated 5d field theory admits a description as a gauge theory, r

coincides with the rank of the gauge group.

The BPS states of the 5d theory include electric particles and (dual) magnetic strings.

Geometrically these states correspond to M2 branes wrapping holomorphic 2-cycles and

magnetic dual M5 branes wrapping holomorphic 4-cycles, and the masses and tensions

of these BPS degrees of freedom are proportional to the volumes of the corresponding

holomorphic cycles. At a generic point φ ∈ C the spectrum of BPS states is massive,

and this is reflected by the fact that the 2- and 4-cycles of Y have finite volume. Since

the conformal point φ = 0 is characterized by the appearance of interacting massless and

tensionless degrees of freedom, we interpret the threefold Y as a singular limit of the smooth

threefold X in which some collection of compact 4-cycles have collapsed to a point. Said

differently, X is a desingularization of Y .

The above discussion suggests that the data of the massive BPS spectrum is encoded

in the geometry of X. Indeed this is the case, the main connection to geometry being the

interpretation of the 5d prepotential (2.2) as the cubic polynomial of triple intersection

numbers of 4-cycles in X:

F = vol(X) =
1

3!

∫

X
J3 =

1

3!
φiφjφk

∫

X
Di ∧Dj ∧Dk. (2.9)

In the previous section, we saw that various data characterizing the massive BPS spectrum

can be expressed as derivatives of F . This data equivalently characterizes the geometry of

X. In particular, the tensions (2.3) of elementary monopole strings are the volumes of the

compact 4-cycles Si:

φDi = ∂iF = vol(Si) =
1

2!

∫

X
J2 ∧ Si, 1 ≤ i ≤ r, (2.10)

the matrix of effective couplings has as its components the volumes of various 2-cycles:

τij = ∂i∂jF = vol(Si ∩ Sj) =

∫

X
J ∧ Si ∧ Sj , 1 ≤ i, j ≤ r, (2.11)

and the effective Chern-Simons couplings kijk are triple intersection numbers:

kijk = ∂i∂j∂kF =

∫

X
Di ∧Dj ∧Dk. (2.12)

The Kähler cone K of the singularity Y can also be specified quite easily; K is simply the

set of all positive Kähler forms (parametrized by the moduli φ):

K(X\Y ) =

{
J = φiDi |

∫

C
J > 0 for all holomorphic curves C ⊂ X

}
. (2.13)
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Thus, it is possible to study Coulomb branch deformations of 5d SCFTs purely in terms

of the geometry of a smooth 3-fold X. Generically there are multiple smooth 3-folds Xi

which share a common singular limit Y , so the extended Kähler cone is simply the closure

of the union of Kähler cones,

K(Y ) = ∪K(Xi\Y ). (2.14)

The extended Kähler cone has the structure of a fan, with pairs of cones separated by

hypersurfaces in the interior of K(Y ). The boundaries of K(Xi\Y ) correspond to loci

where the 3-fold Xi develops a singularity. The interior boundaries are regions where a

holomorphic curve collapses to zero volume and formally develops negative volume in the

adjacent Kähler cone, signaling a flop transition (see section (3.5.1) for further discussion.)

By contrast, the boundaries of K(Y ) are loci where one of the 4-cycles can collapse to a 2-

cycle or a point. The SCFT point is the origin of K(Y ), and corresponds to the singularity

Y which is characterized by a connected union of 4-cycles shrinking to a point.

In some cases the 5d theory associated to a 3-fold X admits a description as a gauge

theory. In such cases, the abelian gauge algebra is H2(X,R)/H2(X,Z) and enhances to a

non-abelian gauge algebra in the singularity Y . The simple coroots of the gauge algebra

correspond to the classes Si ∈ H2(X,Z), whereas the simple roots are generic fibers fj con-

tained inH2(X,Z). More precisely, the W-bosons of the 5d theory correspond to M2-branes

wrapping holomorphic curves fj , and so the Cartan matrix Aij is the matrix of charges

Aij = −
∫

fj

Si. (2.15)

In practice, we work in an algebro-geometric setting in which volumes of holomorphic

cycles can be computed as intersection products. Thus the volumes of 2-cycles Ci ⊂
H2(X,Z) and 4-cycles Si ⊂ H4(X,Z) are expressed in terms of the intersection products of

numerical classes of (resp.) complex curves [C] and surfaces [D]. That is, vol(C) = (J ·[C])X
and vol(S) = (J ·J ·Si)X . We abuse notation and use the same symbols to denote p-cycles,

their homology classes, and their numerical equivalence classes whenever the context is

clear.

3 Classification program

3.1 Physical equivalence classes of 3-folds

In this section we propose a classification of CY 3-folds defining 5d SCFTs via M-theory

compactification. One way to approach this problem is to study singular 3-folds for which

there exist desingularizations that preserve the Calabi-Yau condition (i.e. crepant resolu-

tions.) However, the problem of classifying singular 3-folds admitting crepant resolutions

is notoriously difficult. Rather than attempting to classify singularities, we instead classify

physical equivalence classes of singularities. We define a pair of 3-folds to be physically

equivalent (i.e. leading to the same SCFT, up to decoupled sectors) if they are related by

a finite change in Kähler and complex parameters. There is a conjectural aspect to this

definition which we now clarify.

– 11 –



J
H
E
P
0
4
(
2
0
1
8
)
1
0
3

It is immediate from the above definition that normalizable Kähler and complex defor-

mations do not change the physical equivalence class of a 3-fold, since these deformations

do not change the singular limit (and hence do not change the SCFT). However, we also

find it useful to identify 3-folds that differ by non-dynamical large complex deformations.

While the singular limits of such 3-folds are not identical, we claim they are nevertheless

closely related in that their SCFTs differ at most by decoupled free states. As we will see,

the notion of physical equivalence dramatically simplifies the problem of classification.

3.2 Shrinkable 3-folds

In this section we specify the necessary criteria a smooth 3-fold must satisfy in order to

define a 5d SCFT. Note that we assume all 5d SCFTs have a maximal Coulomb branch,

meaning that there exists a phase in which the 5d theory has no dynamical massless

hypermultiplets, possibly after turning on some mass parameters. Geometrically this means

that we assume there exists a smooth 3-fold which has no normalizable (dynamical) complex

structure deformations. The geometry of such a 3-fold is thus controlled by three types

of parameters: normalizable Kähler (i.e. Coulomb branch) parameters, non-normalizable

Kähler (i.e. mass) parameters, and non-dynamical non-normalizable complex structure

deformation parameters (see section 3.5 for an example).

Before spelling out the necessary criteria, we recall the key features of the geometries

which are the subject of our analysis. We are interested in smooth, non-compact CY 3-

folds X containing a finite number of compact 4-cycles Si and non-compact 4-cycles Nj .

As discussed in the previous section the number of independent compact 4-cycles is equal

to the number of Coulomb branch parameters, while the number of mass parameters is

identified with the number of non-normalizable Kähler deformations. The 4-cycles Si ⊂ X

are irreducible projective algebraic surfaces, hence Kähler. Moreover, X also contains

compact 2-cycles which can either be isolated or part of a family of compact 2-cycles

belonging to one of the 4-cycles.

From the physics perspective the natural condition for CY 3-folds to lead to SCFTs is

that we can tune non-normalizable Kähler parameters (mass parameters) so that at a finite

distance in normalizable Kähler moduli space we can reach a singular CY 3-fold which has

no finite volume cycles or surfaces. However, formulating this in algebro-geometric terms

is not simple. Instead we formulate it in a somewhat different way which we believe is

equivalent to this. Namely, in order for a 3-fold X to define a 5d SCFT, X must satisfy

the property of being shrinkable, which we define below:

Definition. Let X be a smooth CY 3-fold modeled locally as the neighborhood of a

connected union of compact Kähler surfaces S = ∪Si. We say X is shrinkable if there

exists an intersecting (possibly empty) union of non-compact surfaces N = ∪Nj and a

limit Y of Kähler metrics such that:

1. S (and all curves C ⊂ S) have zero volume in Y ;

2. Y is at finite distance from a metric X0 for which N has zero volume while S has

positive volume.
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By abuse of terminology, we say the surface S is shrinkable if S is contained in a shrinkable

3-fold X as a maximal compact algebraic surface.

Let us now translate the above definition of shrinkability into a set of necessary geo-

metric conditions. We consider first the limit where all non-normalizable Kähler moduli

have been set to zero. In this limit we may have a singular 3-fold which is described by

the Kähler class J = φiSi. Our convention is to assume φi ≥ 0 and compute volumes with

respect to −J ; thus, the volume of a curve C is given by vol(C) = −J · C and the volume

of a divisor D is vol(D) = J2 ·D.4 Since we require −J to define a Kähler metric which

assigns postive volumes to complex p-cycles in X, a necessary condition for shrinkablity is

vol(C) = −J · C ≥ 0, ∀C ⊂ S. (3.1)

What happens when the inequality (3.1) is saturated? Suppose there exists a curve C,

with vol(C) = 0. So far, we have only considered the case in which all non-normalizable

Kähler moduli are set to zero. To give finite volume to C requires a non-normalizable Kähler

deformation, which in turn implies the existence of a non-compact 4-cycle N attached to

S along C. Notice that since C belongs to N , there may also be other compact curves

C ′ which are homologous to C in N ; in particular, the full set of curves homologous to C

can fiber over N . For each of these curves C ′ it must be that vol(C ′) = 0, and thus N

can be said to have degenerated to a non-compact 2-cycle along its fibers.5 By making a

non-normalizable Kähler deformation, we can bring the curve C = S ∩N to finite volume,

and we expect that we are again in a situation where the surface S is contractible.

We believe that the above necessary criteria are in fact sufficient to define a shrinkable

3-fold:

Conjecture. Let X be a smooth CY 3-fold modeled locally as the neighborhood of a

connected union of compact Kähler surfaces S = ∪Si. Then S is shrinkable provided that

−J ·C ≥ 0 for all curves C ⊂ S and that there is one Si with positive volume and the rest

should have non-negative (possibly zero) volume.

Elliptic Calabi-Yau 3-folds are immediately ruled out by these criteria. F-theory on

an elliptic 3-fold engineers a 6d theory. In a 6d theory, cubic terms in the prepotential

F are trivial; they are non-trivial only when we compactify the 6d theory on a circle and

turn on holonomies for gauge symmetries where the circle size is inversely proportional to a

mass parameter (or a non-compact Kähler parameter). This means that the volumes of all

4-cycles in the associated 3-fold are zero when we turn off mass parameters (or equivalently,

in the 6d limit). Therefore elliptic 3-folds are not shrinkable.

4This choice of sign is consistent with the description of Kähler classes J on compact CY 3-folds, as the

expansion of J (or any other ample divisor class) in terms of Si will have non-positive coefficients. A simple

example illustrating this point is the rank 1 case, for which S is a del Pezzo surface. Since J ·C = φKS ·C,

it follows that J has non-positive intersection with all curves C ∈ S. We therefore have to change the sign

in order for J to be a limit of Kähler classes on X.
5It would interesting to compare this defintion of shrinkability with the conjecture of [25] that canonical

3-fold singularities give 5d SCFTs, since it is known that the only noncompact 4-cycles in a Calabi-Yau

(crepant) resolution of a canonical 3-fold singularity are ADE fibrations. However, we do not need this for

the description in our classification.
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3.3 Building blocks for shrinkable 3-folds

We now argue in favor of a series of simplifying assumptions we make concerning the

surfaces S which are instrumental for our proposed classification of shrinkable rank 2

surfaces modulo physical equivalence. Observe that when the inequalities of (3.1) are

all strict, then S is contractible [26], so that S can be contracted to an isolated singular

point p of a singular 3-fold Y . In more precise mathematical terms, this means there exists

a holomorphic map f : X → Y with f(S) = p such that f restricts to an isomorphism away

from S, i.e. f |X−S : X−S ∼= Y −p. Since X is at finite distance from Y in moduli space, it

is evident that contractibility of S ⊂ X implies shrinkability of X. When a curve has zero

volume, we expect that we can obtain a contractible surface by means of a non-normalizable

Kähler deformation which involves bringing non-compact 4-cycles to finite volume. Hence,

we conjecture that a holomorphic map f exists when S is shrinkable, as well:

Conjecture. Let X be a shrinkable CY 3-fold modeled locally as a neighborhood of a

connected union of compact Kähler surfaces S = ∪Si meeting a (possibly empty) collection

of non-compact surfaces N = ∪Nj . Then there exists a holomorphic map f : X → Y

sending S to a point p and N to a collection of curves C such that f |X−S−N : X−S−N →
Y − C is an isomorphism.

The existence of a holomorphic map f as described above permits a number of sim-

plifying assumptions for the following reasons. Replacing the singular 3-fold Y by its

normalization if necessary, we can assume that the singularities of Y are normal. It follows

that Y has “canonical singularities”, and moreover that X is a crepant resolution of Y .

But it is known the components of the resolutions of canonical threefold singularities Y

are rational or ruled [27].

We next argue that we can further restrict the types of possible building blocks by

exploiting physical equivalence:

Conjecture. Shrinkable surfaces are physically equivalent to a shrinkable surface S =

∪Si, where the irreducible components Si are either equal to P
2 or a blowup BlpFn of a

Hirzebruch surface at p points intersecting one another (or self-intersecting) transversally.

Moreover, there exist non-negative integers pmax(n) such that p ≤ pmax(n).

We briefly discuss the content of the above conjecture, deferring a more detailed discus-

sion of the first two points to section 3.5. In that section, we describe the rank 2 case only.

For higher rank, we have to also consider the situation where three surfaces can intersect

transversally.6 At such a point of intersection, called a triple point, the three intersecting

surfaces have local equation xyz = 0. As part of the argument in section 3.5, we blow up

a point where two surfaces intersect, at which the intersecting surfaces have local equa-

tion xy = 0, so our construction will not apply at a triple point. To handle triple points,

we simply supplement the argument in section 3.5.1 by noting that a complex structure

deformation will keep a point to be blown up distinct from any of the triple points.

6Since four or more surfaces in a threefold cannot intersect nontrivially and transversally, we only need

to consider intersections of three surfaces at a time.
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1. Using a combination of complex structure and Kähler deformations, it is possible

to map a 3-fold containing a ruled surface over a genus g to a 3-fold containing a

Hirzebruch surface. We defer a detailed discussion to section 3.5.

2. In all examples that we have investigated, we have been able to bypass non-transverse

intersections in one of two ways: either by a complex structure deformation, or by a

Kähler deformation in the form of a flop. The idea is that when we flop a curve (in

S1, say) which passes through a point of non-transversal intersection, the result is

to blow up S2 at that point, simplifying the singularity of the intersection curve and

rendering it more transverse. We therefore assume that a combination of complex and

Kähler deformations will always suffice to produce a 3-fold containing transversally

intersecting surfaces Si.

3. We prove in appendix A.2 that if p > pmax(n) there are infinitely many generators for

rational curves. The presence of infinitely many generators is expected to indicate the

presence of an infinite dimensional global symmetry group. An example of this is dP9

(note pmax(1) = 7), in which case the symmetry group permuting these generators

is the affine E8 Weyl group. In such a case, the Weyl group is infinite dimensional,

and can be interpreted as a finite symmetry group of a 6d theory viewed from the

5d perspective. As we discussed above, geometries associated to 6d theories are not

shrinkable. Since a CFT should not have an infinite dimensional global symmetry

group, we claim that surfaces Si with an infinite number of Mori cone generators

cannot be building blocks for 5d SCFTs and are thus excluded.

3.4 Consistency conditions for shrinkable 3-folds

The condition that S is contained in a CY 3-fold imposes constraints on the curves of inter-

section of the components of S, which will be exploited in a crucial way in our classification

program.

Let S1 and S2 be two smooth surfaces glued along a curve C = S1 ∩ S2. Now suppose

that S1∪S2 is contained in a 3-fold X, and that the intersection of S1 and S2 is transverse in

X. Then the normal bundle of C in X is given by NC,X = NC,S1 ⊕NC,S2 . The Calabi-Yau

condition then implies

C2
S1

⊕ C2
S2

= 2g − 2, (3.2)

where g is the genus of C and the subscripts on the right-hand side denote the irreducible

surface in which the self-intersection takes place. The gluing curves must satisfy the ad-

junction formula for each surface Si:

(K · C)Si + C2
Si

= 2g − 2, (3.3)

where KSi is the canonical class of the surface Si. For the rank 2 case, which is the primary

focus of this paper, we argue in section 4.2 that it suffices for our classification to assume

that g = 0.

Suppose a compact connected holomorphic surface S satisfies the above constraints on

its curves of intersection. These constraints immediately imply that a CY 3-fold can be
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found containing a neighborhood in S of the curves of intersection (for example, the total

space of the normal bundle of S1 ∩ S2 in X works, as the complement of S1 ∩ S2 ⊂ S is

smooth). Moreover, we can also find local CY 3-folds containing the complement of the

intersection curves S1 ∩ S2 in S (for example, just take the total space of the canonical

bundle as before). Therefore, it seems reasonable to expect that above two types of local

models can be glued to form a local model of a CY 3-fold. In other words, given smooth

holomorphic surfaces S1 and S2 glued along a smooth curve C and satisfying (3.2), a smooth

CY 3-fold X can be found containing S = S1 ∪S2. While we have not proven that such an

X can always be found if (3.2) and (3.3) are satisfied, these conditions are consistent with

all known examples and it is presumably not too difficult to rigorously prove this.

We emphasize here that the above gluing condition is a local condition that has no

bearing on the overall topology of the surface S, and therefore permits a variety of in-

teresting configurations. In principle there is nothing preventing, for example, gluing two

surfaces together along multiple irreducible curves. Another interesting configuration in-

volves two curves belonging to a single surface Si being glued together. However, we will

see that the only gluing configurations which play a role in the rank 2 classification are

pairwise transverse intersections between the irreducible components S1 and S2.

The above discussion plays an essential role in our classification because we do not

need to actually construct X to proceed; rather, we only require the existence of X and

the existence of a surface S can be used as a proxy for the existence of a local 3-fold. Thus

the problem of classifying shrinkable 3-folds can be reduced to the problem of classifying

embeddable, shrinkable surfaces S.

