
Discrete Comput Geom 14:365-384 (1995) 
Discrete & Computational 

Geometry 
�9 1995 Springcr-Verlag New York Inc. 

On Geometric Optimization with Few Violated Constraints* 

J. Matou~ek 

Department of Applied Mathematics, Charles University, 
Malostransk6 nfim. 25, 11800 Praha 1, Czech Republic 
matousek@kam.mff.cuni.cz 

Abstract. We investigate the problem of finding the best solution satisfying all but 
k of the given constraints, for an abstract class of optimization problems intro- 
duced by Sharir and Welzl--the so-called LP-type problems. We give a general 
algorithm and discuss its efficient implementations for specific geometric problems. 
For instance, for the problem of computing the smallest circle enclosing all but k 
of the given n points in the plane, we obtain an O(n log n + k3n e) algorithm; this 
improves previous results for k small compared with n but moderately growing. 
We also establish some results concerning general properties of LP-type problems. 

1. Introduction 

Smallest Enclosing Circles. 

lem: 

We begin by discussion the following geometric prob- 

Given a set P of n points in the plane and an integer q, find the smallest 

circle enclosing at least q points of P. 

This has recently been investigated in several papers [3], [18], [12], [16], [25] and it 

also motivated this paper. In these previous works, algorithms were obtained with 

* This research was supported in part by Charles University Grant No. 351 and Czech Republic 
Grant GA(~R 201/93/2167. Part of this research was performed while the author was visiting the 
Computer Science Institute, Free University Berlin, and it was supported by the German-Israeli 
Foundation of Scientific Research and Development (G.I.F.), and part while visiting the Max-Planck 
Institute for Computer Science in Saarbriicken. 



366 J. Matou~ek 

roughly O(nq) running time. 1 There seems to be little hope at present of  improving 

these bounds substantially in the full range of values of q. In particular, as observed 

by D. Eppstein (private communication), for q close to n / 2 ,  a subquadratic solution 

would imply a subquadratic solution 2 for several other basic problems, for which one 

seems unlikely with present methods (information about this class of problems, 

collected and publicized under the name "n2-hard problems" by M. Overmars and 

his colleagues, can be found in [20]). 

In this paper we investigate improvements over the roughly O(nq)  bound in the 

situation when k = n - q is small compared with n (all but few points should be 

enclosed by the circle); this question was raised, e.g., by Efrat et al. [16]. One of the 

first methods coming to mind for solving the problem is to construct the qth-order 

Voronoi diagram for the point set P, and find the required circle by inspecting all 

its cells (this approach was pointed out by Aggarwal et al. [3]). It is known that 

the combinatorial complexity of  the qth-order Voronoi diagram is | - q ) q ) ,  

and it has been shown recently that it can be constructed in expected time 

O(n log 3 n + (n - q)q log n) [1] (see also [7] and [2] for previous results). In our 

setting, this says that the smallest circle enclosing all but k points can be found 

in O(n log 3 n + nk log n) time. 

In this paper we show that still better can be done for small k, namely, that the 

problem can be solved in close to linear time with k as large as n l / 3 :  

Theorem 1.1. The smallest circle containing all but at most k o f  the giuen n points in 

the plane can be computed in O(n  log n + kan ~) time. 3 

A predecessor of our technique is a result of Megiddo [27], who demonstrated 

that the k = 0 case, the smallest enclosing circle for n points, can be solved in O(n) 

time. 

LP-Type Problems. The problem of finding the smallest enclosing circle belongs to 

a class of  optimization problems known as LP-type problems (or "generalized linear 

programming" problems). This class was introduced by Sharir and Welzl [32]. It 

captures the properties of linear programming relevant for the description and 

analysis of their linear programming algorithm. The definition and more information 

on LP-type problems is given later. 

Each LP-type problem has an associated parameter, the so-called combinatorial 

dimension (or dimension for short). For instance, for a feasible linear programming 

1Here are the specific running times: Eppstein and Erickson [18] solve the problem in 
O(nq log q + n log n) time with O(n log n + nq + q2 log q) space, and Datta et al. [12] give an 
algorithm with the same running time and space improved to O(n + q2 log q). Eft-at et aL [16] 
achieve O(nq log 2 n) time with O(nq) space or alternatively O(nq log2n Iog(n/q)) time 
with O(n log n) space, and the author [5] has O(n log n + nq) time with O(nq) space or time 
O(n log n + nq log q) with O(n) space. 

2 Here "subquadratic" means O(n 2- 8) for a constant 8 > 0. 
3 Throughout this paper, 6 in exponents stands for a positive constant which can be made 

arbitrarily small by adjusting the parameters of the algorithms. Multiplicative constants implicit in 
the O( ) notation may depend on e. 



On Geometric Optimization with Few Violated Constraints 367 

problem (one with a solution satisfying all the constraints), this combinatorial 

dimension equals the geometric dimension of the underlying space. Randomized 
algorithms are known for solving an LP-type problem with n constraints and of 

dimension bounded by a constant in O(n) expected time, see [8] and [32] (also [6] for 

a deterministic algorithm and [23] and [26] for algorithms with expected running 
time subexponential in the dimension). The algorithm have mostly been developed 

for linear programming, but under suitable computational assumptions they work for 

all LP-type problems, which includes many other optimization problems of geomet- 
ric flavor, such as the smallest enclosing circle computation or finding the distance of 

two convex polyhedra. See also [21] and [4]. 
The problem of finding the best solution satisfying all but at most k of the given 

constraints can be posed and solved within the framework of LP-type problems. We 

need the considered LP-type problem to be nondegenerate. In geometric situations 

this roughly means that the constraints are in general position, which can usually be 
achieved by perturbation techniques similar to the ones for removing degeneracies 

in geometric problems. However, one has to proceed carefully so that the combina- 

torial structure of the problem is not changed in an undesirable way. Exact 
definitions for the notions in the following theorem are given in the next section. 

Theorem 1.2. Let d be a constant, let (H, w) be a nondegenerate LP-type problem of 

dimension d with n constraints, and let k be a given integer, 1 < k < n. Then the 

minimum basis violated by at most k of the constraints can be computed in O(nk d) time, 

by finding optima for O(k d) LP-type problems of the form (G, w) with G c_ H. 

Paper Overview and Further Results. In Section 2, we first review the definitions and 

some properties for LP-type problems (Section 2.1). Then we define and discuss 

nondegenerate LP-type problems (Section 2.2). In Section 2.3 we consider bounds on 

the number of bases violated by at most k constraints and by exactly k constraints, 
phrasing results and proofs known for linear programming in the LP-type problems 

setting. These sections also include facts, observations, and questions which are not 

directly relevant for the considered algorithms at present, but we consider them of 

some independent interest. In Section 2.4 we prove Theorem 1.2. 

The general algorithm can sometimes be implemented more efficiently in spe- 

cific geometric situations using dynamic data structures. Theorem 1.1 is one such 
case. In Section 3 we discuss this plus the following problem (derived from linear 

programming): 

Problem 13. Given a collection H of n closed half-spaces in N d and an integer k, 

1 < k < n, find the lexicographically smallest point of ~d contained in all but at 

most k of the half-spaces of H. 

