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ON GEOMETRY OF CURVES OF FLAGS OF CONSTANT TYPE

BORIS DOUBROV AND IGOR ZELENKO

Abstract. We develop an algebraic version of Cartan method of equivalence or an analog of
Tanaka prolongation for the (extrinsic) geometry of curves of flags of a vector space W with
respect to the action of a subgroup G of the GL(W ). Under some natural assumptions on the
subgroup G and on the flags, one can pass from the filtered objects to the corresponding graded
objects and describe the construction of canonical bundles of moving frames for these curves in
the language of pure Linear Algebra. The scope of applicability of the theory includes geometry
of natural classes of curves of flags with respect to reductive linear groups or their parabolic
subgroups. As simplest examples, this includes the projective and affine geometry of curves. The
case of classical groups is considered in more detail.

1. Introduction

Fix a vector space W over a field K, where K = R or C. Also, fix integers 0 = k0 ≤ k1 ≤ k2 ≤
. . . ≤ kµ = dimW and let Fk1,...,kµ−1

(W ) be the manifold of all flags 0 = Λ0 ⊂ Λ−1 ⊂ Λ−2 ⊂ . . . ⊂
Λ−µ = W , where Λ−i are ki-dimensional linear subspaces. For definiteness we also assume that
k1 > 0 and kµ−1 < kµ. We allow equalities among ki, i.e. repeated subspaces in flags, because
direct sums of flags will play an important role in the sequel.

Now fix a Lie subgroup G of GL(W ). The group GL(W ) acts naturally on Fk1,...,kµ−1
(W ).

Assume that O is an orbit in Fk1,...,km(W ) with respect to the action of G. The general question
is whether given two unparamerized curves in O there exists an element of G sending one curve to
another. Such two curves are said to be G-equivalent. We are also interested in the same question
for parametrized curves of flags.

Note that particular examples of this setup include the classical projective and affine geometries
of curves in Pn and An and the projective geometry of ruled surfaces. In all these cases the action
of the group G is transitive on the corresponding flag varieties. Other examples we will consider
in this paper include:

(1) G = GL(W ) and O is the whole flag variety;
(2) G = Sp(W ), if W is equipped with a symplectic form σ, G = O(W ), if W is equipped

with a non-degenerate symmetric form Q, and O is the isotropic/coisotropic flag variety.

Our original motivation to study such equivalence problems comes from the new approach,
so-called symplectification procedure, to the geometry of structures of nonholonomic nature on
manifolds such as vector distributions, sub-Riemannian structure etc. This approach was proposed
in [1, 2, 3, 4] and it is based on the Optimal Control Theory. It consists of the reduction of
the equivalence problem for such nonholonomic geometric structures to the (extrinsic) differential
geometry of curves in Lagrangian Grassmannians and, more generally, of curves of flags of isotropic
and coisotropic subspaces in a linear symplectic space with respect to the action of the Linear
Symplectic Group (i.e. a particular case of item (2) above). The symplectification procedure was
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applied to the equivalence problem of vector distributions of rank 2 and 3 ([13, 14, 15]). For rank
2 distributions curves of flags appearing in this approach are curves of complete flags consisting of
all osculating subspaces of the curve of one-dimensional subspaces of these flags, i.e. one arrives
to the classical Wilczynski theory of nondegenerate curves in projective spaces [37]. However, the
geometry of curves of isotropic/coisotropic flags appearing in the symplectification procedure for
rank 3 distributions is more involved and needed the development of a new technique. In [15] we
treated such curves by a brute force method that cannot be extended to the curves appearing in
the theory of distributions of higher rank. The theory developed here gives a conceptual way to
work with all such curves.

A general procedure for the equivalence problems under consideration was developed already
by E. Cartan with his method of moving frames (see [8] and modern expositions, for example, by
P. Griffiths [24] , M. Green [23], and M. Fels and P. Olver [18], [19]). In the present paper we
distinguish curves of flags for which the construction of canonical bundle of moving frames with
respect to the action of a given group G can be done in purely algebraic way and describe this
construction in the language of pure Linear algebra.

For a different type of equivalence problems such as equivalence of filtered structures on man-
ifolds an algebraic version of Cartan’s equivalence method was developed by N. Tanaka in [35].
Instead of doing concrete normalizations, Tanaka describes the prolongation procedure for all
possible normalizations in purely algebraic terms via so-called universal algebraic prolongation of
the symbol of the filtered structure.

We develop a similar algebraic theory for unparametrized curves of flags, satisfying some natural
assumptions. The constructions and the results of the paper can be almost verbatim generalized
to embedded submanifolds of flag varieties (see subsection 4.6). It is worth to notice that an
analog of Tanaka theory for curves (and submanifolds) in projective spaces and more general flag
varieties was already developed in works of Y. Se-ashi [33, 34], interpreting geometrically and
generalizing the classical work of Wilczynski [37] (see also [10]). However, Se-ashi treated much
more restrictive class of equivalence problems compared to our present paper: first, he considers
the case G = GL(W ) only and second, he assumes that the algebraic prolongation of the symbol
of the curve is semi-simple. The last assumption allows him to associate to a curve of flags (and,
more generally, to a submanifold in a flag variety) a Cartan connection with values in the algebraic
prolongation of the symbol by analogy with [36].

For the theory of curves (and, more generally, submanifolds) of flags our paper can be related to
Se-ashi works [33, 34] in the same way as Tanaka paper [35] about filtered structures on manifolds
with general constant symbol is related to his later work [36] about filtered structures with symbol
having semisimple universal algebraic prolongation.

For unparametrized curves in Lagrangian Grassmannians first nontrivial invariants were con-
structed in the earlier works of the second author with A. Agrachev [3, 5], using the notion of
cross-ration of four points in Lagrangian Grassmannians. Our constructions here give a way to
construct a complete system of invariants for curves of flags in much more general situation.

The present paper is closely related to our recent preprint [16] on geometry of curves in parabolic
homogeneous space and, more generally, in a homogeneous spaces of a Lie group with a Lie algebra
endowed with the fixed grading. The link between these papers is given in Remark 3.1. In [16]
we work with abstract groups while in the present paper we work with their representations. We
had to develop here a special language which is more adapted to the case of representations and
to the forthcoming applications to the geometry of distributions.

The corresponding modification of the theory in the case of parametrized curves is given as
well (see subsection 4.5). This modification give more conceptual point of view on constructions
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of papers [40, 41, 42] on parametrized curves in Lagrangian Grassmannians and extend them and
results of [3, 4, 28, 29, 30, 31, 32] to more general classes of curves.

Let us briefly describe the main constructions and the structure of the present paper. As in
the Tanaka theory for filtered structures on manifolds, the main idea of our approach is to pass
from the filtered objects to the corresponding graded objects. In order to make it work we need
additional assumptions on the group G and on the chosen orbit O ⊂ Fk1,...km with respect to
the action of G. This assumptions are discussed in section 2 (see Assumption 1 there). Shortly
speaking, any flag f0 ∈ O induces the filtration on the Lie algebra g of the Lie group G. And
the compatibility of O with respect to the grading means that g is isomorphic (as a filtered Lie
algebra) to the associated graded Lie algebra grf0 g so that passing to the graded objects we do not
change the group in the equivalence problem. Note that grf0 g can be identified with a subalgebra
of gl(grf0 W ), where grf0 W is the graded space corresponding to the flag (the filtration) f0. We
give an explicit algorithm for constructing of all orbits compatible with respect to the grading
under the assumption that G is semisimple (see Proposition 2.1 for the irreducible case) and apply
it when G is a symplectic or orthogonal subgroups of GL(W ) (see Proposition 2.2 and Remark
2.1, respectively).

The curves of flags under consideration are also not arbitrary but they are compatible with
respect to differentiation (see Assumption 2 in section 3). Informally speaking, it means that
the tangent line to a curve τ 7→ Λ(τ) ⊂ O at the point Λ(t) is a degree −1 element of the
graded space grΛ(t) g ⊂ gl(grf0 W ). The condition of compatibility with respect to differentiation

is natural through the refinement (osculation) procedure on curves of flags described in section
6. For example, starting with a curve in Grassmannian, it is natural to produce the curve of
flags compatible with respect to differentiation by taking iteratively the osculation subspaces of
the original curve. Then the equivalence problem for curves in Grassmannian is reduced to the
geometry of curves in certain flag manifold which are compatible with respect to differentiation. In
particular, in this way geometry of so-called non-degenerate curves in projective space is reduced
to geometry of curves of complete flags compatible with respect to differentiation.

Further, in section 3, similarly to Tanaka theory, we define the symbol of a curve τ 7→ Λ(τ) ⊂ O
at a point with respect to the group G. For this first we identify the space grΛ(t)W with a fixed
“model” graded space V such that this identification conjugate the group G with the fix subgroup
G of GL(V ). Then the tangent line to the curve τ 7→ Λ(τ) at the point Λ(t) can be identified
with a line of degree −1 endomorphism in the Lie algebra g of the Lie group G. Let G0 be the the
subgroup of G preserving the grading on V . Taking all possible identifications of grΛ(t)W with

V as above we assign to the tangent line to the curve τ 7→ Λ(τ) at Λ(t) the orbit of a degree −1
endomorphism from g with respect to the adjoint action of G0. This orbit is called the symbol of
the curve τ 7→ Λ(τ) ⊂ O at Λ(t) with respect to the group G.

The symbol of the curve of flags at a point is the basic invariant of the curve at this point.
The main goal of the present paper is to study the equivalence problem (w.r.t. to the group G)
for curves of flags with a given constant symbol. Note that the condition of constancy of symbol
is often not restrictive. For example, this is the case, when G is semismple (or, more generally,
reductive). It turns out that in this case the set of all possible symbols (for given group G) is
finite. Therefore, the symbol of a curve of flags with respect to a semisimple (reductive) group G
is constant in a neighborhood of a generic point.

The way to solve the equivalence problem under consideration is to associate canonically the
bundle of moving frames to any curve of flags . The main result of the paper (Theorem 4.1)
shows that in the case of curves with constant symbol the construction of such canonical bundle of
moving frames can be done in purely algebraic way, namely in terms of so-called universal algebraic



4 Boris Doubrov and Igor Zelenko

prolongation of the symbol. The universal algebraic prolongation of the symbol or, more precisely,
of the line of degree −1 endomorphisms, representing the symbol, is the largest graded subalgebra
of g such that its component corresponding to the negative degrees coincides with this chosen line
of degree −1 endomorphisms. It is isomorphic to the algebra of infinitesimal symmetries of the
so-called flat curve, which is the simplest (the most symmetric) curve among all curves with
this symbol. In the proof of the main theorem, given in section 5, we first fix the normalization
condition by choosing a complementary subspace to the image of certain coboundary operator in
the space of certain 1-cochains. The construction of the bundle of canonical moving frames for
any curve with given constant symbol is imitated by the construction of such bundle for the flat
curve with this symbol.

It is important to emphasize that the number of prolongation steps and the dimension of the
resulting bundle of moving frame is independent of the choice of the normalization condition
but it depends on the symbol only: the number of prolongations steps is equal to the maximal
degree in the grading of the universal algebraic prolongation of the symbol and the dimension
of the bundle of moving frame is equal to the dimension of the universal algebraic prolongation
of the symbol. The computation of the universal algebraic prolongation is an iterative process,
where on each step one needs to solve a system of linear equations. Hence even without fixing the
normalization condition and starting the construction of canonical moving frames one can predict
the main features of this construction using linear algebra only.

Consequently, in order to apply our theory for equivalence of curves of flags with respect to
the given group G it is important to classify all possible symbols with respect to this group and
to calculate their universal algebraic prolongation. We implement these two tasks in sections 7
and 8, respectively, for the standard representation of classical groups. The universal algebraic
prolongation in this cases can be effectively describe using the theory of sl2-representations.

Our results in the case of Symplectic Group are crucial for application of so-called symplectifi-
cation procedure to geometry of vector distributions: they give much more conceptual view on our
constructions in [15] for rank 3 distributions and will be used in our future work on distributions of
arbitrary rank. Therefore the symplectic case is treated in detail. The case of Orthogonal Group
is very similar to the case of Symplectic Group. Hence we will only sketch this case referring to
the corresponding objects in the symplectic case.

Note that the set of all possible symbols of curves of flags with respect to a group G depends
only on the group G as an abstract Lie group and it does not depend on a particular representation
of G. Therefore the classification of the symbols in section 7 and the calculation of section 8 can
be used for any representation of the classical groups.

In general the bundles of moving frames obtained in Theorem 4.1 do not have a structure of
a principle bundle. They belong to a wider class of bundles that we call quasi-principal bundles
(see Definition 4.2). Quasi-principle bundles have some features of the principle bundles when one
passes to the grading. The question whether one can choose normalization conditions such that
the resulting bundle will be a principle one is reduced to the question whether this normalization
condition, as a complementary subspace to the image of certain coboundary operator in the
space of certain 1-cochains, is invariant with respect to the natural action of the subgroup of the
group of symmetries of the flat curve preserving a point. In general, such invariant normalization
condition may not exist. Some conditions for existence of the invariant normalization conditions
and examples of symbols for which they do not exist are given in our recent preprint [16].

Finally, it is important to stress that we construct canonical bundles of moving frames for
curves of flags with a given symbol in a unified way, i.e. without any branching in contrast to our
previous construction for curves of isotropic/coisotropic subspaces of a linear symplectic space



On geometry of curves of flags of constant type 5

appearing in the symplectification procedure for rank 3 distributions ([15]) and also in contrast
to the Fels-Olver approach [18, 19]. The latter was used by G. Mari Beffa (see, for example, [28,
29, 30, 31]) for geometry of parametrized curves with very particular symbols in Grassmannians
of half-dimensional subspaces with respect to classical groups (of Lagrangian subspaces in the
symplectic case and of isotropic half-dimensional subspaces in the orthogonal/conformal case).
In the terminology of section 6 the first osculating space of such curves at any point is equal to
the ambient vector space W . The main difference of those works from the treatment of the same
curves in the present paper is that in those works not all curves with a given symbol but generic
curves are considered. For example, the flat curves do not satisfy the genericity assumptions
there.

Acknowledgements We are very grateful to professor Pierre Deligne. The idea of treating the
equivalence problem for curves of flags by passing to the graded objects stemmed from the way
of presentation of the previous paper [41] of the second author with C.Li, which was proposed by
professor Deligne during his edition of that paper. Also we would like to thank Professors Tohru
Morimoto and Yoshinori Machida for very stimulating discussions.

2. Compatibility of the pair (G,O) with respect to grading

First let us recall some basic notions on filtered and graded vector spaces. A point

f0 = {0 = Λ0 ⊂ Λ−1 ⊂ Λ−2 ⊂ . . . ⊂ Λ−µ =W}

of O is a decreasing filtration of W . So, it induces the decreasing filtration {(gl(W ))f0,i}i∈Z of
gl(W ),

(2.1) (gl(W ))f0,i = {A ∈ gl(W ) : A(Λj) ⊂ Λj+i for all j}, (gl(W ))f0,i ⊂ (gl(W ))f0,i−1

It also induces the filtration on any subspace of gl(W ). Further, let grf0 W be the graded space
corresponding to the filtration f0,

grf0 W =
⊕

i∈Z

Λi/Λi+1

and let grf0 gl(W ) be the graded space corresponding to the filtration (2.1),

grf0 gl(W ) =
⊕

i∈Z

(gl(W ))f0,i/(gl(W ))f0,i+1.

The space grf0 gl(W ) can be naturally identified with the space gl (grf0 W ). Indeed, if A1

and A2 from (gl(W ))f0,i belong to the same coset of (gl(W ))f0,i/(gl(W ))f0,i+1, i.e. A2 − A1 ∈
(gl(W ))f0,i+1, and if w1 and w2 from Λj belong to the same coset of Λj/Λj+1, i.e. w2−w1 ∈ Λj+1,
then A1w1 and A2w2 belong to the same coset of Λj+i/Λj+i+1. This defines a linear map from
grf0 gl(W ) to gl (grf0 W ). It is easy to see that this linear map is an isomorphism.

Now let g ⊂ gl(W ) be the Lie algebra of the group G. The filtration f0 induces the filtration
{gf0,i}i∈Z on g, where

gf0,i = (gl(W ))f0,i ∩ g.

Let grf0 g be the graded space corresponding to this filtration. Note that the space gf0,i/gf0,i+1

is naturally embedded into the space (gl(W ))f0,i/(gl(W ))f0,i+1. Therefore, grf0 g is naturally

embedded into grf0 gl(W ) and, by above, grf0 g can be considered as a subspace of gl
(
grf0 W

)
.