A simple example: S = F0 ∪ F2. An illustrative example of this construction is a

simple complex surface S = S1 ∪ S2 with S1 = F0, S2 = F2 as depicted in figure 2. Our

rank 2 ansatz gives us

J3 = S3
1φ

3
1 + S3

2φ
3
2 + 3φ1φ2(J · S1 · S2) = K2

S1
φ3
1 +K2

S2
φ3
2 − 3φ1φ2vol(S1 ∩ S2). (3.4)

The first order of business is to determine an appropriate gluing. Gluing these two

surfaces together requires us to identify an irreducible, smooth curve C = S1∩S2 belonging

to the Mori cone of both surfaces, satisfying (3.2). In the case of Hirzebruch surfaces

Fni , the Mori cones are the positive linear spans 〈Ei, Fi〉, where the curve classes satisfy

the intersections F 2
i = 0, Ei · Fi = 1, E2

i = −ni, so the range of possibilities is severely

restricted. The gluing condition (3.2) implies that the self intersection of one of the two

gluing curves must be negative. Since the curve E is the unique rational curve with negative

self intersection [28], it therefore follows that we must select CSi = Ei for one of the two

surfaces, say CS2 = E2. The other curve must then satisfy

C2
S1

= 0. (3.5)

As a trial solution let us take CS1 = aF1 + bE1, so that C2
S1

= 2ab = 0. Therefore, either

a = 0 or b = 0. From the adjunction formula (3.3), we know that (C · E1 + C · F1)S1 =

a + b = 1, and therefore the remaining nonzero coefficient must be set equal to unity. To
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Figure 2. Example of a gluing construction of the Kähler surface S = F0 ∪ F2. The gluing curves

in both surfaces, C1, C2, are encircled by dashed lines in the left figure. The final geometry (on the

right) is the result of identifying these two curves subject to the conditions described in section 3.

be concrete, we choose

CS1 = F1, CS2 = E2. (3.6)

Now that we have constructed the surface S, we must check that the local 3-fold X

associated to this surface is shrinkable. We parametrize a Kähler class J as follows:

J = φ1[F0] + φ2[F2], (3.7)

where [F] is the class associated to the 4-cycle F ⊂ X. The Mori cone ofX is the union of the

Mori cones of the component surfaces Si, namely the positive span 〈E1, E2, F2〉 (we omit F1

because the gluing identifies F1 and E2.) Therefore, the shrinkability condition (3.1) implies

(vol(E1), vol(E2), vol(F2)) = (2φ1 − φ2, 2φ1,−φ1 + 2φ2) ≥ 0. (3.8)

Since that the above conditions can be satisfied for a nontrivial set of Coulomb branch

parameters φi, we conclude that the geometry X corresponds to a 5d SCFT on the

Coulomb branch.

3.5 Geometry of physical equivalences

In this section we discuss some important types of physical equivalences upon which our

classification relies. Many of these equivalences identify 3-folds related by geometric transi-

tions, i.e. maps between smooth geometries which involve passing through an intermediate

singularity. Another type of physical equivalence identifies 3-folds related by a “large”

change in the complex structure of non-dynamical modes, which interpolates between two

singular geometries — this is a Hanany-Witten transition [29]. We illustrate these two

types of maps in turn.
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Figure 3. A local illustration of a flop transition X → X ′ between two CY 3-folds. The red lines

in both diagrams correspond to the −1 curves in (respectively) X and X ′.

Figure 4. A genus g = 2 Riemann surface degenerating into a g = 1 Riemann surface with a

nodal singularity as the result of identifying two points. By identifying g pairs of points in this

manner, it is possible for a smooth curve of genus g to degenerate into a rational curve with g nodal

singularities.

3.5.1 Geometric transitions

Flop transitions. One of the simplest and most thoroughly studied types of geometric

transitions is a flop transition, which is a topology-changing transitionX → X ′ between two

3-folds X,X ′ that is in practice typically realized by blowing down a −1 curve C ⊂ X and

blowing up a different −1 curve C ′ ⊂ X ′ (see figure 3). A flop is a birational map X 99K X ′

which is an isomorphism away from curves C,C ′, with KX ·C = KX′ ·C ′ = 0. If C and C ′

are both isomorphic to P1, the flop is called a simple flop. Simple flops were classified in [30].

In field theoretic terms, a flop transition corresponds to a continuous change of the

mass of a particular state in the matter hypermultiplet from positive to negative values;

this change corresponds to a singular phase transition on the Coulomb branch.

Genus reduction. We saw in section 3.3 that the Si can be ruled surfaces over higher

genus curves as well as genus 0. Here we argue that by our notion of physical equivalences

we can restrict to g = 0 using geometric transitions. This can be obtained by composing a

complex structure deformation of a surface Si with a flop transition. This provides a map

from a ruled surface over a curve of genus g to a self-glued Hirzebruch surface.

This type of geometric transition is particularly important because it exhibits the non-

normalizable Kähler moduli of the local 3-fold defined by a ruled surface over a curve of

genus g as blowup parameters of the 3-fold defined by a self-glued surface Bl2gFn. While we

have not proven that the transition can always be achieved in the higher rank case due to

the requirement that additional compact surfaces remain glued throughout the transition,

we nevertheless believe this construction can be extended to higher rank surfaces with at

most minor modifications.

Before giving a detailed description of this geometric transition, we recall that by the

irreducibility of the moduli space Mg of stable curves of genus g the complex structure of
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a) b)

c) d)

Figure 5. A transition from a ruled surface over a g = 1 curve to a Hirzebruch surface. The red

point in the second figure is a blowup point on a nodal curve and the red lines in the third figure

are the exceptional curves. Two proper transforms of the fiber F in a blown up Hirzebruch surface

are glued together along the nodal curve.

a smooth curve C of genus g can be degenerated to a rational curve C0 with g nodes (see

figure 4.) The curve C0 can be constructed directly by identifying g pairs of points of P1.

Note that this construction immediately extends to give a degeneration of a ruled surface

S over C to a ruled surface S0 over the singular curve C0. Conversely, the degeneration

of the ruled surface can be described by starting with P
1-bundle over P1 (i.e. a Hirzebruch

surface Fn) and identifying g pairs of fibers F ⊂ Fn.

However, this description of S0 is not completely satisfactory, as S0 cannot be embed-

ded into a CY 3-fold for the following reason. Let F ⊂ S0 be one of the singular fibers

obtained by identifying g pairs of fibers. Locally, S0 has two branches near F with equation

xy = 0 (pulled back from the local equation xy = 0 of a node of C0). Being a fiber, F

has self-intersection 0 in each branch, So if S0 were contained in a smooth threefold, the

normal bundle of F would be OF ⊕ OF . Fortunately, the geometric transition naturally

rectifies this problem by introducing blowups, in a manner which we describe below.

Consider again the degeneration point of view, which can be described by a holomor-

phic map π : S → ∆. Here S is a smooth7 threefold, ∆ is a disk, π−1(0) ≃ S0, and π−1(t)

is diffeomorphic to S for t 6= 0. We now pick a point p ∈ F ⊂ S0 ⊂ S and blow up p to get

φ : S̃ → S. Via π ◦ φ we can view S̃ as a family over ∆. However, S̃ and S are isomorphic

over ∆ − 0, so this gives another degeneration of S. The singular limit is (π ◦ φ)−1(0),

which we now describe.

7Requiring S to be smooth is not a problem; its local equation near a point of F can be taken as xy = t,

which is smooth. This is the same local calculation which shows that Mg is smooth at the nodal curves (in

the orbifold sense).
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Blowing up a point p in a smooth threefold creates an exceptional divisor E isomorphic

to P
2, and blows up S0 to a surface S̃0. We have (π ◦ φ)−1(0) = S̃0 ∪ P

2. It remains to

describe S̃0 and how P
2 is attached to it.

Since S0 has local equation xy = 0 at p, the exceptional curve of S̃0 → S0 has xy = 0 as

its equation. In this latter instance, the equation xy = 0 is understood as a homogeneous

equation in the exceptional P2 of the blown-up threefold. In other words, P2 meets S̃0 in

two intersecting projective lines L,L′; each of these P
1’s can be thought of as arising from

the blowup of p in a corresponding branch of S0 near p.

The point of intersection q = L ∩ L′ also intersects the proper transform F̃ of the

original singular fiber F . The curve F̃ is still singular in S̃0 and still has two branches in a

local description, but now the blowup has reduced the self-intersection from 0 to F̃ 2 = −1

in each branch. So if S̃0 is contained in a smooth threefold, then the normal bundle of F̃

is OF (−1)⊕OF (−1) and the threefold can be Calabi-Yau!

We can apply this construction to all of the g singular fibers. Since F̃ has self-

intersection −1 in each branch, we can view it as the gluing of a pair of exceptional P1’s.

Therefore the resulting S̃0 is a blown up Hirzebruch surface with g pairs of exceptional

curves identified. Each singular fiber consists of a double curve with self-intersection −1

in each branch, glued at a common point q to curves L,L′ of self-intersection −1 in each

of the respective local branches (the surface S̃0 is smooth along L ∪ L′ − {q}).
In the degeneration described above, we also need to attach g copies of P2. However,

we are only concerned with the rank 2 case, so in our examples these P
2’s can replaced by

noncompact cycles containing L ∪ L′ and safely ignored.

The final step is to flop the g curves F̃1, . . . F̃g, where we have added a subscript to

F̃ to distinguish these curves. Let us investigate the birational transform of S̃0 after the

flops. When the curves F̃i are contracted, the points of intersection qi = Li ∩ L′
i become

conifolds. When we complete the flops, new P
1’s appear in place of the qi and the curves

Li, L
′
i get separated. These curves become identified with fibers of a ruled surface over the

desingularization C̃0 of C0, the fibers over the pairs of points of C̃0 which get identified

to form a node of C0. Since C̃0 is isomorphic to P
1, the result is a Hirzebruch surface in

general with blowups.

An example of genus reduction: G2+NFF. An illustrative example of complex de-

formations that exchange ruled surfaces over a curve of genus g > 0 for self-glued Hirzebruch

surfaces blown up at 2g points is the family of shrinkable 3-folds engineering G2 + NFF,

as described in [31].

We begin by recalling the form of the gauge theoretic 1-loop prepotential for G2 +

NFF+Nadjadj:

6F1-loop = (8− 8NF − 8Nadj)φ
3
1 + (8− 8Nadj)φ

3
2

+ 3φ1φ2[(6 + 3NF − 6Nadj)φ1 + (8Nadj −NF − 8)φ2].
(3.9)

We set Nadj = 0 to be consistent with N = 1 supersymmetry. By giving a nonzero value

to mass parameters in the hypermultiplet contributions to the prepotential, one can study

the RG flow from NF to NF−1 flavors. In order to decouple a massive hypermultiplet, the
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g a (n1, n2)

0 1 (8, 0)

1 0 (9, 1)

2 2 (10, 0)

3 1 (11, 1)

4 0 (12, 2)

4 3 (12, 0)

5 2 (13, 1)

6 4 (14, 0)

Table 2. Shrinkable surfaces S = F
g
n1

∪ Fn2
engineering G2 + NFF gauge theories. The surface

F
g
n1

is a ruled surface over a curve E with g(E) = NF and satisfying E2 = −n1. The gluing curve

C = S1 ∩ S2 is given by CS1
= E and CS2

= aF + 3H. The fiber classes are given by are fi = Fi.

theory must pass through three phase transitions. These four phases have the following

prepotentials (we omit mass parameter terms for brevity):

6F (1) = (8− 8NF)φ
3
1 + 8φ3

2 + 3φ1φ2[φ1 (3NF + 6)− φ2 (NF + 8)]

6F (2) = (16− 8NF)φ
3
1 + 7φ3

2 + 3φ1φ2[φ1 (3NF + 2)− φ2 (NF + 6)]

6F (3) = (15− 8NF)φ
3
1 + 8φ3

2 + 3φ1φ2[φ1 (3NF + 3)− φ2 (NF + 7)]

6F (4) = 6F (1)
NF−1.

(3.10)

We determine a shrinkable Kähler surface S that engineers this theory by setting

the triple intersection polynomial (3.4) equal to prepotential (3.9) and demanding that

there exist an intersection matrix fi · Sj = (AG2)ij for some choice of fiber classes fi ⊂ Si.

Restricting the possible building blocks to be blowups of rational and ruled surfaces without

self-gluing, the only solutions to these conditions are the geometries shown in table 2. For

all of these surfaces we have 9n2+6a = 2g− 2+n1, as required by (3.2). A key point here

is that the surface S1 must be a ruled surface of a curve of genus g = NF. This is precisely

the geometric setup described in [31].

We now demonstrate that we can engineer the same family of theories described above

by replacing S1 with the surface S′
1 = Bl2gF

(g)
n1 , where again g = NF and the superscript

notation indicates S′
1 is obtained by identifying g pairs of exceptional curves in Bl2gFn1

(i.e. self-gluing; see appendix A.1 for some mathematical background.) This shrinkable

surface not only reproduces the prepotential (3.9) and G2 Cartan matrix, but also has the

merit of exhibiting the RG flow (3.10) in a very natural manner. The four phases, related

by flops, have the following geometries:

1. Bl2gF
(g)
8−g ∪ Fn2 , where the blowups are all at special points8 F ∩ E.

8Note that while we consider blowups at special points F ∩ E ⊂ Fn here for convenience, since we do

not introduce any additional irreducible curves with self intersection less than −1, we can without loss of
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2. Bl2g−2F
(g−1)
8−g ∪ Bl1Fn2 .

3. Bl2g−1F
(g−1)
8−g ∪ Fn2±1.

4. Bl2g−2F
(g−1)
9−g ∪ Fn2±1.

The first phase is Bl2gF
(g)
8−g ∪Fn2 , where we introduce g self-gluings of Bl2gFp along the

pairs of exceptional divisors X2i, X2i−1, i = 1, . . . , g,9 the where the gluing curve is defined

by CS1 = E −∑2g
i=1Xi and CS2 = F + 3H, so that a = 1 in the notation adopted in the

caption of table 2. Since the canonical class10 is given by KF8−g +2
∑NF

i=1(X2i−1+X2i), we

find a perfect match with the first line of (3.10), using the adjunction relation 9n2 + 6 −
(8 + g) = 2g − 2.

We now describe the flop to the second phase. The matter curve with volume 2φ1−φ2

which shrinks is one of the self-gluing exceptional divisors, say X1. Blowing down X1 forces

us to also blow down X2. We can blow up Fn2 at a generic point F2 ∩H2 if we eventually

want to decrease n2 to n2 − 1, or at a special point F2 ∩ E2 if we want to increase n2 to

n2 + 1 in the third phase.

The geometry of the second phase is Bl2g−2F
(g−1)
8−g ∪Bl1Fn2 , where CS1 = E−∑2g−2

i=1 Xi

and CS2 = aF +3H − 2Y1. Since the blowup of Fn2 is at the double point of E introduced

by gluing X2g−1 to X2g, the coefficient of Y in CS2 is −2.

The matter curve with volume φ2 − φ1 which we blow down is F2 − Y1 ⊂ Bl1Fn2 .

Because F − Y1 meets C in one point, we must introduce an exceptional divisor Y2 in the

surface S1, leading us to the third phase.

The geometry of the third phase is Bl2g−1F
(g−1)
8−g ∪Fn2±1, where CS1 = E−∑2g−2

i=1 Xi−
Y2. Concerning the gluing curve class C ⊂ Fn2±1, there are two possible cases. In the case

of a generic blowup, the proper transforms of H,F ⊂ S2 are H − Y1, Y1, so we set CS2 =

(a+1)F+3H, where now H2
S2

= n2−1. It follows that C2
S2

= ((a+1)F+3H)2S2
= 6(a+1)+

9(n2−1) = 3g+3, which is a nontrivial check that this geometry is consistent with the phase

structure of the G2 theory. On the other hand, in the case of a special blowup, the difference

is that the proper transform of H ⊂ S2 is H, so that CS2 = H + (a − 2)F , where now

H2
S2

= n2+1. We again confirm that C2
S2

= ((a−2)F+3H)2S2
= 6(a−2)+9(n2+1) = 3g+3.

In order to reach the fourth and final phase, the matter curve with volume φ1 which

we blow down is F − Y2 ⊂ S1. The geometry of the fourth phase is Bl2g−2F
(g−1)
9−g ∪ Fn2±1.

Keeping in mind the previous identity n1 = 8 − g along with the fact that we blow down

generality view a blowup of Fn at p special points as a blowup of Fn+p at p general points. We explore the

distinction between special and general points in more depth in section 4.2.
9Here and in the sequel, we use the notation Xi to denote the exceptional divisor of the i-th blowup,

since we reserve the more standard notation Ei for sections of Hirzebruch surfaces.
10More precisely, the dualizing sheaf of the singular surface Bl2gF

(g)
8−g, pulled back to its natural desingu-

larization Bl2gF8−g.
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⊗

⊗

⊗

⊗

Figure 6. Hanany-Witten transition from F2 to F0. The ⊗ symbol denotes the location of a

transverse (0, 1) 7-brane, and the dashed line denotes the location of the 7-brane monodromy cut.

the curve F − Y2 ⊂ S1, we compute the canonical class:

KS1 = −2H + (n1 − 2)F + 2

g−1∑

i=1

(X2i−1 +X2i) + Y2

= −2H + ((n1 + 1)− 2)F + 2

g−1∑

i=1

(X2i−1 +X2i).

(3.11)

Note also that the self-intersection of H ⊂ S1 shifts from 8− g to 9− g.

3.5.2 Hanany-Witten transitions and complex deformations

The next type of transition we will discuss is a complex structure deformation. In particular,

we concern ourselves with two types of complex structure deformations that preserve the

rank of the 3-fold. The first type of complex structure deformation is a Hanany-Witten

(HW) transition [29]. This type of transition is most easily understood in the setting of

(p, q) 5-brane webs, and involves interchanging the relative position of a (p, q) 7-brane and

a (p, q) 5-brane. After the transition, despite the fact that the brane webs look different, in

the low-energy decoupling limit the corresponding SCFTs describe the same physics up to

decoupled free sectors. The example displayed in figure 6 describes a geometric (or HW)

transition from a local 3-fold X with S = F2 to another 3-fold X ′ with S′ = F0. Therefore,

X and X ′ are physically equivalent.

This example can be geometrically described as follows: F2 is physically equivalent to

F0 by a (non-normalizable) complex structure deformation. One way to see this is to first

contract the curve E in F2 (with E2 = −2) to an A1 singularity, which can be identified

with the quadric cone x2+y2+z2 = 0 in P
3. A complex structure deformation takes this to

a smooth quadric surface (e.g. w2+x2+ y2+ z2 = 0), which is isomorphic to P
1×P

1 = F0.