Other geometric problems amenable to a similar treatment are only mentioned 

without going into details. 
After we deal with the technical obstructions concerning degeneracies, Problem 

1.3 can be solved using the general algorithm from Theorem 1.2. There are two 

substantially different cases: if the linear programming problem defined by H is 



368 J. Matou~ek 

feasible (that is, the intersection of all half-spaces of H is nonempty), then the 

dimension of the corresponding LP-type problem is d, while for an infeasible 

problem the dimension is d + 1 (note that "feasible," "infeasible" refers to the 

existence of a point in all half-spaces of H, not to the existence of a point lying in all 
but at most k half-spaces of H).  

By using dynamic data structures, the complexity of the general algorithm can be 

improved. The results are summarized in the following theorem (we do not give the 

improved complexities for larger dimensions, as the improvements become less 
significant): 

Theorem 1.4. 

(i) In the feasible case Problem 1.3 can be solved: 

�9 in time O(nk  d) by the general algorithm, for anyfixed d, 

�9 in time O(n log n + k3n ~) in dimension 3, and 

�9 in time O(n log n + ka/3n 2/3+~ + k4n 1/3+~) in dimension 4. 

(ii) In the infeasible case we get: 

�9 O(nkd+ 1) time for the general algorithm, 

�9 O(n log n + k 3 log 2 n) time in dimension 2, and 

�9 O(n log n + k4n e) time in dimension 3. 

We summarize previous work on Problem 1.3. In the feasible case the problem 

can be rephrased as finding the lexicographicaUy smallest point of the k-level in an 

arrangement of n hyperplanes. An early paper considering the problem is [22]. In 

the plane there is an O(n log 2 n) algorithm (this is why we do not mention the 

planar case in Theorem 1.4). It is based on the observation that, for a given 

horizontal line, it can be determined in O(n log n) time whether it intersects the 

k-level. Then parametric search is used to determine the lowest line which still 

intersects the k-level. This algorithm (implicitly) appears in [11]. It is not clear at 

present how efficiently this approach can be generalized to higher dimensions; 
a roughly O(n d- 1) algorithm seems straightforward. 

A natural approach in higher dimensions is to construct the k-level or the 

( <  k)-level in the arrangement. 4 In dimension 3, an output-sensitive algorithm is 

known which constructs the k-level in O ( n ' ( b  + n)) time, where b denotes the 

complexity of the constructed level [2]. The worst-case complexity of the k-level is 
O(n s/3) [13] (see also [5]). In higher dimensions only weak worst-case bounds on the 

k-level complexity are known, and also output-sensitive construction algorithms 

become less effective, so that constructing the whole ( < k)-level may be considered. 
This can be done in expected O(nk  2 log(n /k ) )  time in dimension 3 and in worst-case 
optimal O(nld/21k Id/21) expected time in dimension d > 4 [28]. For k much smaller 

than n, the level construction approach thus becomes quite inefficient in higher 

dimensions. We remark that the picture is very different for "random" problem 

4 Even in the plane, the above mentioned O(n log 2 n) algorithm can be improved a little for k 
very small, see [19]. 



On Geometric Optimization with Few Violated Constraints 369 

instances, as Mulmuley [28] proves that, for hyperplanes randomly chosen from 

several natural distributions, the ( < k)-level expected complexity as well as expected 
construction time are O(nk d- ~ ). 

Problem 1.3 in the infeasible case was investigated in several papers. For instance, 

Cole et al. [11] and Everett et al. [19] considered the following weak separation 

problem in the plane: given two point sets R and B with n points in total, find the 

smallest k for which there is a line l and a k-point set E _c R U B such that all 

points of R \ E lie on one side of l and all points of  B \ E lie on the other side. In a 

dual setting, this amounts to finding the smallest k for which there is a point in the 

plane contained in all but k of the given half-planes. Everett et al. [19] provide an 

O(nk log k + n log n) solution, based on a (_< k)-level construction algorithm. Efrat 

et al. [15] consider the problem in the latter form and obtain similar results. 

Moreover, they mention some more applications and investigate the analogous 

problem in dimension 3, where they give an O(nkZ(log n + log2(n/k)) solution. 

Another closely related problem is the finding of a line intersecting all but at most k 

of given n vertical segments in the plane, investigated by Everett et al. [19]; it can 

also be reduced to linear programming with at most k violated constraints. 

Our results for both the two- and three-dimensional problem thus present an 

improvement over the previous roughly O(nk) bounds if k is in the range (roughly) 

from log n to r We remark that the smallest k (in the weak separation problem or 

its dual) can be found in the same time as are the bounds in Theorem 1.4 (where the 

k is given), since our method searches all bases of level at most k, and we may 

arrange it so that bases of smaller level are searched first. 

2. LP-Type Problems 

2.1. Basic Definitions and Properties 

We begin by recalling the abstract framework of  [32] (with minor formal modifi- 

cations). A minimization problem is a pair (H, w), where H is a finite set, and 

w: 2 n --* ~ is a function with values in a linearly ordered set (~' ,  <).  The elements 

of H are called the constraints, and, for a subset G c_ H, w(G) is called the value 

of G. 

Intuitively, the value w(G) for a subset G of constraints stands for the smallest 

value attainable for a certain objective function while satisfying all the constraints of 

G. The goal is to find w(H). For the computation, the problem is not specified by 

giving the value of  w for each subset (which would make the computation trivial), 

but rather by oracles implementing certain primitive operations, to be described 

below. 

The set 7,r is assumed to possess a smallest element denoted by - oo (standing for 

"optimum undefined") and usually also a largest element oo (with intuitive meaning 

"no feasible solution exists"). 

The minimization problem (H, w) is called an LP4ype problem if the following 

two axioms are satisfied: 

Axiom 1 (Monotonicity). For any F, G with F c G c H, w(F) < w(G). 



370 J. Matou~ek 

Axiom 2 (locality). For any F c_ G c H with w(F) = w(G) > - ~ and any h ~ H, 

w(G U {h}) > w(G) implies that also w(F U {h}) > w(F). 

Before we specify the computational primitives, we introduce some more termi- 

nology. A basis B is a set of constraints with w(B')  < w(B) for all proper subsets B '  

of B. A basis for a subset G of H is a basis B _ G with w(B) = w(G). So a basis 

for G is a minimal subset of G with the same value as G. The maximum cardinality 

of any basis is called the dimension of (H, w) and is denoted by dim(H, w). 

We say that a constraint h e H violates a set G if w(G U {h}) > w(G). This 

notion is most often used with G being a basis. For G c_ H we denote by I/(G) the 

set of constraints of H violating G. 

As was mentioned in the Introduction, there are several algorithms for solving an 

LP-type problem of constant bounded dimension in time O(LHE). These algorithms 

differ slightly in the assumptions on the primitive operations available for the 

considered problem. We describe the primitives needed for the randomized algo- 

rithm of Sharir and Welzl [32]. 

Violation Test. Given a basis B and a constraint h ~ H,  decide whether h vio- 

lates B. 

Basis Change. Given a basis B and a constraint h, return (some) basis for B u {h}. 

Initial Basis. At the beginning, we have some basis B 0 with w(B o) > -oo. 

For the O(nk a) time bound in Theorem 1.2, we assume that both violation test 

and basis change are implemented in constant time, and that for any G ___ H with 

w(G) > - ~  an initial basis B 0 _ G with w(B o) > -oo can be found in O(n) time. 

To illustrate the definitions, we specify how two particular problems fit into this 

framework (for more details see [26]). For the problem of finding the smallest 

enclosing circle for a set H of points in the plane, the constraints are the points, the 

value w(G) of a nonempty set G ___ H is the radius of  the smallest circle enclosing 

G, and we set w(O) = - ~ ;  thus the set 7 f  consists of the element - ~  plus the 

nonnegative real numbers. Bases have cardinality 0, 1, 2, or 3. Implementing the 

computational primitives is straightforward. 

