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Abstract. Ruelle and Capocaccia gave a new definition of Gibbs states on Smale
spaces. Equilibrium states of suitable functions thereon are known to be Gibbs
states. The converse is discussed in this paper, where the problem is reduced to
shift spaces and solved there by constructing suitable conjugating homeomorphisms
in order to verify the conditions for Gibbs states which Bowen gave for shift spaces,
where the equivalence to equilibrium states is known.

Let (ft, T) be a Smale space, then for any continuous function F:il-*U the pressure
P( T, F) can be defined by the variational principle

P(T, F) = sup (hT(p)+\ Fdp),
p \ Jn I

where p runs over all T-invariant probability measures over ft. Here hT(p) is the
measure theoretic entropy with respect to T and p. A measure for which the
supremum is attained is called an equilibrium state. For every Holder continuous F
there is a unique equilibrium state if (ft, T) is topologically mixing (cf. [1, Theorem
1.22]).

Let d(•, •) = dn(•, •) denote a metric on ft. A map if/ from some open U<= ft
into ft is called conjugating if d( Tk ° </>(x), Tk(x)) -» 0 for \k\ -* oo uniformly in x e U.
Actually, as one may derive from lemma 4, the distance decreases in a uniformly
exponential way with a properly chosen metric.

Definition 1. (cf. [2] and [4].) Let F be a Holder continuous real valued function
on ft. A probability measure v is called a Gibbs state for F if

{T°ijf)gdv=
JU Jtli(U)

rdv,
JU J>HU)

where

fceZ

for all bounded and measurable functions T : i/»( U) -» R and all conjugating homeo-
morphisms iii:U^<fi{ U), where U = U^ is an open set in ft.

Equilibrium states for F are also Gibbs states for F. This is proved in Ruelle's book
[4, theorem 7.18]. The converse, there referred to as an open question (cf. [1, p.
170]), will be demonstrated in this paper, i.e.

THEOREM 2. Let (ft, T) be a Smale space and F e C(ft) , for 6 e (0,1), i.e., F is a
Holder continuous real valued function over ft with exponent 6, and let v be a Gibbs
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120 N. T. A. Haydn

state for F. Then there is a number t e N such that v is invariant under T' and is an
equilibrium state for f( = ZOsr<r F ° Tr on (ft, T').

The proof is by a sequence of lemmas. We begin by introducing a Markov partition
on the Smale space (ft, T), which gives rise to a shift space (2A, cr). Most of the
proof will be treated on this symbolic level. In order to see that every Gibbs measure
on (ft, T) lifts in a well-defined way to one on (1A, a) it is shown that the boundary
set of any Markov partition has measure zero. This is done first in lemma 5 for
T-invariant Gibbs states and then generalised in proposition 6 for non-invariant
Gibbs measures. For constructing conjugating homeomorphisms on (1A, a) an
obvious method exists, which will be used at three stages in this paper: first in
lemma 7 to estimate the measure of cylinder sets; secondly in lemma 9 to show that
the wandering set has measure zero, and finally in lemma 10 to prove that Gibbs
states on shift spaces (2A, o-) with o- acting topologically mixing, are invariant under
<r. This all taken together (proposition 11), provided a is topologically mixing,
verifies the definition Bowen gave for Gibbs states (cf. [1, Theorem 1.2]), for which
it is known that they are equilibrium states on (2A, a). By standard results the same
holds true for (ft, T). To justify the construction of conjugating homeomorphisms
on (£A, cr) we begin in lemma 4 by proving that they can be 'pushed down' to
conjugating homeomorphisms on (ft, T).

From now on v denotes a Gibbs state for F on (ft, T).

Let x be any point in ft; then there exist a positive number 8 and a number A e (0,1),
such that:

y,zeV+
x{8) forj>0,

y, zeV~(8) for;<0,

for a positive constant / and where Vx(8)(Vx(8)) denotes the stable (unstable)
manifold through x cut off at distance 8. The constant / can be assumed to be 1,
d( •, •) is then an adapted metric, which always exists. Furthermore T is expansive,
i.e. there exists a positive constant e such that for two points x, x'e ft, with x^x'
there is an index n e Z for which d(T"(x), T"(x'))> e. There exist Markov partitions
with arbitrarily small diameter (cf. [1]). We choose one, {R[j]:jes4} over an
alphabet si, such that diam R[j] < e/2 for all jesi. The sets R[j] are called
rectangles. Let A be the corresponding transition matrix and define the shift space

