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Abstract

In this paper we consider a CHARME Model, a class of generalized mixture of
nonlinear nonparametric AR-ARCH time series. We apply the theory of Markov models
to derive asymptotic stability of this model. Indeed, the goal is to provide some sets
of conditions under which our model is geometric ergodic and therefore satisfies some
mixing conditions. This result can be considered as the basis toward an asymptotic
theory for our model.
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1 Introduction

Nonparametric conditional heteroscedastic autoregressive (nonlinear CHARN) models of the form

Xt = m(Xt−1, · · · , Xt−p) + σ(Xt−1, · · · , Xt−p)ǫt, (1.1)

m and σ unknown functions, ǫt independent identically distributed (i.i.d.) random variables with
mean 0, play an important role in many fields of application, for example in econometrics or
finance, see for example Härdle and Tsybakov [2], Franke, Neumann and Stockis [6], Hafner
[15]. Theoretical results about stability properties of this processes are available. In particular, the
important property of geometric ergodicity is obtained under some conditions.
In practice, it is often not realistic to assume that the observed process has the same trend function
m and the same volatility function σ at each time instant. In this paper we are analyzing the
so-called Conditional Heteroscedastic Autoregressive Mixture of Experts, henceforth CHARME,
models. Here, a hidden Markov chain {Qt} with values in a finite set of states {1, 2, · · · ,K} drives
the dynamics of {Xt} and our model is defined as follows

Xt =
K
∑

k=1

Stk (mk(Xt−1, · · · , Xt−p) + σk(Xt−1, · · · , Xt−p)ǫt) (1.2)

with

Stk =

{

1 for Qt = k

0 otherwise
(1.3)

mk, σk, k = 1, · · · ,K unknown functions, ǫt i.i.d. random variables with mean 0.
Notice that for sake of simplicity of notation, we take the same number of components p in each
trend function mk and volatility function σk. This is done without loss of generality if we take p
large enough.
We call this models CHARME since many authors using a mixture of models, e.g. in engineering
are calling them mixture of experts as soon as nonparametric functions estimates, typically neural
networks, are considered, see, e.g. Müller et al. [8], Jacob et al. [12], or Jiang and Tanner [10].
CHARME is quite useful for modeling time series data which are piecewise stationary such that
their dynamics switch sometimes from one state to another. A typical example is given by stock
returns if the market changes from a quiescent to a volatile phase. Tadjuidje [16] gives some
applications of such models to financial data in the context of asset management and risk analysis
where the state functions mk, σk, k = 1, · · · ,K, are estimated by neural networks.
Independently of the type of estimates considered, a crucial condition for developing a theory for
estimation and testing in the setting of CHARME is the existence of a stochastic process satisfying
(1.2) which is geometric ergodic. In this paper we investigate separately the case p = 1 (section
1) and the case p ≥ 1 (section 2) since they differ somewhat with respect to the formulation and
proof. In particular, the case p = 1 is interesting on its own. We formulate for both cases two
different sets of conditions.

2 First conditions for geometric ergodicity of CHARME

processes

We focus on our CHARME model (1.2) and make the following assumptions

A. 1 The process {Qt} with values on {1, · · · ,K} is a first order strictly stationary Markov chain

which is irreducible and aperiodic with probability distribution (π1, · · · , πK) and transition proba-

bility matrix A = (aij)1≤i,j≤K
.
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Obviously, {St = (St1, · · · , StK)′} inherits the properties of {Qt}.

A. 2 Let Gt−1 = σ{Xr, r ≤ t−1} be the σ-algebra generated by {Xr, r ≤ t−1} and Gt−1 any event

in Gt−1. Then

P (Qt = j |Qt−1 = i, Gt−1) = P (Qt = j |Qt−1 = i), ∀ i, j

This assumption means that the hidden process Qt is independent of the past observations given
its own past, i.e. Qt−1.

A. 3 Given (Qt−1, Xt−1, Xt−2, · · · ), Qt is uncorrelated with the innovation ǫt.

A. 4 ǫt is independent of Xt−1, Xt−2, · · · .

A. 5 The functions mk and σk are bounded on compact sets for all k, there exists a δ such that

σk(u) ≥ δ > 0, for all k, u.