The linear programming problem in ~d is considered in the following form: We 

are given a set H of closed half-spaces in R d, and the goal is to find the point x in 

the intersection of the half-spaces of H with the lexicographically smallest coordi- 

nate vector. To overcome various technicalities, we implicitly add the constraints 

"x i > - K "  to the problem, for i = 1, 2 , . . . ,  d and with K standing for a very large 

number. The set 7 f  is thus [ - K ,  ~)d ordered lexicographically plus a largest element 

~, and the value w(G) of a set of constraints is defined as the lexicographically 

smallest point (vertex) of the intersection of  all half-spaces of G in [ - K ,  ~)d or ~ if 

no such point exists. A basis for a feasible set of constraints has at most d elements, 

an infeasible basis may have d + 1 elements (as d + 1 half-spaces in general 

position are needed to witness the infeasibility). Violation tests and basis changes 

are implemented easily using Gauss elimination, and we may choose the empty set 

as an initial basis in our setting. 



On Geometric Optimization with Few Violated Constraints 371 

2.2. Nondegenerate LP-Type Problems 

The linear programming algorithms of Clarkson [8] and of Sharir and Welzl [32] do 
not require any special treatment of degenerate input configurations (such as many 

half-space boundaries passing through a single point). Probably for this reason, no 
notion of "general position" in the context of LP-type problems has been developed. 

For our algorithm below, some "nondegeneracy" is important, so we suggest a 

definition and make few observations concerning nondegenerate LP-type problems. 

Definition 2.1. An LP-type problem (H, w) is nondegenerate if w(B) ~ w(B') for 
any two distinct bases B, B' .  

An LP-type problem (H, ~)  is a refinement of an LP-type problem (H, w) if, for 
any G, G' c H, w(G) < w(G') implies ~(G) < ~(G') .  

For a nondegenerate problem, we write B(G) for the (unique) basis for a set G. 
By "removing degeneracies" for an LP-type problem we mean finding some its 

nondegenerate refinement. Clearly, if B is a basis in (H, w), it is also a basis in 

(H, ~), but not conversely. 

When considering an LP-type problem (H, w) and its refinement (H, ~), we let 

the notation V(G) (resp. B(G)) refer to the set of violating constraints for G (resp. 
the basis for G in (H, w)), and we use V(G) (B(G)) for violating constraints and 

basis in (H, ~). 

There are two different types of degeneracies. To elucidate the difference, call 
two bases B, B' equivalent if they have identical sets of violating constraints, 

V(B) = V(B'). It is fairly easy to find a refinement of any LP-type problem where 

no two nonequivalent bases have the same value, as follows. 
Define a linearly ordered set ~ =  (-oD)U ((7//-'x {-oo})X 2H), where -0o re- 

mains the smallest element, the pairs in the Cartesian product are ordered lexico- 
graphically, and the ordering in the second coordinate is some arbitrary linear 

ordering of the set of all subsets of H. We define a new value function ~ by setting 

�9 (G) = (w(G), V(G)); it is easy to check that this yields a refinement where no two 

nonequivalent bases have the same value. 5 
Two equivalent bases must always have the same value. Any two equivalent but 

distinct bases thus violate the nondegeneracy condition, and this is an "intrinsic" 

degeneracy. For instance, for linear programming, such degeneracies correspond to 

several bases defining the same vertex. 
At present we are not aware of any universal and efficient method for removing 

this type of degeneracy. The following simple example shows that sometimes any 

nondegenerate refinement must have a larger dimension than the original (degener- 

ate) problem. 

Example 2.2. Let a, b, c, d be the vertices of a square in the plane in clockwise 

order, and for G _ H = {a, b, c, d} define the value w(G) as the circumradius of G. 

5 This modification of the weight function is not reflected in the computation of the algorithms 
which use only the primitive operations mentioned above, as none of these primitives are changed. 



372 J. Matou~ek 

This is an LP-type problem of dimension 2, as any nontrivial circumscribed circle is 

defined by a diametrical pair. The sets {a, c} and {b, d} are two equivalent bases. 

Suppose there is a nondegenerate refinement (H,  ~)  of this problem with no basis 

having more than two points. Then without loss of generality we may assume 

that ~({a, c}) < ~({b, d}). Set G = {a, b, c}, F = {a, c}, and h = d; then ~ (F)  = 

~ ( F  U {h}) = ~(G)  < ~(G U {h}), which violates the locality axiom. Thus, any non- 
degenerate refinement has dimension at least 3. 

For specific geometric problems, it can often be assumed that the corresponding 
geometric configurations are nondegenerate in a suitable sense (e.g., for linear 

programming, the boundary hyperplanes of the constraints are in general position 

and not parallel to any coordinate axis), using the techniques of simulation of 
simplicity for geometric problems, see, e.g., [14], [33], [17], and [31]. However, for 

instance, this is not enough for an infeasible linear programming problem. There 

may be many bases witnessing the infeasibility, and by the treatment of linear 

programming indicated above, all these bases receive the same value ~. Another 

(related) serious problem is that if the feasible region of a degenerate linear 

programming problem consists of a single point (say), then some perturbations of the 

constraints may make the problem infeasible. Obtaining nondegenerate refinements 
in such cases may be a somewhat subtle matter; we discuss some possible ap- 

proaches in Section 3. 

2.3. Bases of Level k 

Let (H, w) be an LP-type problem and let B ___ H be a basis. We define the level of 

B as IV(B)I, i.e., the number of constraints violating B. 

We denote by oq~ k the set of all bases of level k, and by ~,~i) the bases of 

level k and cardinality i. We use the notation ~ '~  k for the set of bases of level at 

most k. 

In this section we discuss bounds for the maximum possible size of ~ k and ~'k" 

In the context of linear programming (more exactly, for a feasible linear program), a 

basis of level k translates to a local minimum of the k-level in the arrangement of 

hyperplanes bounding the constraints. Mulmuley [28] showed that the total number 
of such local minima of levels 1, 2 . . . . .  k in dimension d is O(kd). His proof is a 

straightforward adaptation of the method of Clarkson and Shor [10]. Clarkson [9] 

and independently Mulmuley [29] proved that the number of local minima for level 
k alone is O(k d- 1). Both bounds are easily seen to be tight. 

In the following theorem we generalize these results for nondegenerate LP-type 

problems (the nondegeneracy is crucial; without it the bounds in the theorem below 

need not hold). The proof for level at most k goes through unchanged. For the 

exactly k level bound, we need an extra assumption, namely, that no value -oo 

appears in the considered problem. Then we can imitate Clarkson's proof quite 

closely. We do not know whether the statement remains true without this assump- 

tion. Part (ii) is not needed in subsequent developments. 



O n  G e o m e t r i c  O p t i m i z a t i o n  wi th  Few V i o l a t e d  Cons t r a in t s  373 

Theorem 2.3. 

(i) For any nondegenerate LP-type problem of dimension d, the number of bases of 

level at most k and of cardinality at most i does not exceed e(k + 1) i. In 

particular, I~'~kl = O((k + l ) d ) .  

(ii) For any nondegenerate LP-type problem ( H, w) of dimension d with w( G ) > - 

for any G c H, we have I~kl = O((k + 1)d-I). 

