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Abstract. Global almost sure asymptotic stability of the trivial solution of

some nonlinear stochastic difference equations with in-the-arithmetic-mean-

sense monotone drift part and diffusive part driven by independent (but not

necessarily identically distributed) random variables is proven under appropri-

ate conditions in IR1. This result can be used to verify asymptotic stability of

stochastic-numerical methods such as partially drift-implicit trapezoidal meth-

ods for nonlinear stochastic differential equations with variable step sizes.
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1. Introduction

Suppose that a filtered probability space (Ω,F , {Fn}n∈IN, IP) with filtrations
{Fn}n∈IN is given. Let {ξn}n∈IN be a one-dimensional real-valued {Fn}n∈IN-martin-
gale-difference (for details see [6]) and B(S) denote the set of all Borel-sets of the set
S. Furthermore, let α = {αn}n∈IN be a sequence of strictly positive real numbers
and k > 0 be a fixed integer constant.

Throughout this paper we consider discrete time stochastic difference equations
(DSDEs) of the type

xn+1 − xn = −αnx2k
n

(
xn+1 + xn

2

)
+ σn((xl)0≤l≤n) ξn+1, n ∈ IN(1)

with in-the-arithmetic-mean-sense monotone drift parts

an(xn, xn+1) = −αnx2k
n

(
xn+1 + xn

2

)
,

driven by square-integrable martingale-differences ξ = {ξn}n∈IN in IR1 with IE[ξn] =
0 and IE[ξn]2 < +∞. We are especially interested in conditions ensuring the as-
ymptotic stability of trivial solutions of these DSDEs (1). The main result should
be such that it can be applied to numerical methods for related continuous time
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stochastic differential equations (CSDEs) as its potential limits. For example, con-
sider

dXt = a(t, Xt) dt + b(t,Xt) dWt(2)

driven by standard Wiener process W = {Wt}t≥0 and interpreted in the Itô sense,
where a, b : [0,+∞) × IR → IR are smooth vector fields. Such CSDEs (2) can be
discretized in many ways, e.g., see [20] for an overview. However, only a few of
those discretization methods are appropriate to tackle the problem of almost sure
asymptotic stability of its trivial solutions. One of the successful classes is that of
partially drift-implicit trapezoidal methods with the scheme

xn+1 = xn +
1
2
A(tn, xn) (xn+1 + xn)∆n + b(tn, xn)∆Wn(3)

applied to equation (2), where a(t, x) = A(t, x)x, ∆n = tn+1 − tn and ∆Wn =
Wtn+1 −Wtn

, for a discretization 0 = t0 ≤ t1 ≤ ... ≤ tN = T of the time interval
[0, T ]. These methods provide L2-converging approximations to (2) with rate 0.5 in
the worst case under appropriate conditions on a, b. For details, see [17]. Obviously,
schemes (3) applied to Itô-type CSDEs

dXt = −γ2[Xt]2k+1 dt + b(t,Xt) dWt(4)

possess the form of (1) with αn = γ2∆n, σn((xl)0≤l≤n) = b(tn, xn), A(t, x) =
−γ2x2k and ∆Wn = ξn+1. Thus, assertions on the asymptotic stability of the
trivial solution of (1) help us to understand the qualitative-asymptotic behavior of
methods (3) and give criteria for choosing possibly variable step sizes ∆n for long
term numerical integration such that asymptotic stability can also be guaranteed
for the discretization of the related continuous time system too.

In passing we note that, that several authors have dealt with asymptotic moment-
stability of stochastic-numerical methods for CSDEs. Just to name a few of them,
Abukhaled and Allen [1] on expectation stability, and Artemiev [3], Artemiev and
Averina [4], Mitsui and Saito [8] and Schurz [15], [16], [18], [20] with respect to
mean square stability and Schurz [19] on estimates of (nonlinear) moment-stability
exponents. Most of them have only treated linear equations. Moreover, very little is
known on almost sure asymptotic stability for stochastic numerical methods when
applied to (nonlinear) CSDEs (2). In view of equation (1), more precisely speaking,
the bilinear case with k = 0, moment stability issues have been examined for the
corresponding drift-implicit trapezoidal methods with equidistant step sizes ∆ in
[18]. Here we concentrate us on the nonlinear and nonautonomous subclasses of (1)
exclusively, in particular, on the case with variable step sizes ∆n.