Another type of complex structure deformation involves changing special type blow

ups (i.e. blow ups on top of blow ups) to generic blow ups, where the blow up points are
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S = S1 ∪ S2 G

(F6 ∪ dP4)
∗ Sp(2)θ=0 + 3AS

(F2 ∪ dP7)
∗ SU(3)4 + 6F

Sp(2) + 4F+ 2AS

G2 + 6F

(Bl9F4 ∪ F0)
∗ SU(3) 3

2
+ 9F

Sp(2) + 8F+AS

(Bl10F6 ∪ F0)
∗ SU(3)0 + 10F

Sp(2) + 10F

Table 3. Rank 2 geometries with maximal M . In the above table, S is the rank 2 Kähler surface,

while G is the corresponding gauge theory description. These geometries denoted as (·)∗ are not

shrinkable and correspond to 5d KK theories.

not on top of one another, unless the blow up curve is part of the identification between

Si’s. We will show that in the rank 2 case this can be avoided and we can always assume

general point blow ups.

4 Classifications

Let S = ∪Si be a connected union of surfaces contained in a CY 3-fold X. We classify all

shrinkable S for rank 1 and rank 2 according to the conjectures and algorithm described in

section 3. We first summarize the rank 1 and rank 2 classification results and in the next

two subsections we present details of the classification.

All rank 1 and rank 2 shrinkable geometries (or SCFTs) belong to one or more families

of geometric RG-flows, and the geometries in each RG-flow family are related by rank-

preserving mass deformations (or blowdowns of -1 curves in geometric terminology), up to

physical equivalence. The ideas of geometric RG-flow and rank-preserving mass deforma-

tions will be discussed later. Based on these ideas, we can start from a “top” geometry,

which corresponds to a 5d CFT or a 6d CFT on a circle (equivalently, a 5d Kaluza-Klein

(KK) theory), and obtain all other geometries in the same family by a finite sequence of

geometric transitions or mass deformations. This UV geometry is at the top of the RG-

flow in a given family and can therefore be a representative of the entire RG-flow family.

We conjecture that all descendants of the top UV geometry engineer 5d SCFTs. When

shrinkable, the top UV geometry itself also engineers a 5d SCFT.

For rank 1 geometries, we have only one RG-flow family corresponding to a local elliptic

3-fold defined by the del Pezzo surface dP9. All other rank 1 geometries are obtained by

blowing down exceptional curves. The RG-flow family of dP9 involves other del Pezzo

surfaces dPn with n ≤ 8 and a Hirzebruch surface F0; it is believed that these are the

complete set of geometries leading to rank 1 5d SCFTs.
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Similarly, the top rank 2 geometries are summarized in table 3. We have identified

four geometric RG-flow families represented by these top geometries. These geometries are

not shrinkable; rather, we expect that these geometries have 6d UV completions and thus

they engineer 5d KK theories. However, their descendants, obtained by blowing down −1

curves, are shrinkable and therefore give rise to 5d SCFTs. For example, the geometry

Bl9F4 ∪ F0 is ruled out from our CFT classification because its building block Bl9F4 has

an infinite number of Mori cone generators as explained in appendix A.2.1, violating our

criterion in section 3.3. However, a geometric RG-flow from this geometry by blowing

down an exceptional curve as well as a number of flop transitions leads to the geometry

Bl8F3 ∪dP1 which is now shrinkable and engineers a 5d SCFT. Similarly, other geometries

in table 3 are associated to KK theories, but their descendants are shrinkable. Therefore,

we find that all rank 1 and 2 smooth 3-fold geometries engineering 5d SCFTs are mass

deformations of 5d KK theories. See section 4.2 for further discussion.

This result confirms the existence of many new rank 2 SCFTs predicted in [13] which

are listed in table 1. For example, the SU(3)7 gauge theory is predicted to exist in table 1a.

This theory turns out to have a geometric realization as F0 ∪ F8 which is a descendant of

F2∪dP7. This implies that the gauge theory approach in [13], which analyzes the magnetic

monopole and perturbative BPS spectrum, is quite powerful and capable of predicting new

interacting 5d SCFTs.

Our study also reveals that there are no smooth 3-fold geometries associated to the

following gauge theories:

SU(3) 1
2
+ 1Sym ,

SU(3)7 + 2F → SU(3) 15
2
+ 1F → SU(3)8 .

(4.1)

These theories are expected to have interacting CFT fixed points by the perturbative

gauge theory analysis in [13]. See table 1a. The SCFT of the first gauge theory indeed

exists — this theory is a mass deformation of the SU(3)0 theory with NSym = 1, NF = 1

whose brane construction is given in [32, 33]. Our study of smooth 3-folds fails to

capture this theory. The reason for this failure is because the corresponding geometry

involves a ‘frozen’ singularity. For example, the brane construction in [32, 33] contains

O7+-planes; indeed, constructions involving O7+ planes are dual to frozen singularities

involving non-geometric monodromies and a fractional M-theory 3-form background as

discussed in [14]. Therefore, we do not expect that our analysis can capture this type

of singularity, and hence the geometric classification in this paper is incomplete in this

sense. We nevertheless conjecture that our classification includes all 5d SCFTs coming

from smooth Calabi-Yau threefolds which do not involve frozen singularities dual to brane

constructions involving O7+ planes. In the following sections, we classify smooth rank 1

and rank 2 3-fold geometries engineering 5d SCFTs in their singular limits.

On the other hand, we predict that there are no SCFTs corresponding to three gauge

theories belonging to the RG flow in the second line of (4.1). As we discuss in section 4.2,

despite the fact that these gauge theories can be realized geometrically using our algorithm,

they are shrinkable only when we attach a number of non-degenerate non-compact 4-cycles
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to the compact surface S. Introducing these non-compact 4-cycles entails non-normalizable

Kähler deformations which in the field theory setting corresponds to introducing nonzero

mass parameters. We find that these mass parameters cannot be set to zero in the CFT

limit — at small nonzero values, the corresponding geometries develop at least one 2-

cycle with negative volume and therefore their singular limits do not engineer well-defined

CFT fixed points. This computation excludes the three gauge theories in the second line

of (4.1) as possible candidates for interacting 5d SCFTs. This is also an indication that the

classification criteria described in [13] are necessary, but not sufficient to identify 5d SCFT

fixed points. The criteria of [13] must be modified to account for non-perturbative BPS

states (such as instantons in gauge theories) in order to be both necessary and sufficient.

We also remark that a single 3-fold X can admit multiple gauge theory descriptions.

This is possible because some geometries admit more than one distinct choice of fiber class

associated to charged gauge bosons. The existence of multiple gauge theoretic descriptions

corresponding to a single geometry suggests that the gauge descriptions are dual to one

another. Starting with the “top” UV geometries in table 3, we predict the following

dualities:

SU(3)
5−

N
F

2

+NFF ∼= Sp(2) +NFF , NF ≤ 10

SU(3)
6−

N
F

2

+NFF ∼= Sp(2) + 1AS+ (NF − 1)F , 1 ≤ NF ≤ 9

SU(3)
7−

N
F

2

+NFF ∼= G2 +NFF
2≤NF∼= Sp(2) + 2AS+ (NF − 2)F , NF ≤ 6

(4.2)

The first and the second dualities in (4.2) were conjectured already in [22] and in [13],

respectively. So our construction provides concrete geometric evidence for these duality

conjectures. On the other hand, the third duality is a new duality discovered by an explicit

geometric construction in this section.

4.1 Rank 1 classification

We warm up by starting with rank 1, recovering the result that all rank 1 5d SCFTs are

geometrically engineered by local 3-folds containing a del Pezzo surface. More precisely, our

algorithm identifies del Pezzo surfaces as shrinkable, but also identifies additional shrinkable

surfaces; however, each of these turns out to be physically equivalent to a del Pezzo surface.

Recall that a del Pezzo surface S is defined to be a smooth algebraic surface whose

anticanonical bundle −KS is ample — this means that −KS ·C > 0 for all effective curves

C ⊂ S. The classification of del Pezzo surfaces is well known: S is either dPn for 0 ≤ n ≤ 8

or P1 × P
1 = F0. Such a surface satisfies (3.1) as well as K2

S > 0, so is shrinkable. We now

set out to systematically classify rank 1 shrinkable surfaces up to physical equivalence.

To apply (3.1), we need to know KS , the generators of the Mori cone of curves on S,

and the intersection numbers of the curves in S. Our algorithm leads us to consider P
2,

Fn, and their generic blowups.

P
2 is del Pezzo, but it is instructive to check shrinkability anyway. For P

2, the Mori

cone is generated by the class ℓ of a line, ℓ2 = 1, and KP2 = −3ℓ. So K2
P2 = 9 > 0 and

KP2ℓ = −3 < 0, so P
2 is shrinkable.
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Next, we consider F0, F1 and Fn≥2 separately. Since F1 is the blowup of P2 at a point,

F1 and its generic blowups are just the generic blowups of P2. Similarly, F0 is del Pezzo,

and the blowup of F0 at a point is isomorphic to the blowup of P2 at two points [28]. So

the possibilities for S can be reduced to either generic blowups of P2, or Fn≥2.

As usual, we denote by dPn the blowup of P
2 at general points p1, . . . , pn. Let

X1, . . . , Xn denote the corresponding exceptional P
1’s,11 and we let ℓ denote the class

of the total transform in dPn of a line in P
2. The intersection numbers are

ℓ2 = 1, Xi ·Xj = −δij , ℓ ·Xi = 0 (4.3)

and KdPn = −3ℓ+
∑n

i=1Xi. Then K2
dPn

= 9− n > 0 for n ≤ 8.

We first observe that dPn is not shrinkable for n ≥ 9. To see this, we simply observe

that K2
dPn

≤ 0 for n ≥ 9 which implies that the string tensions are not positive.

Again, we can cite known results simply say that dPn is shrinkable for n ≤ 8, but

it is instructive to work out details without assuming this fact. We adopt a convenient

shorthand to describe the generators of the Mori cone: any curve C ⊂ dPn other than the

Xi will project to a curve D ⊂ P
2 of some degree d > 0. Let mi be the multiplicity of D at

pi, so that mi = 0 if pi 6∈ D, mi = 1 if p is a nonsingular point of D, mi = 2 if p is a node

or cusp of D, etc. Then the class of C is dℓ−∑n
i=1 aiXi. It is customary to abbreviate this

class as (d;m1, . . . ,mn), as well as to omit any mi which are zero. Then the Mori cone of

dPn is generated by the classes12

Xi, (1; 12), (2, 15), (3, 2, 16), (4, 23, 15), (5, 26, 12), (6; 3, 27) (4.4)

up to permuting the order of the pi. It follows from the adjunction formula (3.3) that each

of the curve classes C in (4.4) satisfies KdPn · C = −1,13 so dPn is shrinkable.

Next, consider the Hirzebruch surfaces S = Fn. Using the notation in appendix A.2,

there are two disjoint toric sections E,H and the fiber class F . These classes satisfy

H2 = n, E2 = −n, H · E = 0, H · F = E · F = 1, F 2 = 0, H = E + nF. (4.5)

The canonical bundle of Fn is KFn = −2H + (n− 2)F and so K2
Fn

= 8 > 0. Furthermore,

the Mori cone of effective curves is generated by E and F . While KFn · F = −2 < 0,

we also have KFn · E = n − 2, which is strictly negative for n < 2, zero for n = 2, but

strictly positive for n > 2. Thus F2 is shrinkable. However, as discussed in section 3, this

is physically equivalent to F0. The same reasoning combined with the earlier observation

that Bl1F0 ≃ dP2 shows that BlpF2 is physically equivalent to dPp+1.

In conclusion, all rank 1 shrinkable surfaces are physically equivalent to dPn for some

n or F0.

11As noted earlier, we reserve the more customary notation E for the curves on Hirzebruch surfaces

described in appendix A.2.
12Strictly speaking, we have only written the Mori generators for n = 8. For n < 8, we modify (4.4) by

removing those generators which need more than n exceptional divisors to define them. In addition, for

n = 1, we include (1; 1) as a generator.
13For n = 1, we also check that KdP1

· (ℓ−X1) = −2.
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4.2 Rank 2 classification

The main result of this paper is a full classification of shrinkable rank 2 geometries up to

physical equivalence. We preface our result by arguing some further simplifying assump-

tions we make about the surface S in order to make the classification into a manageable

problem.

Three simplifications. In this section we show that we can utilize the following three

simplifying assumptions for classifying shrinkable rank 2 surfaces:

• S1 ∩ S2 is an irreducible curve.

• S1 ∩ S2 is a rational curve.

• The surfaces Si are equal to P
2 or Hirzebruch surfaces and their blowups at general

points.

We now discuss these three simplifications in order.

First, we argue that in the case of a rank 2 surface S = S1 ∪ S2, we can assume that

S1 is not glued to S2 along multiple curves. Namely, there exists a single edge between

two nodes. Suppose we glue two surfaces along C1, C2 with appropriate identifications.

Since S1 and S2 should intersect transversally, we have (C1 · C2)S1 = (C1 · C2)S2 = 0.

This means that C1, C2 do not intersect. We claim there always exists an effective curve

D = d1 + d2 such that vol(D) ≤ 0. If vol(D) < 0, then S is not shrinkable, so it suffices

to consider the situation where vol(D) = 0. But in that case, we will further show below

that we can arrange for the curve D to be elliptic (i.e. g(D) = 1), which would contradict

our conjectures. Therefore, the full surface is not shrinkable implying that we cannot glue

two surfaces along two or more curves.

In order to show this, we first prove that there always exist curves di ⊂ Si with

KSi · di ≥ −2 that intersect both C1 and C2. These classes d1 and d2 are identified as

follows. First, if both C1 and C2 are not fiber classes, we can always find a curve d1
satisfying these conditions among {F, F − Xi, H − Xi − Xj}14 in BlpFn, where Xi are

exceptional curves associated to the blowups of Fn at p general points. When n > 2,

C1 = E, otherwise the volume of the curve E will be negative. Next, suppose C1 or C2 is

a fiber class. This is possible only when S1 = BlpF1 or dPn, otherwise the class E, which

has E ·C1 6= 0 or E ·C2 6= 0, will have negative volume thus preventing the surface S from

being shrinkable. In the case that S1 = BlpF1, when C1 is a fiber class F1, C2 must be one

of Xi’s, due to the assumption of transversal intersection. Then we can take d1 = H −Xi

with H2 = 1. With any choice of d1 given here, we find that vol(d1) = mφ1 − nφ2 with

m = 1, 2 and n ≥ 2 where φi ≥ 0. We can choose d2 ⊂ S2 in the same manner and then

show that vol(d2) = m′φ1 − n′φ2 with m′ = 1, 2 and n′ ≥ 2.

This proves vol(D) ≤ 0 for an effective curve D = d1 + d2. Now we will assume

vol(Ci) ≥ 0 for all other curves Ci because otherise the surface is not shrinkable and already

14For general n we choose d1 = F − Xi if C1 = Xi or C2 = Xi, otherwise d1 = F . When n = 2 and

C1 = X1, C2 = X2, we choose d1 = H −X1 −X2.
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ruled out. As already noted above, it is clear that the total surface is not shrinkable when

vol(D) < 0. Moreover, when vol(D) = 0, i.e. when m = m′ = n = n′ = 0, the curves d1
and d2 are both fiber classes Fi ⊂ Si. In this case, the curve F1 and F2 can be deformed so

that F1∩Ci = F2∩Ci for i = 1, 2. Then the curve D = F1+F2 is the union of two rational

curves intersecting in two points, hence elliptic. By further complex structure deformation

if necessary, we can arrange that all fibers F1 of S1 meet all fibers F2 of S2 in two points,

or in other words, that S = S1 ∪ S2 is elliptically fibered.

We argue that we can deform the complex structure of X if necessary so that X is

also elliptically fibered. To see this, let E be an elliptic fiber of S. Since E is part of an

elliptic fibration of S, we have that NE/S ≃ OE . Furthermore, det(NE/X) is trivial by the

Calabi-Yau condition and the ellipticity of E. Then the normal bundle sequence

0 → NE/S → NE/X → NS/X |E → 0 (4.6)

is identified with

0 → OE → NE/X → OE → 0. (4.7)

However, since H1(OE) 6= 0, (4.7) generically does not split15 and dim H0(NE/X) = 1.

The uniqueness of a normal direction says that E moves in a 1-parameter family, enough

deformations to fiber S but not enough to fiber X.

However, we can choose a complex structure deformation of X so that (4.7) splits, and

then NE/X ≃ O2
E . In this situation, E moves in two independent directions and fibers X.

This justifies our claim, hence S is not shrinkable. The same argument holds for cases

with more than two edges (i.e. gluing curves) between S1 and S2. Therefore rank 2 geome-

tries formed by two surfaces glued along two or more different curves are not shrinkable.

Second, we claim that the gluing curves must be rational. Suppose C = S1 ∩ S2 has

g > 0. In appendix A.2 we explain that we must have finitely many Mori cone generators

in each Si (which implies a bound on the number of blowups), hence we have finitely many

Mori cone generators in X ⊃ S = S1 ∪ S2. We argue that this implies C2
Si

≥ 0 as follows.

We assume C2
Si

< 0 and derive a contradiction. Since C2
Si

+ C · KSi = 2g − 2 ≥ 0, we

have C ·KSi > 0. Anticipating the next bulleted claim that the building blocks are generic

blowups of Hirzebruch surfaces at a bounded number of points, we show in appendix A.2

that CSi · KSi > 0 implies CSi = E. This is a contradiction, since g > 0. Although this

argument is slightly circular in its current form depending as it does on the next bulleted

claim, we believe that with further care we can independently justify C2
Si

≥ 0. Furthermore,

an extensive computer search has revealed no counterexamples.

Let us now return to the claim that the gluing curves are rational. Recalling equa-

tions (3.2) and (3.3), we have

C2
S1

+ C2
S2

= C2
Si

+KSi · C = 2g − 2 . (4.8)

These conditions tell us that KSi ·C ≥ 0. This implies that the volume of the intersection

curve, vol(C) = −φ1KS1 · C − φ2KS2 · C, is negative unless C2
S1

= C2
S2

= 0 and g = 1, i.e.

15The non-splitting of (4.7) identifies NE/X as the Atiyah bundle on E.
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unless C is an elliptic curve. This proves that rank 2 geometries containing two surfaces

meeting in a curve with genus g > 0 are not shrinkable.