Proof. (i) As remarked above, the proof is identical to Mulmuley's proof for the 

linear programming setting; we recall it for the reader's convenience. For k = 0 the 

bound holds by nondegeneracy, so let k > 1. Let H be the set of constraints, 

n = IHI, and fix a probability p = 1/(k  + 1). Draw a sample S ___ H by indepen- 

dently picking each constraint of H into S with probability p. A given basis B is a 

basis for S iff B _ S and S n V(B) = Q. Thus, the probability of B becoming a 

basis for S is pWl(1 - p)IV(B)I, and if there are N bases of level < k and cardinality 

< i, the expected number of these bases which become a basis for S is at least 

Npg(1 _p)k.  On the other hand, S has only one basis by the nondegeneracy 

assumption, from which we get N < p- / (1  - -  p ) - k  <__ e(k + 1) g. 

(ii) Here we follow Clarkson's proof. From part (i), we know that the number of 

bases of level k of cardinality < d is O(ka-1). It remains to bound the number 

of bases of level k of cardinality exactly d. 

First, we assume that for each G___H with IG[ > d the basis for G has 

cardinality exactly d (such LP-type problems are called basis-regular in [26]). Let i 

be an integer, d < i < n = IHI, and choose a random i-tuple S c_ H. The basis for S 

is unique and it belongs to ~ d )  for some k. For a fixed basis B E~'~ d), the 

probability of B becoming the basis for S is 

(n 

Hence both sides of the following equality express the expected number of bases 

for S: 

n - d  

1 =  )-~b k 
k = l  (n) 

where b k = I~'k~d)l. It can be checked that the only system of numbers b0, b 1 . . . . .  b,_d 

satisfying all these equations for i = d, d + 1 . . . . .  n is given by 

b ~ = (  k + d - 1  ) 
d - 1  " 

So far we proved (ii) for a basis-regular problem. The proof is finished by 

establishing the following lemma: 



374 J. Matou~ek 

Lemma 2.4. Let (H,  w) be a nondegenerate LP-type problem of dimension d, such 

that w(G) > -oo for any G c_ H. Then a nondegenerate, d-dimensional refinement 

(H, ~)  of  (H, w) exists such that any G c H with IGI >- d has a basis of  cardinality 

exactly d in ( H, ~)  and, for any d-element basis B in ( H, w) (which is necessarily also 

a basis in (H, ~)), we have V(B) = F'(B). 

Proof. We fix an arbitrary linear ordering on H. Let [H] ~d denote the set of all 

subsets of  H of cardinality at most d. We define a linear ordering o n  [H] ~d by first 

ordering the subsets by the number of elements (smaller sets coming first), and 

ordering the sets of each size lexicographically: first we compare the largest ele- 

ments, then if they coincide we compare the second largest elements, etc. 
i 

Let ~ be the range of the mapping w. We define 7f, the range of the mapping ~, 

as the Cartesian product ~ x [H  ] ~ d, ordered lexicographically. Finally the mapping 

~:  2 n --* ~ is defined as follows: For a set G _ H,  the first component of ~ (G)  is 

w(G). To determine the second component, we set m = re(G)= min(d, [ G [ ) -  

[B(G)[, and we let the second component of ~ ( G )  be the set consisting of the m 

largest elements of  the set G \ B(G). This finishes the definition of  �9 and it remains 

to verify the required properties, which is routine. 

Clearly, w(G) < w(G')  implies ~(G)  < ~(G' ) ,  for any G, G' .  

It is easy to see that, for G _c H, G has a unique basis B(G) (recall that B(G) 

refers to the basis in (H,  ~)), which has the form B ( G ) U  {gl . . . . .  gin}, where 

m = m(G) and gl . . . . .  g,, are the m largest elements of G \ B(G). Any such basis 

can be reconstructed from its value ~(B), which shows that the problem is 

nondegenerate. We have IB(G)[ = IB(G)I + m(G) = min(d, [GD, so dim(H, ~)  = d. 

We verify the two axioms for LP-type problems for (H, W). For monotonicity, we 

consider sets F c G. If w(F) < w(G), then also ~ ( F )  < ~(G), so let w(F) = w(G). 

Then also B(F) = B(G), and so F \ B(F)  c G \ B(G) and m(G) > m(F). Thus, 

the second component of ~ ( F )  does not exceed the second component of ~(G)  and 

~ ( F )  _< ~ (G)  as desired. 

To check locality, consider F c G c G U {h} with W(F) = ~(G)  < ~ (G U {h}). 

Both F and G have the same basis B in (H, ~), which has the form B = B u 

{gl . . . . .  gin}, where B = B(F)  = B(G) and gl . . . . .  gm are the m largest elements in 

both G \ B and F \ B. In particular, it must be re(F) = m(G), and this is possible 

only if IF[ >__ d. 

We distinguish two cases. If w(G u {h}) > w(G), then by locality in (H, w) (and 

since w(F)  > -oo by our assumption) we get w(F U {h}) > w(F) and hence also 

�9 (F  U {h}) > ~(F) .  Assume now w(G U {h}) = w(G); this means that B(G u {h}) 

= B(G) = B(F)  = B. Since B(G U {h}) = B(F) and IFI >- d, we get m(G U {h}) = 

re(F) = m(G). Then ~ (G  U {h}) > ~(G)  means that h occurs among the m largest 

elements of G U {h} \ B, and hence also among the m largest elements of F U 

{h} \ B, which in turn gives ~ ( F  u {h}) > ~(F) .  

Finally let B be a d-element basis in (H,  w). If w(B u {h})= w(B), then 

B(B U {h})= B and ~ (B  U {h})= (B, O ) =  ~(B),  so a constraint violates B in 

(H,  ~)  iff it violates it in (H,  w), which concludes the proof. []  



On Geometric Optimization with Few Violated Constraints 375 

2. 4. Finding the Minimum k-Level Basis 

Nondegeneracy. In our algorithm we need to assume that we deal with a nondegen- 

erate LP-type problem. The following easy proposition shows that in order to find a 

minimal ( <  k)-level basis in a possibly degenerate LP-type problem (H, w), it 

suffices to find the minimum (_< k)-level basis in any nondegenerate refinement of 

(H, w). 

Proposition 2.5. Let (H,  w) be an LP-type problem, let (H, ~)  be its nondegenerate 

refinement. Let B be the basis in ~ k  (the set of all bases of level at most k in (H, ~)) 

with the minimum F-value, let B be a basis for B in (H, w). Then B ~ k  and w(B) 

is minimum over ~q~ ~ ~ . 

Proof. We have V(B) = V(B) G V(B), so B ~ ' s k .  For contradiction, suppose 

there is a basis B 1 ~ ~ '~ k with w(B 1) < w(B). Put G 1 = H \ V(B 1) and B1 = B(G1). 

Any constraint violating nl in (H, ~,) must be outside G 1, so V(B 1) c_ V(B~) and 

B 1 E ~ k .  Since w(B1) = w(G1), we have w(B 1) = w(G l) = w(B 1) < w(B) = w(B) 

(the first and last equalities follow from the refinement condition) and hence 

w(B1 ) < w(B), a contradiction with the choice of B. [] 

The Algorithm. For the rest of this section, let (H, w) be a nondegenerate LP-type 

problem of dimension d, and let k < n be a given integer. Our goal is to find the 

basis with the smallest value among all bases of level at most k in (H, w). The 

algorithm consists of searching all bases of level at most k and selecting the one with 

minimum value. It is easy to see that, for a nondegenerate problem, the optimal 

basis has level exactly k, but our method requires also searching bases of smaller 

levels. 