A. 6 The i.i.d. random variables ǫt have a density f which is continuous and positive everywhere.

These assumptions are reasonable conditions for hidden Markov chain models, see e.g. Francq and
Roussignol [11] or Francq, Roussignol and Zakoian [9].
Now, we restrict ourselves for the rest of this section to the case p = 1, i.e. mk, σk are functions on
the real line. We first assume

A. 7 The i.i.d. random variables ǫt have mean 0 and variance σ2 = 1

A. 8

max
l∈{1,··· ,K}

lim sup
|x|−→∞

∑

k alk(m
2
k(x) + σ2

k(x))

x2
< 1

A.8 is the generalization of the well-known sufficient condition for geometric ergodicity in the case
of model (1.1). Now we need a Markov chain representing the transformed mixture process: under
assumptions A.1 to A.4 it is easily seen that if we define, as previously, St = (St1, · · · , StK)′, then,

ζt = (St, Xt)
′

is a Markov chain.

Theorem 1 Under A.1 to A.8, {ζt} is geometrically ergodic.

Proof: We are going to prove that the conditions of Theorem 15.0.1, (iii) of Meyn and Tweedie
[7], pp 354 − 355, are satisfied.

• {ζt} is ϕ-irreducible if we take ϕ as the product of the stationary probability distribution
measure on {1, · · · ,K} and the Lebesgue measure on R

This can be proven as follows:
Let A = A1 × A2 be such that ϕ(A) > 0. Then A1 contains at least one integer between 1 and K

and it is enough to prove that there exists t such that

P

((

St+1

Xt+1

)

∈ {e} ×A2 |S1 = sl, X1 = x

)

> 0
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with e a unit vector with the the kth component equal 1 and sl a unit vector with the lth component
equal 1. By definition,

P

((

S2

X2

)

∈ {e} ×A2 |S1 = sl, X1 = x

)

= P (Q2 = k,X2 ∈ A2 |S1 = sl, X1 = x)

= P (X2 ∈ A2 |Q2 = k, S1 = sl, X1 = x)P (Q2 = k |Q1 = l,X1 = x)

= alkP (mk(x) + σk(x)ǫ2 ∈ A2)

= alk

∫

A2

1

σk(x)
f

(

u−mk(x)

σk(x)

)

du

= alkbk(x) with bk(x) > 0

Further,

P

((

S3

X3

)

∈ {e} ×A2 |S1 = sl, X1 = x

)

=
K
∑

j=1

aljajk

∫

A2

∫

R

1

σk(y)
f

(

u−mk(y)

σk(y)

)

1

σj(x)
f

(

y −mj(x)

σj(x)

)

dydu

=
K
∑

j=1

aljajkbjk(x) with bjk(x) > 0

and doing so iteratively, we obtain

P

((

St+1

Xt+1

)

∈ {e} ×A2 |S1 = sl, X1 = x

)

=
K
∑

j,··· ,jt−1

alj1 · · · ajt−1kbj,··· ,jt−1
(x)

which is strictly greater than 0 for some t because of the irreducibility of {Qt} and the fact that
bj,··· ,jt−1

(x) > 0.

• Analogously it can easily be seen that {ζt} is aperiodic.

• In the drift criterion of Theorem 15.0.1, (iii) mentioned previously appears the notion of a
petite set. In our case, it can be shown that each compact set is indeed a small set and thus
a petite set, see for example, Bhattacharya and Lee [3] and Lee and Shin [5].

• So, to apply the drift criterion, we need to find a function g(ζ) > 1, β > 0 and M > 0 such
that

E
(

g(ζt) | ζt−1 =
(

sl

x

))

− g
((

sl

x

))

g
((

sl

x

)) ≤ −β for ‖ζt−1‖ > M

Let
g(ζt) = 1 +X2

t .

Then,

E
(

g(ζt) | ζt−1 =
(

sl

x

))

− g
((

sl

x

))

g
((

sl

x

)) =

∑

k(m
2
k(x) + σ2

k(x))E(Stk |St−1 = sl) − x2

1 + x2

≤

∑

k(m
2
k(x) + σ2

k(x))alk

x2
− 1
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and the conclusion is obtained by A.8.