Third, we observe that many of the building blocks in our classification program are

related to one another by maps (for instance, isomorphisms and complex deformations)

which at the level of 5d SCFT physics constitute physical equivalences. Therefore, we

observe that the full number of rank 2 surfaces that can be constructed from our list of

building blocks dramatically overcounts the number of unique CFT fixed points, and hence

we can reduce the complexity of the problem at the outset by restricting our attention to a

minimal representative set of configurations capturing the full list of physical equivalence

classes. We will argue in particular that we need only consider configurations S = S1 ∪ S2

for which S1 is a blowup of Fn>0 at p generic points16 and S2 is dPm or F0. We summarize

our simplifications by stating that every rank 2 shrinkable CY 3-fold can be realized locally

as a neighborhood of S = S1 ∪ S2, for which S1 = BlpFn1>0 and S2 = dPn2 or F0.

Moreover, the surfaces S1, S2 are glued along a single smooth rational curve C = S1 ∩ S2.

We argue the third simplification as follows. First, observe that all of the curves C ′

with self intersection C ′2 < −2 which do not intersect the gluing curve C have negative

volume. Therefore, the only curves C ′ 6= C with negative self-intersection should have

C ′2 ≥ −2. Suppose C ′2 = −2 and the surface S is shrinkable. Then, it should follow that

such a geometry is related via complex deformation to a physically-equivalent surface for

which the only curves C ′ of negative self-intersection have C ′2 = −1. The idea is essentially

identical to the description of a transitions already described in section 3.5: we perform a

conifold transition. Strictly speaking, this is only true up to physical equivalence, but that is

good enough for us. Hence, we may assume that the only component surfaces Si appearing

in our representative classes are those for which all curves C ′ 6= C satisfy C ′2 ≥ −1. This

already places a significant constraint on the possible configurations S1 ∪ S2.

Next, recall that our list of possible building blocks includes P
2 and BlpFn, where the

configuration of p points can be special or generic. The gluing condition (3.2) implies that

one of the two gluing curves CS1 or CS2 must have negative self-intersection. Therefore,

we are forced to fix one of the two surfaces, say S1 = BlpFn1 . Observe that any blowup of

Fn at p points F ∩ E is always isomorphic to the blowup of Fn+p at p generic points, so

(redefining n) we can always assume that S1 is a blowup of Fn1 at p points away from the

curve E with self intersection E2 = −n1.

Assume that n ≥ 2 and suppose we take such a surface S1 and glue it to S2 along some

curve CS1 6= E. Then this violates the condition that all curves C ′ 6= C1 satisfy C ′2 ≥ −1,

in particular for C ′ = E. Hence, we are forced to set CS1 = E, and moreover we are confined

to surfaces S1 = BlpFn1 for which the configuration of points p is a generic configuration (a

special configuration of points would produce curves with self-intersection less than −1).

Let us focus on S2. If n1 ≥ 2, then S2 must be glued to S1 along a curve CS2 with

non-negative self intersection, C2
S2

≥ 0. Since we may again assume that all C ′ 6= CS2

satisfy C ′2 ≥ −1, it follows that S2 = dPn2 or S2 = F0. Returning to the remaining cases

16By “generic point”, we mean a point not contained in any exceptional divisors, i.e. rational curves with

self intersection −1.
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n1 < 2, we find these cases consist of gluing configurations for which Si = dPni glued

along curves CSi with C2
Si

= −1. However, dPn
∼= Bln−1F1, and therefore in order to avoid

overcounting we assume that our configuration is again of the form conjectured above.

Finally, we turn our attention to the case where one of the component surfaces Si is a

ruled surface over a curve of genus g > 0. As explained in section 3.5, a ruled surface over a

curve with genus g > 0 is physically equivalent to a blowup of Fn at 2g generic points with

g self-gluings. Notice that when S1 is the Bl2gFn with g self-gluings, the gluing curve CS1

should be the section E (with E2 = −n) since otherwise E has negative volume or leads

to an elliptic fiber class. This implies due to the shrinkability condition that the second

surface S2 is again dPm or F0. The self-gluing curves must always be exceptional curves,

and hence we perform a flop transition in which we blow these curves down at the expense

of blowing up another curve inside the surface S2. Provided we always perform enough blow

downs to completely eliminate the self-glued curves, we can always exchange a configuration

involving a self-glued blowup of Fn with one of the configurations described in the above

conjecture. This completes our argument concerning the representative configurations for

rank 2 surfaces S = S1 ∪ S2.

Endpoint classification: 0 and 1 mass parameters. In this section we show that we

can first classify geometries which are blown down ‘as much as possible’; we refer to these

as ‘endpoint geometries’. The general classification then follows by classifying endpoints

and subsequently classifying their possible blowups.

Suppose a SCFT admits mass deformations for its global symmetry. Then we can take

a large mass limit and integrate out all the heavy degrees of freedom. This triggers an

RG flow and it is expected that the SCFT below energy scales set by the masses flows

to another SCFT with a lower rank global symmetry group commuting with the mass

deformations of the UV SCFT. In general, such mass deformations can reduce the rank of

the resulting theory. Another possibility is for the IR theory to be a trivial free theory.

We pay attention to a particular class of mass deformations which leads to interacting

SCFTs while preserving the rank of the UV SCFT. Equivalently, we restrict our attention

to mass deformations which do not change the dimension of the Coulomb branch. One

can typically obtain a new interacting SCFT with the same rank by means of such ‘rank-

preserving mass deformations’. We expect that RG flows of the UV SCFT triggered by

such mass deformations can generate a family of SCFTs with the same rank but different

global symmetries. SCFTs in the family are distinguished by their global symmetries (i.e.

the number of mass parameters), as well as topological data such as the classical Chern-

Simons level k or Z2-valued θ angle.

These types of RG flows terminate in a class of interacting SCFTs which we will call

‘endpoint SCFTs’. An endpoint SCFT is defined to be a theory which does not admit any

rank-preserving mass deformations. Thus these theories are ‘endpoints’ of RG flows and

they cannot flow to other SCFTs via rank-preserving deformations. Endpoint geometries

engineer endpoint SCFTs.

Rank-preserving mass deformations and endpoint geometries are mathematically well-

defined notions. We define distinct endpoint geometries to be surfaces which cannot be
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related to another smooth surface of the same rank via a large mass deformation. Rank-

preserving mass deformations are defined as follows: suppose S is shrinkable and C ⊂ Sj

is a −1 curve which does not intersect any Sk for k 6= j. Then S can be blown down to a

surface S′ = ∪S′
i with S′

j the blowdown of the −1 curve of Sj and S′
k ≃ Sk for k 6= j. This

type of blowdown is the geometric realization of a rank-preserving mass deformation.

We will now show that if S is shrinkable, then its endpoint geometry S′ is also shrink-

able. If C ′ ⊂ S′
i, let C ⊂ Si be its proper transform. We have K2

S′

i
= K2

Si
+ 1. If i 6= j we

have KSj · C = KS′

j
· C ′, so we need only consider the case i = j. Let p ∈ S′

j be the point

that the −1 curve in Sj blows down to, and suppose that C ′ has multiplicity m at p. Then

KS′

i
· C ′ = KSi · C −m. The desired conclusion follows immediately.

Endpoint SCFTs are interesting due to the following reasons. First, these theories

are the simplest theories in their family of RG flows. Their parameter spaces are smaller,

so they are comparatively easier to understand than other theories belonging to the same

family. The classification of endpoint SCFTs is therefore a much easier problem than the

full classification, as we will see below. We can thus regard the endpoint classification as

a tutorial on our classification algorithm. Second, all other SCFTs in the family of RG

flows in principle can be obtained from endpoint theories by increasing the number of mass

parameters. Namely, we can undo mass deformations, and retrace the RG flow to obtain

an entire family of UV SCFTs. This could sound puzzling: we know that RG flow is

irreversible. So it may be hard to accept the idea that we can restore UV theories starting

from an IR theory. However, this turns out to be the case among 5d supersymmetric

theories. Since 5d N = 1 SCFTs are so strongly constrained by supersymmetry, one

can control their RG flows by tuning discrete data such as (for theories with gauge theory

descriptions) gauge algebra, matter representations, classical CS level, and discrete θ angle.

We expect that this allows us to build a family of SCFTs starting from an endpoint theory.

From the geometric standpoint, these constraints can be understood as arising from the

Calabi-Yau condition. Mass deformations of a 3-fold correspond to blowups or blowdowns

of exceptional curves. As discussed above, a large mass deformation corresponds to blowing

down a −1 curve which is isolated from gluing curves and is in fact a reversible geometric

transition — one can just as easily blow up the same curve to recover the original 3-fold.

This means that by starting from an endpoint geometry, it is possible to obtain a family

of local (smooth) 3-folds by blowing up all possible exceptional curves. In this sense, the

study of endpoint geometries is a good starting point for the classification of 5d SCFTs.

Let us now classify all rank 2 endpoint geometries by employing our classification

algorithm. We learned above that rank 2 geometries are constructed by gluing S1 = BlpFm1

and S2 = dPm2 or F0. This implies that endpoint geometries will take the form P
2 ∪ Fn or

Fn1 ∪ Fn2 . Therefore the endpoint classification reduces to a simple classification of these

two types of geometries.

We first classify geometries of the type P
2 ∪ Fn. We can choose a curve class CS1 =

C1 = aℓ in P
2 with a positive integer a and CS2 = C2 = E in Fn satisfying the gluing

condition (3.2). Since C should be rational, the integer in C1 is fixed to be either a = 1 or

a = 2. Accordingly, the second surface is fixed to be F3 or F6 respectively. Hence we find
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Figure 7. Brane configurations of rank 2 SCFTs with zero mass.

only two geometries of this type:

P
2 ∪ F3 with C1 = ℓ , C2 = E3 ,

P
2 ∪ F6 with C1 = 2ℓ , C2 = E6 .

(4.9)

These two geometries have brane constructions as depicted in figure 7. These geometries

have no mass parameter. Therefore we do not expect any gauge theory descriptions asso-

ciated to these CFTs.

The second type of endpoint geometry can be classified in the same manner. Due to the

gluing condition (3.2), a gluing curve in one of two Hirzebruch surfaces should have negative

self-intersection. We choose C2 = E2 in the second surface Fn2 . Then the gluing curve C1

in the first surface Fn1 needs to be a rational irreducible curve with self-intersection n2−2.

The curve C1 takes the form of C1 = aF1+ bH1 with a, b ≥ 0 or C1 = E1, and must satisfy

C2
1 = n2 − 2 , C1 · S1 = −n2 . (4.10)

We now need to check shrinkability conditions. In both irreducible components Si = Fni ,

the curve classes generating Mori cone are Ei, Fi. When these curve classes have non-

negative volumes with respect to the Kähler class −J = −φ1S1 − φ2S2, the local 3-fold

defined by S is shrinkable and thus engineers a 5d SCFT. In this case, the criteria for

shrinkability are

vol(E1) = (2− n1)φ1 − aφ2 ≥ 0 , vol(F1) = 2φ1 − bφ2 ≥ 0 ,

vol(E2) = (2a+ 2b− bn)φ1 + (2− n)φ2 ≥ 0 , vol(F2) = −φ1 + 2φ2 ≥ 0 , (4.11)

with φ1, φ2 > 0. We can easily solve these conditions and the gluing condition (3.2). Each

solution will give a shrinkable geometry and thus a SCFT. The full list of shrinkable surfaces

Fn1 ∪Fn2 (denoted by (n1, n2)) is given in tables 4b and 4c. Some of these geometries have

brane constructions given in figure 8. We find that only the six geometries in table 4b are

independent endpoint geometries.

In fact, all the endpoint geometries in table 4b have gauge theory descriptions with

simple gauge group G. As explained in section 2.2, a distinguished property of geometries

corresponding to gauge theories is that the matrix of intersection numbers (2.15) of holo-

morphic fiber classes fi with the surfaces Si is equal to (minus) the Cartan matrix of the

gauge algebra. We remark here that the Hirzebruch surface F0 has a base-fiber duality
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S1 ∪ S2 CS1 CS2

P
2 ∪ F3 ℓ E

P
2 ∪ F6 2ℓ E

(a) Endpoint geometries with M = 0.

(n1, n2) CS1 G (n1, n2) CS1 G

(0, 2) F SU(3)1 (0, 8) F + 3H SU(3)7, G2

(0, 4) F +H SU(3)3 (1, 1) E SU(3)0

(0, 6) F + 2H SU(3)5, Sp(2)π (1, 7) 2F +H SU(3)6

(b) Endpoint geometries with M = 1. Here CS2
= E. These geometries have gauge

theory descriptions with gauge group G = SU(3)k, Sp(2)θ, G2 where k is the classical CS

level and θ is the Z2-valued θ angle.

(n1, n2) CS1 G Endpoint

(1, 2) F SU(2)×̂SU(2) P
2 ∪ F3

(1, 3) H SU(3)2 P
2 ∪ F3

(1, 5) F +H SU(3)4 P
2 ∪ F6

(1, 6) 2H Sp(2)0 P
2 ∪ F6

(2, 4) H SU(3)1 ·
(0, 10) F + 4H SU(3)9 ·

(c) Other geometries of Fn1
∪ Fn2

. The first four are not endpoints and flow to

geometries in (a) by mass deformations. (2, 4) is an endpoint, but is also equiv-

alent to (0, 4) by a HW transition. (0, 10) is an endpoint, but not shrinkable.

Table 4. Classification of all rank 2 geometries with M = 0, 1.

exchanging the base curve class H and the fiber curve class F . Geometrically, this is an

isomorphism between two geometries related by the exchange of H and F . It is possible

that the dual geometry often has different gauge theory realization from the gauge theory

of the original geometry. In this case, the geometric duality leads to a duality between two

different gauge theories.

Aside from studying the Cartan matrices, we can also compare the triple intersection

polynomial J3 to the perturbative expression for the prepotential given in (2.2). For the

geometries in table 4b and 4c, the prepotentials are

6F = J3 = 8φ3
1 + 3φ1φ2(−n2φ1 + (n2 − 1)φ2) + 8φ3

2 . (4.12)

We can compare these prepotentials against known gauge theory prepotentials as a means

to identify the corresponding gauge theories.
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F0 ∪ F2 F0 ∪ F4 F0 ∪ F6

F1 ∪ F1 F1 ∪ F3

F1 ∪ F7

F1 ∪ F5

F1 ∪ F2 F1 ∪ F6

Figure 8. Brane configurations of rank 2 SCFTs with M = 1.

Let us first select the respective fibers H,F for F0 ∪ Fn2 , and F, F for F1 ∪ Fn2 . The

Cartan matrix Aij of the following geometries computed using these fiber classes is that of

the gauge algebra SU(3) as

(ASU(3))ij : (n1, n2) = (0, 2) , (0, 4) , (0, 6) , (0, 8) , (1, 1) , (1, 7) , (4.13)

for the choices of degrees (n1, n2) of Fn1 ∪ Fn2 . Moreover, their triple intersections agree

with gauge theory prepotentials of SU(3)k listed in table 4b. Therefore, we expect that

these endpoint geometries have SU(3)k gauge theory realizations.

The geometries (0, 6) and (0, 8) are particularly interesting, as they have two different

gauge theory descriptions related by the base-fiber exchange of F0. When we consider the

fibers classes to be F, F , the two geometries (0, 6), (0, 8) exhibit (respectively) Sp(2), G2

Cartan matrices. On the other hand, if we choose fiber classes H,F , the geometries exhibit

the SU(3) Cartan matrix in both cases.

Studying triple intersection numbers gives us a means to narrow down the precise

gauge theory that corresponds to these geometries. The triple intersection polynomial J3

of the geometry (0, 6) is identical to the prepotentials of both pure SU(3)5 gauge theory and

also pure Sp(2)θ theory, which can have either θ = 0 or θ = π. However, the prepotential

cannot distinguish two Sp(2) cases. We can instead determine the θ angle using the known

duality between SU(3) and Sp(2). In [22], it was conjectured that SU(3)5 is dual to Sp(2)π.

This suggests that the geometry (0, 6) corresponds to Sp(2)π while (1, 6) corresponds to

Sp(2)0. Thus, the geometric construction provides yet additional evidence supporting the

duality between the SU(3)5 and Sp(2)π gauge theories.
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P
2
∪ F3

F1 ∪ F3

F1 ∪ F2

⊗

P
2
∪ F6

⊗

⊗

F1 ∪ F6

⊗

F1 ∪ F5

⊗

P
2
∪ Bl1F6

P
2
∪ Bl1F3

Figure 9. Geometric transitions from P
2 ∪ F3 and P

2 ∪ F6 to F1 ∪ Fn’s with n = 2, 3, 5, 6.

As another example of a duality between gauge theories, the triple intersections of

(0, 8) agree with the prepotentials of SU(3)7 and G2 gauge theories. We thus conjecture

that SU(3)7 and G2 theories are dual and describe the low energy physics of the SCFT

corresponding to F0 ∪ F8.

Additional (not necessarily endpoint) geometries of type Fn1 ∪ Fn2 are displayed in

table 4c. The first five geometries in table 4c are shrinkable. However, the first four

geometries of these are not endpoints. They all can be obtained from other endpoint

geometries, P2 ∪ F3 or P
2 ∪ F6, by blowing up a point and performing flop transitions;

see figure 9 for more details. We find that these geometries but (1, 2) have gauge theory

descriptions as listed in table 4c. The geometry (1, 2) has gauge algebra SU(2)×̂SU(2)

where ×̂ denotes that we gauge the SU(2) global symmetry of another SU(2) gauge theory

which arises from the U(1)I instanton symmetry in the IR gauge theory.

The geometry (2, 4) in table 4c is an endpoint geometry admitting no additional rank

preserving mass deformations. However, this geometry is equivalent to another endpoint
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geometry (0, 4) by a complex structure deformation, or a Hanany-Witten transition. Thus

these two geometries belong to the same physical equivalence class.

Lastly, the geometry (0, 10) is not shrinkable. This geometry satisfies all other shrink-

ablity conditions, but we find that no 4-cycles have nonzero volume at any point in the

Kähler cone. Thus (0, 10) is not shrinkable unless we make a non-normalizable Kähler

deformation. This means the corresponding field theory possesses an intrinsic energy scale

set by the Kähler parameter of the non-compact 4-cycle. Therefore, we do not expect that

this geometry corresponds to a 5d SCFT. Indeed, in section 4.2, we will argue that this

geometry gives a 5d KK theory.

We have finished the full classification of rank 2 endpoint geometries (thus rank 2

endpoint SCFTs), which have M = 0, 1. The result is rather surprising — we observe

that all rank 2 SCFTs are actually realized by gauge theories and their mass deformations.

Note that geometries P2∪F3 and P
2∪F6 corresponding to non-Lagrangian theories can also

viewed as deformations of geometries which admit gauge theory descriptions, for example

(respectively) F1 ∪ F2 and F1 ∪ F5. This seems to suggest that gauge theory descriptions

are generally quite useful, even for 5d SCFTs of higher rank.