First we define a directed acyclic graph on the vertex set ~ '~  k. An edge goes 

from a basis B ~ @ to a basis B '  ~ ~j+l  (0 --.< j < k) if V(B')  = V(B) tO {b} for 

some b ~ B. 

We note that B '  is the basis for H \ V(B) \ {b}. Therefore, given B ~.~'j, we can 

find all its neighbors in @+1 by computing, for every b ~ B, the basis B '  for 

H \ V(B) \ {b} and checking the condition V(B')  = V(B) U {b}. This requires solv- 

ing [B[ < d LP-type problems of the form (G, w) with G _ H plus simple auxiliary 

operations. 

We need the following: 

Lemma 2.6. Every basis of ~q~k can be reached from B ( H )  by a directed path. 

Proof. It suffices to show that any basis B '  E~j+  1 has a predecessor in ~ .  

Write G = H \  V(B'),  then B '  = B(G). For every h ~ V(B')  4: 0 ,  consider the 

value w(G U {h}), and let h o ~ V(B')  be an element giving the smallest of  these 

values. In fact, such h 0 is unique, as w(G u {h0}) = w(G U {h}) for h 4: h 0 implies 

that B(G U {h0}) = B(G U {h}) ___ G by nondegeneracy, and this in turn means 

w(G U {h0}) = w(G), a contradiction with the assumption h o ~ V(B').  



376 J. Matou~ek 

Let B be the basis for G u {h0}. We claim that B is the desired predecessor of 

B' .  We have V(B) U {h 0} _c V(B');  we need to show equality. Suppose the inclusion 

is proper, then some h ~ V(B'),  h ~ h0, does not violate B. Then, by locality, h 

does not violate G u {h 0} either, so w(G U {h0}) = w(G u {h, h0}), but we have 

w(G U {h}) > w(G U {h0}) by the choice of  h 0, a contradiction with monotonicity. 
[ ]  

We are ready to finish the proof of Theorem 1.2. We start in the basis B(H) ,  and 

we search the above-defined directed acyclic graph by some graph traversal algo- 

rithm, say by depth-first traversal. For any current node, we can find all of its at most 

d successors in O(n) time, and by Theorem 2.3(i), we know that only O(k d) bases 

need to be searched. By the above lemma, we know that all bases of ~ '~k are 

reached. []  

A SchemeforApp!ying Suitable Dynamic Data Structures. When traversing the graph 

defined above, we can maintain two dynamic data structures, ~ and ~ .  For a 

current basis B, the data structure ~ stores the constraints of H \  V(B), and it can 

determine the basis for tire currently stored set of constraints. The data structure 

stores the constraints of V(B), and it can test whether all constraints of the 

currently stored set violate a basis given as a query. 

For testing if a successor basis B '  of B with V(B') = V(B) U {b} for some b E B 

exists, we first delete b from @ and then we query ~' for the basis B '  for the current 

constraint set. Then we query the data structure ~" to check whether V(B) c_ V(B'). 
If yes, we insert b into ~ ' ,  and we are ready to continue the search with B '  as the 

current basis. When traversing the previously visited edge (B, B ' )  backward, we 

insert b to @ and delete it from ~ .  

3. Geometric Applications 

In this section we mainly consider Problem 1.3 (minimum vertex contained in all but 

at most k of  given n half-spaces in Rd). We treat a linear programming problem as 

an LP-type problem in the way outlined in Section 2.1. We let H be the set of the 

constraints (half-spaces), and for G c_ H let oqr(G) denote the feasible region of G, 

that is, the intersection of  all the half-spaces of H with I - K ,  ~)d (recall that K 

stands for a large enough number; we need not specify a numeric value, rather we 

may treat it as a formal quantity). For a half-space h, we let @h stand for its 

bounding hyperplane, and for a set G of half-spaces we write a G  for {c~h; h ~ G}. 

3.1. Removing Degeneracies 

The input problem may be degenerate. For a feasible linear program, degeneracy is 

caused by degeneracy in the arrangement of  @H, while for an infeasible problem, 

any two distinct infeasible bases present a degeneracy, even if the hyperplanes of @H 

are in general position. For our algorithm, we need a nondegenerate refinement. 



On Geometric Optimization with Few Violated Constraints 377 

For a problem with a nonempty and full-dimensional feasible region, a nondegen- 

erate refinement can be produced relatively easily using infinitesimal perturbations, 

while the situation gets more complicated in other cases. One potential problem is 

the following: if the feasible region is nonempty but has empty interior, an arbitrarily 

small perturbation of the input half-spaces may cause the problem to become 

infeasible, and in general we need not get a refinement. 

At this moment, a general remark concerning simulation of simplicity is perhaps 

appropriate. When applying simulation of simplicity on a geometric problem, we 

replace it in effect by a different problem (although an "infinitesimally close" one), 

and an algorithm run on this different problem may sometimes yield a different 

answer than the correct one for the original problem (e.g., the original linear 

program is feasible while the perturbed one is not). We can take two points of view: 

First, we may say that the input numbers for a "real world" problem are inaccurate 

anyway, and so the answer for the perturbed problem is equally appropriate as the 

one for the original problem. For example, we cannot really tell whether the feasible 

region is very thin or empty. From the second point of view, the input is given exactly 

and its degeneracies really exist, so if we use perturbation, we must be sure to 

recover the answer to the original problem correctly. By requiring that our algorithm 

is run on a nondegenerate refinement of the input problem, we are taking the 

second of  the outlined positions (which may not always be appropriate, depending 

on the application). The first attitude would allow us to take an arbitrary infinitesi- 

mal perturbation, and would save us many complications. 

The following proposition shows that a nondegenerate refinement can be con- 

structed for a linear programming problem. 

Proposition 3.1. Given a set H of half-spaces in R d, one can define a nondegenerate 

LP-type problem ( H, ~), which is a refinement of the LP-type problem ( H, w) defined 

above, has dimension d (resp. d + 1) if S~(H) 4~ 0 (resp. ~ ( H )  = f~), and for which 

the computational primitives can be implemented in constant time. 

Proof. We produce a sequence of  successive refinements (H, wj), j = 1, 2, 3. For 

their definition, we use small positive numbers c 1 >> 82 >> 83 > 0. First we fix a 

small enough 81 > 0 (depending on H and K, the number appearing in the implicit 

constraints), then 82 > 0 small enough depending moreover on 81, and finally 83 

depending also on 82. In the algorithm we treat K, 81 , 82, 83 as indeterminates (so 

we calculate with polynomials), as is usual in methods for simulation of simplicity. 

The required operations can still be performed in constant time (although a 

practical implementation would probably be very slow; finding a more practical way 

for making the problem nondegenerate is a matter for further research). 

In the first refinement (H, wl), we simplify the range of the value function, 
making it R u {oo}. We define a vector c := (1, 81 , 8 2 . . . . .  ed -  1), and we set 

wl(G ) := (min{coo -x; x ~ oq~(G)} for a feasible G, 

for an infeasible G. 



378 J. Matou~ek 

It is easy to see that if we fix 61 > 0 small enough, the ordering of the subsets of H 

by w and by w 1 is exactly the same, so in fact we have isomorphic LP-type problems. 

Let H 0 denote the set of  half-spaces defined by xi  >- - K ,  i = 1, 2 . . . . .  d.  We also 

have the following property for a small enough el  : 

The vector c is not perpendicular  to any edge of the arrangement  of the (1) 

hyperplanes of a ( H  u H0). 