However, in financial time series which are very often heavy-tailed, the existence of σ2 = var(ǫt) is
not necessarily guaranteed. Therefore, instead of A.7 and A.8 we assume

A. 9 The i.i.d. random variables ǫt are such that E(|ǫt|
α) <∞ for some 0 < α ≤ 1

A. 10

max
l∈{1,··· ,K}

lim sup
|x|−→∞

∑

k alk(|mk(x)|
α + σα

k (x)E|ǫt|
α)

|x|α
< 1

with α as in A.9

Theorem 2 Under Assumptions A.1 to A.6, A.9 and A.10, {ζt} is geometrically ergodic.

Proof: The only part of this proof which is not similar to the proof of Lemma 1 is the drift criterion.
Here we consider

g(ζ) = 1 + |Xt|
α.

Then,

E
(

g(ζt) | ζt−1 =
(

sl

x

))

− g
((

sl

x

))

g
((

sl

x

))

≤

∑

k(|mk(x)|
α + σα

k (x)E|ǫt|
α)E(|Stk|

α |St−1 = sl) − |x|α

1 + |x|α

≤

∑

k alk(|mk(x)|
α + σα

k (x)E|ǫt|
α)

|x|α
− 1

and we conclude the proof by using A.10.

3 Geometric ergodicity for higher order CHARME pro-

cesses

We now follow a slightly different route to geometric ergodicity of CHARME processes. We first
state an auxiliary result that we are going to use for proving a condition for geometric ergodicity.

Lemma 1 Let φ, ψ be random variables with values in R
d, C ⊂ R

d a measurable set, g : R
d −→ R

measurable and bounded on C satisfying g ≥ 1. If there exist constants 0 < r < 1, B > 0 such that

E(g(φ) |ψ = x) < rg(x), if x 6∈ C

E(g(φ) |ψ = x) < B, if x ∈ C

then, there exist β > 0, b <∞ such that

E(g(φ) |ψ = x) − g(x) < −βg(x) + bIC(x).
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Proof: The result follows if we choose β = 1 − r and b = B + β supx∈C g(x)

In particular in our case where {φt} is a Markov chain, it is enough to prove the existence of a
petite set C, a function g ≥ 1 and constants 0 < r < 1 and B > 0 such that

E(g(φt) |φt−1 = x) < rg(x), x 6∈ C

E(g(φt) |φt−1 = x) < B, x ∈ C.

To achieve the desired results in this section, we use some new sets of assumptions.

A. 11 There exist αk, dk ∈ R
p with dki ≥ 0, i = 1, · · · , p such that as ‖u‖ −→ ∞,

mk(u) =

p
∑

i=1

αkiui + o(‖u‖)

and

σ2
k(u) =

p
∑

i=1

dkiu
2
i + o(‖u‖2)

A. 12

max
l∈{1,··· ,K}

p
∑

i=1

K
∑

k=1

alk



dki + |αki|

p
∑

j=1

|αkj |



 < 1

Remark that assumption A.11, similar to Assumption 3.2, (c) in Masry and Tjostheim [1], does
not imply that the system has to be parametric or linear in any sense. It just bounds the trend
functions asymptotically for ‖u‖ −→ ∞ by linear functions and the squared volatility functions by
some quadratic functions in order to avoid an explosion of the system for large values of ‖u‖.
Once more we need a Markov chain; under assumptions A.1 to A.4 as for the case p = 1, it is easily
seen that, if we define as previously, St = (St1, · · · , StK)′, then

ζt = (St, Xt, · · · , Xt−p+1)
′

is a Markov chain.