2 A = {z: z = {z,\ ieZ}, A[z,,z,+1] = l forallieZ},

which, endowed with the metric d^(x, y) = Afc, where k = max{/: x, = y, for all |/| <j},
is a metric space. The surjection 7r:2A-»ft is Lipshitz continuous with constant,
say, L. See also [4, p. 130]. The two-sided shift o- on SA is defined by a(z) = z'
where z\ = zj+1 for all i € Z, and covers T on ft: T ° IT = IT ° cr. We will need:

LEMMA 3. Let e0, ex be expansive constants, then
(i) Given 8>0 and let Ms be the maximal number, such that y,y'efl with

dn(y,y')<8 implies da(T
i(y),Tj(y'))<e0 for all | j |<M s ; then Ms^oo as 8

approaches zero.
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(ii) Given M eM and let 8'M be the smallest number such that y, y' e ft withdn(T
j(y),

T'(y')) < £1 for all \j\ < M implies dn(y, y') <S'M; then S'M -» 0 as M -* oo.

The proof is easy; see e.g. [1].

LEMMA 4. Let <p: U-*<p(U), for £/<=2A be a uniformly continuous conjugating
homeomorphismfor a, then there is a finite decomposition on U = [_) ( Ut and conjugating
homeomorphisms i/>,: Vf = TT( Ut) -» î (( Vt), Vj <=• ft, /or T, which are projections ofq> on
Uh i.e. ipj ° TT = v ° <p on Ut for all i.

Proof There is an n* € N, such that (<p(z))i = z, for all \i\ > n* and ze U. Otherwise
there would be a sequence {zk: keN}, such that ((p(zk))ilk-i7

i zf[k] for a sequence
|i[fc]| ^ oo as k H> oo. Or d2(o-'[lc] ° <p(zk), o-'['c](^'c)) = 1 for all A: € N, but this contradicts
the fact that d2(crJ ° <p(z), o-J(z)) converges to zero uniformly in z.

By uniform continuity there exists a 5 6(0,1), such that dx(x,y)-^S implies
d-si(p{x), (f>(y))<k"\ Now set

n = max (n*, [log 5/log A +1]).

If for two points x, ye U we have xt = yt for \i\ < n the same is true for their images
under <p: (<p(x)), = (<p(y))i for all | i |<n. Select a finite number of points {y':
i s i } c U, with |^ |<oo, and set

Ui = {x:xJ = y> V\j\<n}nU.

A good choice of this set yields U = UieJ> Ui-
The rectangles R[i], R[j] are said to be related if R[i] n R[j] ^ 0 . Write 8+R[j]

and d~R[j] for the forward and backward oriented parts of the boundary of R[j],
and set dR = Uj£jt (S+R[j]<Jd~R[j]). Call the entire boundary set K =

The components of two points in n l(K)^1A always denote pairs of related
rectangles. The same is true for their images under <p if we restrict to Ut for all
ieJ. To see this, choose any two points x, x'e Ut for which v(x) = ir{x'), then
R[xj] and R[x'j] are related for all jeZ. By construction of t/, their images have
the same components for \j\ < n and so R[{<p(x))j] and /?[(<p(x'));] are again related
for all j e Z. Since

da(P ° IT o «p(x), V o 77 o 9(X')) ^diam (R[(<p(x))j] u R[(<p(x'))j]) < e,

for all j e Z, we conclude that IT ° <p{x) = IT° (p(x'), since e is an expansive constant
(cf. [3]).

Define on Vj = TT( C/J), i/f,: * -> TT ° <p{ir~l(x) n (7,). The sets V; are not necessarily
open, but contain open subsets. The maps i/>, will turn out to be conjugating and
injective maps on Vt. Set

jS=[l + | log(e/(4I))/ logA|]

and take for each i a finite cover {UKk: ke^} of 17, with |3Sf,|<oo, where Uuk =
{x: Xj = zk, V | j |<n + )8} for finite subsets {zk: ke3{t} chosen as before. It remains
to be shown that the maps ^ are continuous. This is done for each UKk, the region
being extended to the closures of the ir(UiJc) in 7r(t/,).
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Choose any two points x, x' e Uitk with y = TT(JC) and y' = TT(X'), i.e. y, y' e Vik =
(cl ir{Uuk))n ir(Ui). Now we apply lemma 3 (i) setting eo= B/2 (and restrict to 5,
so that Ms > n + B). From the construction of the Vik it is clear that V' ° it ° <p(x)
and V ° TT° (p(x') travel under T through the same rectangles for \j\ < n + /3. Estimate