In the second step we produce a per turbed set H (2) of half-spaces, by translating 

each half-space of H outward by a distance of  6 2, and we define the new value 

function w 2 by 

w2(G ) := [ min{c .x;  x ~ 5V(G(2))} for a feasible G (2), 

oo for an infeasible G (2), 

where G (2) denotes  the corresponding perturbat ion of G. The g0al of this perturba- 

tion is to assure the following condition: 

for any feasible G (2) _ H (2), the feasible region .gr(G (2)) has a nonempty (2) 

interior. 

This in turn allows us to use an arbitrary small enough per turbat ion in the next 

step. We also note that this step is unnecessary if the original problem already has 

~ ( H )  with a nonempty interior. 

We check condition (2). For  a feasible G, oq'(G (2)) clearly has a nonempty interior. 

If G is infeasible, this means that the (open) complements  of the half-spaces of 

G U H 0 cover •d. Then some e 2 > 0 exists such that if we shrink these comple- 

ments by at most 62 they still cover R d, so G (2) is infeasible as well and (2) holds. 

Since the value function is defined by opt ima in a linear programming problem 

where each set of constraints defines a unique optimum, (H,  w 2) is automatically an 

LP-type problem of an appropria te  dimension (the same will hold for the next 

refinement, (H,  w3)). It remains to show that  (H,  w 2) is indeed a refinement of 

(H,  Wl). We  already know that  feasibility and infeasibility of sets of constraints is 

preserved. It is also easy to see that if G is feasible, its minimum vertex moves 

continuously as we translate the half-spaces by a small amount. Therefore,  if 

w 1 ( G )  < Wl(G'),  we also get w2(G) < w 2 ( G ' )  for a sufficiently small 82. 

In the next step we aim at bringing the hyperplanes of  ~H into general  position 

by perturbing each hyperplane by at most 6 63 , where 63 << 62 . We let H 0) denote 

a per turbed version of H (2), such that  any of the hyperplanes of  o~H (3) is per turbed 

by at most 63 with respect to the corresponding hyperplane in OH (2). Except for the 

6 The distance of hyperplanes is defined as follows: We consider a hyperplane h given by an 
equation a l x  1 + ... +adx  a = ao, where the coefficients are normalized so that a o > 0 and the 
Euclidean norm II(a 1 . . . . .  aa)H = 1. The distance of two hyperplanes is the Euclidean norm of the 
difference of their coefficient vectors (a0, a I . . . . .  ad). 



On Geometric Optimization with Few Violated Constraints 379 

restriction on size, the perturbat ion is arbitrary, so we may choose it in such a way 

that n (3) satisfies all general position requirements we specify later. We define the 

corresponding value function w 3 using H (3) in the same way as w 2 was defined using 
H(2). 

Since H ~ is in general position, we may assume that any two feasible bases in 

(H,  w 3) have distinct values. We want to show that (H,  w 3) is a refinement of  

(H, w2). To this end, consider sets G, G '  _c H with wz(G) < w2(G'). There are 

few cases to be distinguished. 

First, let both G, G '  be feasible with respect to w 2. Put 6 = (w2(G') - w2(G))/4, 
and choose a point y in the interior of the feasible region ,~r(G(Z)) at distance at 

most 6 from the minimum vertex x of JffG(Z)). If the perturbat ion is small enough, 

y also remains in oq~(GO)), and hence w3(G) _< c .y < c - x  + Itcll6 < w2(G) + 26. 

On the other hand, consider a basis B '  (relative to w 2) for G ' .  The feasible 

region ~r(B'(Z)) forms a convex cone whose apex x '  is its unique minimum (as no 

face of the cone is perpendicular  to c, by (1)). With a small enough continuous 

movement of  the half-spaces defining the cone, the apex moves continuously and 

remains the c-direction minimum for the cone. We have ~ ' (G 'O)) ___ 5ir(B'(3)), so 

w3(G')  >__ w3(B') >_ c "x'  - 6 = w2(G')  - 6 if the perturbat ion is small enough, and 

hence w3(6)  < w3(G') as desired. 

The second case to consider is when G (2) is feasible and G '(2) is infeasible. In the 

preceding we saw that the value of w3(G) can be bounded by w2(G) + 1, say, for 

any sufficiently small e 3 . Hence it suffices to show that G '(3) is either infeasible or 

w3(G '(3)) becomes arbitrarily large as 83 --~ 0. Suppose 6 '(3) is feasible, let x '  be the 

minimum vertex of o~q(G '(3)) and let D (3) __. a(G '(3) U n o) be the d-tuple of hyper- 

planes defining x ' .  The corresponding d-tuple D (z) cannot define a vertex (or, 

rather, it defines a vertex in the infinity), as such a vertex would lie in the 

complement  of some half-space of G '~ tO H 0 and a small enough perturbation 

could not make it feasible. From this we can conclude that the norm IIx'll tends to oo 

with e 3 ---, 0. It remains to show that c . x '  is also large. Let u '  = x'/llx'll; we need 

to show that c . u '  does not tend to 0 with e 3 ~ 0 .  However, for e 3 ~ 0 ,  u '  

approaches the direction u of an unbounded ray in the arrangement of D (z) c_ 

8(H (2) U Ho). By condition (1), c �9 u is bounded away from 0 independently of e3, 

and so, indeed, c . x '  = ( c .  u')llx'll  --' oo. Hence w3(G')  > w3(G) and (H,  w 3) is a 

refinement of (H, w2). 
As a last step, we redefine the value function for the infeasible sets, so that a 

nondegenerate  refinement is obtained. 

Because of the general  position of H (3), we may divide the half-spaces into the 

upper  ones (the ones containing the positive ray of the xl-axis) and the lower ones. 

For G (3) c_ H (3), let L ( G  (3)) be the set of  the lower half-spaces of G (3) and let 

U(G (3)) be the set of  the upper  half-spaces. 

For  an infeasible G (3), we define a number t(G) as the minimum amount by 

which we must shift all the lower half-spaces upward along the x~-axis so that the 

feasible region becomes nonempty; formally 

t(G) := min{t; ~ ( ( L ( G  0)) + ( t ,  0 . . . . .  0)) U U(G0)))  ~ 0} .  



380 J. Matou~ek 

We then define the final value function ~: 

~ ( G )  -'= [ wa(G) for a feasible G (3), 

(~, t (G))  for an infeasible G (3), 

where the pairs of the form (oo, t) are ordered by the second coordinate and they are 
larger than the values for feasible sets. 

The general position of H (3) allows us to assume that as we shift the lower 

half-spaces upward, the contact of the feasible regions of the shifted lower half-spaces 

and of the upper half-spaces occurs at a single point ~-(G(3)), and this point is 

common to at most d + 1 boundaries of the half-spaces (some upper ones and some 

shifted lower ones). These d + 1 half-spaces then form the basis for G with respect 

to ~. A constraint h violates G iff the perturbed half-space h O) is either an upper 

one and does not contain the contact point "r(G(3)), or  it is a lower one and its 

translate by (t, 0 . . . .  ,0) does not contain 7(G(3)). We leave the checking that (H, ~)  

is indeed an LP-type problem and a refinement of (H, w 3) to the reader. 