Furthermore, all geometries in table 4 except for (1, 2) were already predicted in [13]

using perturbative gauge theory analysis. In fact these geometric constructions confirm all

predictions with r = 2 and M = 1 in [13] except for SU(3)8. It was conjectured in [13] that

the SU(3)8 theory exists and has an interacting UV fixed point. However, the existence of

this theory appears to be ruled out by our geometric classification.

Let us briefly discuss the geometry of the SU(3)8 gauge theory. This theory in fact has

a geometric realization as the local 3-fold with Kähler surface F1 ∪ F9, where we identify

the 2-cycles CS1 = 3F1 + H1 and CS2 = E2. However, this geometry is not shrinkable

because at least one 2-cycle contained in S has negative volume. For example, the volumes

vol(E1) = φ1 − 3φ2 , vol(F2) = 2φ2 − φ1 (4.14)

with φ1, φ2 > 0 cannot be both non-negative. Therefore the Coulomb branch of this

geometry is trivial and this geometry is not shrinkable. In order to make the geometry

shrinkable we need to attach a non-compact 4-cycle with non-zero Kähler parameter

corresponding to bare gauge coupling constant 1/g2. This Kähler parameter cannot be

tuned to zero while maintaining positivity of the Kähler metric. So even though the IR

gauge description with 1/g2 6= 0 makes sense geometrically, we cannot take the 1/g2 = 0

limit without taking the Coulomb branch parameter to 0. This means that if the point

1/g2 = 0 is a CFT point, then it has no Coulomb branch deformation, and thus in conflict

with a SCFT from this gauge theory based on our assumptions. Thus we do not expect

that this geometry has a CFT limit. The gauge theory analysis in [13] uses only the

perturbative spectrum and monopole tensions and thus cannot capture the spectrum of

M2-branes wrapping the curve E1 ⊂ F1 (which correspond to instantons in the gauge

theory). Missing non-perturbative states such as these are crucial for assessing whether

or not a geometry is shrinkable. This again shows that the perturbative constraints used

in [13] are necessary but not sufficient to guarantee the existence of CFT fixed points.
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Full rank 2 classification. We showed in the previous section that our classification

program can be reduced to a classification of the following types of geometric configura-

tions: Blp1Fn∪dPp2 and Blp1Fn∪F0. As already discussed p2 and p1 are bounded above by

pmax(n), which we note depends upon both the degree n and the type of gluing configura-

tion. However, we are still faced with the problem of restricting the range of (non-negative)

integer n for which there exist shrinkable configurations. It turns out that some necessary

conditions of shrinkability allows us to derive a crude bound on n. From a physical per-

spective, the existence of such a bound is not surprising as it is closely tied to the existence

of only a finite number of 5d interacting fixed CFT points for a fixed rank.

Appropriate bounds on n can be determined in the two separate cases of S2 = dPp2

or S2 = F0. For both cases, we need only consider n ≥ 2, since setting n = 0, 1 produces

a geometric configuration isomorphic to dPp1+1 ∪ dPp2 . In the case of S2 = dP2, we find

that n ≤ 7, while in the case of S2 = F0, we find that n ≤ 8. See appendix B for proofs of

these bounds.

We present our classification of rank 2 Kähler surfaces associated to 5d UV interacting

fixed points in figures 10–27. These results are organized by the number of mass parameters

M , with 0 ≤ M ≤ 11. Given M > 0 mass parameters, a shrinkable geometry with M − 1

mass parameters may be obtained by performing a blowdown of an exceptional divisor

(possibly after a sequence of flops) in the surface S; in the associated field theory, blowing

down an exceptional curve corresponds to integrating out a massive matter hypermultiplet.

In each figure, we list the Kähler surface S = S1

CS2∪ S2, where CS2 = (S1 ∩ S2)S2

is the curve along which the two surfaces are glued, restricted to the second surface S2.

Geometries marked with (·)∗ correspond to 5d KK theories. Beneath each geometry, we

also list the associated gauge theory; geometries with no associated gauge system indicated

do not admit a known description as a gauge theory.

Our method for identifying gauge theoretic descriptions involves comparing the triple

intersection J3 with the gauge-theoretic prepotential 6F in (2.2) for given gauge group

and matter content in the Kähler cone, as well as identifying a geometric realization of the

Cartan matrix of associated to the gauge algebra.

The Cartan matrices are determined up to sign by a choice of fibers17 f1 ⊂ S1, f2 ⊂ S2

satisfying

(fi · Sj)Si = −(AG)ij . (4.15)

Geometrically, these fibers are rational curves over which M2-branes may be wrapped to

give rise to charged BPS vectors in the 5d spectrum. In figures 10–27, we indicate to the

left of each gauge description a possible choice of fibers giving rise to stated gauge algebra.

We merely list all possible gauge theory descriptions and do not attempt to list all possible

configurations of fibers. When there is more than one choice of fiber leading to different

Cartan matrices (and hence different gauge symmetries), there are dualities between the

associated gauge theory descriptions. For dPp2<8, the possible fibers are (using the same

17In the present discussion, a fiber is a rational curve f with self intersection f2 = 0.

– 38 –



J
H
E
P
0
4
(
2
0
1
8
)
1
0
3

notation as in (4.4))

(1; 1) , (2; 14) , (3; 2, 16) , (4; 23, 14) , (5; 26, 1). (4.16)

The list of possible fibers in Blp1Fn is significantly more complicated; see appendix A.2.3.

We also note that the double arrows connecting pairs of different geometries S indicate

flop transitions mapping the geometries into one another. Each figure contains several clus-

ters of geometries connected by arrows, with each cluster belonging to the same birational,

and thus physical, equivalence class. Arrows decorated with the symbol φ1 ↔ φ2 indicate

that the flop transition requires us to reverse our identifications S1 ↔ S2, and flip the sign

of the Chern-Simons level, k → −k.

Finally, we remark that the gluing curves CS2 ∈ dPp2≥3 are only listed up to the action

of the Weyl group W (Ep2). Said differently, each choice of gluing curve displayed in the

figures is a single element in the Weyl orbit. We now briefly describe the Weyl group action

in dPp2 and explain why in most cases we only need to distinguish geometric configurations

whose gluing curves belong to the same Weyl orbit in a given surface. Given a simple root

αi = Xi −Xi+1, i = 1, . . . , p2 − 1, and an effective curve

C = dℓ−miXi, (4.17)

the Weyl reflections wαi act by transposing exceptional divisors, Xi ↔ Xi+1, while the

reflection wαp2
associated to the root αp2 = ℓ−∑3

i=1Xi acts on C as follows:

wαp2
(C) = (2d−m1 −m2 −m3)ℓ− (d−m2 −m3)X1 − (d−m1 −m3)X2

− (d−m1 −m2)X3 −
∑

i>3

miXi.
(4.18)

As was shown in [34], the action of W (Ep2) on a rational curve C ∈ dPp2 for p2 ≥ 4 and

degree dC ≡ −K ·C = C2+2 = n in all cases studied in this paper is transitive. Therefore,

since the Weyl action wα : C 7→ C + (C · α)C preserves intersection products,

C · C ′ = (C + (C · α)α) · (C ′ + (C ′ · α)α), (4.19)

it is sufficient to set the gluing curve CS2 equal to a single element of the Weyl orbit in

order to understand the full intersection structure, as the intersection numbers are identical

up to permutation for any two elements belonging to the same Weyl orbit. For p2 < 3, the

Weyl group either has multiple orbits (as in the case of p2 = 3) or is otherwise undefined

(as in the case of p2 < 3), and so for p2 < 4 we only list gluing curves CS2 up to cyclic

permutations of the exceptional divisors Xi.

Upon mass deforming these SCFTs and flowing to the IR we get a tree of relations

between these conformal theories which is summarized in the RG flow tree diagram in

figure 16. The top theories of the RG families are related to 5d KK theories which are

discussed in the next section.
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(Bl10F6
2ℓ∪ dP1)

∗

F, ℓ−X1 Sp(2) + 10F

H + 2F −∑Xi, ℓ−X1 Â1

(Bl9F5

2ℓ−X1∪ dP2)
∗

F, ℓ−X1 SU(3)0 + 10F

F, ℓ−X2 Sp(2) + 10F

H + 2F −∑Xi, ℓ−X2 Â1

(Bl10F6
F+2E∪ F0)

∗

F, F Sp(2) + 10F

F,E SU(3)0 + 10F

H + 2F −∑Xi, F Â1

(Bl8F4

2ℓ−
∑2

i=1 Xi

∪ dP3)
∗

F, ℓ−X1 SU(3)0 + 10F

F, ℓ−X3 Sp(2) + 10F

H + 2F −∑Xi, ℓ−X3 Â1

(Bl7F3

2ℓ−
∑3

i=1 Xi

∪ dP4)
∗

F, ℓ−X1 SU(3)0 + 10F

F, ℓ−X4 Sp(2) + 10F

H + 2F −∑Xi, ℓ−X4 Â1

(Bl6F2

2ℓ−
∑4

i=1 Xi

∪ dP5)
∗

F, ℓ−X1 SU(3)0 + 10F

F, ℓ−X5 Sp(2) + 10F

H −X1 −X2, 2ℓ−
∑4

i=1Xi [SU(2) + 4F]× [SU(2) + 4F]

H + 2F −∑Xi, ℓ−X5 Â1

(Bl5F1

2ℓ−
∑5

i=1 Xi

∪ dP6)
∗

F, ℓ−X1 SU(3)0 + 10F

F, ℓ−X6 Sp(2) + 10F

f1 · E = 0, 2ℓ−∑5
i=2Xi [SU(2) + 4F]× [SU(2) + 4F]

f1 · E = 2, ℓ−X6 Â1

Figure 10. M = 11 geometries.
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Bl9F6
2ℓ∪ dP1

F, ℓ−X1 Sp(2) + 9F

Bl8F5

2ℓ−X1∪ dP2

F, ℓ−X1 SU(3) 1
2
+ 9F

F, ℓ−X2 Sp(2) + 9F

Bl9F6
F+2E∪ F0

F, F Sp(2) + 9F

F,E SU(3) 1
2
+ 9F

Bl7F4

2ℓ−
∑2

i=1 Xi

∪ dP3

F, ℓ−X1 SU(3) 1
2
+ 9F

F, ℓ−X3 Sp(2) + 9F

Bl6F3

2ℓ−
∑3

i=1 Xi

∪ dP4

F, ℓ−X1 SU(3) 1
2
+ 9F

F, ℓ−X4 Sp(2) + 9F

Bl5F2

2ℓ−
∑4

i=1 Xi

∪ dP5

F, ℓ−X1 SU(3) 1
2
+ 9F

F, ℓ−X5 Sp(2) + 9F

H −X1 −X2, 2ℓ−
∑4

i=1Xi [SU(2) + 3F]× [SU(2) + 4F]

Bl4F1

2ℓ−
∑5

i=1 Xi

∪ dP6

F, ℓ−X5 SU(3) 1
2
+ 9F

F, ℓ−X6 Sp(2) + 9F

f1 · E = 0, ℓ−X6 [SU(2) + 3F]× [SU(2) + 4F]

Bl10F6
2ℓ∪ P

2

(Bl9F4
F+E∪ F0)

∗

F,E SU(3)− 3
2
+ 9F

H + 2F −∑8
i=1Xi, E Sp(2) + 8F+ 1AS

Bl9F5

2ℓ−X1∪ dP1

F, ℓ−X1 SU(3)− 1
2
+ 9F

H + 2F −∑Xi, ℓ−X1 Sp(2) + 9F

Bl8F4

2ℓ−
∑2

i=1 Xi

∪ dP2

F, ℓ−X1 SU(3)− 1
2
+ 9F

H + 2F −∑Xi, ℓ−X1 Sp(2) + 9F

Bl7F3

2ℓ−
∑3

i=1 Xi

∪ dP3

F, ℓ−X1 SU(3)− 1
2
+ 9F

H + 2F −∑Xi, ℓ−X1 Sp(2) + 9F

Bl6F2

2ℓ−
∑4

i=1 Xi

∪ dP4

F, ℓ−X1 SU(3)− 1
2
+ 9F

H + 2F −∑Xi, ℓ−X1 Sp(2) + 9F

H −X1 −X2, 2ℓ−
∑

Xi [SU(2) + 4F]× [SU(2) + 3F]

φ1 ↔ φ2

Figure 11. M = 10 geometries.
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Bl9F6
2ℓ∪ P

2
Bl8F5

2ℓ−X1∪ dP1

F, ℓ−X1 SU(3)0 + 8F

Bl7F4

2ℓ−
∑2

i=1 Xi

∪ dP2

F, ℓ−X1 SU(3)0 + 8F

Bl6F3

2ℓ−
∑3

i=1 Xi

∪ dP3

F, ℓ−X1 SU(3)0 + 8F

Bl5F2

2ℓ−
∑4

i=1 Xi

∪ dP4

F, ℓ−X1 SU(3)0 + 8F

H −X1 −X2, 2ℓ−
∑

Xi [SU(2) + 3F]× [SU(2) + 3F]

Bl4F1

2ℓ−
∑5

i=1 Xi

∪ dP5

F, ℓ−X1 SU(3)0 + 8F

f1 · E = 0, 2l −∑4
i=1Xi [SU(2) + 3F]× [SU(2) + 3F]

Bl8F3
ℓ∪ dP1

F, ℓ−X1 SU(3)−2 + 8F

H + 2F −∑7
i=1Xi, ℓ−X1 Sp(2) + 7F+ 1AS

Bl8F6
2ℓ∪ dP1

F, ℓ−X1 Sp(2) + 8F

Bl7F5

2ℓ−X1∪ dP2

F, ℓ−X1 SU(3)1 + 8F

F, ℓ−X2 Sp(2) + 8F

Bl8F6
F+2E∪ F0

F, F Sp(2) + 8F

F,E SU(3)1 + 8F

Bl6F4

2ℓ−
∑2

i=1 Xi

∪ dP3

F, ℓ−X1 SU(3)1 + 8F

F, ℓ−X3 Sp(2) + 8F

Bl5F3

2ℓ−
∑3

i=1 Xi

∪ dP4

F, ℓ−X1 SU(3)1 + 8F

F, ℓ−X4 Sp(2) + 8F

Bl4F2

2ℓ−
∑4

i=1 Xi

∪ dP5

F, ℓ−X1 SU(3)1 + 8F

F, ℓ−X5 Sp(2) + 8F

H −X1 −X2, 2ℓ−
∑4

i=1Xi [SU(2) + 2F]× [SU(2) + 4F]

Bl3F1

2ℓ−
∑5

i=1 Xi

∪ dP6

F, ℓ−X1 SU(3)1 + 8F

F, ℓ−X6 Sp(2) + 8F

f1 · E = 0, 2ℓ−∑4
i=1Xi [SU(2) + 2F]× [SU(2) + 4F]

Bl8F4
F+E∪ F0

F, F SU(3)−1 + 8F

H + 2F −∑Xi, F Sp(2) + 8F

Bl7F3
ℓ∪ dP2

F, ℓ−X1 SU(3)−1 + 8F

H + 2F −∑Xi, ℓ−X1 Sp(2) + 8F

Bl6F2

ℓ−X1∪ dP3

F, ℓ−X1 SU(3)−1 + 8F

H + 2F −∑Xi, ℓ−X2 Sp(2) + 8F

H −X1 −X2, ℓ−X1 [SU(2) + 4F]× [SU(2) + 2F]

φ1 ↔ φ2

Figure 12. M = 9 geometries.

– 42 –



J
H
E
P
0
4
(
2
0
1
8
)
1
0
3

Bl7F6
2ℓ∪ dP1

F, ℓ−X1 Sp(2) + 7F

Bl6F5

2ℓ−X1∪ dP2

F, ℓ−X1 SU(3) 3
2
+ 7F

F, ℓ−X2 Sp(2) + 7F

Bl7F6
F+2E∪ F0

F, F Sp(2) + 7F

F,E SU(3) 3
2
+ 7F

Bl5F4

2ℓ−
∑2

i=1 Xi

∪ dP3

F, ℓ−X1 SU(3) 3
2
+ 7F

F, ℓ−X3 Sp(2) + 7F

Bl4F3

2ℓ−
∑3

i=1 Xi

∪ dP4

F, ℓ−X1 SU(3) 3
2
+ 7F

F, ℓ−X4 Sp(2) + 7F

Bl3F2

2ℓ−
∑4

i=1 Xi

∪ dP5

F, ℓ−X1 SU(3) 3
2
+ 7F

F, ℓ−X5 Sp(2) + 7F

H −X1 −X2, 2ℓ−
∑4

i=1Xi [SU(2) + 1F]× [SU(2) + 4F]

Bl2F1

2ℓ−
∑5

i=1 Xi

∪ dP6

F, ℓ−X1 SU(3) 3
2
+ 7F

F, ℓ−X6 Sp(2) + 7F

f1 · E = 0, 2l −∑4
i=1Xi [SU(2) + 1F]× [SU(2) + 4F]

Bl7F3
ℓ∪ dP1

F, ℓ−X1 SU(3)− 3
2
+ 7F

H + 2F −∑Xi, ℓ−X1 Sp(2) + 7F

Bl6F2

ℓ−X1∪ dP2

F, ℓ−X2 SU(3)− 3
2
+ 7F

H + 2F −∑Xi, ℓ−X2 Sp(2) + 7F

H −X1 −X2, ℓ−X1 [SU(2) + 4F]× [SU(2) + 1F]

φ1 ↔ φ2

Bl8F6
2ℓ∪ P

2

Bl7F5

2ℓ−X1∪ dP1

F, ℓ−X1 SU(3) 1
2
+ 7F

Bl6F4

2ℓ−
∑2

i=1 Xi

∪ dP2

F, ℓ−X1 SU(3) 1
2
+ 7F

Bl5F3

2ℓ−
∑3

i=1 Xi

∪ dP3

F, ℓ−X1 SU(3) 1
2
+ 7F

Bl4F2

2ℓ−
∑4

i=1 Xi

∪ dP4

F, ℓ−X1 SU(3) 1
2
+ 7F

H −X1 −X2, 2ℓ−
∑

Xi [SU(2) + 2F]× [SU(2) + 3F]

Bl3F1

2ℓ−
∑5

i=1 Xi

∪ dP5

F, ℓ−X1 SU(3) 1
2
+ 7F

f1 · E = 0, 2ℓ−∑4
i=1Xi [SU(2) + 2F]× [SU(2) + 3F]