It is easy to see that it is a subalgebra of gl
(
grf0 W

)
.

In general, the algebra grf0 g is not isomorphic to the algebra g.
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Example 2.1. Assume that dimW = 4m, W is equipped with a symplectic (i.e. nondegenerate
skew-symmetric) form σ, Sp(W ) is the subgroup of GL(W ) preserving the form σ, and sp(W ) is
the corresponding Lie algebra. Assume that

f0 = {0 = Λ0 ⊂ Λ−1 ⊂ Λ−2 =W},

where dimΛ−1 = 2m and the restriction of σ to Λ−1 is nondegenerate. Let us prove that
grf0 sp(W ) is not isomorphic to sp(W ) (for more general case see Proposition 2.2 below). For this

first identify the space W/Λ−1 with the skew-symmetic complement Λ∠
−1 of Λ−1 with respect to

the form σ. Using this identification, we have that W/Λ−1 is equipped with the symplectic form,
which the restriction of σ to Λ∠

−1. Besides Λ−1 is equipped with the symplectic form, which is the
restriction of σ to it. Consider the following natural decomposition

(2.2) gl(Λ−1 ⊕W/Λ−1) = gl(Λ−1)⊕ gl(W/Λ−1)⊕Hom(Λ−1,W/Λ−1)⊕Hom(W/Λ−1,Λ−1).

Then by direct computations one can show that the algebra grf0 sp(W ) is isomorphic to the
subalgebra of gl(Λ−1 ⊕W/Λ−1) consisting of endomorphisms A such that if A is decomposed as
A = A11 + A22 + A12 + A21 with respect to (2.2) then A11 ∈ sp(Λ−1), A22 ∈ sp(W/Λ−1), and
A21 = 0, where sp(Λ−1) and sp(W/Λ−1) are symplectic algebras of Λ−1 and W/Λ−1, respectively.
Consequently, the algebra grf0 sp(W ) is not semisimple and is not isomorphic to sp(W ). More
general class of examples is given by Proposition 2.2 below. On the contrary, if Λ−1 is a Lagrangian
subspace, then similar argument shows that grf0sp(W ) is isomorphic to sp(W ). �

In order that the passage to the graded objects will not change the group in the equivalence
problem we have to impose that grf0 g and g are conjugated for some (and therefore any) f0 ∈ S.
More precisely we will assume in the sequel the following

Assumption 1(compatibility with respect to the grading) For some f0 ∈ O , f0 = {0 = Λ0 ⊂
Λ−1 ⊂ Λ−2 ⊂ . . . ⊂ Λ−µ =W}, there exists an isomorphism J : grf0 W 7→W such that

(1) J(Λi/Λi+1) ⊂ Λi, −µ ≤ i ≤ −1;
(2) J conjugates the Lie algebras grf0 g and g i.e.

(2.3) g = {J ◦ x ◦ J−1 : x ∈ grf0 g}.

Note that from the transitivity of the action of G on O it follows that if Assumption 1 holds
for some f0 ∈ O then it holds for any other f0 ∈ O. If Assumption 1 holds we say that the
pair (G,O) is compatible with respect to the grading. Besides, the Lie algebra g has a grading via
formula (2.3) and this grading is defined up to a conjugation.

Obviously, if G = GL(W ) or SL(W ), then G acts transitively on any flag variety Fk1,...,kµ−1
(W )

the pair (G,Fk1 ,...,kµ−1
(W )) is compatible with respect to the grading. In general in order to

construct a pair (G,O) compatible with respect to the grading, one can start with the fixed Z-
grading on the Lie algebra g, g =

⊕

i∈Z

gi, and try to find a flag f0 in W such that the algebra

grf0 g is conjugated to g and the grading is preserved. Then as O one takes the orbit of f0 with
respect to G. In this case we say that the orbit O is compatible with respect to the grading of g.

In the case of semisimple g there is an explicit algorithm for constructing all orbits of flags
compatible with respect to the grading of g. Recall that an element e of a graded Lie algebra

g =
⊕

i∈Z

gi is called a grading element if ade(x) = ix for any x ∈ gi. Since the map δ : g → g

sending x ∈ gi to ix is a derivation of g and any derivation of a semisimple Lie algebra is inner,
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for any graded semisimple Lie algebra there exist the unique grading element e. Moreover, this
element is also semisimple as an endomorphism of W .

Proposition 2.1. If G ⊂ GL(W ) is a semisimple Lie group acting irreducibly onW and a grading
is fixed on its Lie algebra g, then there exists a unique orbit of flags compatible with respect to the
grading of g.

Proof. Assume that λ is the highest weight of the g-module W and ν is the corresponding lowest
weight. Using the basic representation theory of semisimple Lie algebras, one can easily get that
in the considered case the spectrum spec(e) of the grading element e satisfies

(2.4) spec(e) = {λ(e) − i : i ∈ Z, 0 ≤ i ≤ λ(e) − ν(e)}

(note that λ(e) − ν(e) is natural). Therefore the natural order on the spectrum of e is defined.

Let W =

−1⊕

j=ν(e)−λ(e)−1

Wj be the decomposition of W by the eigenspaces of e such that Wj is the

eigenspace corresponding to the eigenvalue λ(e) + j + 1. Take the flag

(2.5) f0 = {W j}−1
j=ν(e)−λ(e)−1

such that W j =
⊕

i≥j

Wj.

If x ∈ gi and w ∈Wj , then e(w) = (λ(e) + j + 1)w and [e, x](w) = iw. Therefore

(2.6) e ◦ x(w) = [e, x](w) + x ◦ e(w) = (λ(e) + (j + i) + 1)x(w),

i.e. x(w) ∈ Wj+i. This implies that the map J : grf0 W → W , which sends an element of

W j/W j+1 to its representative in Wj, conjugates grf0 g and g. Therefore the orbit Of0 of f0 with
respect to G is compatible with respect to the grading of g.

Now let us briefly sketch the proof of uniqueness, which is based on the irreducibility assump-
tion. Since the grading element e belongs to g0, an orbit compatible with respect to the grading

of g must contain a flag {W̃ j}−1
j=−µ such that each subspace W̃j is an invariant subspace of e.

First one proves that W−1 ⊂ W̃−1. Assuming the converse, it is not hard to show that the space

g.W̃−1 is a proper subspace of W , because it does not contain the nonempty set W−1\W̃−1. This

contradicts the irreducibility assumption. Further, if W−1 is a proper subspace of W̃−1, then in

a similar way one can prove that the space g.W−1 does not contain the nonempty set W̃−1\W−1

which again contradicts the irreducibility assumption. Hence, W̃−1 =W−1. In the same manner

one can prove that W̃ j =W j for any −µ ≤ j ≤ −2. �

Note that Proposition 2.1 is also true if G is reductive. The proof is the same. The only
difference is that the grading element is not unique: it is defined modulo the center of g, but it
does not effect the proof.

We are especially interested in the case, whenW is an even dimensional vector spaces equipped
with a symplectic form σ and G = Sp(W ) or CSp(W ), where Sp(W ) is the corresponding
symplectic group and CSp(W ) is the so-called conformal symplectic group, i.e. the group of all
transformation preserving the symplectic form σ up to a multiplication by a nonzero constant.
Denote by sp(W ) and csp(W ) the corresponding Lie algrebras. Recall that a subspace L of W
is called isotropic with respect to the symplectic form σ if the restriction of the form σ on L is
identically equal to zero or, equivalently, L is contained in its skew-symmetric complement L∠

(with respect to σ), while a subspace L of W is called coisotropic with respect to the symplectic
form σ if L contains L∠.
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Definition 2.1. We say that a flag f0 = {0 = Λ0 ⊂ Λ−1 ⊂ Λ−2 ⊂ . . . ⊂ Λ−µ = W} in W is

symplectic if (Λ−i)
∠ = Λi−µ for any 0 ≤ i ≤ µ.

Obviously, the flag f0 is symplectic, if and only if the following three conditions hold: any
subspace in the flag f0 is either isotropic or coisotropic with respect to the symplectic form σ;
a subspace belongs to the flag f0 together with its skew-symmetric complement; the number
of appearances of a subspace in the flag f0 is equal to the number of appearances of its skew-
symmetric complement in f0.

Proposition 2.2. An orbit O in a flag manifold is compatible with respect to some grading on
g = sp(W ) or csp(W ) if and only if some (and therefore any) flag f0 ∈ O is symplectic.

Proof. Let λ be the highest weight of the considered standard representation of sp(W ) Fix the
grading on g and let e be the grading element. Since csp(W ) = sp(W )⊕K, in the case g = csp(W )
we can always choose e ∈ sp(W ). By above O is the orbit of the flag f0 defined (2.5). Since
e ∈ sp(W ), we have that σ(ew1, w2) + σ(w1, ew2) = 0 for any w1 and w2 in W . This implies that
if w1 ∈ Wj1 , w2 ∈ Wj2 , and λ(e) + j1 + 1 6= −(λ(e) + j2 + 1) then σ(w1, w2) = 0, where Wj is
the eigenspace of e corresponding to the eigenvalue λ(e) + j + 1. From this and the fact that the
form σ is nondegenerate it follows that the spectrum of e is symmetric with respect to 0 (for more
general statement see Remark 2.2 below) and σ defines nondegenerate pairing between Wj1 and
Wj2 with λ(e) + j1 +1 = −(λ(e) + j2 +1). Consequently, the subspaces W j with λ(e)+ j+1 > 0
are isotropic and W j2 = (W j1)∠ for λ(e) + j1 + 1 = −(λ(e) + j2 + 1). Thus, the flag f0 is
symplectic. �

Remark 2.1. Assume that W is a vector space equipped with a nondegenerate symmetric form
Q, and G = O(W ) or CO(W ), the orthogonal or conformal groups. The notion of isotropic and
coisotropic subspaces of W with respect to the form Q are defined similar to the symplectic case,
using orthogonal complements instead of skew-symmetric ones. Then by complete analogy with
Proposition 2.2 the orbits of flags compatible with some grading of g = so(W ) or cso(W ) consist
of flags f0 = {0 = Λ0 ⊂ Λ−1 ⊂ Λ−2 ⊂ . . . ⊂ Λ−µ = W} such that (Λ−i)

⊥ = Λi−µ for any

0 ≤ i ≤ µ , where L⊥ denotes the orthogonal complement of L with respect to Q. We will call
such flags orthogonal. A flag f0 is orthogonal if and only if the following tree conditions hold: any
Λi is either isotropic or coisotropic subspaces with respect to Q; a subspace belongs to the flag f0
together with its orthogonal complement with respect to the form Q; the number of appearances
of a subspace in the flag f0 is equal to the number of appearances of its orthogonal complement
in f0. In particular, if K = R and the form Q is sign definite then there is no orbits of flags
compatible with the grading except the trivial one 0 ⊂W . �

In the case of a general (not necessarily irreducible) representation of a semisimple (a reductive)
Lie group G, the flags compatible with the grading can be constructed by the following algorithm:

(1) take flags as in Proposition 2.1 in each irreducible component;
(2) shift degrees of subspace in each of these flags by arbitrary nonpositive numbers with the

only restriction that for at least one irreducible component there is no shift of degrees, i.e.
the minimal nontrivial subspace in the flag sitting in this component has degree −1.

Consider a flag which is a direct sum of the flags constructed in each irreducible component
(with shifted degrees as above): the degree i subspace of this flag is equal to the direct sum of
degree i subspaces of flags in each irreducible component. Obviously, the orbits of such flags are
compatible with respect to some grading of g. Moreover, they are the only orbits satisfying this
property. The above restriction on the shifts of degrees was done in order that the resulting flag
will satisfy our convention that the minimal nontrivial subspace in it has degree −1.



On geometry of curves of flags of constant type 9

Remark 2.2. Note that the spectrum of the grading element is symmetric with respect to 0
for any representation of the following simple Lie algebras A1, Bℓ, Cℓ, Dℓ for even ℓ, E7, E8,
F4, and G2 (in the proof Proposition 2.2 it was shown for the standard representation of the
symplectic Lie algebras Cℓ only). It follows from the fact that among all simple Lie algebras
these are the only algebras for which the map −1 belongs to the Weyl group of their root system
(see, for example,[25, p.71, Exercise 5]). Thus the highest and the lowest weights λ and ν of any
irreducible representation of these algebras satisfy ν = −λ, which togehter with formula (2.4)
implies the desired statement about the spectrum of the grading element. �

As an example of non-reductive group G consider the case of an affine subgroup Aff(W ) of
GL(W ) which consists of all elements of GL(W ) that preserve a fixed affine hyperplane A of W .
Obviously, the restriction of an element of Aff(W ) to the affine space A is an affine transformation
of A. We define an affine flag in an affine space A as a set {Ai}

−1
i=−µ of nested affine subspaces

of A, Ai ⊂ Ai−1. An affine flag is called complete if it consist affine subspaces of all possible
dimensions. A flag {Λi}

−1
i=−µ in W with Λ−1 ∩ A 6= ∅ defines the affine flag {Λi ∩ A}−1

i=−µ in A.

So, the equivalence problem for curves of flags with respect to the affine group Aff(W ) can be
reformulated as the equivalence problem for curves of affine flags with respect to the group of
affine transformations of A. As a particular case we have the classical equivalence problem for
curves in an affine space. In order to use our theory for non-degenerate curves in an affine space
A, i.e. curves which do not lie in any proper affine subspace of A, one has first to make the
refinement (osculation) procedure of section 6 below to reduce the original equivalence problem
to the equivalence problem of curves of complete affine flags. Finally, it is not hard to show that
for any orbit O of flags with respect to Aff(W ) the pair (Aff(W ),O) is compatible with respect
to the grading.

Remark 2.3. The treatment of the reductive case suggests a way for construction of orbits
compatible with respect to the grading in the case of arbitrary (not necessary reductive) graded
subalgebra g ⊂ gl(W ). Assume that a grading element e exists and also that e, as an endomor-
phism of W , is semisimple. Now assume that the spectrum of e is a disjoint union of the sets
{Aj}j∈Z such that if λ belongs to Aj and λ + i is an eigenvalue of e then λ + i ∈ Aj+i. As a
grading of W take the splitting such that the j subspace of this splitting is the the sum of the
eigenspaces of elements of Aj and as a flag f0 take the corresponding flag as in (2.5). Then by
the same arguments as in the proof of Proposition 2.1 we get that the orbit of f0 is compatible
with respect to the grading of g.

3. Compatibility with respect to differentiation and symbols of curves of flags

After clarifying what kind of orbits in flag varieties will be considered, let us clarify what kind
of curves in these orbits will be studied. Let

(3.1) t 7→ {0 = Λ0(t) ⊂ Λ−1(t) ⊂ Λ−2(t) ⊂ . . . ⊂ Λ−µ(t) =W}

be a smooth curve in O parametrized somehow.
Recall that for a given parametrization of the curve (3.1) the velocity d

dtΛi(t) at t of the curve

τ 7→ Λi(τ) can be naturally identified with an element of Hom
(
Λi(t),W/Λi(t)

)
. Namely, given

l ∈ Λi(t) take a smooth curve of vector ℓ(τ) satisfying the following two properties:

(1) ℓ(t) = l,
(2) ℓ(τ) ∈ Λi(τ) for any τ closed to t.

Note that the coset of ℓ′(t) in W/Λi(t) is independent of the choice of the curve ℓ satisfying the
properties (1) and (2) above. Then to d

dtΛi(t) we assign the element of Hom
(
Λi(t),W/Λi(t)

)
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which sends l ∈ Λi(t) to the coset of ℓ′(t) in W/Λi(t), where the curve ℓ satisfies properties (1)
and (2) above. It defines a linear map from the tangent space at Λi(t) to the Grassmannian of
k−i-dimensional subspace ofW to the space Hom

(
Λi(t),W/Λi(t)

)
. Simple counting of dimensions

shows that this map is an isomorphism and therefore it defines the required identification.

Assumption 2 (compatibility with respect to differentiation) We assume that for some (and
therefore any) parametrization of the curve (3.1) the velocity d

dtΛi(t) satisfies

d

dt
Λi(t) ∈ Hom

(
Λi(t),Λi−1(t)/Λi(t)

)
, ∀ − µ+ 1 ≤ i ≤ −1 and t.

In this case we say that the curve (3.1) is compatible with respect to differentiation. Equivalently,
a curve (3.1) is compatible with respect to differentiation if for every i, −µ + 1 ≤ i ≤ −1, if ℓ(t)
is a smooth curve of vectors such that ℓ(t) ∈ Λi(t) for any t, then ℓ′(t) ∈ Λi−1(t) for any t.
The condition of compatibility with respect to differentiation is natural through the refinement
procedure on curves of flags described in section 6 below.