The paper is organized in 5 sections. We suppose that the reader is familiar
with basic facts on stochastic calculus, although we provide some in Section 2. This
section lists some of the most important auxiliary results known from literature to
prove our main result on asymptotic stability of difference equations (1) in Section
3. Section 4 discusses its applicability to the numerical approximation of stochastic
differential equations illustrated by partially drift-implicit methods. Eventually,
section 5 closes this paper with some final concluding remarks.

2. Auxiliary statements and Definition

The following Lemma 1 is a generalization of Doob decomposition of submartin-
gales (for details, see [6]). Throughout the paper, we abbreviate the expression
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”IP-almost surely” by ”a.s.”. For more details on stochastic concepts and notation,
consult [6], [10], [21]. We only list the most needed ones here.

Lemma 1. Let {ξn}n∈IN be an {Fn}n∈IN-martingale-difference. Then there exists
an {Fn}n∈IN-martingale-difference µ = {µn}n∈IN and a positive (Fn−1,B(IR1))-
measurable (i.e. predictable) stochastic sequence η = {ηn}n∈IN such that, for every
n = 1, 2, . . . almost surely (a.s.),

ξ2
n = µn + ηn.(5)

The process {ηn}n∈IN, as in Lemma 1, can be represented by ηn = IE
(
ξ2
n|Fn−1

)
.

Moreover, η = (ηn)n∈IN is a non-random sequence when ξn are independent random
variables. In this case, we have

ηn = IE
(
ξ2
n

)
and µn = ξ2

n − E(ξ2
n).

To establish asymptotic stability we shall also make use of a certain application
of well-known martingale convergence theorems (cf. [21]) in form of Lemma 2 (see
[7]). Lemma 2 below can be considered as a generalization of Theorem 7 (Chapter
2, p. 139) proved in [6] and Lemma A (p. 243) proved in [22].

Lemma 2. Let {A1
n}n∈IN, {A2

n}n∈IN, {B1
n}n∈IN and {B2

n}n∈IN with A1
0 = A2

0 =
B1

0 =B2
0 =0 be a.s. non-decreasing (Fn−1,B(IR1))-measurable stochastic sequences

with B1
n≤A1

n, B2
n≥A2

n and An = B1
n−B2

n for n ≥ 1. Assume that Z = {Zn}n∈IN is
a non-negative {Fn}n∈IN-semimartingale with its Doob-Meyer decomposition Zn =
Z0 + Mn + An for n ∈ IN. Then

{
ω : A1

∞ < ∞} ⊆ {Z →} ∩ {
ω : A2

∞ < ∞}
a.s.,

where {Z →} denotes the set of all ω ∈ Ω for which Z∞ = lim
t→∞

Zt exists and is
finite.

The concept of almost sure asymptotic stability under investigation is defined as
follows.

Definition 1. The difference equation (1) is said to have a trivial (equilibrium)
solution x∗ = 0 if, for all n ∈ IN, we have σn((x∗l )0≤l≤n) = 0 where all x∗l = 0.
A trivial (equilibrium) solution x∗ = 0 of (1) is said to be globally a.s. asymp-
totically stable if, for all x0 6= 0 (a.s.) which are independent of the σ-algebra
σ(ξn : n ∈ IN), we have IP(limn→+∞ xn = 0) = 1.

3. Almost Sure Global Asymptotic Stability of (1)

We suppose that all ξn are independent random variables with IE[ξn] = 0,
IE[ξn]2 < +∞, and there exists non-negative numbers λn ∈ IR+ for all n ∈ IN
such that

|σn((xl)0≤l≤n)|2 ≤ λn

(
1 + x2k

n

)
,

+∞∑
n=0

max
(
1,

1
αn

)
λnIE[ξ2

n+1] < +∞(6)

and the sequence α = {αi}i∈IN of positive numbers αi ∈ IR+ satisfies

∀ε > 0
+∞∑

i=0

αi

(ε + αi)
2 = +∞.(7)
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Theorem 1. Let conditions (6) and (7) be fulfilled. Then the solution {xn}n∈IN

of equation (1) has the property that, for every initial condition x0 which is in-
dependent of the σ-algebra σ(ξn : n ∈ IN), limn→+∞ xn = 0 almost surely, i.e.
if additionally σ has 0 as its trivial equilibrium then 0 is an asymptotically stable
equilibrium with probability one.