, crj(x)) + dz(aJ(x'), crj « <p(x'))}+dn( V ° ir(x), V ° TT(X'))

if n + /3<[/ |<Mg. Hence da(V
!° ^(y), TJ ° ^ ,( j ' ) )<e for all [/|<MS and we

conclude using lemma 3 (ii) with e^ = e, that dn{^i{y), ^,(_v'))< 5' where 8'-*0 as
5 approaches zero. Moreover, i/», is a continuous homeomorphism onto the boun-
daries d(ir( t/jfc)) n3(ir( f/ii()) n TT( C/f) for all fc, /. This gives us the maps i/f, denned
on n(Ui) in the desired form. Obviously they are conjugating. •

LEMMA 5. If v* is a T-invariant Gibbs measure on ft, then v*(K) = 0, where
K=\JkeZT"(dR).

Proof. Suppose i>*(K)>0, then so is v*{dR)>0 and thus either
v*((~)i£N T'(d+R))>0 or ^(PljeN T~'(d~R))>0. Assume the first case holds, and
let X* = n,-eN T'(d+R). Denote by B((z) the ball around z with radius £ The set
K* is invariant under T and is compact; hence there is a point ze K* such that
v*{Bt{z) n K*) > 0 for all £> 0. The points conjugated to z are dense in ft and for
each of them there exists a conjugating homeomorphism defined in a neighbourhood
of z (cf. [2]). So there is a weft and a 8>0 , so that B2S(w)nK* = 0, and a
conjugating homeomorphism i/f defined on B({z) for a positive f, such that <p(z)e
Bs/2(w) and i/r(Bf(z))c B«(w). Set D = if(Bj(z)nJ(*), then we have p*(D)>0,
because v* is a Gibbs state. Since c/» is conjugating, there exists an rieN such that
dCToiKy), r(3>))<5 for all j /eB((z) and | i |>n'. So dist ( r ( D ) , K*)<8, for
K* is invariant under T. But by construction dist (D, K*)> 8, hence T'(D)nD = 0
for all i> n'. The collection {T"'(D): ieN} consists of pairwise disjoint sets which
have, since v* is T-invariant, the same positive measure. Hence the measure of
their union diverges, which contradicts the normalisation *>*(ft) = 1. •

PROPOSITION 6. For a Gibbs measure v on (ft, T) we have v(K) = 0.

Proof. Assume v{K)>0, then there must be an integer j so that v( V(dR))>0 and
thus either v(Tj(d+R))>0 or v(TJ(d~R))>0. Suppose we have the situation; = 0
and v{d~R)>0. Then define a sequence of new measures

vn = n~x • X v o r .
0<i<n

Since v is Gibbs it is clear that v ° V is Gibbs as well for all i e Z. By the convexity
property (cf. [2]) all vn, for neN, are Gibbs measures. Let v* be a limit point of
{rn: neM}, and n[j] be a subsequence in f̂J so that vn[n converges to v*. For the
backward oriented boundary d~R<^T(d~R) holds, and therefore v(d~R)<
v^j^d'R). We may treat d'R as a compact set and have therefore
lim sup, vn[n(d~R) < p*(d~R), which is < ^*(X) = 0 since 5"i? c K. D
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The function F, acting on O, induces a Holder continuous real valued function
/ = Fo 77- on 1A, which is exponentially decreasing with a = \ e e (0,1). Let

var k /= sup {|/(x)-f(y)\: x,yelA such that x, = yt V|i|< k}

and set
||/| |= max (H/IUsup^a-Wvar*/) .

Restricted to il\K, the map ir"1 is one to one; that is, by proposition 6, TT"1 is
defined I'-almost everywhere. Define the measure /A on 1A by fi(V) = 0 if Vc
TT'\K), and fJi.(V) = n(VnTr-1(Cl\K))=p(Tr(V)) for all other Vc2 A . Then/A is
a Gibbs state for f, since v is one for F, and all bounded and measurable (test)
functions x on 1.A can be written as T = f ° TT almost everywhere with f bounded
and measurable functions on SI.

The cylinder in 2 A determined by the string xa,... ,xb will be denoted by
U(xa,... ,xb) and for convenience we will write n(xa...., xb) - fi(U(xa,..., xb)).

LEMMA 7. Let f be a function on 2 A which decreases exponentially fast with a e (0,1)
and let a- be topologically mixing. Then there is a constant C* e (0, oo) so that

M ( x 1 , . . . , x m ) - e x p ( m P - I fo<jk(x))z[e-c',e+c*] (1)

for all xe2.A and meN. The real number P is called the pressure off.