Under Assumption 2, d
dtΛi(t) factors through a map δt from Λi(t)/Λi+1(t) to Λi−1(t)/Λi(t). In

other words, the map δt ∈ gl
(
grΛ(t)W

)
of degree −1 is well defined up to a multiplication by

a nonzero constant (recall that the reparametrization is allowed). Besides, since the curve (3.1)
belongs to the orbit of G then

(3.2) δt ∈
(
grΛ(t) g

)
−1
.

Now we define symbols of curves of flags at a point with respect to the group G. For this we
start with some notations. Fix f0 ∈ O such that f0 = {0 = Λ0 ⊂ Λ−1 ⊂ Λ−2 ⊂ . . . ⊂ Λ−µ = W}

and denote V = grf0 W , Vi = Λi/Λi+1. The grading V =

−1⊕

i=−µ

Vi defines also the natural filtration

(3.3) 0 ⊂ V −1 ⊂ V −2 ⊂ . . . ⊂ V −µ = V, V i =
−1⊕

j=i

Vj − µ ≤ i ≤ −1.

Further, fix an isomorphism J : V → W , satisfying conditions of Assumption 1. Let G be the
subgroup of GL(V ) such that G = {J−1 ◦ A ◦ J : A ∈ G} and g is its Lie algebra. Further, let

gl(V )k be the space of endomorphisms of V of degree k, gl(V )k =

−1⊕

i=−µ

Hom(Vi, Vi+k), and

(3.4) gk = g ∩ gl(V )k.

By Assumption 1 this defines the grading of the Lie algebra g: g =
⊕

k∈Z

gk. We define a

“big” bundle P̂ over the orbit O with the fiber P̂Λ over a point Λ̃ = {Λ̃i}
−1
i=−µ consisting of all

isomorphisms A : V →W such that

(1) A preserves the filtrations (3.3) and Λ̃ = {Λ̃i}
−1
i=−µ, i.e. A(V

i) = Λ̃i(t) for any −µ + 1 ≤
i ≤ −1;

(2) A conjugates the Lie groups G and G i.e. G = {A ◦X ◦ A−1 : X ∈ G}; .
(3) A ◦ J−1 ∈ G.
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Further, let G+ be the subgroup of G consisting of all elements of G preserving the filtration

(3.3). Obviously, the corresponding subalgebra g+ satisfies g+ =
⊕

k≥0

gk, where gk are as in (3.4).

It is easy to see that the bundle P̂ is a principle G+-bundle over the orbit O.

Remark 3.1. (Homogeneous spaces formulation) Note that P̂ can be identified with G via the

map A 7→ A ◦ J−1 and with G via the map A 7→ A−1J , A ∈ P̂ . Besides, under the latter identi-

fication O ∼= G/G+ and the fibers of P̂ are exactly the left cosets of G+ in G. The homogeneous
space O ∼= G/G+ is equipped with the natural G-invariant vector distribution D which is equal at
the “origin” of G/G+ (i.e. at the coset of identity of G/G+) to the equivalent classes of elements of
degree −1 of g under the identification of the tangent space to G/G+ at the “origin” with g/g+.
Then a curve in O is compatible with respect to differentiation if and only if it is an integral curve
of the distribution D. So, the equivalence problem for curves of flags compatible with respect to
differentiation can be reformulated as the equivalence problem for integral curves of the natural
G-invariant distribution in the homogeneous space G/G+. This point of view, restricted to the
parabolic homogeneous spaces, is considered in our recent preprint [16] �

Further, the group G+ acts naturally on g−1 as follows: A ∈ G+ sends x ∈ g−1 to the degree −1
component of (AdA)x. It induces the action on the projectivization Pg−1 in the obvious way. By

constructions, the set Mt = {K
(
A−1 ◦ δt ◦ A

)
−1

: A ∈ P̂Λ(t)}, where
(
A−1 ◦ δt ◦A

)
−1

denotes the

degree −1 component of A−1 ◦ δt ◦A is an orbit in Pg−1 with respect to aforementioned action of

G+. This orbit is called the symbol of the curve (3.1) at the point {Λi(t)}
−µ
i=−1 with respect to G.

Remark 3.2. Note that by definition the set of all possible symbols of curves of flags with respect
to a group G depends only on the group G as an abstract Lie group. In other words, it does not
depend on a particular embedding of G to GL(W ) for some W or, equivalently, on a particular
representation of G. �

In the sequel we will consider curves of flags with the constant symbol M, i.e. Mt = M for
any t. We also say that such curves of flags are of constant type M. If G (and therefore G) is
semisimple and G0 is the connected subgroup of G with subalgebra g0, then due to E.B. Vinberg
[38] the set of orbits with respect to the adjoint action of G0 on Pg−1 is finite. Note that if e is

the grading element of g and G̃0 is the stabilizer of e with respect to the adjoint action of G, then
the orbits of g−1 with respect to the natural action of G+ and the adjoint action of G̃0 coincide.

Besides G0 is just the connected component of the identity in G̃0. Therefore in the case when G
is semisimple the set of all possible symbols is finite and the condition of constancy of the symbol
holds in a neighborhood of a generic point of a curve. The same conclusions can be done if G is
reductive.

Any curve of flags that is G-equivalent to the curve t 7→ {J ◦ etδV i}i=0,−1...,−µ for some δ such
that Kδ ∈ M is called the flat curve with constant symbol M (here V0 = 0). The flat curve is an
essence the simplest curve among all curves with a given symbol.

Remark 3.3. If the group G coincides with its normalizer in GL(W ), then for all constructions
above it is not necessary to fix a map J : V 7→ W and the condition (3) in the definition of the

bundle P̂ can be omitted.

Example 3.1. Assume that dimW = n+ 1 and consider a curve of complete flags

t 7→ {0 ⊂ Λ−1(t) ⊂ Λ−2(t) ⊂ . . .Λ−(n+1)(t) =W},



12 Boris Doubrov and Igor Zelenko

compatible with respect to differentiation. A complete flag means that dimΛ−i = i. Assume also
that for any −n < i < −1 the velocity d

dtΛi(t) , as an element of Hom(Λi(t),Λi−1(t)/Λi(t)), is
onto Λi−1(t)/Λi(t). The symbol of such curve of complete flags (with respect to GL(W )) is a line
of degree −1 endomorphisms of the corresponding graded spaces, generated by an endomorphism
which has the matrix equal to a Jordan nilpotent block in some basis. The flat curve of the
maximal refinement is the curve of osculating subspaces of a rational normal curve in the projective
space PW . Recall that a rational normal curve in PW is a curve represented as t 7→ [1 : t : t2 :
. . . tn] in some homogeneous coordinates. �

As in the Tanaka theory for filtered structures on manifolds, we want to investigate the original
equivalence problem via the passage to the graded objects, that is to imitate the construction
of the bundle of canonical moving frames for any curve with a given constant symbol M via
the construction of such bundle for the flat curve with symbol M. The latter can be done in
purely algebraic way via the notion of the universal algebraic prolongation of the symbol which
is introduced in the next section.

4. Algebraic prolongation of the symbol and the main result

From now on we consider a curve of flags (3.1) with constant symbol M and we fix a line m in
g−1 representing the orbit M. Often the line m itself will be called the symbol of the curve (3.1)
as well and we will shortly say that the curve (3.1) has constant symbol m instead of constant
symbol with the representative m.

4.1. Algebraic prolongation of symbol. Set u−1 = m and define by induction in k

(4.1) uk := {X ∈ gk : [X, δ] ∈ uk−1, δ ∈ m}, k ≥ 0.

The space uk is called the kth algebraic prolongation of the line m. Then by construction u(m) =⊕

k≥−1

uk is a graded subalgebra of g. It can be shown that it is the largest graded subalgebra of

g such that its component corresponding to the negative degrees coincides with m. The algebra
u(m) is called the universal algebraic prolongation of the line m (of the symbol M). Obviously,
gl(V )k = 0 for all k ≥ µ. So uk = 0 for k ≥ µ.

The algebra u(m) has a very natural geometric meaning. Namely, let Γ be the curve t 7→
{etδV i}i=0,−1,...,−µ in the corresponding flag manifold Fk1,...,kµ−1

(V ) for some δ ∈ m. The group
GL(V ) acts naturally on this flag manifold, and thus, we can identify each element X ∈ gl(V )
with a vector field on Fk1,...,kµ−1

(V ). We define a symmetry algebra of Γ as a set of all elements
X ∈ g, such that the corresponding vector field on Fk1,...,kµ−1

(V ) is tangent to Γ.
As it is shown in [11], the symmetry algebra of Γ is the largest subalgebra of g that contains m

and lies in m+
∑

i≥0 gi. It is easy to see from (4.1) that u satisfies this property by construction.

Thus, we see that u(m) is exactly a symmetry algebra of the curve Γ. Besides, a flat curve with
symbol m is G-equivalent to the curve J(Γ). Therefore the algebra u(m) is conjugated to the
symmetry algebra of a flat curve with the constant symbol m.

4.2. Zero degree normalization. Let P̂ |Λ(·) be the union of all fibers of the bundle P̂ over our

curve (3.1), where P̂ is the bundle over the orbit O defined in section 3. Our goal is to assign to

the curve Λ(·) in a canonical way a fiber subbundle of P̂ |Λ(·) endowed with a canonical Ehresmann
connection, i.e. with a rank 1 distribution transversal to its fibers. We shall construct this bundle
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through the iterative construction of decreasing sequence of fiber subbundles of P̂ |Λ(·). Define a
map

(4.2) Πtk :

−1⊕

i=−µ

Hom
(
Vi,Λi(t)

)
→

−1⊕

i=−µ

Hom
(
Vi,Λi(t)/Λi+k+1(t)

)

as follows:

Πtk(A)|Vi ≡ A|Vi modΛi+k+1(t), ∀ − µ ≤ i ≤ −1.

Let P̂0 be the subbundle of P̂ |Λ(·) with the fiber P̂0(t) over the point {Λi(t)}
−1
i=−µ consisting of

all A ∈ P̂Λ(t) such that

m = K
(
A−1 ◦ δt ◦ A

)
−1

We also denote by P0 the bundle over our curve with the fiber P0(t) over the point {Λi(t)}
−1
i=−µ

equal to the image of the corresponding fiber P̂0(t) of the bundle P̂0 under the map Πt0. By
constructions P0 is a principal U0-bundle, where U0 is a subgroup of G consisting of all degree 0
elements B of G such that AdB(m) = m. The Lie algebra of U0 is equal to u0 defined by (4.1).

4.3. Quasi-principal subbundle of P̂0. Take a fiber subbundle P of P̂0 which is not necessary

a principle subbundle of P̂0. Let P (t) be the fiber of P over the point {Λi(t)}
−µ
i=−1. Take ψ ∈ P (t).

The tangent space Tψ
(
P (t)

)
to the fiber P (t) at a point ψ can be identified with a subspace of

gl(V ). Indeed, define the following g+-valued 1-form ω on P : to any vector X belonging to
Tψ
(
P (t)

)
we assign an element ω(ψ)(X) of g+ as follows: if s → ψ(s) is a smooth curve in P (t)

such that ψ(0) = ψ and ψ′(0) = X then let

(4.3) ω(ψ)(X) = ψ−1 ◦X,

where in the last formula by ψ we mean the isomorphism between V and W . Note that the linear
map ω(ψ) : Tψ

(
P (t)

)
7→ g+ is injective. Set

(4.4) Lψ := ω(Tψ
(
P (t)

)
.

If P is a principle bundle over our curve, which is a reduction of the bundle P̂0, then the space
Lψ is independent of ψ and equal to the Lie algebra of the structure group of the bundle P . For

our purposes here we need to consider more general class of fiber subbundles of P̂0. To define this
class recall that the filtration given by the subspaces V i, −µ ≤ i ≤ −1, defined by (3.3), induces a
natural filtration on gl(V ) and, therefore, on the subspace Lψ. The corresponding graded subspace
Lψ is called a symbol of the bundle P at a point ψ. Under the natural identification of spaces
gr gl(V ) with gl(gr V ), described in the beginning of section 2, one has that grLψ is a subspace of
gl(gr V ). Besides V is a graded space by definition, i.e V ∼ gr V . Therefore, grLψ is a subspace
of gl(V ).

Definition 4.2. We say that the bundle P has a constant symbol s if its symbols at different

points coincide with s. In this case we call P the quasi-principle subbundle of the bundle P̂0 with
symbol s.
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4.4. Structure function associated with Ehresmann connection. Further, assume that a

fiber subbundle P of P̂0 is endowed with an Ehresmann connection, i.e. with a rank 1 distribution
H transversal to its fibers. A parametrized smooth curve t 7→ ψ(t) in P is called a moving frame
of the pair (P,H) if the following two conditions holds:

(1) the curve t 7→ ψ(t) is tangent to the distribution H at any point;
(2) there exists δ ∈ m such that

(
ψ−1 ◦ ψ′(t)

)
−1

= δ for any t.

A pair (P,H) will be called a bundle of moving frames.
Let C1 = Hom(m, g). Also, given A ∈ gl(V ) denote by (A)k the component of degree k of

A (w.r.t. the splitting gl(V ) =
⊕

k∈Z

gl(V )k). Then to any bundle P with the fixed Ehresmann

connection H one can assign the function c : P → C1 as follows: Given ψ ∈ P (t) and δ ∈ m

let ψ(τ) be a curve in P tangent to the Ehresmann connection H such that ψ(t) = ψ and(
ψ−1 ◦ ψ′(t)

)
−1

= δ. Then set

(4.5) c(ψ)(δ) := ψ−1(t) ◦ ψ′(t).

Note that the righthand side of (4.5) does not depend on the choice of the curve ψ(tau) with the
aforementioned properties. The function c is called the structure function of the pair the bundle
of moving frames (P,H).

Remark 4.1. Under the identification of the bundle P̂ with the Lie group G given in Remark 3.1
one can describe the structure function c(ψ) in terms of the left-invariant Maurer-Cartan form Ω
of G by the following formula:

(4.6) c(ψ)
((

Ω(X)
)
−1

)
= Ω(ψ)(X) ∀ψ ∈ P and X ∈ H(ψ),

where
(
Ω(X)

)
−1

is the degree −1 component of Ω(X) with respect to the grading on g. Note also

that the g+-valued 1-form ω defined by (4.3) is nothing but the restriction of the left-invariant
Maurer-Cartan form to the fibers of the bundle P . �

Note that

(4.7) C1 =
⊕

k∈Z

C1
k ,

where C1
k = Hom(m, gk−1). Let C1

+ :=
⊕

k>0

C1
k , ck be the kth component of c w.r.t. the splitting

(4.7), and c+ =
∑

k>00 ck. We say that c+ is the positive part of the structure function of c. Note
that by the constructions ck = 0 for k < 0 and c0(δ) = δ for every δ ∈ m.

Further, let ∂ : g → C1 be the operator given by the following formula:

(4.8) ∂x(δ) = [δ, x], ∀x ∈ g, δ ∈ m.

Remark 4.2. As a matter of fact, one can look on g and C1 as on the spaces of 0-cochains and 1-
cochains, respectively, on m with values in g. Moreover, the operator ∂ is exactly the coboundary
operator associated with the adjoint representation ad : m → gl(g).

Recall also that the group G+ acts naturally on the space C1 as follows:

(4.9) (A.c)(δ) = (AdA)c
((

(AdA−1)δ
)
−1

)
, a ∈ G+, δ ∈ m,
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where
(
(AdA−1)δ

)
−1

is a degree −1 component of (AdA−1)δ with respect to the grading of g.

Obviously, this action restricts to the action on C1
+.

Finally, let u+(m) =
⊕

k≥0

uk and let U+(m) be the subgroup of the group of symmetries of the

curve t 7→ {etδV i}i=−1,...,−µ preserving the filtration {V i}−1
i=−µ. Note that u+(m) is the Lie algebra

of U+(m).
A subspace N complimentary to the space Hom(m, u+(m)) + (Im ∂ ∩ C1

+) in C1
+ is called a

normalization condition. We say that an Ehresmann connection H on a subundle P of P̃0 satisfies
the normalization condition N if the positive part of the structure function of the pair (P,H)
takes values in N .

Our main theorem can be formulated as follows:

Theorem 4.1. Fix a normalization condition N . Then for a curve of flags (3.1) with constant
symbol with representative m there exists a unique quasi-principal subbundle P of the bundle

P̂0 with symbol u+(m) and a unique Ehresmann connection H on it such that this connection
satisfies the normalization conditions N . If, in addition, the space N is invariant with respect to
the natural action of the subgroup U+(m) on C1

+, then the bundle P is the principal bundle with
the structure group U+(m).