Theorem 3 Under A.1 to A.7, A.11 and A.12, {ζt} is geometrically ergodic

Proof:As in the case p = 1 we are going to prove that the conditions of Theorem 15.0.1, (iii) of
Meyn and Tweedie [7] pp 354−355 are satisfied. Irreducibility, aperiodicity and the fact that each
compact set is a petite set are proved in a very similar way as in the case p = 1, and therefore the
proofs are omitted here. Hence, it remains to prove that the conditions of Theorem 1 hold. To
achieve our goal, we need to consider a function g that we define as

g(ζt) = 1 +X2
t + bp−1X

2
t−1 + · · · + b1X

2
t−p+1

where bp−1, · · · , b1 > 0 are not yet determined and will be suitably chosen later.
Let x = (xt, · · · , xt−p+1)

′ be a vector of real numbers and sl a K-dimensional unit vector with the
l-th component equal 1 and consider

E(g(ζt+1) | (Xt, · · · , Xt−p+1)
′ = x, St = sl)

= 1 +
K
∑

k=1

alk(m
2
k(x) + σ2

k(x)) + bp−1x
2
t + · · · + b1x

2
t−p+2 (3.1)
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Now, let us focus on

K
∑

k=1

alk(m
2
k(x) + σ2

k(x))

=

K
∑

k=1

alk

(

p
∑

i=1

αkixt−i+1

)2

+

K
∑

k=1

alk

(

p
∑

i=1

dkix
2
t−i+1

)

+ o(‖x‖2)

=
K
∑

k=1

alk

(

p
∑

i=1

α2
kix

2
t−i+1

)

+
K
∑

k=1

alk

(

p
∑

i=1

dkix
2
t−i+1

)

+2

K
∑

k=1

p−1
∑

i=1

p
∑

j=i+1

alk (αki xt−i+1 αkj xt−j+1) + o(‖x‖2),

and considering the fact that 2ab ≤ 2|ab| ≤ a2 + b2, ∀ a, b ∈ R it follows

K
∑

k=1

alk(m
2
k(x) + σ2

k(x))

=
K
∑

k=1

alk

(

p
∑

i=1

α2
kix

2
t−i+1

)

+

K
∑

k=1

alk

(

p
∑

i=1

dkix
2
t−i+1

)

+
K
∑

k=1

p−1
∑

i=1

p
∑

j=i+1

alk|αki| |αkj | (x
2
t−i+1 + x2

t−j+1) + o(‖x‖2)

≤

p
∑

i=1

K
∑

k=1

alk



α2
ki + dki + |αki|

p
∑

j=1, j 6=i

|αkj |



x2
t−i+1 + o(‖x‖2).

Back to the original problem, we have

E(g(ζt+1) | (Xt, · · · , Xt−p+1)
′ = x, St = sl)

≤ 1 +

p−1
∑

i=1

K
∑

k=1

alk



dki + |αki|

p
∑

j=1

|αkj | + bp−i



x2
t−i+1

+
K
∑

k=1

alk



dki + |αkp|

p
∑

j=1

|αkj |



x2
t−p+1 + o(‖x‖2)

which we can rewrite in the following way

E(g(ζt+1) | (Xt, · · · , Xt−p+1)
′ = x, St = sl)

≤ 1 +
K
∑

k=1

alk



dkp + |αkp|

p
∑

j=1

|αkj |





b1

b1
x2

t−p+1

+

p−1
∑

i=2

K
∑

k=1

alk



dki + |αki|

p
∑

j=1

|αkj | + bp−i





bp−i+1

bp−i+1

x2
t−i+1

+
K
∑

k=1

alk



dk1 + |αk1|

p
∑

j=1

|αkj | + bp−1



x2
t + o(‖x‖2).

Hence,
E(g(ζt+1) | (Xt, · · · , Xt−p+1)

′ = x, St = sl) < g(ζt).
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If for example by assumption A.12 we choose bp−1, · · · , b1 such that

K
∑

k=1

alk



dk1 + |αk1|

p
∑

j=1

|αkj | + bp−1



 < 1,

K
∑

k=1

alk



dki + |αki|

p
∑

j=1

|αkj | + bp−i



 < 1 for i = 2, · · · , p− 1

and

∑K
k=1

alk

(

dkp + |αkp|
∑p

j=1
|αkj |

)

b1
< 1,

we obtain

E(g(ζt+1) | (Xt, · · · , Xt−p+1)
′ = x, St = sl)

≤ 1 + γ1x
2
t + γ2bp−1x

2
t−1 + · · · + γpb1x

2
t−p+1

with γ1, γ2, · · · , γp < 1 which leads us to the conclusion.