Proof. To verify (1) we will construct a sequence of sets of conjugating homeomorph-
isms on £A. Since <r is supposed to act topologically mixing, we have A " > 0 if n
is large enough. Let N be the smallest such integer and let

ST*[m] = {(a , , . . . , am): a, e si, A[at, a,+1] = 1 Vi e [1, m)}

for the set of all w-strings. The pressure of / is P = limm^,x, Pm, where

Pm = w"1 log Zm

and

Zm= I expsupj I /°<7fc(z):z,=a, V i e [ l , m ] | .

Let us first summon a technical lemma.

LEMMA 8. There exists a number b such that \Pm - P\ < b/mfor all m > 1.

Proof. Set

Zm= I exp I f°(rk(z),
jE?[m] <c£[l,m]

where 9*[m] = {x: crm(x) = x, x € 2A} is the set of all m-periodic points. Then, using
the maximum matrix norm ||A|| =max u |A[i,j]|, it follows

Zm+JV<Zm||AN||2exp(27V||/||oo).

Furthermore

Zm^Zm+N exp (2||/||/(1 - a ) ) .

Let c, = 2||/||(JV + l / ( l - a ) ) + 2 • log \\AN\\, then these two inequalities combine to
{log {Zm+NZ^)\sci. As can easily be seen, the pressure may be defined by
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limmm~1logZm and as well by limm m~l logZm, which is the same. From [4,
corollary 7.25] we know that |logZm-mP|<c2fm for constants c2>0and te(0,1),
that is |log Zm+N - mP\ < c2 + N- P. Now set b = N- P + Ci + c2. D

Recall that AN > 0 since a is assumed to be topologically mixing. Choose any xe1A

and meN and fix them throughout the rest of the proof. Now we construct a
collection of conjugating maps which are all uniformly continuous and which depend
on x and m. Set U = {z: z, = x, Vi e [1, w]} and choose any string w e 3~*[m]. Now
we define a conjugating map tp depending on w. Set for all ze U:

(i) (?(*)), = «, fora l l ie[ l ,m];
(ii) (<p(z))i = zt for alii E(-OO, -N]u[m +N,+oo);

(iii) set Uw = {z: zt = ((p(x))t = w, Vi e [1, m]}, and take a covering of U by \si\2

(not necessarily non-empty) sets: U(s, t) = U n {z: z_N = s, zm+N = (}, for all s, t e si.
The sets L^s , 0 are defined analogously. For their measures we obtain

M(£/J= I li(Ua(i,t))= I J\JUk
m{s,t)\ (2)

s.tej^ s.tesl \ k I

where U^(s, t) are at most HA^H2 disjoint sets of points with the same symbols on
the places in [-N, m + N]. Altogether they cover Uw{s, t). Pick out the set Ut(s, 0
which realises the maxkju,(l/£(.s, ())• This determines the components of <p( • ) on
the places with indices in the two intervals (-JV, 1) and {m, m + N).

The map <p: U(s, t)-> Ut(s, t) for all s, t e si is therefore completely defined. It is
clear that cp is uniformly continuous on U(s, t) for all s , ( e i , and conjugating, but
it is not a homeomorphism. On U(s, t) the map <p is finite but at most {\s&\ • §AN\\)2

to one and may therefore be decomposed in at most (\M\ • \^AN ||)2 homeomorphisms.
Moreover we derive from (2):

/iMt/))2=(|rf|-iiANnrv(£/j. (3)
Finally we put

5^[m] = {all (p as constructed above with w running over the whole 5"*[m]}.

Let ^ = {1,2 , . . . , |5^[m]|} be a numbering of 5^[m] and label the elements <p, in it
by an index. Set

(ceZ

and consider the following weighted sum:

exp X foar\x) I (ft(x)exp I -(/»o-*« 9j(x)-fo crk(x))\.
ke[l,m] j e ^ L <ce(-oo,l )u(m,+oc) J

(4)

This is the same as

I exp I f°crk°<pj(x)

= Iexp (sup{ I /oak(z):z1 = (^(x)), Vie [1, m]} + r,\
\ lfce[l,m] J /
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where the remainders r, are estimated as |/)|< | | / | | ( l+2a ( l - a m ) / ( l - a ) ) . The sum
(4) lies therefore in the interval Zm[e~c, ec], where c= | | / | | ( l+2 / ( l - a ) ) . Let Pm =
m"1 logZm and set

em = fi(x1,...,xm)-exp[mPm- I /°o-fc(
\ Jce[l,m]

Observe that replacing Pm by P transforms 0m into the expression on the left of
(1). We use (4) to get rid of the factor mPm in the exponential. Instead we get a
summation over j , expressing the sum over all m -strings in the definition of the
pressure. So we end up with