The pair (P,H) from the previous theorem is called the bundle of moving frames canonically
associated with the curve (3.1) via the normalization condition N and the Ehresmann connection
H is called the canonical Ehresmann connecton on P associated with the curve (3.1) via the
normalization condition N .

Theorem 4.1 is proved in the next section. As a direct consequence, we have that two curves

{Λi}
−1
i=−µ and {Λ̃i}

−1
i=−µ of flags with constant symbol m are equivalent through A ∈ G if and

only if for any moving frame t 7→ ψ(t) of the pair (the bundle P , the Ehresmann connection H)
canonically associated with the curve {Λi}

−1
i=−µ via N the curve t 7→ A ◦ψ(t) is the moving frame

of the pair (the bundle P̃ , the Ehresmann connection H̃) canonically associated with the curve

{Λ̃i}
−1
i=−µ via N .

Remark 4.3. Note that in the case when the normalization condition N is invariant with respect
to the natural action of the subgroup U+(m) on C1

+, the canonical Ehresmann connection is not
a principal connection on the corresponding U+(m)− principal bundle in general. It is a principal
connection if the first algebraic prolongation u1 is equal to 0.

4.5. On geometry of parametrized curves of flags. Similar results can be obtained for
equivalence problem for parametrized curves of flags with respect to the action of group G. There
are only three modifications. The first modification is that the symbol of a parametrized curve is
an orbit of an element (and not a line) in g−1 with respect to the adjoint action of G+. Then we
fix a representative δ of this orbit. The second modification is in the definition of the algebra u0
and of the bundle P̂0. Let δ ∈ g−1. Set u−1 = Kδ and

(4.10) u0 := {X ∈ g0 : [X, δ] = 0}.

The spaces uk for k > 0 are defined recursively, using (4.1). The third modification is in the

definition of the bundle P̂0 (the zero degree reduction of the bundle P |Λ(·)). Here P̂0 should be

the subbundle of P̂ |Λ(·) with the fiber P̂0(t) over the point {Λi(t)}
−1
i=−µ consisting of all A ∈ P̂Λ(t)

such that
δ =

(
A−1 ◦ δt ◦ A

)
−1
.
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With these modifications all other constructions and Theorem 4.1 are valid.

4.6. On geometry of submanifolds of constant type in flag varieties. Similar theory can
be constructed for equivalence problem for submanifolds of dimension l of O with respect to the
action of the group G. Again we consider submanifolds compatible with respect to differentiation.
A submanifold is compatible with respect to differentiation if any smooth curve on it is compatible
with respect to differentiation. A symbol of an l-dimensional submanifold S ⊂ O at a point Λ
is an orbit of an l-dimensional abelian subalgebra m (of g) belonging to g−1 with respect to the
natural action of G+ on l-dimensional subspaces of of g−1. This subalgebra can be taken as a

linear span of all elements of type
(
A−1 ◦ δt ◦ A

)
−1

, where A is a fixed element of the fiber P̃Λ

and δt are elements of grΛW corresponding to all possible smooth curves in S, passing through
Λ. Note that the word ”abelian” can be removed, because any subalgebra of g that belongs to
g−1 must be abelian.

Further, one can define the bundle P̂0 over the submanifold S as in subsection 4.2, the notion

of a quasi-principal subbundle of the bundle P̂0 as in subsection 4.3, an Ehresmann connection
of P i.e. a rank l distribution H transversal to its fibers, and a moving frame of the pair (P,H)
as in subsection 4.4. The structure function of the (P,H) can be defined by the relation (4.6).
Note that since m is abelian, the structure function at any point ψ ∈ P takes its values in the
space Z1 of 1-cocycles (with respect to the coboundary operator associated with the adjoint
representation ad : m → gl(g), see Remark 4.2). Therefore, to get the generalization of Theorem
4.1 to submanifolds with a constant symbol in flag varieties (with literally the same proof as in
section 5 below) one has to replace C1

+ by Z1
+ in the formulation of this theorem, where Z1

+ is the
subspace of cocycles in C1

+. It is clear that in the case of curves Z1 = C1.
Finally note that one can consider more general situation of filtered submanifolds of constant

type in flag variety, which is encoded by fixing a graded subalgebra in a negative part of g (not
necessary belonging to g−1. This point of view is considered in the recent preprint [12].

5. Proof of Theorem 4.1

We construct a decreasing sequence of fiber subbundles of the bundle P̂0 by induction.
First let us introduce some notations. If N is the space from the formulation of Theorem 4.1,

denote

(5.1) Nk = N ∩C1
k , k ∈ N

Then obviously N =
⊕

k∈N

Nk.

Note also that there is a natural mappings prk : C1
k→Hom(m, gk−1/uk−1) such that for any

ck ∈ C1
k and δ ∈ m we set prk(ck)(δ) to be the equivalence class of ck(δ) in gk−1/uk−1. We assume

that

(5.2) N k = prk(Nk).

Further, let gk be as in (3.4). Then the image of the restriction of the operator ∂ to the subspace
gk belongs to C1

k . We denote this restriction by ∂k, ∂k : gk → C1
k . Finally, let

(5.3) ∂̄k = prk ◦ ∂k.

Note that by constructions the space uk defined by (4.1) is nothing but the kernel of the map ∂̄k,
uk = ker ∂̄k.
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5.1. First degree normalization. First take some Ehresmann connection on the bundle P̂0 and

let c1 be the degree 1 component of the structure function of the bundle P̂0 with this Ehresmann

connection. If one takes another Ehresmann connection on P̂0 and the corresponding degree 1

component c̃1 of the structure function of P̂0 with this new Ehresmann connection, then

(5.4) c̃1(ψ)(δ) − c1(ψ)(δ) ∈ u0 ∀ψ ∈ P̂0 and δ ∈ m

In other words, the map c̄1 : P̂0 → Hom(m, g0/u0), defined by c̄1(ψ) = pr1 ◦ c1(ψ), is independent

of a choice of an Ehresmann connection on P̃0.
Now take ψ1 and ψ2 from the same fiber P̂0(t) such that Πt0(ψ1) = Πt0(ψ2) and study how

c̄1(ψ1) and c̄1(ψ2) are related. As before given A ∈ gl(V ) denote by (A)k the component of degree

k of A (w.r.t. the splitting gl(V ) =
⊕

k∈Z

gl(V )k). Set

(5.5) f1ψ1,ψ2
:=
(
ψ−1
1 ◦ ψ2

)
1
.

It is not hard to see that fϕ̂,ϕ̂1
∈ g1, where g1 is defined by (3.4). In opposite direction, for fixed

ψ1 ∈ P̂0(t) and any f ∈ g1 there exists ψ2 ∈ P̂0(t) such that Πt0(ψ1) = Πt0(ψ2) and f = f1ψ1,ψ2
.

Lemma 5.1. The following identity holds

(5.6) c̄1(ψ2) = c̄1(ψ1) + ∂̄1(f
1
ψ1,ψ2

).

Proof. First note that

(5.7) f1ψ1,ψ2
=
(
Πt0(ψ1)

)−1
◦
(
Πt1(ψ2)−Πt1(ψ1)

)
.

or, equivalently,

(5.8) ψ2(v) = ψ1(v) + Πt0(ψ1) ◦ fψ1,ψ2
(v) modΛi+2(t) ∀v ∈ Vi.

Let ψi(τ), i = 1, 2 be a section of P̂0 such that ψi(t) = ψi and

(5.9)
(
ψ−1
i ◦ ψ′

i(t)
)
−1

= δ

Then one can write the identity analogous to (5.8) for any τ . Differentiating it at τ = t and using
(5.9) again we get

(5.10) ψ′
2(t)(v) = ψ′

1(t)(v) + Πt0(ψ1) ◦ δ ◦ f
1
ψ1,ψ2

(v) modΛi+1(t) ∀v ∈ Vi.

Applying ψ−1
2 to both sides and using (5.9) again one gets

(5.11) ψ−1
2 ◦ ψ′

2(t)(v) = ψ−1
2 ◦ ψ′

1(t)(v) + δ ◦ f1ψ1,ψ2
(v) modΛi+1(t) ∀v ∈ Vi.

Representing ψ−1
2 ◦ ψ′

1(t) as ψ
−1
2 ◦ ψ1 ◦ ψ

−1
1 ◦ ψ′

1(t) and taking into account that

ψ−1
2 ◦ ψ1 = Id− f1ψ1,ψ2

+ operators of degree ≥ 2,

ψ−1
1 ◦ ψ′

1(t) ≡ δ + c̄1(ψ1) + operators of degree ≥ 1 mod u0.

we get that
(
ψ−1
2 ◦ ψ′

1(t)
)
0
= c̄1(ψ1)− f1ψ1,ψ2

◦ δ mod u0.

Finally, comparing 0-degree components of identity (5.11) we get the required identity (5.6). �
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Now take the space N1 as in (5.1). By our assumptions on N we have

(5.12) Hom(m, g0/u0) = Im ∂̄1 ⊕N 1.

Let P̂1 be the subbundle of the bundle P̂0 consisting of all ψ ∈ P̂0 such that c̄1(ψ) ∈ N 1. From

formula (5.6) and splitting (5.12) it follows that the bundle P̂1 is not empty. Moreover, ψ1 and

ψ2 from the same fiber P̂1(t) satisfy Πt0(ψ1) = Πt0(ψ2) if and only if f1ψ1,ψ2
∈ ker ∂̄1 = u1.

We also denote by P1 the bundle over our curve with the fiber P1(t) over the point {Λi(t)}
−1
i=−µ

equal to the image of the corresponding fiber P̂1(t) of the bundle P̂1 under the map Πt1. By above
P1 can be considered as an affine bundle over P0 such that its fibers are affine spaces over the
vector space u1. The projection of the bundle is induced by the maps Πt0.

Note that in the constructions of the bundles P̂1 and P1 we did not use the whole information
on the space N1, but on its image under the (non-injective) map pr1 only. So, from the knowledge
of the whole space N1 we should get additional restrictions on the bundle of moving frame we are
looking for. Indeed, by our assumptions on N we have the following splitting

(5.13) (pr1)
−1(N 1) = N1 ⊕Hom(m, u0).

From this splitting and relation (5.4) it follows that one can choose an Ehresmann connection

on P̂1 such that the degree 1 component c1 of the structure equation of P̂1 with this Ehresmann

connection belongs to N1. Moreover, any such Ehresmann connection on P̂1 induces the unique
Ehresmann connection on the bundle P0.

5.2. Higher degree normalizations: the induction step. Given i > 0 assume that there

exists a unique series of bundles P̂k, 1 ≤ k ≤ i over our curve such that P̂0 is as above and for

each 1 ≤ k ≤ i the bundle P̂k satisfies the following properties:

(A1) P̂k is a subbundle of P̂k−1;

(A2) if c is the structure function of P̂ k (endowed with some Ehresmann connection) and cl is
its degree l component, then

(5.14) prl ◦ cl ∈ N l ∀ 1 ≤ l ≤ k

(A3) if Pk, 0 ≤ k ≤ i, is the bundle over our curve with the fiber Pk(t) over the point {Λj(t)}
−1
j=−µ

equal to the image of the corresponding fiber P̂k(t) of the bundle P̂k under the map Πtk,
then Pk can be considered as an affine bundle over Pk−1 such that its fibers are affine
spaces over the vector space uk. The projection of this bundle is induced by the maps
Πtk−1;

(A4) there exists an Ehresmann connection on the bundle P̂k such that the structure function
c satisfies

(5.15) cl ∈ Nl ∀ 1 ≤ l ≤ k.

Moreover, any such Ehresmann connection on P̂k induces the unique Ehresmann connec-
tion on the bundle Pk−1.

Now let us construct the subbundle P̂i+1 of P̂i, corresponding to the normalization of degree

i+ 1. For this first take some Ehresmann connection on P̂i satisfying (5.15) (with k = i) and let

ci+1 be the degree i+1 component of the structure function of the bundle P̂i with this Ehresmann

connection. If one takes another Ehresmann connection on P̂i satisfying (5.15) (with k = i) and
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the corresponding degree i + 1 component c̃i+1 of the structure function of P̂i with this new
Ehresmann connection, then

(5.16) c̃i+1(ψ)(δ) − ci+1(ψ)(δ) ∈ ui ∀ψ ∈ P̂i and δ ∈ m.

In other words, the map c̄i+1 : P̂i → Hom(m, gi/ui), defined by c̄i+1(ψ) = pri+1 ◦ ci+1(ψ), is

independent of a choice of an Ehresmann connection on P̃i.

Now take ψ1 and ψ2 from the same fiber P̂i(t) of the bundle Pi such that Πti(ψ1) = Πti(ψ2) and
study how c̄i+1(ψ1) and c̄i+1(ψ2) are related. Set

(5.17) f i+1
ψ1,ψ2

:=
(
ψ−1
1 ◦ ψ2

)
i+1
.

It is not hard to see that fϕ̂,ϕ̂i+1
∈ gi+1, where gi+1 is defined by (3.4). In opposite direction, for

fixed ψ1 ∈ P̂i(t) and any f ∈ gi+1 there exists ψ2 ∈ P̂i(t) such that Πti(ψ1) = Πti(ψ2) andf = f1ψ1,ψ2
.

By the complete analogy with the proof of Lemma 5.1 one gets the following identity

(5.18) c̄i+1(ψ2) = c̄i+1(ψ1) + ∂̄i+1(f
i+1
ψ1,ψ2

).

Further take the space Ni+1 as in (5.1). By our assumptions on N we have

(5.19) Hom(m, gi/ui) = Im ∂̄i+1 ⊕N i+1.

Let P̂i+1 be the subbundle of the bundle P̂i consisting of all ψ ∈ P̂i such that c̄i+1(ψ) ∈ N i+1.

From formula (5.18) and splitting (5.19) it follows that the P̂i+1 is not empty. Moreover, ψ1 and

ψ2 from to the same fiber P̂i+1(t) satisfy Πti(ψ1) = Πti(ψ2) if and only if f i+1
ψ1,ψ2

∈ ker ∂̄i = ui+1.

We also denote by Pi+1 the bundle over our curve with the fiber Pi+1(t) over the point

{Λj(t)}
−1
j=−µ equal to the image of the corresponding fiber P̂i+1(t) of the bundle P̂i+1 under

the map Πti+1. By above Pi+1 can be considered as an affine bundle over Pi such that its fibers
are affine spaces over the vector space ui+1. The projection of the bundle is induced by the maps

Πti. So, the bundles P̂i+1 and Pi+1 satisfy conditions (A1)-(A3) above (for k = i+ 1).

To construct an Ehresmann connection P̂i+1, satisfying condition (A4), consider the splitting

(5.20) (pri+1)
−1(N i+1) = Ni+1 ⊕Hom(m, ui).

From this splitting and relation (5.16) it follows that one can choose an Ehresmann connection

on P̂i+1 such that the degree i+1 component ci+1 of the structure equation of P̂i+1 with this

Ehresmann connection belongs to Ni+1. Moreover, any such Ehresmann connection on P̂i+1

induces the unique Ehresmann connection on the bundle Pi. This completes the induction step.
Since uk = 0 for k ≥ µ and the maps Πti are identities for i ≥ µ − 1, the sequence of bundles

{P̂i}i≥0 stabilizes from i = µ − 1, i.e. P̂i = P̂i+1 for i ≥ µ − 1, and also Pi = P̂i for i ≥ µ − 1.

Moreover, the bundle Pµ (= P̂µ) is endowed with the unique Ehresmann connection such that its
structure function satisfies (5.15) with k = µ.

We claim that the bundle Pµ with the constructed Ehresmann connection is the bundle we are
looking for in Theorem 4.1. By construction the positive part of the structure function of Pµ takes
values in N . Let us check that the bundle Pµ has symbol u+(m). By the previous constructions
we have the sequence of the bundles {Pi}

µ
i=0 such that Pi+1 is a bundle over Pi. Hence, Pµ can

be considered as a bundle over each Pi with 0 ≤ i < µ. Take ψ ∈ Pµ and consider the fibers of
Pµ considered as a bundle of Pi for each 0 ≤ i < µ. The tangent spaces to this fibers at ψ define
the filtration on TψPµ(t). Let ω and Lψ be as in (4.3) and (4.4) respectively. The images of the
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spaces of the filtration on TψPµ(t) under the map ω(ψ) define the filtration on the space Lψ . By
our constructions this filtration coincides with the filtration induced on Lψ from gl(V ). Moreover,
by property (A3) the graded space grLψ of Lψ coincides with u+(m). In other words, the bundle
Pµ has constant symbol u+(m). So, Pµ satisfies all conditions of our theorem. Moreover, all
conditions we imposed on the structure function of Pµ during the proof were necessary, which
proves the uniqueness of the constructed bundle and completes the proof of the first part of our
theorem.