Proof. We may suppose that x0 is non-random since x0 is assumed to be inde-
pendent of the σ-algebra σ(ξn : n ∈ IN). Now, multiply (1) by xn+1 + xn and
obtain

x2
n+1 − x2

n = −αnx2k
n

2
(xn+1 + xn)2 + σn((xl)0≤l≤n) (xn+1 + xn) ξn+1.(8)

Exploiting the equation (1) we explicitly express xn+1 in terms of xn as follows

xn+1 − xn = −αnx2k
n xn+1

2
− αnx2k+1

n

2
+ σn((xl)0≤l≤n)ξn+1,

xn+1

(
1 +

αnx2k
n

2

)
= xn − αnx2k+1

n

2
+ σn((xl)0≤l≤n)ξn+1,

xn+1 =
xn

1 + αnx2k
n

2

−
αnx2k+1

n

2

1 + αnx2k
n

2

+
σn((xl)0≤l≤n)ξn+1

1 + αnx2k
n

2

= Fn(xn) + Gn((xl)0≤l≤n)ξn+1,(9)

where

Fn(xn) =
xn

1 + αnx2k
n

2

−
αnx2k+1

n

2

1 + αnx2k
n

2

, Gn((xl)0≤l≤n) =
σn((xl)0≤l≤n)

1 + αnx2k
n

2

.(10)

Substituting (9) in (8) and applying Lemma 1 yields that

x2
n+1 − x2

n = −αnx2k
n

2
(xn + F (xn) + Gn((xl)0≤l≤n)ξn+1)

2 +

+σn((xl)0≤l≤n) (xn + F (xn) + Gn((xl)0≤l≤n)ξn+1) ξn+1

= −αnx2k
n

2
[
(xn + F (xn))2 + 2(xn + F (xn))Gn((xl)0≤l≤n)ξn+1

]
+

−αnx2k
n

2
[
G2

n((xl)0≤l≤n)(ηn+1+µn+1)
]
+σn((xl)0≤l≤n)Gn((xl)0≤l≤n)ηn+1 +

+σn((xl)0≤l≤n) (xn + F (xn)) ξn+1 + σn((xl)0≤l≤n)Gn((xl)0≤l≤n)µn+1

= −αnx2k
n

2
(
(xn + F (xn))2 + G2

n((xl)0≤l≤n)ηn+1

)
+

+σn((xl)0≤l≤n)Gn((xl)0≤l≤n)ηn+1 + ∆Mn+1,

where

∆Mn+1 = −αnx2k
n

[
(xn + F (xn))Gn((xl)0≤l≤n)ξn+1 +

1
2
G2

n((xl)0≤l≤n)µn+1

]
+

+σn((xl)0≤l≤n) (xn + F (xn)) ξn+1 + σn((xl)0≤l≤n)Gn((xl)0≤l≤n)µn+1(11)
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is an {Fn}n∈IN-martingale-difference. We note that

(xn + F (xn))2 =

(
xn +

xn

1 + αnx2k
n

2

−
αnx2k+1

n

2

1 + αnx2k
n

2

)2

=

(
2xn − αnx2k+1

n

2 + αnx2k+1
n

2

1 + αnx2k
n

2

)2

=
4x2

n(
1 + αnx2k

n

2

)2 .

Then

x2
n+1 = x2

n −


 2αnx2k+2

n(
1 + αnx2k

n

2

)2 +
αnx2k

n

2
G2

n((xl)0≤l≤n)ηn+1


 +

+σn((xl)0≤l≤n)Gn((xl)0≤l≤n)ηn+1 + ∆Mn+1.(12)

After summation of (12) we obtain

x2
n = x2

0 + B1
n −B2

n + Mn,

where Mn =
∑n

i=0 ∆Mi with ∆M0 = 0, M0 = 0 and ∆Mi = Mi −Mi−1 satisfying
(11), and

B1
n =

n−1∑

i=0

σi((xl)0≤l≤i)Gi((xl)0≤l≤i)ηi+1, B1
0 = B2

0 = 0,

B2
n =

n−1∑

i=0


 2αix

2k+2
i(

1 + αix2k
i

2

)2 +
αix

2k
i

2
G2

i ((xl)0≤l≤i)ηi+1


 for n ≥ 1.