Bl7F2
E∪ F0

F, F SU(3)− 5
2
+ 7F

H −X1 −X2, E [SU(2) + 5F]× SU(2)π

H + 2F −∑6
i=1Xi, F Sp(2) + 6F+ 1AS

Bl8F3
ℓ∪ P

2

Bl7F4
F+E∪ F0

F, F SU(3)− 1
2
+ 7F

Bl6F3
ℓ∪ dP2

F, ℓ−X1 SU(3)− 1
2
+ 7F

Bl5F2

ℓ−X1∪ dP3

F, ℓ−X1 SU(3)− 1
2
+ 7F

H −X1 −X2, ℓ−X1 [SU(2) + 3F]× [SU(2) + 2F]

φ1 ↔ φ2

Figure 13. M = 8 geometries. (See footnote 18 for a comment about Bl8F3 ∪ P
2.)
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Bl6F6
2ℓ∪ dP1

F, ℓ−X1 Sp(2) + 6F

Bl5F5

2ℓ−X1∪ dP2

F, ℓ−X1 SU(3)2 + 6F

F, ℓ−X2 Sp(2) + 6F

Bl6F6
F+2E∪ F0

F, F Sp(2) + 6F

F,E SU(3)2 + 6F

Bl4F4

2ℓ−
∑2

i=1 Xi

∪ dP3

F, ℓ−X1 SU(3)2 + 6F

F, ℓ−X3 Sp(2) + 6F

Bl3F3

2ℓ−
∑3

i=1 Xi

∪ dP4

F, ℓ−X1 SU(3)2 + 6F

F, ℓ−X4 Sp(2) + 6F

Bl2F2

2ℓ−
∑4

i=1 Xi

∪ dP5

F, ℓ−X1 SU(3)2 + 6F

F, ℓ−X5 Sp(2) + 6F

H −X1 −X2, 2ℓ−
∑4

i=1Xi SU(2)π × [SU(2) + 4F]

Bl1F1

2ℓ−
∑5

i=1 Xi

∪ dP6

F, ℓ−X1 SU(3)2 + 6F

F, ℓ−X6 Sp(2) + 6F

f1 · E = 0, 2ℓ−∑4
i=1Xi SU(2)π × [SU(2) + 4F]

Bl6F2
E∪ F0

F, F SU(3)−2 + 6F

H + 2F −∑Xi, F Sp(2) + 6F

H −X1 −X2, E [SU(2) + 4F]× SU(2)π

Bl7F3
ℓ∪ P

2
Bl6F2

ℓ−X1∪ dP1

H −X1 −X2, ℓ−X1 [SU(2) + 4F]× SU(2)0

Bl5F1

ℓ−X1−X2∪ dP2

F, ℓ−X1 [SU(2) + 4F]× SU(2)0

φ1 ↔ φ2

Figure 14. M = 7 geometries.
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(F2

ℓ−X1∪ dP7)
∗

F, ℓ−X2 SU(3)4 + 6F

F, 2ℓ−∑5
i=2Xi Sp(2) + 4F+ 2AS

F, 4ℓ−∑4
i=1Xi − 2

∑7
j=5Xj G2 + 6F

F, 5ℓ−X1 − 2
∑7

i=2Xi A
(2)
2

Bl7F6
2ℓ∪ P

2
Bl6F5

2ℓ−X1∪ dP1

F, ℓ−X1 SU(3)1 + 6F

Bl5F4

2ℓ−
∑2

i=1 Xi

∪ dP2

F, ℓ−X1 SU(3)1 + 6F

Bl4F3

2ℓ−
∑3

i=1 Xi

∪ dP3

F, ℓ−X1 SU(3)1 + 6F

Bl3F2

2ℓ−
∑4

i=1 Xi

∪ dP4

F, ℓ−X1 SU(3)1 + 6F

H −X1 −X2, 2ℓ−
∑

Xi [SU(2) + 1F]× [SU(2) + 3F]

Bl2F1

2ℓ−
∑5

i=1 Xi

∪ dP5

F, ℓ−X1 SU(3)1 + 6F

f1 · E = 0, 2ℓ−∑4
i=1Xi [SU(2) + 1F]× [SU(2)× 3F]

Bl5F2

ℓ−X1∪ dP2

F, ℓ−X2 SU(3)−1 + 6F

H −X1 −X2, ℓ−X1 [SU(2) + 3F]× [SU(2) + 1F]

Bl6F3
ℓ∪ dP1

F, ℓ−X1 SU(3)−1 + 6F

F1

X1∪ dP7

F, ℓ−X1 SU(3)3 + 6F

F, ℓ−X2 Sp(2) + 5F+ 1AS

Bl6F4
F+E∪ F0

F,E SU(3)0 + 6F

Bl5F3
ℓ∪ dP2

F, ℓ−X1 SU(3)0 + 6F

Bl4F2

ℓ−X1∪ dP3

F, ℓ−X2 SU(3)0 + 6F

H −X1 −X2, ℓ−X1 [SU(2) + 2F]× [SU(2)× 2F]

Bl3F1

ℓ−X1−X2∪ dP4

F, ℓ−X3 SU(3)0 + 6F

f1 · E = 0, ℓ−X1 [SU(2) + 2F]× [SU(2)× 2F]
φ1 ↔ φ2

Figure 15. M = 7 geometries, cont.
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dP2 [ dP2

SU(2)0×SU(2)0

F2 ∪ dP6

SU(3) 7

2

+5F

Sp(2)+1AS+4F

F3 ∪ dP6

SU(3) 9

2

+5F

Sp(2)+2AS+3F
G2+5F

F2 ∪ dP5

SU(3)3+4F
Sp(2)+4F

F3 ∪ dP5

SU(3)4+4F
Sp(2)+1AS+3F

F4 ∪ dP5

SU(3)5+4F
Sp(2)+2AS+2F

G2+4F

F2 ∪ dP4

SU(3) 5

2

+3F

F3 ∪ dP4

SU(3) 7

2

+3F

Sp(2)+3F

F4 ∪ dP4

SU(3) 9

2

+3F

Sp(2)+1AS+2F

F5 ∪ dP4

SU(3) 11

2

+3F

Sp(2)+2AS+1F
G2+3F

(F6 ∪ dP4)
∗

Sp(2)0+3AS

F2 ∪ dP3

SU(3)2+2F
F3 ∪ dP3

SU(3)3+2F

F4 ∪ dP3

SU(3)4+2F
Sp(2)+2F

F5 ∪ dP3

SU(3)5+2F
Sp(2)+1AS+1F

F6

3`−2X1−X2

∪ dP3

SU(3)6+2F
Sp(2)π+2AS

G2+2F

F6

2`

∪ dP3

Sp(2)0+2AS

F1 ∪ dP5

SU(3)2+4F

F1

`−X1−X2

∪ dP2
F1

X1

∪ dP2

SU(3) 1

2

+1F

F3 ∪ dP2

SU(3) 5

2

+1F
F2 ∪ dP2

SU(3) 3

2

+1F
F4 ∪ dP2

SU(3) 7

2

+1F

F5 ∪ dP2

SU(3) 9

2

+1F

Sp(2)+1F

F7 ∪ dP2

SU(3) 13

2

+1F

G2+1F

F6

3`−2X1−X2

∪ dP2

SU(3) 11

2

+1F

Sp(2)π+1AS

F6

2`

∪ dP2

Sp(2)0+1AS

F2 ∪ dP1 F1 ∪ dP1

SU(3)0
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Figure 16. The diagram above shows the RG flow among rank 1 and rank 2 SCFTs obtained by

mass deformations. The first and the second rows in each box correspond to the geometric and the

gauge theoretic descriptions respectively of a 5d theory.18 The parent theory in each branch is a

5d KK theory related to a 6d theory on S1.

18We note that while Bl8F3 ∪ P
2 has no gauge theory description, it is nonetheless related to [SU(2) +

5F] × SU(2)0 by a flop transition: a flop of Bl8F3 ∪ P
2 leads to the geometry Bl7F2

ℓ−X1

∪ dP1, which has

gauge theory description [SU(2) + 5F]× SU(2)0. However, Bl7F2

ℓ−X1

∪ dP1 is not shrinkable, which implies

that the BPS spectrum of the gauge theory will develop a negative mass before reaching a CFT fixed point.

Nevertheless, this gauge theory makes sense as an effective description of the CFT from Bl8F3 ∪P
2 through

a flop transition to Bl7F2

ℓ−X1

∪ dP1 when mass parameters are turned on. We are greatful to Gabi Zafrir

for pointing out that the CFT related to the [SU(2) + 5F] × SU(2)0 gauge theory should exist since an

associated (p, q) 5-brane system exists.
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Figure 17. M = 6 geometries.
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Figure 18. M = 6 geometries, cont.
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Figure 19. M = 5 geometries.
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Figure 20. M = 5 geometries, cont.
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Figure 21. M = 4 geometries.
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Figure 22. M = 4 geometries, cont.
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Figure 23. M = 3 geometries.
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Figure 24. M = 3 geometries, cont. Note that for the geometry dP2 ∪ dP2 at the top, the gluing

curves in both surfaces are C = ℓ−X1 −X2, in contrast to the other geometries.
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Figure 25. M = 2 geometries.
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Figure 26. M = 1 geometries.
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Figure 27. M = 0 geometries.

6d theories on a circle. In this section we show that the complicated web of theories we

have uncovered are actually unified from the perspective of 5d Kaluza-Klein (KK) theories

arising from 6d SCFTs compactified on a circle (up to possible automorphism twists and

holonomies).

As discussed in section 4.1, shrinkable rank 1 geometries are classified by del Pezzo

surfaces dPn≤8 and F0 up to physical equivalence. Interestingly, all of them can be obtained

via geometric RG flows from dP9 (equivalently, 1
2K3). The local dP9 model is an elliptic 3-

fold engineering the 6d SCFT called the ‘E-string theory’. Therefore all rank 1 5d SCFTs

are descendants (i.e. related by rank preserving mass deformations) of the 6d E-string

theory compactified on a circle.

We also find that all rank 2 5d SCFTs have 6d origin, but the rank 2 case is significantly

more elaborate than the rank 1 case. Geometric constructions produce 5d SCFTs belonging

to the four distinct families displayed in table 3. The geometries of type (·)∗ are not

shrinkable but rather 5d KK theories.19 We expect that these geometries correspond to 6d

SCFTs compactified on a circle, possibly with automorphism twists.

19These theories are also called marginal theories [13].
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One distinguished property of geometries corresponding to 5d KK theories is that

there must exist an elliptic curve class whose volume is not controlled by normalizable

Kähler moduli. The M2-branes wrapping this elliptic class correspond to KK momentum

states. For example, the canonical class −KdP9 ⊂ dP9 is an elliptic class with zero volume

associated to the KK momenta of the E-string theory compactified on a circle. Another

important property is that some KK geometries contain fiber classes forming an affine

gauge algebra. Namely, we can find fiber classes fi such that

− fi · Sj = (AĜ)ij , (4.20)

where Ĝ denotes an affine gauge algebra. This signals that the corresponding geometry

is an elliptic geometry realizing a 5d KK theory. We will now identify 6d origins of the

geometries in table 3 using these properties.

We begin with Bl10F6 ∪ F0. This geometry has two gauge theory descriptions, namely

SU(3)0 + 10F and Sp(2) + 10F. The 6d origin of these gauge theories is discussed in [21–

23, 35]. These theories are a circle reduction of the 6d (D5, D5) conformal matter theory

introduced in [2, 36]. The geometry Bl10F6 ∪ F0 realizes the circle compactification of

this 6d theory. This theory has another duality frame in which an affine gauge algebra is

manifest. To see this, choose the fiber classes f1 = H + 2F −∑10
i=1Xi and f2 = F . These

fiber classes indeed form the affine Â1 Cartan matrix:

− (fi · Sj) =

(
2 −2

−2 2

)
. (4.21)

Another geometry F2 ∪ dP7 is interesting for similar reasons. This geometry admits

three different gauge theory descriptions corresponding to the following choices of fiber

classes:
f1 = F, f2 = ℓ−X2 → SU(3)4 + 6F ,

f1 = F, f2 = 2ℓ−
5∑

i=2

Xi → Sp(2) + 2AS+ 4F ,

f1 = F, f2 = 3ℓ−
6∑

i=2

Xi − 2X7 → G2 + 6F .

(4.22)

Here, the two surfaces are glued along the curves CS1 = E and CS2 = ℓ−X1. This implies

new dualities between these three gauge theories and their descendants obtained by RG-

flows induced by relevant mass deformations. In addition, we find another distinct duality

frame:

f1 = F , f2 = 5ℓ−X1 − 2

7∑

i=2

Xi . (4.23)

The fiber classes in this last frame form the affine Cartan matrix A
(2)
2 :

− (fi · Sj) =

(
2 −1

−4 2

)
. (4.24)
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This algebra A
(2)
2 is obtained by an outer automorphism twist of the affine A

(1)
2 = Â2

algebra which identifies 3 and 3̄ representations in A2 ⊂ Â2. Therefore, one can expect that

this geometry is also a KK geometry corresponding to a 6d SU(3) gauge theory compactified

on a circle with an outer automorphism twist. The unique 6d theory satisfying these

properties is the 6d N = (1, 0) SCFT with SU(3) gauge group and NF = 12 fundamental

hypermultiplets. Circle compactification of this 6d theory with an outer automorphism

twist of the SU(3) gauge algebra leads to a 5d theory with affine A
(2)
2 gauge algebra and

6 flavors. This interpretation agrees with the geometric model F2 ∪ dP7. Therefore, we

conclude that F2 ∪ dP7 is a ‘KK geometry’ engineering the circle compactification of the

6d SU(3) theory with NF = 12.

F6 ∪ dP4 is also a KK geometry. When one chooses the fiber classes f1 = F1, f2 =

ℓ−X1 (with the gluing curve CS2 = 2ℓ), this geometry has a gauge theory description as

Sp(2)0 + 3AS. However, if we choose the fiber classes f1 = F, f2 = 2ℓ −∑4
i=1Xi, their

intersections with the irreducible components Si form the affine A
(2)
2 Cartan matrix, up to

sign. This suggests that F6 ∪ dP4 is a KK geometry. Indeed we find that the 6d SU(3)

gauge theory with NF = 6 can give rise to the 5d KK theory associated to this geometry

upon circle reduction with an outer automorphism twist.

F10∪F0 is yet another KK geometry constructed by our building blocks. This geometry

admits two dual descriptions related to the base-fiber exchange symmetry of F0. One

description is SU(3)9, while the other is the A
(2)
2 gauge theory description without matter

hypermultiplets. We anticipate that this affine A
(2)
2 gauge theory is the 5d KK theory

coming from the 6d theory O(−3) minimal SCFT with SU(3) gauge group compactified

on a circle with an outer automorphism twist of the SU(3) gauge algebra.

Lastly, Bl9F4 ∪ F0 is a KK geometry. This geometry is formed by gluing two surfaces

along CS1 = E in Bl9F4 and CS2 = F +H in F0. We find that this geometry involves an

elliptic fiber class given by E + 2X (with E2 = −4, X2 = −1, E ·X = 2) in Bl9F4 which

signals that this geometry is an elliptic CY 3-fold. In the 5d reduction, this geometry has

two gauge theory descriptions as predicted in [13]: SU(3) 3
2
with NF = 9 and Sp(2) with

NAS = 1, NF = 8. This geometry is associated to the 6d rank 2 E-string theory on a circle.

This becomes clearer after a flop transition with respect to the exceptional curve X. The

flop transition described in section 3.5 leads to dP9 ∪ F
g=1
0 geometry where we glue the

anticanonical class in dP9 to the elliptic class E (with E2 = 0) in F
g=1
0 . This is the rank 2

generalization of dP9 (or the 6d rank 2 E-string theory).

All top geometries in table 3 come from 6d SCFTs. We also claim that all smooth

rank 2 3-folds engineering 5d SCFTs belong to one of the RG-flow families exhibited in

table 3. Therefore, we deduce the following conclusion: All rank 2 5d SCFTs realized by

smooth non-compact 3-folds have 6d SCFT origins.

This is one of the most important lessons from our classification of rank 2 5d SCFTs.

The same conclusion may hold also for singular geometries involving O7+-planes. As men-

tioned earlier, the classification of smooth 3-folds misses a single geometry corresponding

to the theory SU(3) 1
2
+ 1Sym, despite the fact that this theory is known to have a brane

construction involving O7+-planes [33]. This theory may be the only rank 2 SCFT which
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cannot be engineered by a smooth 3-fold. But, we also know that this theory can be

obtained from a KK theory with 6d origin, so we have found no counterexamples to the

notion that all rank 2 5d SCFTs come from 6d SCFTs.

The above discussion motivates classifying automorphisms of 6d SCFTs which lead

to 5d KK theories, as in [16]. Given the fact that 6d SCFTs are already classified (not

counting frozen singularities involving O7+ planes), the possible automorphisms can be

deduced from symmetries of the tensor branch diagrams of 6d SCFTs dressed by gauge

symmetries which respect the automorphisms.
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A Mathematical background

A.1 Notation, conventions, and formulae

Let S be a smooth projective variety, and let a (real) 1-cycle be a formal linear combination

C =
∑

aiCi of irreducible, reduced and proper curves Ci with real coefficients ai. We

declare two 1-cycles C,C ′ to be numerically equivalent if C·D = C ′·D for all Cartier divisors

D on X. Let N1(S) be the real vector space of 1-cycles modulo numerical equivalence.

The Mori cone of S is defined to be the closure of the set

NE(S) =

{∑
ai[Ci] | ai ∈ R≥0

}
, (A.1)

where [Ci] are the classes of Ci in N1(S). Since we work exclusively with numerical equiv-

alence classes, we drop the bracket notation.

Given a local 3-fold X defined by a connected Kähler surface S = ∪Si, the Mori cone

of X is given by

NE(X) = ∪NE(Si). (A.2)

The Kähler cone K(X) is defined to be the closure of the set of all divisors J such that

J · C > 0 for all curves C that lie in the span of the Mori cone, where · is the intersection

product of the Chow ring ofX. Hence, given a basis J = φiDi, we may parametrize K(X) as

K(X) = {φ : −J · C ≥ 0}. (A.3)

Note that the Kähler cone is dual to the Mori cone of X in the sense of convex geometry.

The correspondence between 5d field theory and Calabi-Yau geometry described in

section 2.2 allows us to identify blowdowns with RG flows triggered by mass deformations.