Note that by our constructions the bundle Pµ (without a specified Ehresmann connection on it)

can be uniquely determined by the subspace N =
⊕

k>0

Nk of Hom
(
m, g+/u+(m)

)
: the bundle Pµ

consists of all ψ ∈ P̂0 such that c̄i(ψ) ∈ N i for all 1 ≤ i ≤ µ. The natural action of U+(m) on C1
+

defined by (4.9) induces the action on Hom
(
m, g+/u+(m)

)
. Now assume that N is invariant with

respect to the action of U+(m) on C1
+. Then the corresponding space N is invariant with respect

to the action of U+(m) on Hom
(
m, g+/u+(m)

)
. This implies that if ψ ∈ Pµ then ψ ◦ B ∈ Pµ for

any B ∈ U+(m), which implies that the bundle Pµ is a principal U+(m)-bundle. This completes
the proof of the second part of our theorem.

6. Refinement procedure

Here we explain the origin of the condition of compatibility with respect to differentiation via
the so-called refinement procedure in the cases of the standard representations of the classical
groups and the case G = Aff(W ).

6.1. The case G = SL(W ), GL(W ), and Aff(W ). The constructions of this subsection work
for any group G such that any orbit O of flags is compatible with respect to some grading of
the corresponding Lie algebra g. Starting with a curve of flags (3.1) compatible with respect
to differentiation, we can build a finer curve of flags compatible with respect to differentiation.
For this first given a curve t 7→ L(t) of subspaces of W (parametrized somehow), i.e. a curve in
a certain Grassmannian of W , denote by C(L) the canonical bundle over L: the fiber of C(L)
over the point L(t) is the vector space L(t). Let Γ(L) be the space of all sections of C(L) . Set

L(0)(t) := L(t) and define inductively

L(j)(t) = span{
dk

dτk
ℓ(t) : ℓ ∈ Γ(L), 0 ≤ k ≤ j}

for j ≥ 0. The space L(j)(t) is called the jth extension or the jth osculating subspace of the curve
L at the point t. The compatibility of the curve of flags (3.1) with respect to differentiation is

equivalent to the condition Λ
(1)
i (t) ⊂ Λi−1(t) for any −µ+ 1 ≤ i ≤ −1 and for any t.

Further given a subspace L in W denote by L⊥ the annihilator of L in the dual space W ∗:

L⊥ = {p ∈ W ∗ : 〈p, v〉 = 0, ∀ v ∈ L}. Set L(−j)(t) =
((
L(t)⊥)(j)

)⊥
for j ≥ 0. For any curve

t 7→ L(t) in a Grassmannian we get the nondecreasing filtration {L(j)(t)}j∈Z of W . If dimensions

L(j)(t) are independent of t for any j ≥ 0, then the subspaces L(j)(t), j < 0, can be also defined

inductively by L(j)(t) = Ker ddtL
(j+1)(t).

Now take a germ of the curve (3.1) at a point t and assume that it is compatible with respect
to differentiation. Assume that there exists a neighborhood U of t such that one of the following
assumptions hold:

(B1) For τ ∈ U the dimension of subspaces
(
Λ
(1)
i (τ)

)
is constant, the subspace Λ

(1)
i (τ) is strictly

between Λi(t) and Λi−1(t), and one has the inclusion Λ
(2)
i (τ) ⊂ Λi−1(τ);
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(B2) For τ ∈ U the dimension of the space
(
Λ
(−1)
i (τ)

)
is constant, the subspace Λ

(−1)
i (τ) is

strictly between Λi+1(t) and Λi(t), and one has the inclusion Λi+1(τ) ⊂ Λ
(−2)
i (τ) (or,

equivalently, Λ
(1)
i+1(τ) ⊂ Λ

(−1)
i (τ))

Note that for i = µ + 1 the condition Λ
(2)
i (τ) ⊂ Λi−1(τ) holds automatically in (B1) and for

i = −1 the condition Λi+1(τ) ⊂ Λ
(−2)
i (τ) holds automatically in (B2).

If assumption (B1) holds, then we can obtain a new germ of a curve of flags by inserting in (3.1)

the space Λ
(1)
i (τ) between Λi(τ) and Λi−1(τ) for any τ ∈ U . We call such operation elementary

refinement of the first kind. In the same way if assumption (B2) holds, then we can obtain a new

germ of a curve of flag by inserting in (3.1) the space Λ
(−1)
i (τ) between Λi+1(τ) and Λi(τ) for

any τ ∈ U . We call such operation elementary refinement of the second kind. In both cases we
renumber the indices of subspaces in the obtained flags from −1 to −µ− 1. The germ of a curve
of flags t is called a refinement of the germ of the curve (3.1) at t, if it can be obtained from this
germ by a sequence of elementary refinements (either of the first or the second kind).

By construction any refinement preserves the property of compatibility with respect to dif-
ferentiation. Besides, if two curves are GL(W )-equivalent, then the corresponding refinements
are GL(W )-equivalent. Further, the refinement procedure defines a partial order on the set of all
germs of smooth curves of flags inW , which also induces a partial order on the set of all refinements
of the germ of the curve (3.1) at t. In general a curve of flags admits several different maximal
refinements with respect to this partial order. Finally, for a curve t 7→ L(t) in a Grassmannian of
W consider the corresponding trivial curve of flags t 7→ {0 ⊂ L(t) ⊂W}. Then it is easy to show
that in a generic point the germ of such curve of flags has the unique maximal refinement, which is
exactly the curve t 7→ {L(j)(t)}j∈Z of all osculating subspaces of the curve L (truncated and renum-

bered in an obvious way). The corresponding map δt ∈
⊕

j∈Z

Hom
(
Lj(t)/Lj−1(t), Lj+1(t)/Lj(t)

)

satisfies the following properties: the restriction of δt on Lj(t)/Lj−1(t) is surjective for j < 0
and δt sends (Lj(t)/Lj−1(t) onto Lj+1(t)/Lj(t). for j ≥ 0. Hence the symbol of the curve

t 7→ {L(j)(t)}j∈Z satisfies similar properties. Note that the symbol of a curve of flags at a given
point is in essence the tangent line to a curve. The symbol of the refined curve of flags contains
an important information about the jet space of higher order of the original curve. So, fixing the
symbol of refined curve of flag instead of the original one, we fix more subtle classes of curves
and our prolongation procedure is more accurate: the dimension of the algebraic prolongation
of the symbol of the refined curve (which in turn is equal the dimension of the canonical bundle
of moving frames for the refined curve) might be significantly smaller than the dimension of the
corresponding objects for the original curve.

Example 6.1. (Non-degenerate curve in projective space) Consider a curve t 7→ L(t) in a projec-
tive space PW of an n+1-dimensional vector spaceW , i.e. a curve of lines inW . Without making
a refinement procedure the symbol at a generic point of a curve, which does not degenerate to
a point, is a line of degree −1 endomorphisms of the corresponding graded space having rank 1
and the flat curve corresponds to a curve of lines in W depending linearly on a parameter ( or ,
equivalently, it is a projective line linearly embedded to PW ). Obviously, the universal algebraic
prolongation coincides with the subalgebra of gl(W ) preserving the plane, generated by the lines
of a flat curve. Now consider so-called non-degenerate curves in PW , i.e. curves which do not lie
in any proper subspace of PW . For such curve the nth osculating space at a generic point t is
equal to the whole W , L(n)(t) = W . The maximal refinement of the curve t 7→ {0 ⊂ L(t) ⊂ W}
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is the curve of complete flags

t 7→ {0 ⊂ L(t) ⊂ L(1)(t) ⊂ . . . L(n)(t) =W},

as in Example 3.1 above. As already mentioned there the symbol of such curve is a line of degree
−1 endomorphisms of the corresponding graded spaces, generated by an endomorphism which
has the matrix equal to a Jordan nilpotent block in some basis and the curve in projective space
corresponding to a flat curve of complete flags is the curve of osculating subspaces of a rational
normal curve in the projective space PW . Finally, from Theorem 8.1 below (see also the sentence
after it) it follows that the universal algebraic prolongation of this symbol is isomorphic to gl2
(or sl2 in the case G = SL(W )), which also follows from the well-known fact that the algebra
of infinitesimal symmetries of a rational normal curve is isomorphic to gl2 (or sl2 in the case
G = SL(W )). In this case one can show that the normalization condition can be chosen to be
invariant with respect to the natural action of the subgroup U+(m) (which is isomorphic in this
case to the group the upper-triangular matrices) on C1

+ and in this way the classical complete
system of invariants of curves in projective spaces, the Wilczynski invariants, can be constructed
(see [16] or [10] for the detail). �

6.2. The case G = Sp(W ) or G = CSp(W ). Here W is equipped with a symplectic form σ. In
this case, by Proposition 2.2 our theory works for curves of symplectic flags as in Definition 2.1.
Given a curve t 7→ L(t) in a Grassmannian of W denote by t 7→ L∠(t) the curve of subspace of
W such that the space L∠(t) is the skew-symmetric complement of the space L(t) with respect to
the symplectic form σ. Starting with a germ of a curve (3.1) of symplectic flags compatible with
respect to differentiation and applying an elementary refinement as in the previous subsection,
we obtain non-symplectic flags in general. Therefore we need to modify the definition of an
elementary refinement appropriately. Such modification is based on the following simple fact: if
t 7→ L(t) is a curve of coisotropic or isotropic subspaces of W then (L(1))∠(t) = (L∠)(−1)(t). We
say that a refinement of a curve of symplectic flag t 7→ {Λi(t)}i∈Z is an elementary symplectic
refinement in one of the following 2 cases:

(C1) If condition (B1) holds with subspaces Λi(τ) being coisotropic, then an elementary sym-

plectic refinement of the first kind consists of inserting Λ
(1)
i (τ) between Λi(τ) and Λi−1(τ)

and inserting (Λ∠

i )
(−1)(τ) between (Λi−1)

∠(τ) and (Λi)
∠(τ) for any τ ∈ U ;

(C2) If condition (B2) holds with subspaces Λi+1(τ) being coisotropic, then an elementary

symplectic refinement of the second kind consists of inserting Λ
(−1)
i (τ) between Λi+1(τ)

and Λi(τ) and inserting (Λ∠

i )
(1)(τ) between (Λi)

∠(τ) and (Λi+1)
∠(τ) for any τ ∈ U ;

(C3) If Λi(τ) is isotropic and Λi−1(τ) is coisotropic (which implies by assumptions that Λi−1(τ) =
Λ∠

i (τ), then assume that (Λi)
(1)(τ) is isotropic, of constant dimension in U , Λi(τ) is strictly

contained in (Λi)
(1)(τ), and Λ

(2)
i ⊂ Λ

(−1)
i−1 (τ). An elementary symplectic refinement of the

third kind consists of inserting Λ1
i (τ) and Λ

(−1)
i−1 (τ) between Λi(τ) and Λi−1(τ) (if Λ1

i (τ)

and Λ
(−1)
i−1 (τ) coincide they count as a one space).

By analogy with the previous subsection one can define a symplectic refinement as a composi-
tion of elementary symplectic refinement. By construction the resulting flag under a symplectic
refinement is symplectic and compatible with respect to diferentiation. Also the refinement pro-
cedure defines a partial order on the set of all germs of smooth curves of symplectic flags in W .
In general, similar to the previous subsection, a curve of symplectic flags admits several different
maximal symplectic refinements with respect to this partial order. There is a unique maximal
refinement for the germs at generic points of the following two types of curves of symplectic flags:
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t 7→ {0 ⊂ L(t) ⊂W}, where spaces L(t) are Lagrangian, i.e. isotropic of dimension 1
2 dimW , and

t 7→ {0 ⊂ L(t) ⊂ L∠(t) ⊂ W}, where spaces L(t) are proper isotropic. In the first cases we can
use elementary refinement of the first kind only and the maximal refinement coincides with the
flag associated with a curve in a Lagrangian Grassmannian, introduced in [41],[42]. In the second
case one can use elementary refinements of the first and third kinds only.

6.3. The case G = O(W ) or G = CO(W ). HereW is equipped with a non-degenerate symmetric
form Q. The elementary refinement are defined in completely the same way as in the symplectic
case: isotropic and coisotropic subspaces are taken with respect to the form Q and instead of
skew-symmetric complement one takes orthogonal complements with respect to Q.

7. Classification of symbols of curves of flags with respect to classical groups

We describe all symbols of curves of flags with respect to GL(W ) (equivalently, SL(W )) ,
Sp(W ) (equivalently, CSp(W )), and O(W ) (equivalently, CO(W ). According to Remark 3.2 it
can be used for any representation of classical groups.

7.1. The case of GL(W )(SL(W )). Let δ1 and δ2 be degree −1 endomorphisms of the graded
spaces V1 and V2, respectively. The direct sum V1 ⊕ V2 is equipped with the natural grading such
that its ith component is the direct sum of ith components of V1 and V2. The direct sum δ1 ⊕ δ2
is the degree −1 endomorphism of V1 ⊕ V2 such that the restriction of it to Vi is equal to δi for
each i = 1, 2. A degree −1 endomorphism δ of a graded space V is called indecomposable if it
cannot be represented as a direct sum of two degree −1 endomorphisms acting on nonzero graded

spaces. Further, given two integers r ≤ s < 0 let Vrs =

s⊕

i=r

Ei, where dimEi = 1 for every i,

r ≤ i ≤ s, and let δrs be a degree −1 endomorphism of Vrs which sends Ei onto Ei−1 for every i,
r < i ≤ s, and sends Er to 0. Then clearly δrs is indecomposable.

The following theorem gives the classification of all symbols of curves of flags (both of un-
parametrized and parametrized) with respect to the General Linear group:

Theorem 7.1. A degree −1 endomorphism δ of a graded space (indexed by negative integers)
is conjugated to the direct sum of endomorphisms of type δrs. Moreover, for any two integers
r ≤ s < 0 the number of apperance of δrs in this direct sum is an invariant of the conjugate class.

Proof. We will proceed as in the classical proof of Jordan Normal Form Theorem (see, for exam-
ple, [22, chapter 3]). The only difference is that one has to take into account the grading on the
ambient space V as well. Let δ be a degree −1 endomorphism of V . Then δ defines the addi-
tional filtration on V via generalized eigenspaces of different orders (corresponding to the unique
eigenvalue 0), namely ker(δ) ⊂ ker(δ2) ⊂ . . . ker(δl+1) = V . In the first step choose a tuple of
vectors in V consisting of homogeneous vectors (with respect to the grading on V ) such that their
images under the canonical projection to the factor space ker(δl+1)/ ker(δl) constitute a basis of
ker(δl+1)/ ker(δl). Then take the images of vectors of this tuple under δ. Since δ is of degree −1,
these images are homogeneous vectors in V belonging to ker(δl). Complete the tuple of these
images (if necessary) to a tuple of homogeneous vectors in ker(δl) such that the images of vectors
in this tuple under the canonical projection to the factor space ker(δl)/ ker(δl−1) constitute a basis
of ker(δl)/ ker(δl−1). Continuing this process we will get a basis of V consisting of homogeneous
vectors such that the matrix of the operator δ in this bases has a Jordan normal form. Each
Jordan block corresponds to an indecomposable endomorphism of type δrs. This proves that δ is
conjugated to the direct sum of endomorphisms δrs. The invariance of the number of appearance
of δrs in this direct sum can be easily obtained from the above construction as well. �
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The previous theorem also shows that the endomorphisms δrs are the only indecomposable
degree −1 endomorphisms, up to a conjugation, of a graded space (indexed by negative integers).

7.2. Symplectic case. Let 1
2Z := { i2 : i ∈ Z} and 1

2Zodd := Z\Zodd = {i+ 1
2 : i ∈ Z}. It is more

convenient for a symplectic flag to make a shift in the indices (either by an integer or by a half of
an integer) such that (Λi)

∠ = Λ−i+frac12 for any i in Z or 1
2Zodd. In the sequel the subspaces in

symplectic flags will be enumerated according to this rule.