We may moreover assume that t(B) ~ t (B')  for any two distinct infeasible bases 

B, B '  in (H,  w3), and so (H, ~)  is nondegenerate. Finally implementing the 
computational primitives for (H, ~)  is conceptually straightforward for a fixed 

dimension. [] 

Remark. Another, perhaps more natural way to order the infeasible bases in an 

infeasible linear programming problem is to add an extra variable (dimension) to the 

problem, replacing a constraint a l x  1 + . . .  + a d x  d <. a o by alx 1 + . . .  + a d X  d - - X d +  1 

_< a 0 (which is a well-known trick in linear programming). This makes the problem 

feasible, and infeasible bases in the original problem correspond to feasible bases 

with Xd+ 1 ~ 0 in the new problem. This does not increase the combinatorial 

dimension, but dynamic data structures needed for making the algorithm faster 

would have to work in dimension one higher. 

3.2. Using Dynamic Data Structures 

By proving Proposition 3.1 in the preceding section, we have shown that the general 

algorithm from Theorem 1.2 is applicable to Problem 1.3. In this section we consider 

efficient implementation of the dynamic data structures ~ and ~/" mentioned at the 

end of Section 2.4 for the linear programming problem (actually for its nondegener- 

ate refinement constructed in the proof of Proposition 3.1). 

We begin with the feasible case. Here the data structure ~e- stores a set of 

half-spaces which all contain a known point (a fixed point in 5~(H)), and the query 

boils down to checking whether a given point lies outside of the union of the current 

set of half-spaces. For this task, algorithms are known with the following perfor- 

mance [2] (we only quote the results relevant to our application): In dimension 3 

O(n ~) query time can be achieved with O(n log n) preprocessing time and O(log 2 n) 

amortized update time. In dimension d > 4 the following tradeoff is obtained: for a 



On Geometric Optimization with Few Violated Constraints 381 

parameter m in range [n, n[d/21], query time O(nl+' /m ilia/21) is obtained with 

O(m 1§ ~) space and preprocessing time and with O(m 1 § "/n)  amortized update time 

(in fact, for m = n an O(n log n) preprocessing suffices). We must apply the 

appropriate perturbations on the input half-spaces, but this is a simulation of a 

simplicity technique of  a particular type and it only slows down the computation by a 

constant factor. The same performance can be achieved for the data structure @, 

which should return a basis for the current set of half-spaces (and we are guaranteed 

that the half-spaces have a nonempty intersection), see [2] and [24]. 

In dimension 3 we perform O(k 3) queries and updates in both data structures, 

which leads to the claimed O(n log n + k3n ~) complexity. For dimension 4 we 

choose a suitable tradeoff between the total update and query time and the 

preprocessing time of the data structures, as follows: for k < n 1/8, we let m = n, for 
k 4 < n < k 8 we let m = kS/3n 2/3, and for larger k we choose rn = n 4/3. This yields 

the formula stated in the theorem. Tradeoffs can also be computed for higher 

dimensions, although with less significant gains in efficiency. This establishes part (i) 

of  Theorem 1.4. 

In the infeasible case the data structure ~/" stores the upper half-spaces and lower 

half-spaces separately. Testing for a feasible basis is as before. For an infeasible 

basis B, we first compute the value t(B) and the contact vertex ~- = " r ( B  (3)) (see the 

proof of  Proposition 2.5 for definitions), and then we test if ~" lies outside all upper 

half-spaces and r - (t, 0 . . . . .  0) lies outside all lower half-spaces. 

The data structure @ also stores upper and lower half-spaces separately. If the 

currently stored set is feasible, the algorithm of [24] returns the basis. If infeasibility 

is reported, we use parametric search to find the value of t. As a generic algorithm, 

we use the algorithm of [24] for testing feasibility of  the set of the upper half-spaces 

plus the lower half-spaces shifted by a generic value of t. A more detailed exposition 

would require explaining the feasibility testing algorithm and we omit it, as the 

details are easy to fill in, assuming familiarity with [24]. The application of  paramet- 

ric search on top of  the feasibility testing algorithm only increases the query time by 

polylogarithmic factors. The overall performance of the resulting dynamic data 

structures ~/" and ~' is thus the same as in the feasible case above; this gives the 

result for dimension 3 in Theorem 1.4(ii). 

For the planar case, the parametric search machinery is unnecessary, and we may 

directly use a relatively simple dynamic data structure for maintaining convex hulls 

in the plane due to Overmars and van Leeuwen [30]. To build O', we use this data 

structure in a dual form. One part represents the intersection U of the upper 

half-planes, another part the intersection L of the lower half-planes. After O(n log n) 

preprocessing, half-planes can be inserted and deleted in O(log 2 n) time, and the 

data structure provides a representation of the convex chains forming the bound- 

aries of L and U (the chains are stored in balanced binary trees). 

If the current problem is feasible, the optimal vertex is either the extreme vertex 

of U, or the extreme vertex of L, or one of the two intersections of  the boundaries 

of U and of  L. All these vertices can be found and examined in O(log 2 n) time. For  

an infeasible problem, the first contact of U and L when translating L upward 

occurs either at a vertex of L or at a vertex of U. For a given vertex v of L, we can 

determine the point where it hits the boundary of  U in O(log n) time. From the 



382 J. Matou~ek 

local situation at that point, we can detect whether the first contact of L and U 

occurs to the left of v or the right of c. Hence we can determine the first contact, 
the corresponding t value, and the basis in O(log 2 n) time by a binary search in the 

lower convex chain. The data structure ~" is also implemented using the Overmars 

and van Leeuwen data structure, with O(log 2 n) time per update and O(log n) time 

per query. Altogether we get O(n log n + k 3 log 2 n) running time. This finishes the 
proof of Theorem 1.4. [] 

Proof of Theorem 1.1. For the smallest enclosing circles problem discussed in the 
Introduction, the situation with a nondegenerate refinement is considerably easier 

than the one for linear programming (this is because the value function depends 

continuously on the point set). It suffices to take any sufficiently small perturbation 

of the input points such that no four points are cocircular and no circle determined 

by two points passes through another point. The required dynamic data structures 

are mentioned in [2]. They require O(n ~) amortized update time and query time, 

and this gives the bound in Theorem 1.1. [] 

There are various other optimization problems of geometric flavor fitting into the 
LP-type framework, see [26] and [4]. Here are few examples: finding the smallest ball 

(resp. the smallest volume ellipsoid enclosing a given point set in ~d); finding the 

largest volume ellipsoid inscribed into the intersection of given half-spaces in Rd; 

finding the distance of two convex polyhedra given by vertices (resp. by facet 

hyperplanes in Rd); finding a line transversal for given convex polygons in the plane. 

If the dimension is fixed our general algorithm can be applied to the respective 

derived problems with k violated constraints, provided that the nondegeneracy issue 

can be handled. In many of the problems, simulation of simplicity alone should 

suffice; it seems that linear programming is complicated in this respect because 

feasible solutions need not exist. The applicability of dynamic data structures to 

speed up the computations must be checked individually. In general, the improve- 

ments will probably be significant only if the dimension is really small. 

4. Discussion 

It would be interesting to find more about nondegenerate refinements of LP-type 

problems. We have shown that the dimension must sometimes grow at least by one; 
a natural question is how much growth is necessary and sufficient in the worst case; 

is there any bound only depending on the dimension? 