As a consequence, it is necessary to consider not only minimal surfaces but also their
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blowups as the basic building blocks Si of shrinkable 3-folds. For this reason, we find it

useful to recall a few facts about the proper transform of the canonical class K of a surface

Si with respect to a blowup. Let π : S′ → S be a blowup of a collection of points pi in

general position with multiplicities mi and exceptional divisors Xi. Then the canonical

divisor KS′ of S′ is

KS′ = π∗(KS) +
∑

Xi. (A.4)

Moreover, if the points pi lie on a curve C ⊂ S, then the proper transform C ′ ⊂ S′ of the

curve C is

C ′ = π∗(C)−
∑

miXi, (A.5)

where mi is the multiplicity of C at pi [28]. In some situations, one is also forced to

consider self-glued surfaces S′. The self-glued surfaces we study can be obtained from non-

self-glued surfaces Si by identifying pairs of curves C1, C2 ⊂ Si, thus leading to a birational

map ρ : S → S′. The canonical class of S′ is then determined by

ρ∗(KS′) = KS + C1 + C2. (A.6)

A.2 Blowups of Hirzebruch surfaces, BlpFn≥2

In this appendix, we fix notation for Hirzebruch surfaces and their blowups at general

points. We also list their fiber classes and explicitly describe the generators of their Mori

cones. Significantly, we show that if the number of blowups exceeds pmax(n), then the Mori

cone of BlpFn is (countably) infinitely generated. In the context of shrinkable 3-folds, this

(roughly) implies the existence of an infinite dimensional discrete symmetry, which is not

expected for 5d SCFTs and hence excludes these surfaces from the list of building blocks

for shrinkable 3-folds.

A ruled surface F
g
n over a curve E of genus g can be realized as the projectivization of

a locally free rank 2 sheaf E with deg(E) = E2 = −n, following the notation of [28]. The

Mori cone of a ruled surface is spanned by two curve classes, namely the genus g curve E

and a fiber class F . The canonical divisor is

KF
g
n
= −2E + (2g − 2− n)F (A.7)

up to numerical equivalence. When g = 0, F0
n = Fn is a Hirzebruch surface and can be

understood as the projectivization of the bundle O ⊕O(n) on P
1. After projectivization,

the summands O and O(n) of O⊕O(n) correspond to sections which we denote by E and

H respectively. At the level of cohomology classes, we have H = E+nF . The intersection

numbers are

H2 = n, E2 = −n, F 2 = 0, H · E = 0, H · F = E · F = 1. (A.8)

The Mori cone of Fn is generated by E and F . The canonical class is given by

KFn = −2E − (n+ 2)F. (A.9)

Writing a curve class on Fn as C = aE + bF , we can use (A.9) to compute the genus of

the curve by the adjunction formula:

g(aE + bF ) = (a− 1)(b− 1)− na(a− 1)

2
. (A.10)
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A.2.1 Mori cones

Below we list the generators of Mori cones in Hirzebruch surfaces with p > 0 blowups

at generic points which we denote by BlpFn. These are particular classes spanning the

extremal rays in the Mori cone in the surface. These classes can be expressed as C =

dH + sF −∑p
i=1 aiXi, which we abbreviate as (d, s; a1, a2, · · · , ap), where H2 = n, F 2 = 0

and Xi’s are exceptional classes of p blowups.

The Mori cone generators in BlpFn with 2 ≤ n ≤ 7 are

BlpF2 : E , Xi , (0, 1; 1) , (1, 0; 13) , (1, 1; 15) , (2, 0; 2, 15) ,

(1, 2; 17) , (2, 1; 22, 15) , (3, 0; 24, 13) , (3, 1; 26, 1) , (4, 0; 3, 26) (A.11)

BlpF3 : E , Xi , (0, 1; 1) , (1, 0; 14) , (1, 1; 16) , (1, 2; 18) , (2, 0; 22, 15) ,

(2, 1; 23, 15) , (3, 0; 27) , (3, 0; 3, 24, 13) , (3, 1; 3, 26, 1) ,

(4, 0; 34, 23, 1) , (4, 0; 4, 3, 26) , (4, 1; 35, 23) , (5, 0; 42, 34, 22) ,

(5, 1; 42, 36) , (6, 0; 46, 3, 2) , (6, 0; 5, 43, 34) , (6, 1; 47, 3) ,

(7, 0; 53, 44, 3) , (7, 0; 6, 47) , (8, 0; 6, 55, 42) , (9, 0; 64, 54) ,

(10, 0; 7, 67) (A.12)

BlpF4 : E , Xi , (0, 1; 1) , (1, 0; 15) , (1, 1; 17) , (2, 0; 23, 15) ,

(3, 0; 3, 27) (A.13)

BlpF5 : E , Xi , (0, 1; 1) , (1, 0; 16) , (1, 1; 18) , (2, 0; 24, 15) ,

(3, 0; 32, 27) , (4, 0; 39) (A.14)

BlpF6 : E , Xi , (0, 1; 1) , (1, 0; 17) , (1, 1; 19) , (2, 0; 25, 15) ,

(3, 0; 33, 27) , (4, 0; 4, 39) (A.15)

BlpF7 : E , Xi , (0, 1; 1) , (1, 0; 18) , (1, 1; 110) , (2, 0; 26, 15) ,

(3, 0; 34, 27) , (4, 0; 42, 39) , (5, 0; 411) (A.16)

Here the number of blowups is restricted as p ≤ pmax where pmax = 7, 8, 8, 9, 10, 11 for

n = 2, 3, 4, 5, 6, 7 respectively.

We are using the cone theorem of Mori theory: the Mori cone is generated by curves

with C ·K ≥ 0 (this is the ‘K-positive’ part of the Mori cone) and the extremal rational

curves of Mori theory. There are three types of extremal rational curves on surfaces: (i)

lines in P
2, (ii) curves F with F 2 = 0 forming a P

1-fibration, and (iii) exceptional curves.

Case (i) obviously does not occur. For case (ii), we claim that any rational curve F

with F 2 = 0 can be written as a sum of two exceptional curves. We conclude that the Mori

cone is generated by the curves C with C ·K ≥ 0 and the exceptional curves. To see this,

first note that the fibration which F is a part of must contain at least one reducible fiber.

Otherwise, we would have a P
1 bundle, implying that BlpFn is itself a Hirzebruch surface,

which is impossible since we are assuming that p > 0. So we can write the class F = C1+C2

as a sum of two curve classes. Then C1 ∩ C2 is a single point, otherwise F would have

positive genus. Replacing F by a distinct fiber, we see that Ci · F = 0, since each Ci is

disjoint from the distinct fiber F . We then compute C1 ·F = C1 · (C1 +C2) = C2
1 +1 = 0,
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so C2
1 = −1 and C1 is an exceptional curve. The same argument shows that C2 is also an

exceptional curve, and the claim is proven.

We now claim that for p ≤ n + 4, the only curve C with C · K ≥ 0 is C = E. The

above table was produced by listing the exceptional curves and prepending E.

To prove the claim, we write −K in the form

−K = E +H + 2F −
p∑

i=1

Xi. (A.17)

We compute that E · (−K) = −n + 2. Let us first assume that n > 2, in which case

E · (−K) < 0. Now consider any effective curve C = ∪Ci in the class −K (for p ≤ pmax

there exist such curves by a straightforward dimension count). If each Ci were disjoint

from E, we would get a contradiction since Ci · E ≥ 0 is just a (nonnegative) count of

intersection points. Thus E must be one of components of any curve in the class −K.20

It follows that every curve in the class −K is the sum of E and a curve in the class of

what is left over: Mn = H + 2F −∑p
i=1Xi.

21 Curves in the class Mn move in a family

by a straightforward dimension count using the bound on p, hence curves in the class Mn

cover BlpF . Since M2
n = n+ 4− p ≥ 0, curves in the class Mn must intersect every curve

nontrivially, with one possible exception in the case p = n+4: a curve in the class Mn will

not meet a different curve in the class Mn, since M2
n = 0.

So if C 6= E, and C 6= Mn in the case p = n + 4, then C · (−K) = C · (E + Mn) =

C · E + C · Mn. The first term is nonnegative while the second term is positive, hence

C ·K < 0. If p = n + 4 and C = Mn, the we compute Mn ·K = −2 directly and there is

still no problem.

If n = 2, then −K moves in a family covering BlpF and has no fixed component. So

this case is handled by a similar but simpler argument.

In conclusion, the only curve C with C ·K ≥ 0 is C = E and the K-negative part of

the Mori cone of Blp>0Fn is generated exclusively by exceptional curves.

We checked numerically that, when p ≥ pmax, there appear infinitely many Mori cone

generators for each surface. We now explain that for p ≥ n+6, BlpFn has infinitely excep-

tional curves and therefore infinitely many Mori cone generators. We give the argument

for n = 2 for simplicity of exposition and then repeat the argument in the general case.

We now adapt the argument of [37] from P
2 to Fn. We start by blowing up 4 general

points of F2 to obtain a surface Bl4F2. For each 1 ≤ j ≤ 4, consider the curve Yj =

H2−
∑4

i=1,i 6=j Xi. The Yj are disjoint exceptional curves (Yj ·Yk = 0 for j 6= k) and so can

be blown down by a map π : Bl4F2 → S to a smooth surface S. We claim that S ≃ Bl4F2,

producing a birational automorphism of F2 analagous to the quadratic transformation of

P
2 used in [37].

To verify the claim, we begin by observing that E · Yj = 0, i.e. E is disjoint from each

Yj , so blowing down the Yj does not change the self-intersection of E. In other words, if we

put E′ = π∗(E), we have E′2 = −2. Furthermore, the curve class H + F −∑4
i=1Xi (with

P
1 moduli space) has self-intersection 0 and is disjoint from the curves Yj . So by the same

20In the standard terminology of algebraic geometry, E is called a fixed component of | −K|.
21In the standard terminology of algebraic geometry, Mn is called the moving part of −K, as it is

straightforward to check that Mn has no fixed component itself.
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reasoning, the curve class F ′ = π∗(H + F −∑4
i=1Xi) satisfies (F ′)2 = 0. Furthermore,

E′ · F ′ = 1, since E · (H + F −∑4
i=1Xi) = 1. Thus S has b2(S) = 2 + 4 − 4 = 2 and

contains a curve of self-intersection −2 which is a section of P1-fibration. By classification

of rational surfaces, we conclude that S is a Hirzebruch surface, and S ≃ F2 because of

the presence of the curve E′.

We now change notation and rewrite π as π : Bl4F2 → F2, replacing E′ and F ′ by E

and F . We have

π∗(E) = E, π∗(F ) = H + F −
4∑

i=1

Xi, π∗(Xi) = H −
4∑

j=1, j 6=i

Xi. (A.18)

We now turn to BlpF2 with p ≥ 8 > 4. Since the blowups of the points indexed by

5, . . . , p are spectators in the map π above, we can reinterpret π as a map BlpF2 → F2.

The pullbacks of E and F are still given by (A.18) (with i still running from 1 to 4).

We now consider an exceptional curve with class C = aH + bF −∑p
i=1miXi. We

reorder the points being blown up if necessary so that the mi are in nondecreasing order.

We assume that C 6= F −Xi for any i. Since C · (F −Xi) ≥ 0, it follows that a ≥ mi for

each i. Let C ′ = π∗(C). We now find the class of C ′ by computing

C ′ · E = C · π∗(E) = b, C ′ · F = C · π∗(F ) = 3a+ b−
4∑

i=1

mi, (A.19)

and

C ′ ·Xj = C · Yj = 2a+ b−
4∑

i=1, i 6=j

mi (j ≤ 4), C ′ ·Xj = mj (j > 4). (A.20)

It follows that

C ′ =

(
3a+ b−

4∑

i=1

mi

)
H2 + bF2 −

4∑

j=1


2a+ b−

4∑

i=1, i 6=j

mi


Xj −

p∑

j=5

mjXj . (A.21)

We now claim that 3a+ b−∑4
i=1mi > a. This will complete the proof of infinitely many

exceptional curves. Starting with one of the allowed exceptional curves from (A.11), we

repeatedly apply π and get a sequence of curves whose coefficient of H2 increases without

bound.

The proof of the claim is simple. Since C is exceptional we have the C ·K = −1, or

4a+ 2b−
p∑

i=1

mi = 1. (A.22)

Since 4 ≤ p/2 and the mi are nondecreasing, (A.22) implies that

2a+ b−
4∑

i=1

mi > 0. (A.23)

Adding a to both sides of (A.23) gives the claimed result.
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For the case of general n, we blow up Fn at n + 2 points and blow down the n + 2

exceptional curves Yj = H −∑n+2
i=1,i 6=j Xj . By an argument analogous to the case n = 2

above, we identify this blowdown map with a map π : Bln+2Fn → Fn. In place of (A.18)

we have in this situation

π∗(E) = E, π∗(F2) = H + F −
n+2∑

i=1

Xi, π∗(Xi) = H −
n+2∑

j=1, j 6=i

Xj . (A.24)

As in the case n = 2, we consider an exceptional curve with class C = aH + bF −∑p
i=1miXi. We reorder the points being blown up if necessary so that the mi are in

nondecreasing order. We assume that C 6= F −Xi for any i and conclude that a ≥ mi for

each i as before. Let C ′ = π∗(C). We compute

C ′ · E = C · π∗(E) = b, C ′ · F = C · π∗(F ) = (n+ 1) a+ b−
n+2∑

i=1

mi, (A.25)

and

C ′ ·Xj = C · Yj = na+ b−
n+2∑

i=1, i 6=j

mi (j ≤ n+ 2), C ′ ·Xj = mj (j > n+ 2). (A.26)

It follows that

C ′ =

(
(n+ 1) a+ b−

n+2∑

i=1

mi

)
H + bF −

n+2∑

j=1


na+ b−

n+2∑

i=1, i 6=j

mi


Xj −

p∑

j=n+3

mjXj .

(A.27)

We only have to show that (n + 1)a + b −∑n+2
i=1 mi > a, or na + b −∑n+2

i=1 mi > 0. We

divide into the cases of even and odd p. Since the even case is easier, we content ourselves

with the odd case and write p = 2k + 1.

Since C is exceptional we have the C ·K = −1, or

(n+ 2) a+ 2b−
p∑

i=1

mi = 1, (A.28)

which implies
(
n+ 2

2

)
a+ b−

k∑

i=1

mi −
mk+1

2
> 0, (A.29)

which further implies, since a ≥ mk+1

(
n+ 3

2

)
a+ b−

k+1∑

i=1

mi > 0. (A.30)

We have to replace
∑k+1

i=1 mi in (A.30) with
∑n+2

i=1 mi in verifying the claim, so we

compensate and maintain positivity by adding ((n + 2) − (k + 1))a in (A.30). We only
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have to observe that the resulting coefficient of a is at most n. The difference between this

coefficient and n is

n−
((

n+ 3

2

)
+ (n+ 2)− (k + 1)

)
= k + 1−

(
n+ 7

2

)
(A.31)

which is nonnegative since p ≥ n+ 6.

However, we are trying to do too much here and can relax the result to p = n + 5 if

n ≥ 4, by starting with an exceptional curve whose class has b = 0. For example, we can

consider the curve H −∑n+5
i=5 Xi.

Now (A.28) simplifies to

(n+ 2) a−
n+5∑

i=1

mi = 1 (A.32)

and we have to show

(n+ 1) a−
n+2∑

i=1

mi > a, (A.33)

or equivalently

na−
n+2∑

i=1

mi > 0. (A.34)

Since the mi are arranged in nondecreasing order, (A.34) follows from (A.32) by comparing

the coefficients of a and the number of mi terms in these two formulas after noting that

n/(n + 2) ≥ (n + 2)/(n + 5) for n ≥ 4. This shows that the number of blowups with

finite Mori cone is given by pmax = 7, 8 (for n = 2, 3 by the p ≥ n + 6 bound) and

pmax = 8, 9, 10, . . . for n = 4, 5, 6, . . . by the p ≥ n+ 5 bound we established).

A.2.2 Weyl groups

In this section, we suggest a more conceptual way to show that there are infinitely many

Mori cone generators for BlpFn and large p while leaving details for future work. We exhibit

a natural action of a group surjecting onto the Weyl group of an infinte Kac-Moody Lie

algebra on H2(BlpFn) for p ≥ n + 2. See [38] for background and the notation we will

follow about Kac-Moody algebras.

To begin with, a permutation of the p blowup points induces a corresponding action

on H2(BlpFn), giving an action of the symmetric group Sp on H2(BlpFn). The symmetric

group is a reflection group, generated by transpositions. The induced map on H2(BlpFn)

associated with the transposition (i, i+1) is identified with the reflection in the hyperplane

orthogonal to ρi = Xi−Xi+1 for i = 1, . . . , p−1. We note that ρ2i = −2 and ρi·K = 0. These

reflections and the symmetric group that they generate preserve the Mori cone generators.

As usual, by a reflection in a curve class ρ with ρ2 = −2 we mean the automorphism of

H2(BlpFn) given by

C 7→ C + (C · ρ) ρ. (A.35)

A simple calculation shows that (A.24) can be identified with the reflection in ρp =

H −∑n+2
i=1 Xi. We also have ρ2p = −2 and ρp ·K = 0.
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Consider the p× p matrix A with

Aij = −ρi · ρj , (A.36)

where in (A.36) the product on the right-hand side is just the intersection product in

H2(BlpFn). Since A is symmetric with diagonal entries equal to 2 and nonpositive off-

diagonal entries, it follows immediately that A is a generalized Cartan matrix.

Now let gA be the Kac-Moody algebra associated with A. We proceed to identify

{ρ1, . . . , ρp} with a set of roots in the associated root system.

Recall the definition of a realization of a generalized Cartan matrix from [38].

Definition. A realization of an n× n generalized Cartan matrix A is a triple (h,Π,Π∗),

where h is a complex vector space, Π = {α1, . . . , αn} ⊂ h∗, and π∨ = {α∨
1 , . . . , α

∨
n} ⊂ h such

that Π and Π∨ are each linearly independent sets, 〈α∨
i , αj〉 = Aij , and dim h = 2n−rank(A).

Returning to our situation where A is given by (A.36), we see that rank(A) ≥ p − 1

since A contains the nonsingular Cartan matrix of Ap−1 as a submatrix. So rank(A) is

either p− 1 or p.

If rankA = p, then dim h = p and we take h = span(ρ1, . . . , ρp) ⊂ H2(BlpFn). If

rankA = p − 1, then dim h = p + 1 and we take h = K⊥ ⊂ H2(BlpFn). In either case, we

identify h∗ with h via the negative of the intersection pairing. With these identifications,

we let αi = α∨
i = ρi for i = 1, . . . , p to obtain a realization of A.