Assume that V =
s⊕

i=r

Vi is a graded space, Vr 6= 0, Vs 6= 0, and a symplectic form σ is given

V . We say that this grading is symplectic (or V is a graded symplectic space) if the corresponding
flag

(7.1) {V i}i∈Z or 1

2
Zodd

, where V i =
⊕

j≥i

Vj ,

is symplectic and also the subspaces Vi and Vj are skew orthogonal for all pairs (i, j) with i+ j <
r + s. As in the previous subsection, the notion of indecomposibility plays the crucial role in
the classification. Let δ1 and δ2 be degree −1 endomorphisms of the graded symplectic spaces
V1 and V2, respectively, belonging to the corresponding symplectic algebras. The direct sum
V1 ⊕ V2 is equipped with the natural symplectic grading such that its ith component is the direct
sum of ith components of V1 and V2 and the symplectic form on V1 ⊕ V2 is defined as follows:
the restriction of this form to Vi coincides with the symplectic form on Vi for each i = 1, 2 and
the spaces V1 and V2 are skew-orthogonal in V1 ⊕ V2. The direct sum δ1 ⊕ δ2 is the degree −1
endomorphism of V1 ⊕ V2 (belonging to sp(V1 ⊕ V2)) such that the restriction of it to Vi is equal
to δi for each i = 1, 2. A degree −1 endomorphism δ ∈ sp(V ) of a graded symplectic space V is
called symplectically indecomposable if it cannot be represented as a direct sum of two degree −1
endomorphisms acting on nonzero graded spaces and belonging to the corresponding symplectic
algebras.

Remark 7.1. Note that we can add two graded symplectic spaces and two degree −1 endomor-
phisms on them if and only if either the grading on both spaces are indexed by Z or the grading
on both spaces are indexed by 1

2Zodd.�

Below we list two types of symplectically indecomposable degree −1 endomorphism:

(D1) Given a nonnegative s ∈ 1
2Z, and an integer l such that 0 ≤ l ≤ 2[s] let V sp

s;l be a linear
symplectic space with a basis

(7.2) {es−l, . . . , es, f−s, . . . , fl−s}

such that σ(ei, ej) = σ(fi, fj) = 0, σ(ei, fj) = (−1)s−i, if j = −i, and σ(ei, fj) = 0 if
j 6= −i. Define the grading on V sp

s;l such that the ith component equal to the span of

all vectors with index i appearing in the tuple (7.10). It is a symplectic grading. Then
denote by δsps;l a degree −1 endomorphism of V sp

s;l from the symplectic algebra such that

δsps;l(ei) = ei−1 for s − l + 1 ≤ i ≤ s, δsps;l(es−l) = 0, δsps;l(fi) = fi−1 for −s + 1 ≤ i ≤ l − s,

and δsps;l(f−s) = 0.

(D2) Given a positive m ∈ 1
2Zodd let

Lsp
m =

⊕

−m ≤ i ≤ m,

i ∈ 1

2
Zodd

Ei
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be a symplectic graded spaces such that dimEi = 1 for every admissible i and let τ spm be
a degree −1 endomorphism of Lm from the symplectic algebra which sends Ei onto Ei−1

for every admissible i, except i = −m, and τ spm (E−m) = 0. In the case K = R we also
assume that σ(τ spm (e), e) ≥ 0 for all e0 ∈ E 1

2

.

By Remark 7.1 we cannot the direct sum of δsps; with s ∈
1
2Z and τ spm , for example. The following

theorem gives the classification of all degree −1 endomorphisms from the symplectic algebra of a
graded symplectic space V and consequently the classification of all symbols of curves (both of
unparametrized and parametrized) of symplectic flags of V with respect to Sp(V ) and CSp(V ):

Theorem 7.2. Assume that V is a graded symplectic space.

(1) If the grading on V is indexed by Z then a degree −1 endomorphism from sp(V ) is con-
jugated (by a symplectic transformation) to the direct sum of endomorphisms of type δsps;l,

where s is a nonnegative integer and 0 ≤ l ≤ 2s. Moreover, for each pair of integers (s, l)
with 0 ≤ l ≤ 2s the number of appearances of δsps;l in this direct sum is an invariant of the

conjugate class.
(2) If the grading on V is indexed by 1

2Zodd and K = C, then a degree −1 endomorphism from
sp(V ) is conjugated (by a symplectic transformation) to the direct sum of endomorphisms
of type δsps;l with s ∈ 1

2Zodd and 0 ≤ l ≤ 2s − 1, and of type τ spm with positive m ∈ 1
2Zodd.

Moreover, for each pair (s, l) ∈ 1
2Zodd×Z with 0 ≤ l ≤ 2s−1 and a positive m ∈ 1

2Zodd the

numbers of appearances of δsps;l and τ
sp
m in this direct sum are invariants of the conjugate

class.
(3) If the grading on V is indexed by 1

2Zodd and K = R, then a degree −1 endomorphism

from sp(V ) is conjugated to the direct sum of endomorphisms of type δsps;l, τ
sp
m , and −τ spm .

Moreover, for each pair (s, l) ∈ 1
2Zodd × Z with 0 ≤ l ≤ 2s − 1 and a positive m ∈ 1

2Zodd

the numbers of appearances of δsps;l, τ
sp
m , and −τ spm in this direct sum are invariants of the

conjugate class.

Theorem 7.2 shows that, up to a conjugation, the only symplectically indecomposable endo-
morphisms are the endomorphisms of the type δsps;l and τ spm for K = C and of the type δsps;l, τ

sp
m ,

and −τ spm in the case K = R.

Proof. Let δ be a degree −1 endomorphism of V belonging to sp(V ). Assume that δl+1 = 0 and
δl 6= 0 for some l ≥ 0. Let C be a complement to ker δl in V , i.e.

(7.3) V = C ⊕ ker δl.

Define a bilinear form b : C × C 7→ K by

(7.4) b(u1, u2) := σ(u1, δ
lu2).

Since δ ∈ sp(V ) and σ is skew-symmetric, the form b is symmetric if l is odd and skew-symmetric
if l is even. As a matter of fact the form b can be considered as a bilinear form on V/ ker δl.

Lemma 7.1. The form b is non-degenerate.

Proof. Assume that there exists u1 ∈ C such that b(u1, u2) = 0 for any u2 ∈ C. In other words,
σ(u1, δ

lu2) = 0 for any u2 ∈ C. This together with splitting (7.3) implies that σ(u1, δ
lv) = 0 for

any v ∈ V . Note that from the fact that δ ∈ sp(V ) it follows that σ(u1, δ
lv) = (−1)lσ(δlu1, v),

therefore σ(δlu1, v) = 0 for any v ∈ V . Since σ is non-degenerate, we get δlu1 = 0, i.e. u1 ∈ ker δl.
As a consequence of this, our assumption that u1 ∈ C, and splitting (7.3) we get that u1 = 0.
This completes the proof of the lemma. �
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Further from the splitting (7.3) it follows that δiC ∩ δjC = 0 for i > j. Set

(7.5) Yl := C ⊕ δ C ⊕ . . .⊕ δlC.

Lemma 7.2. The restriction of the symplectic form σ to the subspace Yl is non-degenerate.

Proof. From Lemma 7.1 it follows that for any i the bilinear form (u1, u2) 7→ σ(δiu1, δ
l−iu2) is

non-degenerate. Also the condition δl+1 = 0 implies that σ(δiu1, δ
ju2) = 0 for i + j ≥ l. This

implies that the matrix of the form σ|Yl with respect to any basis of Yl is block-triangle with
respect to non-principal diagonal and each non-principal diagonal block is nonsingular. This
completes the proof of the lemma. �

We can always choose the space C in (7.3) such that C is a direct sum of homogeneous spaces
(i.e. a direct sum of subspaces of Vi). By the previous lemma, V = Yl ⊕ Y ∠

l , where Y ∠

l is the

skew-symmetric complement of Yl. By constructions Y ∠

l ⊂ ker δl. Also it is easy to show that Y ∠

l

inherits the symplectic grading from V , Y ∠

l =
⊕

i∈Z

Y ∠

l ∩ Vi. Repeat the same procedure for Y ∠

l

instead of V , then, if necessary, repeat it again. In this way one gets the unique skew-orthogonal
splitting of V into the direct sum of invariant subspaces of δ,

(7.6) V =

d⊕

i=1

Yli , l = l1 > l2 > . . . > ld,

such that δli+1|Yli = 0, δli |Yli 6= 0, Yli = Ci ⊕ δ Ci ⊕ . . .⊕ δliCi for a complement Ci to ker δli |Yli in
Yli , and each Yli is a graded symplectic space with the grading inherited from V .

From the splitting (7.6) it follows that to prove our theorem it is sufficient to restrict ourself
to the case when V = Yl, where Yl is as in (7.5). Assume that s is the maximal nontrivial degree
in the grading of V (i.e Vs 6= 0 and Vi = 0 for i > s). Let Zs be the space of all vectors of degree
s in V . Then by constructions Zs is transversal to ker δl. Let

X = Zs ⊕ δZs ⊕ . . .⊕ δlZs

and Z̃s be the image of Zs in V/ ker δl under the canonical projection on the quotient space. In
the sequel we will look on the form b as on a bilinear form on V/ ker δl.

Lemma 7.3. The space X ∩ X∠ is equal to 0 or X .

Proof. By the same arguments as in the proof of Lemma 7.2 the statement of the present lemma

is equivalent to the following statement: the restriction b|Z̃s
of the form b on the space Z̃s is either

equal to 0 identically or non-degenerate. Set K1 = ker b|
Z̃s
. Assume by contradiction that K1 is a

nonzero proper subspace of Zs. Let {V
j}j∈Z or 1

2
Zodd

be the flag as in (7.1). From the assumption

that K1 6= Z̃s it follows that δZs * (V s−l+2)∠. Hence

(7.7) V s−1 * (V s−l+2)∠.

Since the flag {V j}j∈Z is symplectic, the space (V s−l+2)∠ has to be equal to one of the subspaces
of the flag {V j}j∈Z. This together with the assumption that s is the maximal degree in the
grading of V and relation (7.7) implies that

(7.8) (V s−l+2)∠ = Vs = Zs.

Now let K⊥
1 = {v ∈ V/ ker δl : b(v, u) = 0 ∀u ∈ K1}. By constructions, Z̃s ⊆ K⊥

1 . The
assumption K1 6= 0 implies that K⊥

1 is a proper subspace of V/ ker δl. Therefore there exist
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elements of degree less than s in V that are transversal to ker δl. Consequently the space V s−l+1

is a proper subspace of V and V s−l+2 $ V s−l+1 This yields in turn that that (V s−l+1)∠ is a
nonzero proper subspace of (V s−l+2)∠ = Vs, which contradicts the fact that the flag {V j}j∈Z is
symplectic and that s is the maximal degree in the grading of V . The proof of the lemma is
completed. �

Now consider separately the cases X ∩ X∠ = 0 and X ∩ X∠ = X .

Lemma 7.4. If X ∩ X∠ = 0, then V = X .

Proof. V = X ⊕ X∠. Let us prove that X∠ = 0 or, equivalently, V = X . Indeed, assume by
contradiction that X∠ 6= 0. Then X∠ is a graded symplectic spaces with the symplectic forms and
the gradings inherited from V such that the maximal degree in the grading is less than s. This
together with the assumption that V = Yl, where Yl is as in (7.5), implies that in the grading of
V there are nonzero vectors of degree less than s− l+1. This contradicts relation (7.8) that must
hold in the considered case. �

Lemma 7.5. Assume that X ∩ X∠ = 0. Then the following three statements hold:

(1) If l is even, then the endomorphism δ is conjugated to the direct sum of the endomorphisms
δsps,2s with an integer s repeated 1

2 dimZs times;

(2) If l is odd and K = C, then the endomorphism δ is conjugated to the direct sum of the
endomorphisms τ sps repeated dimZs times;

(3) If l is odd and K = R, then the endomorphism δ is conjugated to the direct sum of the
endomorphisms τ sps and −τ sps such that the numbers of appearances of τs/2 and −τs/2 are
equal to the positive and the negative indices of the form b, respectively.

Proof. In the considered case as a subspace C in (7.3) one can take Zs. As was already mentioned
before, the form b (defined on Zs) is non-degenerate symmetric if l is odd and non-degenerate
skew-symmetric if l is even. If l is even we can choose a Darboux (symplectic) bases in Zs with

respect to the form b, i.e. a basis {εj , νj}
1

2
dimZs

j=1 such that the form b is nonzero (and equal to

±1) only for the pairs (εj , νj) and (νj , εj). Then for each 1 ≤ j ≤ 1
2 dimZs the restriction of

the endomorphism δ to the minimal invariant subspaces of δ containing εj and νj is conjugated

to δsps;2s, which proves item (1) of the lemma. If l is odd we choose a basis of Zs for which the
quadratic form corresponding to the form b is diagonal. Then for each vector of this basis the
restriction of δ to the minimal invariant subspaces of δ containing this vector is conjugated to τ sps ,
which proves items (2) and (3) of the lemma. �

Now consider the case X ∩ X∠ = X . In this case Z̃s ⊂ Z̃⊥
s . The grading on V induces the

natural grading on V/ ker δl. Take a subspace K̃2 consisting of the homogeneous elements of the
minimal degree s1 in V/ ker δl. By constructions s1 < s. Let us prove that

(7.9) V/ ker δl = Z̃⊥
s ⊕ K̃2.

Take a subspace K2 which is a representative of K̃2 in V and consists of homogeneous vectors (of
degree s1). From minimality of s1 it follows that Vs1−l+1 = δlK2 and Vi = 0 for i > s1 − l + 1.

From the maximality of s it follows that Zs = (V s1−l+2)∠. This implies that dim K̃2 = dim Z̃s
and that K̃2 ∩ Z̃

⊥
s = 0, which in turn yields (7.9).
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Now let Y = K2⊕δK2⊕ . . .⊕δ
lK2. By constructions, the restriction of the endomorphism δ to

X ⊕Y is conjugated to the direct sum of endomorphisms δsps;l repeated dimZs times Further con-

sider the space (X ⊕Y)∠. This space inherits the grading from V , (X ⊕Y)∠ =
⊕

i∈Z

(X ⊕ Y)∠ ∩ Vi,

with the maximal nontrivial grading less than s. Repeat the same procedure for (X ⊕Y)∠ instead
of V , then, if necessary, repeat it again. In this way we decompose the endomorphism δ in the
case of V = Yl to the direct sum of symbols of the type δsps;l and τ

sp
m for K = C or δsps;l, τ

sp
m , and −τ spm

in the case K = R. This together with the decomposition (7.6) completes the proof of Theorem
(7.2). �

Remark 7.2. In the works [41, 42] of the second author with C. Li parameterized curves in
Lagrangian Grassmannian (over R) satisfying so-called condition (G) were considered. In the
present terminology condition (G) of [41, 42] is equivalent to the condition that the symbol of
the parameterized curve of symplectic flag is conjugated to the direct sum of endomorphisms
of type τm and −τm. The Young diagram which were assigned there to a curve in Lagrangian
Grassmannian can be described as follows: for any p ∈ N the number of rows of length p in it is
equal to the number of appearances of endomorphisms τ sp2p−1

2

and −τ sp2p−1

2

in this direct sum. We

calculate the universal prolongation of such symbols in subsection 8.3.6 below, which together
with Theorem 4.1 gives more conceptual point of view on the constructions of papers [41, 42] and
generalize them to more general classes of curves.

7.3. Orthogonal case. The classification of symbols in this case is very similar to the symplectic
case. As in the symplectic case we make a shift in the indices (either by an integer or by a
half of an integer) such that (Λi)

⊥ = Λ−i+1 for any i in Z or 1
2Zodd, where L⊥ denotes the

orthogonal complement of a subspace L with respect to the nondegenerate symmetric form Q.
Further, by complete analogy with the symplectic space we can define graded orthogonal spaces
and orthogonally indecomposable degree −1 endomorphisms.

By analogy with (D1) and (D2) of the previous subsection, there are the following two types
of orthogonally indecomposable degree −1 endomomorphisms:

(E1) Given a positive s ∈ 1
2Z, and an integer l such that 0 ≤ l ≤ 2(s + {s}) − 1 let V so

s;l be a a
linear space equipped with a nondegenerate symmetric form and with a basis

(7.10) {es−l, . . . , es, f−s, . . . , fl−s}

such that Q(ei, ej) = Q(fi, fj) = 0, σ(ei, fj) = (−1)s−i, if j = −i, and σ(ei, fj) = 0 if
j 6= −i. Define the grading on V so

s;l such that the ith component equal to the span of

all vectors with index i appearing in the tuple (7.10). It is an orthogonal grading. Then
denote by δsos;l a degree −1 endomorphism of V so

s;l from the symplectic algebra such that

δsos;l(ei) = ei−1 for s − l + 1 ≤ i ≤ s, δsos;l(es−l) = 0, δsos;l(fi) = fi−1 for −s + 1 ≤ i ≤ l − s,

and δsos;l(f−s) = 0.