Lee and Shin [5] in their Theorem 2.1 require, instead of A.12, a condition which can be rewritten
in our notation as

p
∑

i=1

max
l∈{1,··· ,K}

K
∑

k=1

alk





p
∑

j=1

|αki||αkj | + dki



 < 1.

For p > 1 this condition is obviously stronger than A.12 since

max
l∈{1,··· ,K}

p
∑

i=1

K
∑

k=1

alk(dki + |αki|

p
∑

j=1

|αkj |) ≤

p
∑

i=1

max
l∈{1,··· ,K}

K
∑

k=1

alk(

p
∑

j=1

|αki||αkj | + dki).

As in the case p = 1, we may replace assumption A.7 by A.9 and instead of A.11 we now require

A. 13 There exist αk, dk ∈ R
p with dki ≥ 0, i = 1, · · · , p such that as ‖u‖ −→ ∞,

|mk(u)|
α =

p
∑

i=1

|αki||ui|
α + o(‖u‖α)

and

σα
k (u) =

p
∑

i=1

dki|ui|
α + o(‖u‖α)

A. 14

max
l∈{1,··· ,K}

p
∑

i=1

(

K
∑

k=1

alk(E|ǫt|
αdki + |αki|

)

< 1

Theorem 4 Under assumptions A.1 to A.6, A.9, A.13 and A.14, {ζt} is geometrically ergodic.

Proof: We start the proof similar as in the proof of Theorem 3. However, we now consider

g(ζt) = 1 + |Xt|
α + bp−1|Xt−1|

α + · · · + b1|Xt−p+1|
α

8



with bp−1, · · · , b1 > 0 to be suitably chosen as previously. Let us consider x and sl as defined in
the proof of the previous theorem, we can now focus on

E(g(ζt+1) | (Xt, · · · , Xt−p+1)
′ = x, St = sl)

≤ 1 +
K
∑

k=1

alk(|mk(x)|
α + σα

k (x)E|ǫt|
α + bp−1|xt|

α + · · · + b1|xt−p+2|
α

≤ 1 +

p−1
∑

i=1

(

K
∑

k=1

alk(E|ǫt|
αdki + αki) + bp−i

)

|xt−i+1|
α

+

K
∑

k=1

alk(E|ǫt|
αdkp + αkp)|xt−p+1|

α + o(‖u‖α)

and the conclusion follows in the same way as in Theorem 3.

4 Concluding remarks

We have considered Conditional Heteroscedastic Autoregressive Mixture of Experts (CHARME)
models, a form of hidden Markov model with nonlinear autoregressive-ARCH components, which
can be useful in, e.g. financial econometrics. We have proven geometric ergodicity of ζt =
(St, Xt, · · · , Xt−p+1)

′ under several sets of conditions. If the process {Xt} is also strictly stationary
it is well known that this implies that {Xt} is absolutely regular with geometric decreasing rate,
which gives a very useful condition for deriving limit theorems like the central limit theorem.
Geometric ergodicity of ζt can clearly be obtained even if some of the underlying dynamics taken
on their own are not geometric ergodic or even stationary, provided the probability to go from a
stable dynamic to a non stable dynamic is low enough and the probability to move from a non
stable dynamic to a stable dynamic is large enough.
The different sets of conditions are based on the existence of some moments for ǫt and on the be-
havior of mk(x) and σk(x) as ‖x‖ −→ ∞; some sets of conditions relaxing the moment assumptions
for the ǫt are at the expenses of stronger conditions for the mk and σk at the tails. Notice that
our conditions for the mk and σk are easier to verify than some kind of sub linearity conditions or
Lyapounov exponents conditions.
It would be quite straightforward, at least in the case p = 1, to relax the assumption of an every-
where positive density for ǫt in favor of a positive density on a big enough compact in a similar
manner as in Franke, Neumann and Stockis [6].
Subsequent work based on our results can lead to sufficient conditions for the existence of moments
for Xt or for the existence of limit theorems for Xt.
This work provides stability properties which will be useful when dealing with the problem of esti-
mating the mk and σk, k = 1, · · · ,K in presence of real data. This practical aspect is the subject
of forthcoming publication.
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