The Weyl group WA of gA is the subgroup of Aut(h∗) generated by the reflections in

the roots, and is infinite if rank(A) = p− 1. Consider the subgroup G ⊂ Aut(H2(BlpFn))

generated by the reflections. We have a surjection G → WA obtained by restriction to

h∗, so G is also infinite if rank(A) = p − 1. We expect that the action of G on the Mori

cone generators is effective, which would prove that there are infinitely many Mori cone

generators in this case.

We next show that the finiteness of WA perfectly matches the finiteness of the Mori

cone generators as described in section A.2.1. Consider the Dynkin diagram encoding the

Cartan matrix A.

If p = n+ 2, we have an An+1 ×A1 Dynkin diagram with a finite Weyl group.

If p = n+ 3, we have an An+3 Dynkin diagram with a finite Weyl group.

If p ≥ n+ 4, the (n+ 2)nd vertex corresponding to ρn+2 = Xn+2 −Xn+3 is trivalent,

being connected to the vertices corresponding to ρn+1, ρn+3, and ρp. If p = n+4, we have

an Dn+4 Dynkin diagram with a finite Weyl group.

If p = n + 5, we have E6, E7, E8 for n = 1, 2, 3 respectively, with a finite Weyl group.

If n ≥ 4, the Weyl group is infinite.

If p > n+ 5, the Weyl group is infinite.

These results are in perfect agreement with the results of section A.2.1, including the

observation that the pattern for pmax is not followed for n ≤ 3.
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As an example, consider Bl9F4. In this case

A =




2 −1 0 0 0 0 0 0 0

−1 2 −1 0 0 0 0 0 0

0 −1 2 −1 0 0 0 0 0

0 0 −1 2 −1 0 0 0 0

0 0 0 −1 2 −1 0 0 0

0 0 0 0 −1 2 −1 0 −1

0 0 0 0 0 −1 2 −1 0

0 0 0 0 0 0 −1 2 0

0 0 0 0 0 −1 0 0 2




(A.37)

This A is singular, so gA and G are infinite. In fact, (A.37) is precisely the Cartan matrix

of affine E8 after reversing the order of the roots, so gA is just affine E8.

More generally, we list the Dynkin diagrams corresponding to p = pmax + 1. For

convenience, we adopt the notation Tp,q,r from the study of triangle singularities. The

corresponding Dynkin diagram has one trivalent vertex and three legs, with the lengths of

the respectively legs (including the trivalent vertex in each case) are p, q, r. For example,

with this notation Dn = T2,2,n−2, E6 = T2,3,3, E7 = T2,3,4, and E8 = T2,3,5.

For n = 2, pmax + 1 = 8, and we get T2,4,4, which is affine E7.

For n = 3, pmax +1 = 9, and we get T2,4,5. This has an infinite Weyl group, but is not

the affine Weyl group of any classical group.

For n = 4, pmax + 1 = 9, and we get T2,3,6, which is affine E8 as we have explained

above.

For n > 4, pmax +1 = n+5, and we get T2,3,n+2. This has an infinite Weyl group, but

is not the affine Weyl group of any classical group.

A.2.3 Fiber classes

For the purpose of identifying gauge theory descriptions of shrinkable 3-folds, one also

needs to know the fiber classes corresponding to W-bosons in the 5d spectrum. A fiber

class f ⊂ BlpFn is a rational curve satisfying f2 = 0. When p = 0, as described above,

there is only a single fiber class, namely f = F ⊂ Fn. However, when p > 0, additional

fiber classes may appear.

We denote fiber classes by f = dH + sF −∑p
i=1 aiXi (where F 2 = 0, H2 = n, and Xi

are exceptional curves) which we abbreviate as (d, s; a1, . . . , ap). Using numerical checks,

we believe the full set of fiber classes f ⊂ BlpFn with 2 ≤ n ≤ 7 and p ≤ pmax, organized
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according to the number f · E = s, are as follows:

BlpF2 :





(1, 0; 12) , (2, 0; 2, 14) , (3, 0; 24, 12) ,

(3, 0; 3, 2, 15) , (4, 0; 32, 23, 12) , (5, 0; 35, 2, 1) ,

(5, 0; 4, 32, 24) , (6, 0; 42, 34, 2) , (7, 0; 45, 32)

F , (1, 1; 14) , (2, 1; 22, 14) , (3, 1; 26) ,

(3, 1; 3, 23, 13) , (4, 1; 33, 23, 1) , (4, 1; 4, 26) ,

(5, 1; 4, 34, 22) , (6, 1; 43, 34) , (7, 1; 47)

(1, 2; 16) , (2, 2; 23, 14) , (3, 2; 3, 25, 1) ,

(4, 2; 34, 23) , (5, 2; 4, 36)





(A.38)

BlpF3 :





(1, 0; 13) , (2, 0; 22, 14) , (3, 0; 3, 24, 12) , (3, 0; 32, 2, 15) ,

(4, 0; 34, 23) , (4, 0; 35, 13) , (4, 0; 4, 32, 23, 12) ,

(5, 0; 43, 32, 22, 1) , (5, 0; 5, 35, 2, 1) , (5, 0; 5, 4, 32, 24) ,

(6, 0; 5, 44, 32, 1) , (6, 0; 52, 42, 32, 22) , (6, 0; 6, 42, 34, 2) ,

(7, 0; 55, 32, 2) , (7, 0; 6, 52, 43, 3, 2) , (7, 0; 6, 53, 34) ,

(7, 0; 62, 43, 33) , (7, 0; 7, 45, 32) , (8, 0; 62, 54, 4, 2) ,

(8, 0; 63, 52, 4, 32) , (8, 0; 7, 55, 32) , (8, 0; 7, 6, 52, 43, 3) ,

(9, 0; 7, 64, 5, 4, 3) , (9, 0; 72, 6, 54, 3) , (9, 0; 72, 62, 5, 43) ,

(9, 0; 8, 62, 53, 42) , (10, 0; 73, 64, 3) , (10, 0; 74, 62, 42) ,

(10, 0; 8, 72, 62, 52, 4) , (10, 0; 82, 62, 54) , (10, 0; 9, 64, 53) ,

(11, 0; 82, 73, 62, 4) , (11, 0; 83, 7, 62, 52) , (11, 0; 9, 74, 6, 52) ,

(11, 0; 9, 8, 7, 64, 5) , (12, 0; 9, 83, 72, 6, 5) ,

(12, 0; 92, 75, 5) , (12, 0; 92, 8, 72, 63) , (13, 0; 92, 85, 5) ,

(13, 0; 93, 83, 62) , (13, 0; 94, 73, 6) , (18, 0; 122, 114, 102) ,

(19, 0; 125, 113)

F , (1, 1; 15) , (2, 1; 23, 14) , (3, 1; 3, 26) , (4, 1; 42, 26) ,

(3, 1; 32, 23, 13) , (4, 1; 4, 33, 23, 1) , (5, 1; 43, 34, 1) ,

(5, 1; 44, 3, 23) , (5, 1; 5, 4, 34, 22) , (6, 1; 52, 43, 32, 2) ,

(6, 1; 6, 43, 34) , (7, 1; 55, 42, 2) , (7, 1; 6, 53, 42, 32) ,

(7, 1; 62, 45, 3) , (7, 1; 7, 47) , (8, 1; 63, 53, 4, 3) ,

(8, 1; 64, 44) , (8, 1; 7, 6, 53, 43) , (9, 1; 67, 3) ,

(9, 1; 7, 65, 42) , (9, 1; 72, 62, 53, 4) , (9, 1; 8, 62, 55) ,

(10, 1; 74, 63, 4) , (10, 1; 8, 72, 63, 52) , (11, 1; 82, 74, 6, 5) ,

(11, 1; 83, 7, 64) , (11, 1; 9, 74, 63) , (12, 1; 86, 62) ,

(12, 1; 9, 83, 73, 6) , (13, 1; 93, 83, 72) , (16, 1; 108)

(1, 2; 17) , (2, 2; 24, 14) , (3, 2; 32, 25, 1) ,

(4, 2; 37, 1) , (4, 2; 4, 34, 23) , (5, 2; 44, 33, 2) ,

(5, 2; 5, 4, 36) , (6, 2; 52, 44, 32) , (7, 2; 56, 4, 3) ,

(7, 2; 6, 53, 44) , (8, 2; 63, 54, 4) , (8, 2; 7, 57) ,

(9, 2; 7, 65, 52) , (10, 2; 74, 64) , (11, 2; 8, 77)





(A.39)
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BlpF4 :





(1, 0; 14) , (2, 0; 23, 14) , (3, 0; 32, 24, 12) , (4, 0; 4, 34, 23) ,

(5, 0; 44, 34)

F , (1, 1; 16) , (2, 1; 24, 14) , (3, 1; 32, 26) , (4, 1; 38)

(1, 2; 18)





(A.40)

BlpF5 :





(1, 0; 15) , (2, 0; 24, 14) , (3, 0; 33, 24, 12) ,

(4, 0; 42, 34, 23) , (5, 0; 5, 44, 34) , (6, 0; 54, 45)

F , (1, 1; 17) , (2, 1; 25, 14) , (3, 1; 33, 26) ,

(4, 1; 4, 38)

(1, 2; 19)





(A.41)

BlpF6 :





(1, 0; 16) , (2, 0; 25, 14) , (3, 0; 34, 24, 12) ,

(4, 0; 43, 34, 23) , (5, 0; 52, 44, 34) , (6, 0; 6, 54, 45) ,

(7, 0; 64, 56)

F , (1, 1; 18) , (2, 1; 26, 14) , (3, 1; 34, 26) ,

(4, 1; 42, 38) , (5, 1; 410)

(1, 2; 110)





(A.42)

BlpF7 :





(1, 0; 17) , (2, 0; 26, 14) , (3, 0; 35, 24, 12) ,

(4, 0; 44, 34, 23) , (5, 0; 53, 44, 34) , (6, 0; 62, 54, 45)

F , (1, 1; 19) , (2, 1; 27, 14) , (3, 1; 35, 26) ,

(4, 1; 43, 38) , (5, 1; 5, 410)

(1, 2; 111)





. (A.43)

B Numerical bounds

B.1 Bound on n for Blp1
Fn≥2 ∪ dPp2

It is possible to place a crude upper bound on n for the Hirzebruch surfaces Fn that can

appear as irreducible components in the rank 2 surfaces S = S1 ∪ S2:

n ≤ 8. (B.1)

This upper bound can be established by exploiting the Calabi-Yau condition on C = S1∩S2,

which requires

C2
S2

= n− 2, (B.2)

where we take C = dℓ −∑miXi ∈ dPp2 . For the sake of argument, we find it useful to

work in terms of the ratio z ≡ φ2/φ1. The positivity condition imposed on the volume
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of the curve F ∈ F implies z ≤ 2. Moreover, the positivity condition on the volumes of

exceptional divisors Xi ∈ dPp2 implies z ≥ mi for all i, and hence we have the condition

mi ≤ z ≤ 2 =⇒ mi ≤ 2. (B.3)

One can “prove” the bound (B.1) by using a computing tool to attempt to solve the Dio-

phantine equation (B.2) subject to the condition (B.3) assuming n ≥ 8, and demonstrating

that there are no solutions.

Another strategy is to define vectors ~m = (m1, . . . ,mp2),~1 = (1, . . . , 1) so that

n = −K · C = 3d−~1 · ~m = d2 − |~m|2 + 2, (B.4)

where we take

~1 · ~m =
√
p2m cos θ,

√
p2 =

√
|~1|2, m ≡

√
|~m|2. (B.5)

Solving this system for n, one can attempt to find values of the parameters (θ,m) for all

values of p2 ≤ 8 satisfying

n =
1

2

(
3
√
4m2 − 4m

√
p2 cos θ + 1− 2m

√
p2 cos θ + 9

)
≥ 8, (B.6)

for which there are no solutions.

B.2 Bound on n for Blp1
Fn ∪ F0

Proposition. Let S = Blp1Fn ∪ F0, J = φ1[Blp1Fn] + φ2[F0], and let the gluing curve

CF0 = aF + bE.

1. If p1 = 0, then S is not shrinkable for n > 10.

2. If p1 > 0, then S is not shrinkable for n > 6.

Proof. For the case p1 = 0, requiring that the Mori generators have non-negative volumes

straightforwardly leads to the conditions

ab+ 1 = a+ b, 2ab = n− 2, max

{
a

2
,
b

2
,
n− 2

n

}
≤ 2. (B.7)

The first two conditions above have solution

a = 1 or b = 1. (B.8)

Since F and E may be interchanged freely in F0, with no less of generality we set a = 1.

Simplifying the above constraints, we find 2b = n− 2, which implies

n ≤ 10. (B.9)

When p1 > 0, one can show (cf. appendix A.2) that the Mori cone of Blp1Fn contains as a

generator a rational curve of self intersection −1 meeting the gluing curve CBlp1Fn = E at a

single point, and hence the third condition in (B.7) must be adjusted to max{a/2, b/2, (n−
2)/n} ≤ 1. Again setting a = 1, one finds

n ≤ 6. (B.10)
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B.3 Bound on p1, p2 for dPp1
∪ dPp2

Proposition. Let S = dPp1 ∪ dPp2 , and let J = φ1[dPp1 ] + φ2[dPp2 ].

1. If p1, p2 ≥ 2, then S is not shrinkable for p1 > 6 or p2 > 6.

2. If p1 = 1, then S is not shrinkable for p2 > 7.

Proof. For the first case, assume let C1 ∈ dPp1≥2, C2 ∈ dPp2≥2 be Mori generators,

and let D = dPp1 ∩ dPp2 . Then, setting φ1 = 1, φ2 = z, we have the following positivity

conditions:

vol(C1) = 1− C1 ·Dz ≥ 0, vol(C2) = z − C2 ·D ≥ 0. (B.11)

Combining the above conditions, one finds

(C2 ·D)(C1 ·D) ≤ 1, ∀C1 ∈ dPp1 , C2 ∈ dPp2 . (B.12)

By explicit computation, one can show that the above condition cannot be satisfied for

either p1 > 6 or p2 > 6.

For the second case, let p1 = 1. The Mori generators of dP1 are X1, ℓ −X1 and have

respective volumes vol(X1) = 1, vol(ℓ−X1) = z−2, so the condition (B.12) gets modified to

C2 ·D ≤ 2, ∀C2 ∈ dPp2 , (B.13)

which cannot be satisfied for p2 = 8.

C Smoothness of building blocks

In this appendix, we provide some justification for our conjecture that the Si can be taken to

be smooth. If one of the components Si is singular, the basic idea is that we should be able

to find a complex structure deformation which smooths the singularity while preserving

the Calabi-Yau embedding. In section 3.4 we gave another conjecture which makes the

condition of a Calabi-Yau embedding quite manageable.

This conjecture is natural from the perspective of web diagrams or toric geometry.

Consider for example the case of S = P(1, 1, 2). This singular geometry is physically

equivalent to F2 in the zero mass limit. Figure 28 depicts how the section E in F2 changes

to the singular point in P(1, 1, 2) in this limit. Physically, when two parallel external

5-branes coincide, there are extra free massless states charged under the enhanced global

symmetry associated to this brane configuration.22 The full transition is achieved by giving

a vev to these free states. Switching on a vev for these states prevents one from turning on

a mass parameter (proportional to the distance between the external 5-branes) and thus

leads to a singular configuration P(1, 1, 2) that cannot be resolved.

We can extrapolate from this example to a more general geometric setting. Suppose

that S has an A1 singularity. It is well known in that this singularity is smoothable, either

by writing the local equation x2 + y2 + z2 = t with t a deformation parameter, or by

22Moreover, because the parallel 5-branes are external, these free states can be excited infinitely far away

from the 5d SCFT. However, this does not present a problem as first discussed in [9] because the states are

decoupled from the 5d sector; see [39].
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Figure 28. The red line is the curve of self-intersection −2. After the transition X → X ′, we

see that two vertical external 5-branes are coincident — this configuration describes an isolated

singularity in the corresponding 3-fold X ′.

first resolving the singularity by a P
1 with self-intersection −2 and then deforming the

complex structure so that the −2 curve is no longer holomorphic. It is easy to see that this

deformation can take place within a family of Calabi-Yau threefolds. A similar deformation

can be provided for any ADE singularity. We treat an ADE singularity when all related

masses are turned off and the singularity by associated complex structure deformation in

the equal footing.

We can have many more kinds of singularities on surfaces contained in a smooth Calabi-

Yau threefold. We content ourselves with providing one example and explaining how the

singularity can be avoided up to physical equivalence.

A simple example of a singular rank 1 shrinkable surface S is constructed by letting

Y be the singular hypersurface defined by the equation x3 + y3 + z3 = 0 in C
4. We can

blow up the origin to obtain a Calabi-Yau resolution f : X → Y , and the exceptional

divisor is the hypersurface S ⊂ P
3 defined by x31 + x32 + x33 = 0, which is singular at

(x0, x1, x2, x3) = (1, 0, 0, 0). The fact that X is Calabi-Yau is computed by a standard

algebro-geometric computation explained for example in [28]. Letting W be the blowup

of C4 at the origin with E ≃ P
3 the exceptional divisor, we have KW = 3E. Since Y is

a hypersurface in C
4 with a triple point23 at the origin, its proper transform X has class

X = −3E in W . Then by adjunction KX = (KW + [X])|X = (3E − 3E)|X = 0. This is

just a cone in P
3 over a plane curve which is singular at its vertex (1, 0, 0, 0). This singular

surface can be checked to be shrinkable.

The notion of physical equivalence allows us to bypass this difficulty. We can identify Y

above with Y0 in the one-parameter family of hypersurfaces Yt defined by tw3+x3+y3+z3 =

0. Blowing up the origin gives a family ft : Xt → Yt of Calabi-Yau resolutions, with

exceptional divisor St = f−1
t (0) defined by tx30 + x31 + x32 + x33 = 0. However, for t 6= 0,

St is a smooth cubic surface, isomorphic to dP6 in fact. So the 5d SCFT associated with

the singular shrinkable surface S is physically equivalent to the well-known E6 theory [6].

In other words, we can safely ignore S in our classification. But the only smooth rational

or ruled surfaces are P
2 or BlpP(E)g (see appendix A). Assuming the above conjecture is

true, it is therefore possible to assemble a shrinkable surface S from a concise collection

of known “building blocks”, whose smooth components Si are rational or ruled surfaces or

their blowups.

23The notion of a triple point of hypersurface should not be confused with the notion of the intersection

of three surfaces at a triple point which was discussed in section 3.3.
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