Om = M*i, • • •> *m) di I d2Jgj(x),

where dx e [e~c, ec], and

^ j = exp I (/°<rfc° ? , . (*) - /° <rfc(x)) e [e"c',ec']
ke(-oo,l)u(m,+oo)

for all j e $, with c' = 2/(1 - a ) . For all y € £/ and _/ e ^ we estimate

\iog(gj(x)gj(y)-l)\

ke[l,m]

Set c" = 2| | / | |(N+l + 4 / ( l - a ) ) and it simplifies to

[log (gj(x)gj(y)~1)\ < c". (5)

Define the characteristic function of U

{1 if y,i = x,for all i e [ l , m],

0 otherwise.

Then we have U = {y: y e 2 A , rj,(}>) = 1}. For ^m we may write

j e ^ J U

- the last step following from inequality (5). To evaluate the integral on the right,
we remember ^ is a Gibbs state for / According to the note made when defining
the conjugating maps, we decompose, for every j , the cylinder U into a finite number
of sets U[k,j], i.e. U = \^JkeMj] U[k,j], where <Pj\uik,n are homeomorphisms and
/[./]s{\M\ • \\AN\\)2 for a l l / Hence

[
= 1 I

[ gj-rx
m
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where the integrals in the last line are taken over <p,( [/[&,_/]). This expression lies
in the interval [(\s#\ • | |AN||)"2, (\si\ • HA^H)2]. To see this, observe that the set

is just 3~*[m], that is ^A = {JjeJf UwW. But [Jje# <Pj(U) does not cover the whole
space 2 A , since there was a choice in (iii) in denning <pj. This with inequality (3)
provides the lower bound. The upper can be explained by the possibility that the
maps <pj have to be decomposed in | / [ j ] | s (|.s#| • ||J4

/V ||)2 homeomorphisms. It is
therefore proved that 6m e [e c , ec] with C = c + c' + c" + 2 • log (||AN|| • \si\) a con-
stant independent of xe 1A and meN. Finally we replace Pm by P, which is
compensated for by increasing C to C + b, with the same b as in lemma 8. Set
C* = C + b and (1), and hence lemma 9, is proved for all xe1A and meN. •

LEMMA 9. The wandering set has measure zero.

Proof. The lemma is proved for the shift space and clearly holds then in the case
of the underlying Smale space as well. Let A be the transition matrix. It may be
put in the form

0

0 ••• 0 A,,

where Ait are irreducible r, x r,-matrices. The alphabet si splits into {Mi,..., si,),
with \s&i\ = r, for all i. The subshifts 2, generated by Ait over sdt are topologically
transitive and decompose into finitely many subshifts 1lq on which a power as of
the shift acts topologically mixing. We renumber the shifts 1Kq as £,- for i e [ l , t'~\
with t'> t. Let <JS for convenience now be called a and let JV be the smallest number
so that A™> 0 for all i e [1, f] (with the new AUi) and denote by P[i] the pressure
o f / o n S,-. Points x = (xk)keZ in the wandering set of ~LA are sequences with elements
xk not all in one sub-alphabet si, but in several; however the indices i[k] of s4iik]
to which the xk belong never decrease as k increases. Suppose the wandering set
has positive measure, then there exists a subset U(£)<^'2.A, £ = £a,..., £b with
positive measure and for which l / ( f )n U(crm(£)) = 0 for all me Z\{0}, where U(()
denotes the cylinder in 1A which is determined by the string £.

Consider the cover U{£) = U U(£a-X, £), where £,_, runs over all symbols with
A[Ca~\, £a] = 1- If £a £ ̂ i and fo_)£ siifor i< 1'andif/i.(^a_,, £) > 0 then we replace
£- £[0] by £[1] = £a-\, £ (again n(£a-1, £) stands for ti(U(£a_1, £))); otherwise we
use for £a_, any other symbol such that /u.(£o_i, £)>0. Repeat this procedure for
£b+1 and increase the index of the sub-alphabet if possible or leave it the same. In
that way we get £[2] = £[1], £h+l with £b e si, and £b+l e sir, where ; < / . Iterating
this process one obtains a sequence of strings £[i] of increasing length and n(£[i]) > 0
for i eNu{0} . At any stage the elements on both sides must remain in the same
sub-alphabets; that is, there exists a number M > m a x (|a|, |fe|) and i,j with 1 s / <_/<
t, so that £_k e s£t and £k e si, for all k > M. Set £_ M , . . . £M = f and