(E2) Given a nonnegative integer m let Lso
m =

m⊕

i=−m

Ei be an orthogonal graded spaces such that

dimEi = 1 for every admissible i and let τ som be a degree −1 endomorphism of Lm from
the symplectic algebra which sends Ei onto Ei−1 for every admissible i, except i = −m,
and τ som (E−m) = 0. In the case K = R we also assume that Q(τ spm (e), e) ≥ 0 for all e0 ∈ E1.

The following theorem gives the classification of all degree −1 endomorphisms from the orthog-
onal algebra of a graded orthogonal space V and consequently the classification of all symbols of
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curves (both of unparametrized and parametrized) of orthogonal flags of V with respect to O(V )
and CO(V ):

Theorem 7.3. Assume that V is a graded orthogonal space.

(1) If the grading on V is indexed by 1
2Zodd then a degree −1 endomorphism from so(V ) is

conjugated (by an orthogonal transformation) to the direct sum of endomorphisms of type
δsos;l, where s ∈

1
2Zodd and 0 ≤ l ≤ 2s. Moreover, for each pair of integers (s, l) ∈ 1

2Zodd×Z
with 0 ≤ l ≤ 2s the number of appearances of δsos;l in this direct sum is an invariant of the
conjugate class.

(2) If the grading on V is indexed by Z and K = C, then a degree −1 endomorphism from
so(V ) is conjugated (by an orthonormal transformation) to the direct sum of endomor-
phisms of type δsos;l with a positive integer s and 0 ≤ l ≤ 2s − 1, and of type τ som with a

nonnegative integer m. Moreover, for each pair of integers (s, l) with 0 ≤ l ≤ 2s − 1 a
nonnegative integer m the numbers of appearances of δsos;l and τ

so
m in this direct sum are

invariants of the conjugate class.
(3) If the grading on V is indexed by 1

2Zodd and K = R, then a degree −1 endomorphism
from so(V ) is conjugated to the direct sum of endomorphisms of type δsos;l, τ

so
m , and −τ som .

Moreover, for each pair of integers (s, l) with 0 ≤ l ≤ 2s− 1 and a nonnegarive integer m
the numbers of appearances of δsos;l, τ

so
m , and −τ som in this direct sum are invariants of the

conjugate class.

Theorem 7.3 shows that, up to a conjugation, the only orthogonally indecomposable endomor-
phisms are the endomorphisms of the type δsos;l and τm for K = C and of the type δsos;l, τ

so
m , and

−τ som in the case K = R.
The proof of Theorem 7.3 is identical to the proof of Theorem 7.2. The only difference is that

in the present case the form b, defined by (7.4), is symmetric if l is even and skew-symmetric if l
is odd. Therefore Lemma 7.5 should be modified appropriately.

Remark 7.3. This remark is about a possible relation of the problem of classification of symbols
to the theory of quiver representations ([21], [7]). In the case G = GL(W )( or SL(W )) there is an
obvious one-to-one correspondence between the set of symbols (obtained in Theorem 7.1) and the
set of indecomposable representations of the quivers with underlying indirect graph equal to the
Dynkin diagram of type Aℓ (if one does not take into account possible shift in the range of indices
in the graded space). It would be interesting to link the obtained classification of indecomposable
symplectic and orthogonal symbols with representations of quivers with the corresponding Dynkin
diagrams as underlying indirect graphs. �

8. Computation of algebraic prolongation of symbols for classical groups

8.1. Decomposition of the universal prolongation algebra. First we point out some general
properties of the universal algebraic prolongation in the case when g is a graded reductive Lie
algebra. Let m be a line in g−1 and u(m) be the universal algebraic prolongation of m, as defined
in subsection 4.1. Take δ ∈ m. According to Jacobson-Morozov theorem [26, Ch.III, Th. 17]
(see also [39] for complex graded Lie algebras and [9] for real graded case), we can complete δ by
elements H and Y of degree 0 and 1 respectively (in g) to the standard basis of a sl2-subalgebra
of g, i.e such that

(8.1) [H, δ] = 2δ, [H,Y ] = −2Y, [δ, Y ] = H.

Let nmax(m) be the largest ideal in u(m) concentrated in the non-negative degree (i.e., nmax(m) ⊂∑
i≥0 ui). Such ideal exists since the sum of any two ideals concentrated in the non-negative
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degree will also be an ideal of this type. It is also clear that nmax(m) is graded, i.e. nmax(m) =∑
i

(
nmax(m)

)
i
, where

(
nmax(m)

)
i
= nmax(m) ∩ gi.

On the one hand, since [δ, nmax(m)] ⊂ nmax(m) and relations (8.1) hold, we get that sl2 ∩
nmax(m) = 0, which implies that

(8.2) dim u(m)/nmax(m) ≥ 3.

On the other hand, under the identification of the algebra u(m) with the algebra of infinitesimal
symmetries of a flat curve Fm with the symbol m (see subsection 4.1), to any element of u(m) we
can assign the vector field on the curve Fm. Consider the subspace nne(m) of u(m), consisting of
all elements of u(m) for which the corresponding vector fields on Fm are identically zero. Clearly,
nne(m) is an ideal of u(m). This ideal is called the non-effectiveness ideal of u(m). Then the
quotient algebra u(m)/nne(m) can be realized as a finite-dimensional Lie algebra of vector fields
on a curve. From the classical Sophus Lie result it follows that

(8.3) dim u(m)/nne(m) ≤ 3

(see the original proof in [27] , its translation and commentary in [6], and a self-contained proof in
the recent paper [17]). Since nne(m) ⊂ nmax(m) we get from (8.2) and (8.3) that nmax(m) = nne(m)
and that dim u(m)/nmax(m) = 3. The latter implies the following

Proposition 8.1. u(m) is a semidirect sum of the constructed embedding of sl2 into g and nmax(m)
(= nne(m)). In particular, nmax is an sl2-module.

The latter fact is very useful in the description of the universal algebraic prolongations of
symbols of (unparametrized) curves of flags.

Remark 8.1. For parametrized curves the corresponding universal prolongation of a symbol
δ ∈ g−1 is equal to a semidirect sum of Kδ and the non-effectiveness ideal nne.

8.2. The case of G = GL(W ) (SL(W )). We say that a graded space V which is also sl2-module
is a nice sl2-module, if the corresponding embedding of sl2 into gl(V ) is spanned by endomorphisms
of degree −1, 0, and 1. Let V1 and V2 be two nice sl2-modules. Then Hom(V1, V2) = V2⊗V

∗
1 is the

sl2-module and a graded space in a natural way. Denote by n(V1, V2) the maximal sl2-submodule
of Hom(V1, V2) concentrated in the non-negative degree part.

Assume that m = Rδ. By Theorem 7.1 there exists a map N : {(r, s) ∈ Z × Z : r ≤ s < 0} →
N ∪ {∞} with finite support such that δ is conjugated to the endomorphism DN , which is the
direct sum of indecomposable symbols where δrs is repeated N(r, s) times. The endomorphism
Dn acts on the space

(8.4) VN =
⊕

r≤s<0

Vrs ⊗KN(r,s).

First, DN can be extended to a subalgebra of gl(VN ) isomorphic to sl2 which acts irreducibly on
each Vrs. From (8.4) it follows that

gl(VN ) = VN ⊗ (VN )
∗ =

⊕

r1 ≤ s1 < 0,

r2 ≤ s2 < 0

Hom(Vr1s1 , Vr2s2)⊗Hom(KN(r1,s1),KN(r2,s2)).

Second, by definition of n(Vr1s1 , Vr2s2) we have that

(8.5) p =
⊕

r1 ≤ s1 < 0,

r2 ≤ s2 < 0

n(Vr1s1 , Vr2s2)⊗Hom(KN(r1,s1),KN(r2,s2))
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is the maximal sl2-module in gl(VN ) concentrate in the non-negative degree part of gl(VN ). Be-
sides, p is a subalgebra of gl(VN ). Indeed, [p, p] is an sl2-module in gl(VN ) concentrate in the
non-negative degree, which implies that [p, p] ⊂ p, because p is the maximal sl2-module satisfying
this property. Therefore p = nmax(KDn).

It remains to describe n(Vr1,s1 , Vr2,s2) more explicitly. Set li = si − ri, i = 1, 2. Note that
sl2-submodule Vr2s2 ⊗ (Vr1s1)

∗ is decomposed into the irreducible sl2-modules as follows:

(8.6) Hom(Vr1s1 , Vr2s2) = Vr2s2 ⊗ (Vr1s1)
∗ ∼=

min{l1,l2}⊕

i=0

Πl1+l2−2i,

where Πj denotes an irreducible sl2-module of dimension j+1 (see, for example, [20]). Moreover,
the submodule Πl1+l2 of the largest dimension is generated by the elements of highest (or lowest)
degree in Vr2s2 ⊗ (Vr1s1)

∗, which is equal to s2 − r1 (r2 − s1 respectively). The range of degrees
for each next submodule in this decomposition is shrunk by 1 from both left and right sides, i.e.
the submodule Πl1+l2−2i has degrees varying from r2 − s1 + i to s2 − r1 − i. The submodule
n(Vr1s1 , Vr2s2) is equal to the direct sum of submodules from the decomposition (8.6) for which
all degrees are non-negative. Therefore,

(8.7) n(Vr1s1 , Vr2s2)
∼=

min{l1,l2,s2−r1}⊕

i=max{0,s1−r2}

Πl1+l2−2i.

In particular,

n(Vrs, Vrs) ∼= Π0
∼= K Id,(8.8)

n(Vr1s1 , Vr2s2) = 0 if and only if s2 < s1 or r2 < r1.(8.9)

Let us prove statement (8.9). Indeed by (8.7) n(Vr1s1 , Vr2s2) = 0 if and only if one of the
following three conditions holds:

(1) s1 − r2 > s1 − r1 ≡ r2 < r1;
(2) s1 − r2 > s2 − r2 ≡ s2 < s1;
(3) s1 − r2 > s2 − r1,

which proves the “if” part of (8.9). Further, if conditions (1) and (2) does not hold then the
condition (3) does not hold as well, which proves the “only if” part.

Further, it is clear that

(8.10) n(Vr1,s1 ⊗KN1 , Vr2,s2 ⊗KN2) ∼= n(Vr1,s1 , Vr2,s2)⊗Hom
(
KN(r1,s1),KN(r2,s2)

)
.

Combining (8.5), (8.8), (8.9), (8.10), and Proposition 8.1 we get the following

Theorem 8.1. The universal prolongation algebra u(KDN ) of the symbol KDN is equal to the
semidirect sum of the constructed embedding of sl2 into gl(V ) and

⊕

s1 ≤ s2, r1 ≤ r2,

rj ≤ sj < 0

n(Vr1s1 , Vr2s2)⊗Hom
(
KN(r1,s1),KN(r2,s2)

)
,

where n(Vr1s1 , Vr2s2) is as in (8.7).

In particular, if δ = δrs then by (8.8) one has nmax(δ) = K Id and u(δ) ∼= gl2. This can be
applied to Example 6.1 above.

Remark 8.2. It is clear that in the case of G = SL(W ) the universal prolongation of a symbol
consists of the traceless part of the universal prolongation of the same symbol for G = GL(W ).
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8.3. The case of G = Sp(W ) (CSp(W )) and G = O(W ) (CO(W )). First note that in the
case G = CSp(W ) (G = CO(W )) the universal algebraic prolongation of a symbol is equal to the
direct sum of the universal algebraic prolongation of the same symbol for G = Sp(W ) (G = O(W ))
with K. Therefore it is sufficient to concentrate on the case G = Sp(W ) and G = O(W ). We
will primary treat the symplectic case and briefly indicate what changes should be done for the
orthogonal case. Let V be a graded symplectic space which is also a nice sl2-module such that
the corresponding embedding of sl2 into gl(V ) belongs to sp(V ) In this case we will say that V is
a nice symplectic sl2-module. The symplectic algebra sp(V ) is a sl2-module and a graded space
in a natural way. Denote by lsp(V ) the maximal sl2-submodule of sp(V ) concentrated in the
non-negative degree part. From the maximality assumption it follows that lsp(V ) is a subalgebra
of sp(V ).

Further, assume that V =

q⊕

i=1

Li, where each Li is a graded symplectic space and nice symplec-

tic sl2-modules (with all structures induced from V ). The restriction σ|Li
to Li of the symplectic

form σ of V defines natural identification between Li and its dual space L∗
i . Here σ denotes the

symplectic form on V Consider the following splitting of gl(V ):

(8.11) gl(V ) =

q⊕

i,j=1

Hom(Li, Lj).

An endomorphism A ∈ gl(V ), having the decomposition A =
∑q

i,j=1Aij with respect to the

splitting (8.11), belongs to sp(V ) if and only if Aii ∈ sp(Li) for all 1 ≤ i ≤ q and Aij = −A∗
ji

for all 1 ≤ i 6= j ≤ q (here the dual linear map A∗
ji is considered as a map from Li to Lj under

the aforementioned identification Li ∼ L∗
i and Lj ∼ L∗

j). Therefore the map A 7→
∑q

i=1Aii +∑
1≤i<j≤q Aij defines the identification

(8.12) sp

(
q⊕

i=1

Li

)
∼=

q⊕

i=1

sp(Li)⊕
⊕

1≤i<j≤q

Hom(Li, Lj).

Moreover,

(8.13) lsp

(
q⊕

i=1

Li

)
∼=

q⊕

i=1

lsp(Li)⊕
⊕

1≤i<j≤q

n(Li, Lj),

where n(Li, Lj) is as in the previous subsection.
Now take a symplectic symbol m = Kδ. Let V sp

s;l and Lsp
m. are graded symplectic spaces as in

items (D1) and (D2) of subsection 3. According to Theorem 7.2 δ is conjugated to a direct sum
of endomorphism of types δsps;l, τ

sp
m , and , in the case of K = R, also of type −τ spm . Therefore one

can always assume that V =

q⊕

i=1

Li, where each Li is either equal to V
sp
s;l or L

sp
m. In the symplectic

case the endomorphism δ can be extended to a subalgebra of sp

(
q⊕

i=1

Li

)
isomorphic to sl2 such

that if Li = V sp
s;l then V sp

s;l (with respect to the induced action) is the sum of two irreducible

sl2-submodules

(8.14) Es;l = span{ei}s−l≤i≤s, Fs;l = span{fi}−s≤i≤l−s,
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where ei and fi are as in (7.10), and if Li = Lsp
m, then Lsp

m (with respect to the induced action)
is an irreducible sl2-module. By analogy with the previous subsection the universal algebraic
prolongation u(Rδ) of the symbol Rδ is equal to the semidirect sum of the constructed embedding
of sl2 into sp(V ) and the algebra lsp (

⊕q
i=1 Li).

The orthogonal case is treated in completely the same way. We only need to replace everywhere
from the beginning of this subsection the word “symplectic” by the word “ orthogonal”, the sign
sp by the sign so, and the symplectic form σ by a non-degenerate symmetric form Q.

By identification (8.13) and the analogous formula for the orthogonal case in order to compute
lsp (
⊕q

i=1 Li) (l
so (
⊕q

i=1 Li) and, consequently, the universal prolongation u(Rδ) in sp(V ) (so(V ))
it is sufficient to compute spaces lsp(V ) (lspo(V )) and Hom(V1, V2), where V , V1, and V2 are equal
either to V sp

l;s or Lsp
m (either to V so

l;s or Lso
m).

For this first denote by n(r1,s1),(r2,s2) the righthand side of (8.7),

(8.15) n(r1,s1),(r2,s2) =

min{l1,l2,s2−r1}⊕

i=max{0,s1−r2}

Πl1+l2−2i,

where li = si − ri.

8.3.1. Description of lsp(V sp
s;l ) and lso(V so

s;l ).