From a practical point of view, it would be very desirable to have some more 

direct scheme for making the geometric LP-type problems, linear programming in 

particular, nondegenerate instead of the rather cumbersome approach via geometric 

perturbations we used. Alternatively an algorithm might be found which can handle 

nondegeneracy directly. 
In Theorem 2.3(ii)we saw that the number of bases of level exactly k is O(k d- 1) 

in a d-dimensional LP-type problem with no -oo values. Two questions arise 

naturally: First, is the claim still true if we allow - oo values? Second, can this result 



On Geometric Optimization with Few Violated Constraints 383 

be used algori thmically for finding the smallest basis of  level k, that is, can one  

efficiently avoid searching all bases of  level at mos t  k ,  whose number  may  be of  the 

order  kd? In particular,  for  two-dimensional  infeasible l inear p rogramming ,  we are  

actually in teres ted  only in two-e lement  bases (as all infeasible bases have the same 

value ~ in the original problem),  and we know that there  are  only O ( k  2) of  these.  

Still, the  current  m e t h o d  may search k 3 bases, most  of  them infeasible ones;  could  

this be avoided?  

.Acknowledgments 

I would  like to thank E m o  Welzl  for bringing the p rob lem to my at tent ion,  and 

Pankaj K. Agarwal  and David  Epps te in  for useful discussions. 

References 

1. P. Agarwal, M. de Berg, J. Matou~ek, and O. Schwarzkopf. Constructing levels in arrangements 
and higher-order Voronoi diagrams. Proc. lOth Ann. ACM Symp. on Computational Geometry, 

pp. 67-75, 1994. 
2. P. K. Agarwal and J. Matou~ek. Dynamic half-space range reporting and its applications. 

Algorithmica, 13:325-345, 1995. 
3. A. Aggarwal, H. Imai, N. Katoh, and S. Suri. Finding k points with minimum diameter and 

related problems. J. Algorithms, 12:38-56, 1991. 
4. N. Amenta. Helly theorems and generalized linear programming. Discrete Comput. Geom., 

12:241-261, 1994. 
5. B. Aronov, B. Chazelle, H. Edelsbrunner, L. J. Guibas, M. Sharir, and R. Wenger. Points and 

triangles in the plane and halving planes in space. Discrete Comput. Geom., 6:435-442, 1991. 
6. B. Chazelle and J. Matou~ek. On linear-time deterministic algorithms for optimization problems 

in fixed dimension. Proc. 4th ACM-SIAM Symp. on Discrete Algorithms, pp. 281-290, 1993. 
7. K. L. Clarkson. New applications of random sampling in computational geometry. Discrete 

Comput. Geom., 2:195-222, 1987. 
8. K. L. Clarkson. A Las Vegas algorithm for linear programming when the dimension is small. 

Proc. 29th Ann. IEEE Symp. on Foundations of Computer Science, pp. 452-456, 1988. 
9. K. L. Clarkson. A bound on local minima of arrangements that implies the upper bound 

theorem. Manuscript, 1992. 
10. K. L. Clarkson and P. W. Shor. Application of random sampling in computational geometry, II. 

Discrete Comput. Geom., 4:387-421, 1989. 
11. R. Cole, M. Sharir, and C. K. Yap. On k-hulls and related problems. SlAM J. Comput., 

16:61-77, 1987. 
12. A. Datta, H.-P. Lenhof, C. Schwarz, and M. Smid. Static and dynamic algorithms for k-point 

clustering problems. Proc. 3rd Workshop on Algorithms and Data Structures. Lecture Notes in 
Computer Science, vol. 709, pp. 265-276. Springer-Verlag, Berlin, 1993. 

13. T. Dey and H. Edelsbrunner. Counting triangle crossings and halving planes. Discrete Comput. 

Geom., 12:281-289, 1994. 
14. H. Edelsbrunner and E. P. Miicke. Simulation of simplicity: A technique to cope with degener- 

ate cases in geometric algorithms. A CM Trans. Graphics, 9:66-104, 1990. 
15. A. Efrat, M. Lindenbaum, and M. Sharir, Finding maximally consistent sets of halfspaces. Proc. 

5th Canad. Conf. on Computational Geometry, pp. 432-436, Waterloo, Ontario, 1993. 
16. A. Eft'at, M. Sharir, and A. Ziv. Computing the smallest k-enclosing circle and related problems. 

Proc. 3rd Workshop on Algorithms and Data Structures. Lecture Notes in Computer Science, 
vol. 709, pp. 325-336. Springer-Verlag, Berlin, 1993. 



384 J. Matou~ek 

17. I. Emiris and J. Canny. An efficient approach to removing geometric degeneracies. Proc. 8th 

Ann. ACM Symp. on Computational Geometry, pp. 74-82, 1992. 
18. D. Eppstein and J. Erickson. Iterated nearest neighbors and finding minimal polytopes. Proc. 4th 

ACM-SIAM Symp. on Discrete Algorithms, pp. 64-73, 1993. 
19. H. Everett, J.-M. Robert, and M. van Kreveld. An optimal algorithm for the (_< k)-levels, with 

applications to separation and transversal problems. Proc. 9th Ann. ACM Symp. on Computa- 

tional Geometry, pp. 38-46, 1993. 
20. A. Gajentaan and M. H. Overmars. nE-hard problems in computational geometry. Report 

RUU-CS-93-15, Department of Computer Science, Utrecht University, Utrecht, April 1993. 
21. B. GSrtner. A subexponential algorithm for abstract optimization problems. Proc. 33rd Ann. 

IEEE Symp. on Foundations of Computer Science, pp. 464-472, 1992. 
22. D. S. Johnson and F. P. Preparata. The densest hemisphere problem. Theoret. Comput. Sci., 

6:93-107, 1978. 
23. G. Kalai. A subexponential randomized simplex algorithm. Proc. 24th Ann. ACM Symp. on 

Theory of Computing~ pp. 475-482, 1992. 
24. J. Matou~ek, Linear optimization queries. J. Algorithms, 14:432-448, 1993. The results com- 

bined with the results of O. Schwarzkopf also appear in Proc. 8th ACM Syrup. on Computational 

Geometry, pp. 16-25, 1992. 
25. J. Matou~ek, On enclosing k points by a circle. Inform. Process. Lett., 53:217-221, 1995. 
26. J. Matou~ek, M. Sharir, and E. WeLzl. A subexponential bound for linear programming. Proc. 8th 

Ann. ACM Symp. on Computational Geometry, pp. 1-8, 1992. Also to appear in Algorithmica. 

27. N. Megiddo. The weighted Euclidean 1-center problem. Math. Oper. Res., 8(4):498-504, 1983. 
28. K. Mulmuley. On levels in arrangements and Voronoi diagrams. Discrete Comput. Geom., 

6:307-338, 1991. 
29. K. Mulmuley. Dehn-Sommerville relations, upper bound theorem, and levels in arrangements. 

Proc. 9th Ann. A C M  Syrup. on Computational Geometry, pp. 240-246, 1993. 
30. M. H. Overmars and J. van Leeuwen. Maintenance of configurations in the plane. J. Comput. 

System Sci., 23:166-204, 1981. 
31. R. Seidel. The nature and meaning of perturbations in geometric computing. Proc. llth Symp. 

on Theoretical Aspects of Computer Science (STACS). Lecture Notes in Computer Science. 
Springer-Verlag, Berlin, 1994. 

32. M. Sharir and E. Welzl. A combinatorial bound for linear programming and related problems. 
Proc. 1992 Syrup. on Theoretical Aspects of Computer Science. Lecture Notes in Computer 
Science, vol. 577, pp. 569-579. Springer-Verlag, Berlin, 1992. 

33. C. K. Yap. A geometric consistency theorem for a symbolic perturbation scheme. J. Comput. 

System Sci., 40:2-18, 1990. 

Received March 1994, and in revised form July 1994. 