c_fc € si,, xk e JJ/.-, for k> M,

xk = & for |fc| < M and A[xk, xk + l] = 1 for all k e Z}.
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The same notation will be used whenever there are cylinders with elements on the
negative side restricted to Mt (respectively stfj on the positive side). By construction

holds true for all m e Z\{0}. Suppose P[i] > P[j]. Fix m > 2M +1 + N and denote
by {•y[p]: P £ [1, ^]} , for a number ft, the set of all m-strings in Sj. Let us construct
conjugating homeomorphisms {'cpp: pe[l,^]}. Select an m-string 6 in £,, then
/JL(U(^, ..., 6)) is positive, for all choices of 8 since /A is Gibbs. The dots denote
room for N — 1 symbols. Decompose

0(&...,0)=\J U(r,,£,V',e),
v,v'

where 17 runs over all (2Af-l)-strings in X, and 17' over all (JV-1)-strings in £,-.
Select a pair (17,17') so that

..,e)), (6)

Define tpp for p<yi and set for ze L/(T7, £ 77', 0):
(i) (<PP(z))fc = Zfc for A: e (-co, - M - 2 i V ] u [ M +JV + m, co),

(ii) (<pp(z))k = zk_m fo r fce [ -M + /w, M + m ] ,

(iii) ( (<P P (Z) ) -M-JV, • • • , (<PP(z))-M-jv+m) = y[p],

(iv) something fitting up in (-M-2N, -M-N), ( - M - N + m, -M + m) and
(M + m, M + N + m), which will be specified shortly.
Thus it follows for the Radon-Nykodym derivative

\oid<ppfi/dfi(z)= I (f°crk°<pp(z)-f°<Tk(z))

+ I /°o-fc°<pp(z)

I
ks[-M-N,-M-N+m]

The first and second of these four sums are in modulus less than 4||/||/(1 -a), and
the third and fourth together are less than 3||/||(JV + 4 / ( l -o ) ) . Put c =
3||/||(JV + 8 / ( l -a ) ) . By construction we made the sets (pp(U(r), £, 17', 0)) pairwise
disjoint, and furthermore

that is, for different m we get disjoint sets. As pointed out in lemma 7 (iii), the
fitting-up strings in (iv) may be chosen so that

crV( U <P
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with c, = \s&\2 • \\ANf. So we have for any ze U(ri, £ 77', 0):

I exp

x I exp I f» *"-"-» o9p(z)
pe[l>] fcs[l,m]

The same argument as in lemma 7 provides a more general form of the inequalities
(1), namely

. . , * ) ) exp {mPL/]- I /°<7f c + M +"(z))}
ks[l,m]

for z e (/(£ . . . , 0). To see this, observe that the conjugating homeomorphisms there
are to be constructed in exactly the same way. The result for Zeta-functions involving
periodic points, which is cited in lemma 8, works the same in this case too, since
the number of periodic points with period h is the trace of the hth power of the
transition matrix, which here is tr (AJJ). To evaluate the pressure in that case we
choose only points which are periodic in the components with index s M + TV.

By following the argument after inequality (4) the summation overpe [1, yfe] gives
rise to a factor exp (mPm[i]). Using (6) we end up with

> Co V <TC'C* d,n(U(t))cxp[m(Pm[i]-P[j])l

where dx is the same constant as in lemma 7. Finally, again using lemma 8, this
transforms to

fi(<rm(U(e)))> Co V e-"c'-bdMU(i)) exp [m(P[i]-P[j])]

since we supposed P[i]-P[j] not to be negative. Summing up over m gives a
contradiction to the normalisation condition (i(ZA) = 1, hence fi(U(^)) = fi(£) = 0,
and therefore the lemma follows, since the wandering set of (SA, cr) is contained
in the one of (1A, crs). If P[i] — P[j] happens to be negative we construct the
conjugating homeomorphisms replacing m b y - m and then get the lower bound
for /i(crm(L/(£))) in the same way as described. •

LEMMA 10. Let n be a Gibbs state on (2 A , cr), then it is cr-invariant if cr acts
topologically mixing.

Proof. Let ST[b - a] be the set consisting of all possible strings xa,..., xb of length
b — a for a, beZ and a<b.

Assume /A not to be cr-invariant, then there exists a set B c 2 A such that \fi(a-(B)) -
fi(B)\>0 and p(B)>0. Suppose it is /x(o-(B))>p- fi(B) for a number p> 1. By
a covering argument we conclude that there must be a cylinder U(£) determined
by the string £ = x a , . . . , XQ, . . . , xfc (bold characters denote the zero position), such
that

where £* = x a , . . . . X i , . . . . x6 is the shifted string £. A partial covering of 1A will
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now be constructed, and then it will be shown that /i(IA)>V\/p, which contradicts
the normalisation of fi.