First let us give a convenient description of the algebras sp
(
V sp
s;l

)
and so

(
V so
s;l

)
. In the sequel we

will use the same notation for Es;l and Fs;l in the orthogonal case, as in (8.14). The symplectic form
or the non-degenerate symmetric form define the following natural identifications: Es;l ∼= (Fs;l)

∗

and Fs;l ∼= (Es;l)
∗. Keeping in mind these identifications, an endomorphism A ∈ gl(V ), having

decomposition A = A11 +A22 +A12 +A21 with respect to the splitting

gl(V sp
s;l ) = gl(Es;l)⊕ gl(Fs;l)⊕Hom(Fs;l, Es;l)⊕Hom(Es;l, Fs;l),

belongs to sp
(
V sp
s;l

)
if and only if A∗

12 = A12, A
∗
21 = A21, and A22 = −A∗

11. It belongs to so
(
V so
s;l

)

if and only if A∗
12 = −A12, A

∗
21 = −A21, and A22 = −A∗

11. Therefore the map A 7→ A11+A22+A12

defines the following identifications

sp(V sp
s;l )

∼= gl(Es;l)⊕ S2(Es;l)⊕ S2(Fs;l),(8.16)

so(V so
s;l )

∼= gl(Es;l)⊕ S2(Es;l)⊕ ∧2(Fs;l),(8.17)

where S2(Es;l) and S
2(Fs;l) denote the symmetric square of Es;l and Fs;l, respectively, and ∧2(Es;l)

and ∧2(Fs;l) denote the skew-symmetric square of Es;l and Fs;l.
Here S2(Es;l) and ∧2(Es;l) are subspaces of Hom(Fs;l, Es;l); S

2(Fs;l) and ∧2(Fs;l) are subspaces

of Hom(Es;l, Fs;l). Keeping this in mind, we define l
sp,1
s;l (lso,1s;l ) as the maximal sl2-submodule of

S2(Es;l) (∧
2(Es;l)) concentrated in the non-negative degree part of S2(Es;l) (∧

2(Es;l)). Similarly,

let lsp,2s;l (lso,2s;l ) be the maximal sl2-submodule of S2(Fs;l) (∧
2(Es;l)). Then from (8.16)

lsp(V sp
s;l )

∼= n(s−l,s),(s−l,s) ⊕ l
sp,1
s;l ⊕ l

sp,2
s;l

∼= K⊕ l
sp,1
s;l ⊕ l

sp,2
s;l(8.18)

lso(V so
s;l )

∼= n(s−l,s),(s−l,s) ⊕ l
so,1
s;l ⊕ l

so,2
s;l

∼= K⊕ l
so,1
s;l ⊕ l

so,2
s;l(8.19)

Let us describe l
sp,1
s;l , lsp,2s;l l

so,1
s;l and l

so,2
s;l . Let l = s − r. In order to describe l

sp,1
s;l and l

so,1
s;l note

that sl2-submodules S2(Es;l) and ∧2(Es;l)) are decomposed into the irreducible sl2-modules as
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follows:

S2(Es;l) =

[ l
2
]⊕

i=0

Π2l−4i;(8.20)

∧2(Es;l) =

[ l−1

2
]⊕

i=0

Π2l−2−4i.(8.21)

(see, for example, [20]).
The submodule Π2l of the largest dimension in S2(Es;l) is generated by the elements of highest

or lowest degree in S2(Es;l), which are equal to 2s and 2s− 2l, respectively. The range of degrees
for each next submodule in the decomposition (8.20) is shrunk by 2 from both left and right sides,

i.e. the submodule Π2l−4i has degrees varying from 2s− 2l+2i and 2s− 2i. The submodule lsp,1s;l

is equal to the direct sum of the submodules from the decomposition (8.20) for which all degrees
are non-negative, i.e. for which max{0, l − [s]} ≤ i ≤ min{[ l2 ], [s]}. Since l ≤ 2[s], we have that

[ l2 ] ≤ [s]. Therefore

(8.22) l
sp,1
s;l =

[ l
2
]⊕

i=max{0,l−[s]}

Π2l−4i,

Note that from the condition l ≤ 2[s] and the last formula it follows that lsp,1s;l 6= 0.

In order to get lsp,2l;s we have to replace s by l − s in the righthand side of (8.22), i.e.

l
sp,2
l;s =

[ l
2
]⊕

i=max{0,l−[l−s]]}

Π2l−4i,

Again from the fact that l < 2[s] it follows that

(8.23) lε,2rs =

{
K if l is even and s = l

2 ,

0 otherwise.

Besides, by (8.8) one has n(s−l,s),(s−l,s) = K. Substituting this and relation (8.23) into (8.22) we

get that in the case l is odd or s 6= l
2

(8.24) l(V sp
s;l )

∼= K⊕ l
sp,1
s;l ,

where lsp,1s;l is as in (8.22). Finally, by (8.22) we get lsp,1p;2p = K for any nonnegative integer p. From

this, formula (8.23), and identification (8.18) it is easy to see that for any nonnegative integer p

(8.25) lsp(V sp
p;2p)

∼= sl2.

Similarly in the orthogonal case the submodule Π2l−2 of the largest dimension in ∧2(Es;l) is
generated by the elements of highest or lowest degree in ∧2(Es;l), which is equal to 2s − 1 and
2s − 2l + 1 respectively. The range of degrees for each next submodule in the decomposition
(8.21) is shrunk by 2 from both left and right sides, i.e. the submodule Π2l−2−4i has degrees

varying from 2s − 2l + 1 + 2i to 2s − 1 − 2i. The submodule l
so,1
s;l is equal to the direct sum of

submodules from the decomposition (8.21) for which all degrees are non-negative, i.e. for which
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max{0, l− [s+ 1
2 ]} ≤ i ≤ min{[ l−1

2 ], [s− 1
2 ]}. Since l ≤ 2(s+{s})−1, we have that [ l−1

2 ] ≤ [s− 1
2 ].

Thus

(8.26) l
so,1
s;l =

[ l−1

2
]⊕

i=max{0,l−[s+ 1

2
]]}

Π2l−2−4i,

Note that from the condition l ≤ 2(s + {s})− 1 and the last formula it follows that lso,1s;l 6= 0.

In order to get lso,2s;l we have to replace s by l − s in the righthand side of (8.26), i.e.

l
so,2
s;l =

[ l−1

2
]⊕

i=max{0,l−[l−s+ 1

2
]}

Π2l−2−4i,

Again from the fact that l ≤ 2(s + {s})− 1 it follows that

(8.27) l
so,2
s;l =

{
K l is odd and s = l

2 ,

0 otherwise.

Similarly to (8.24) in the case l is even or s 6= l
2 we get that

(8.28) lso(V so
s;l )

∼= K⊕ l
so,1
s;l ,

where l
so,1
s;l is as in (8.26). Finally, by (8.26) we get l

so,1

p− 1

2
;2p−1

= K for any p ∈ N. From this,

formula (8.27), and identification (8.19) it is easy to see that

(8.29) lso(V so
p− 1

2
;2p−1

) ∼= sl2, p ∈ N.

8.3.2. Description of lsp(Lsp
m) and lso(Lso

m).

Note that lsp(Lsp
m) ⊂ n(Lsp

m,L
sp
m) ∼= KId, but Id /∈ sp(Lsp

m). In the same way lso(Lso
m) ⊂

n(Lso
m,L

so
m)

∼= KId, but Id /∈ so(Lso
m) Therefore

(8.30) lsp(Lsp
m) = 0, lso(Lso

m) = 0.

8.3.3. Description of n(V sp
s1;l1

, V sp
s2;l2

) (or of n(V so
s1;l1

, V so
s2;l2

)).

By Remark 7.1 we are interested only in the cases when both s1 and s2 are integers or both s1
and s2 belong to 1

2Zodd. Set r1 = s1 − l1 and r2 = s2 − l2. In the sequel ε will mean other sp or
so. Note that

Hom(V ε
s1;l1 , V

ε
s2;l2) = Hom(Es1;l1 , Es2;l2)⊕Hom(Fs1;l1 , Fs2;l2)⊕Hom(Es1;l1 , Fs2;l2)⊕Hom(Fs1;l1 , Es2;l2).

Therefore,

(8.31) n(V ε
s1;l1 , V

ε
s2;l2)

∼= n(r1,s1),(r2,s2) ⊕ n(−s1,−r1),(−s2,−r2) ⊕ n(r1,s1),(−s2,−r2) ⊕ n(−s1,−r1),(r2,s2)

Often many terms in the righthand side of (8.31) vanish. First, let us analyze the term n(r1,s1),(−s2,−r2).
By (8.9) if n(r1,s1),(−s2,−r2) 6= 0, then r1 ≤ −s2 and s1 ≤ −r2 or, equivalently, s1 − l1 ≤ −s2 and
s1 ≤ l2 − s2. In the symplectic case, in addition we have l1 ≤ 2[s1] and l2 ≤ 2[s2]. Using all four
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inequalities we get that s1 = s2, s1, s2 are integers and l1 = l2 = 2s1. This together with (8.8)
implies that

(8.32) n(r1,s1),(−s2,−r2) = n(s1−l1,s1),(−s2,l2−s2) =

{
K if s1 = s2, s1, s2 ∈ Z, l1 = l2 = 2s1

0 otherwise.

In the orthogonal case, in addition to s1− l1 ≤ −s2 and s1 ≤ l2− s2 we have l1 ≤ 2(s1+ {s1})− 1
and l2 ≤ 2(s2 + s2) − 1]. Using all four inequalities we get that s1 = s2, s1, s2 belongs to 1

2Zodd,

and l1 = l2 = 2s1. So, we will have the same formula as (8.32) except that s1, s2 belongs to
1
2Zodd.

Further, by (8.9)

(8.33) n(−s1,−r1),(−s2,−r2) = 0 if and only if r1 < r2 or s1 < s2.

Substituting formulas (8.32) (or its analog for the orthogonal case), (8.9), (8.33) into (8.31) and
using (8.15) for nonzero terms, one gets an explicit expression for n(V sp

s1;l1
, V ε

s2;l2
) . In particular,

if (r1, s1, r2, s2) 6= (−s, s,−s, s), then at least two of the first three terms in the right handside of
(8.31) vanish. Finally, it is easy to see that

(8.34) n(V ε
s;2s, V

ε
s;2s)

∼= gl2, ε = sp or so.

8.3.4. Description of n(V sp
s;l ,L

sp
m) and of n(V so

s;l ,L
so
m).

By analogy with the previous case

(8.35) n(V ε
s;l,L

ε
m) = n(s−l,s),(−m,m) + n(−s,l−s),(−m,m)

First, let us analyze the term n(s−l,s),(−m,m). By (8.9) if n(s−l,s),(−m,m) 6= 0, then s − l ≤ −m

and s ≤ m. By Remark 7.1, s ∈ 1
2Zodd in the symplectic case and s ∈ Z in the orthogonal case,

and therefore l ≤ 2s− 1 in both cases, which together with the previous inequalities implies that
−s+ 1 ≤ s− l ≤ −m ≤ −s, which is impossible. Consequently, for any admissible triple (l, s,m)
we get n(s−l,s),(−m,m) = 0, i.e.

(8.36) n(V ε
s;l,Lm) = n(−s,l−s),(−m,m), ε = so or sp.

Besides, n(−s,l−s),(−m,m) 6= 0 if and only if l − s ≤ m ≤ s and it can be computed using formula
(8.15).

8.3.5. Description of n(Lsp
m1
,Lsp

m2
) (or of n(Lso

m1
,Lso

m2
)).

By (8.9), both for ε = sp and ε = so we have

(8.37) n(Lεm1
,Lεm2

) = n(−m1,m1),(−m2,m2) =

{
K if m1 = m2

0 if m1 6= m2.

8.3.6. The case of tensor products.

In order to use formula (8.13) more effectively it is worth also to say more about the space
lsp(V ⊗ KN ), where V is a graded symplectic space which is also a nice symplectic sl2-module
and V ⊗KN inherits from V the structure of a graded symplectic space and of a nice symplectic
sl2-module in a natural way. From (8.12) it is easy to get the following natural identification:

(8.38) sp(V ⊗KN ) ∼= (sp(V )⊗KN )⊕ (gl(V )⊗ ∧2KN ),
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where ∧2KN denotes a skew-symmetric square of KN . Consequently,

(8.39) lsp(V ⊗KN) ∼= (lsp(V )⊗KN )⊕ (n(V )⊗ ∧2KN ).

Combining (8.10),(8.39), and the calculations of the subsections 8.3.1-8.3.5, one can get more
compact explicit formula for the algebraic prolongation of a given symplectic symbol.

In particular, from (8.30) and (8.37) it follows that

(8.40) lsp(Lsp
m ⊗KN ) ∼= ∧2KN ∼= so(N).

Now assume that K = R. Let V be a nice symplectic sl2-module such that as a graded space
it coincides with Lsp

m ⊗ RN++N
− for some nonnegative integers N+ and N− and the degree −1

component of the corresponding embedding of sl2 into sp(V ) is generated by the direct sum of
τ spm taken N+ times and −τ spm taken N− times. Then similarly to above it can be shown that

(8.41) l(V ) ∼= so(N+, N−).

Further, fix two functions N+, N− : 1
2Zmod 7→ N ∪ {0} with finite support and assume that

the symplectic symbol m is generated by the direct sum of endomorphisms of type τ spm and −τ spm ,
where τ spm appears N+(m) times and −τ spm appears N−(m) times in this sum for each m ∈ N.
These symbols correspond to curves in a Lagrangian Grassmannian satisfying condition (G) in
the terminology of the previous papers of the second author with C. Li ([41, 42]). Then from (8.41)

and (8.37) it follows that the non-effectiveness ideal of u(m) is equal to
⊕

m∈N

so(N+(m), N−(m))

and it is concentrated in the zero component of u(m). From this and Remark 8.1 it follows that in

the parameterized case u+(m) =
⊕

m∈N

so(N+(m), N−(m)) and, by Theorem 4.1 and Remark 4.3, if

the normalization condition is fixed, then for any parametrized curve of flags with symbol m there

exists a unique principle bundle of moving frames with the structure group
∏

m∈N

O(N+(m), N−(m))

and the unique principle Ehresmann connection such that this connection satisfies the chosen
normalization condition. This result was proved in [41, 42] ( Theorem 1 in [41] and Theorems 1
and 3 in [42]) for specifically chosen normalization conditions. So, our main Theorem 4.1 gives
more conceptual point of view on the constructions of those papers and clarifies them algebraically.

Finally, formulas (8.39)-(8.41) hold true if V is a graded orthogonal space and sp is replaced by
so. Also, the same conclusion as in the previous paragraph can be done if an orthogonal symbol
is generated by the direct sum of endomorphisms of type τ som and −τ som .
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[39] É. B. Vinberg,Classification of homogeneous nilpotent elements of a semisimple graded Lie algebra, Sel. Math.
Sov., v. 6, 1987, 15–35.

[40] I. Zelenko, Complete systems of invariants for rank 1 curves in Lagrange Grassmannians, Differential Geom.
Application, Proc. Conf. Prague, 2005, pp 365-379, Charles University, Prague

[41] I. Zelenko, C. Li, Parametrized curves in Lagrange Grassmannians, C.R. Acad. Sci. Paris, Ser. I, Vol. 345,
Issue 11, 647-652.

[42] I. Zelenko, C. Li, Differential geometry of curves in Lagrange Grassmannians with given Young diagram,
Differential Geometry and its Applications, 27 (2009), 723-742

BELARUSSIAN STATE UNIVERSITY, NEZAVISIMOSTI AVE. 4, MINSK 220030, BELARUS; E-

MAIL: DOUBROV@ISLC.ORG

DEPARTMENT OF MATHEMATICS, TEXAS A&M UNIVERSITY, COLLEGE STATION, TX 77843-

3368, USA; E-MAIL: ZELENKO@MATH.TAMU.EDU


	1. Introduction
	2. Compatibility of the pair (G,O) with respect to grading
	3. Compatibility with respect to differentiation and symbols of curves of flags
	4. Algebraic prolongation of the symbol and the main result
	4.1. Algebraic prolongation of symbol
	4.2. Zero degree normalization.
	4.3. Quasi-principal subbundle of P"0362P0
	4.4. Structure function associated with Ehresmann connection
	4.5. On geometry of parametrized curves of flags.
	4.6. On geometry of submanifolds of constant type in flag varieties

	5. Proof of Theorem ??
	5.1. First degree normalization.
	5.2. Higher degree normalizations: the induction step

	6.  Refinement procedure
	6.1. The case G=SL(W), GL(W), and Aff(W)
	6.2. The case G=Sp(W) or G=CSp(W)
	6.3. The case G=O(W) or G=CO(W)

	7. Classification of symbols of curves of flags with respect to classical groups
	7.1. The case of GL(W)(SL(W))
	7.2. Symplectic case
	7.3. Orthogonal case

	8. Computation of algebraic prolongation of symbols for classical groups
	8.1. Decomposition of the universal prolongation algebra
	8.2. The case of G=GL(W) (SL(W))
	8.3. The case of G=Sp(W) (CSp(W)) and G=O(W) (CO(W))

	References