Let r be an even number such that

16II/H - a ' / 2 < log p,

and let us construct a cover of L/(£) by cylinder sets of the form U(p, 77, £, V, P')>
where /3, P'e ^ [ T ] , 77, 77'e ST[N-l]. There are strings p, /?', 77, 77' so that

/*(ft T?, f*, V, /3')^P • M ( A 1?, £ V , P')-

One single * means the whole string is to be shifted. For the moment fix p, p', 77,
77', and proceed to construct a pair of conjugating homeomorphisms <p, <p' as follows.
Choose any string we3~[b-a] with a) = a)a,... ,<o0, • • •, <»b and define for all

(i) (<p{z))i = a>i forallie[a,fe];
(ii) (<p(z))i = Zi for all 1 e (-00, a-N]u[b + N, 00);

(iii) any strings 6, O'e 2T[N-l~\ to join up the ends in the intervals (a-N, a)
and (b,b + N).
Secondly we define <p' on the cylinder U(p, 17, £*, 17', /?') and set for all z in it

(i') (?'(*)). = (»*)« foral l i+le[a ,fr] ;
(ii') (^'(z))i = zf foralli + le(-oo, a -7V]u[b + N,oo);
(iii') the same strings 8 and 0' as in (iii) to fill the two gaps.

We observe that q>'° a-° tp~l = a on U(P, 0,w,6',p'). Denote by
x(xa,..., Xo,...,xb) the characteristic function of U(xa,... ,x0,...,xb). Since fi
is by hypothesis a Gibbs state we conclude for any xe U(p, 17, £, 17', /3'):

= I

= I

X((<P(x))a-N-r, •••, ( < P ( x ) ) o , • • • , ((p(x))
b+N

X((<P(x))a-N-r, •••, ( « P ( x ) ) o ( ^ (

°<pexp X -{f°crk°<p-f°(rk)dfL.

This leads to

, 77, f, 7,',/B') exp ( I - ( / o o-̂ o «p(x)-/o

(7)
where

In the last estimate we made use of the fact that

zi = xi = (<p(x))l

for all zeU(p, 8, £, 0', p') and ie[a-N-T, a-N]v[b +N, 6 + N + T]. The same
estimate holds on the shifted sets using <p'. For any ye U(P, 77, £*, 77', p'),

H(P, 8, w*, 8', P')^fi(p, 7), C*, 77', p') exp ( I -(foako 9>{y)-fo ak{y))-c)
UeZ J

(8)
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holds true. Set y = a(x) and (7) and (8) combine to give

H(P, 6, co*, 6', P')^p- fi(P, 6, co, 6', p') exp I £ [ ( /o <rk » <p(X) - / ° crk(x))
L/ceZ

-(f°trk°<p'°v(x)-foCrko(r(x))]-2c\.

Set M* = max( |a-JV| , |ft + AT|), choose M>M* and estimate the sum in the
exponential by

I {-(/° o"fc ° <p'°cr(x)-f° ak ° cp(x)}+f° trM(x)-f° CT1

\k\<M

and since we identify <r° <p(x) with <p' ° <r(x), we have

a
M + T " M 7 ( l - a ) + | - / o cr**"1 o «p'c o- (x)+/° o-'-M « <p(x)+f» aM(x)

This tends to zero as M tends to infinity. By the choice of T we obtain

MP, 0, "*, 0', ?') > Vp • M/3, 0, «, 0', p1)

for all &J e ST[ b - a ] and suitable d, 6' e ST[ N -1 ]. The strings jS and p' are determined
by the point xe U(p, 6, £, 0', /3'), and therefore only a part of 1A gets covered by
varying w over the whole ^ " [ b - a ] . Now we proceed to cover in the second
generation, whereby we partly cover the complement of what was already covered
in the first step. Let the strings /3,17, £ etc. now be given an index 1 (/3,, T?I , £1 etc.)
and set £2-Pi, V\, £i,Vi, P'\- The cylinder C/(£2) now gets covered by smaller
ones, and again there is at least one cylinder for which

H(P2, V2, Ct, V2, P'I)^P- MP2, V2,17, Vi, Pi),

where p2, P'2£ 5"[T] and 173, T)'2E ST[N-1]. For the second generation co2, 02, 6'2
we proceed as above. Call the union of all cylinders constructed in the ith generation
V, for i e N, then we have Vt n Vj• = 0 if i #_/. It is possible to cover in this manner
arbitrarily large subsets of S A . To make it obvious we will show that

for n -» 00, where C denotes the complement in 1A. In constructing the cylinders on
which cp (respectively cp') are defined we keep fixed the ( T + iV)-strings at each end
of co, and thus we select just one small cylinder from at most (\$$\ • \\AT+N\\)2 small
cylinders. Their /^-measures may be compared, for example by constructing con-
jugating homeomorphisms. Since n is Gibbs, the ratio of two of them is at most

exp[2- | | / | | (T+JV + 2 / ( l - a ) ) ] .

This allows us to deduce a lower bound for the measure of Vn for n > l , depending
on all the previous generations these subsets. If we set

| |AT +" | | ) - 2 exp [-2-11/11(7+
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which is a positive constant, we conclude that

M(vn)>s-/x(c( U v;)Y
for all n e N. Since the V, are pairwise disjoint, we have

Iteration yields

del U v
\ \l<i<n

and this tends to zero as n tends to infinity. By construction it is

for all i £ N, and hence

if n is large enough. This is impossible. In the case where n(o-(B))< p- fi(B) for
pe (0,1) we replace a by a-"1, p by p"1 and proceed in the same way. •

PROPOSITION 11. Let f be a function on 2 A which decreases exponentially fast with
a e (0,1) and let a be topologically mixing. If /j. is a Gibbs state for f then it is also
an equilibrium state.

Proof. The proof is a reference to [1, Theorems 1.2 and 1.22]. In lemma 7 we have
checked the conditions for a Gibbs state in Bowen's sense. Lemma 10 shows
<T-invariance of /x and thus it is an equilibrium state for / on (SA, a). Since / is
Holder continuous it is the unique one. D

LEMMA 12. Suppose we have a Smale space where a homeomorphism acting topologi-
cally mixing implies that a Gibbs state for a given function has to be an equilibrium state.

Let v be any Gibbs state. Then there exists a number s e N, such that v is an
equilibrium state for Fs =Zre[os) F ° Tr on (fl, Ts).

Proof. The proof is by Smale's spectral decomposition (cf. [1, theorem 3.5]). The
non-wandering set of O is a union of finitely many disjoint compact sets ilv, called
basic sets, which are invariant under T and on which T acts topologically transitively.
Points which are conjugated always lie in the same basic set £1", each of which is
itself a union of t[v] many disjoint, compact sets Q."'" on which T'[l)] acts topologi-
cally mixing and where we have T'lv\ilv'u) = nvu, for all « 6 [1, t[v]]. Each set fl"'"
has positive distance from all the others, larger than 8, say. For any conjugating
homeomorphism tp defined on U <= Q there is

d{Tk'w°4>(z), Tkllv\z))<8,

for all ze U and where \k\ is big enough. That is, tp restricted to OnClv-u again
maps into CL"'". So we restrict to maps ip acting only on 0,"'", replace T by T'1"1 and
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logg= I {F°T°il>-F°r)
• EEZ

= I I (f» rr+"tI>]
 OIJJ-FO Tr+"M)

>eZ Osr<l[i>]

If v is a Gibbs state for F on (ft, T) then for each v, u the normalisation of v
restricted to ft"" is a Gibbs state for Fv on (ft"", T'[v]) and vice versa. Take s to
be the lowest common multiple of the numbers t[v]. •

Proof of the theorem. It follows immediately from lemmas 9 and 10 that v is invariant
under some power of T. As noted at the beginning, the conjugating maps as
constructed in lemma 7 give rise to a finite number of homeomorphisms on (ft, T).
Finally, it is well-known that an equilibrium state on the shift space ~LA corresponds
automatically to one on ft (cf. [4,Theorem 7.9]). •

We cannot expect v to be an equilibrium state on (ft, T), since that would require
it to be IP-invariant. A look at the spectral decomposition as described in lemma
12 shows that this is in general not true. The measure v restricted and normalised
to ft"'" (if u(ftu>")>0) is clearly Gibbs and is invariant under T ' M but not under
T unless t[v] = 1. But T need not be mixing to have an invariant measure. We have:

COROLLARY 13. (i) A T-invariant Gibbs measure for a Holder continuous real-valued
function over a Smale space is an equilibrium state;

(ii) if Tacts topologically mixing, then, by lemma 10, a Gibbs measure for a Holder
continuous real-valued function over a Smale space is an equilibrium state.

I am indebted to Peter Walters for encouragement, advice and especially for pointing
out lemma 5.
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