Note that B1 = {B1
n}n∈IN and B2 = {B2

n}n∈IN form predictable (i.e. (Fn−1,B(IR1))-
measurable) non-decreasing processes (Recall that we have ηi+1 = IEξ2

i+1 ≥ 0 and
the identities σi((xl)0≤l≤i)Gi((xl)0≤l≤i) = σ2

i ((xl)0≤l≤i)/(1 + αix
2k
i /2) ≥ 0). From

(6) we have a.s.

lim
n→+∞

B1
n =

∞∑

i=0

σi((xl)0≤l≤i)Gi((xl)0≤l≤i)ηi+1

=
∞∑

i=0

σ2
i ((xl)0≤l≤i)

(
1 +

αix
2k
i

2

)−1

ηi+1

≤ 2
∞∑

i=0

λi(1 +
x2k

i

2
)
(

1 +
αix

2k
i

2

)−1

ηi+1

≤ 2
∞∑

i=0

max
(
1,

1
αi

)
λiηi+1 < +∞.(13)

Now, we set A1
n = 2

∑n−1
i=0 max

(
1, 1

αi

)
λiηi+1 and A2

n = B2
n for all integers n ≥ 1,

and A1
0 = A2

0 = 0. Next, apply Lemma 2 to the sequence Z = {Zn}n∈IN with
Zn = x2

n and obtain that a.s. limn→+∞ x2
n and limn→+∞A2

n = limn→+∞B2
n exist

and are finite. It remains to prove that limn→+∞ x2
n = 0. Suppose, indirectly,

that the opposite is true. Then there exists a.s. a finite number a2
0(ω) > 0 on

Ω1 = {ω : limn→+∞ x2
n(ω) = a2

0(ω) > 0} with IP(Ω1) = p1 > 0. There also exists
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an integer N(ω) ≥ 0 such that 3a2
0

2 (ω) ≥ x2
n(ω) ≥ a2

0
2 (ω) for all n ≥ N(ω) on ω ∈ Ω1.

Then, for ω ∈ Ω1, some a.s. finite a2
1(ω) > 0 and for all n > N(ω), we have

B2
n(ω) = A2

n(ω) =
n−1∑

i=0


 2αix

2k+2
i (ω)(

1 + αix2k
i (ω)

2

)2 +
αix

2k
i

2
(ω)G2

i ((xl)0≤l≤i(ω))ηi+1(ω)




≥
n−1∑

i=0


 2αix

2k+2
i (ω)(

1 + αix2k
i (ω)

2

)2


 ≥

n−1∑

i=N(ω)


 2αia

2k+2
0 (ω)

22k+2
(
1 + αi

3ka2k
0 (ω)

2k+1

)2




= 2a2k+2
0 (ω)

n−1∑

i=N(ω)

αi(
2k+1 + αi3ka2k

0 (ω)
)2 =

2a2−2k
0 (ω)
32k

n−1∑

i=N(ω)

αi

(εk(ω) + αi)
2

n→+∞−→ +∞
for all εk(ω) = 2k+1

3ka2k
0 (ω)

> 0 on Ω1 due to condition (7). This result contradicts to

the fact that limn→+∞B2
n(= limn→+∞A2

n) exist and is a.s. finite. Thus, Theorem
1 is proved. ¤
Remark. There are plenty of interesting choices of αn in view of potential appli-
cations, e.g. αn = constant > 0 or periodic αn = 2 + sin((2n + 1)π/2) which could
fulfill the conditions (6) and (7). More problematic is the case when αn = γ2/n.
Obviously, condition (7) would be satisfied in this case due to Abel’s series di-
vergence test. However, the choice of possible random variables ξn together with
parameter λn would be very restricted in order to ensure the convergence of the
series occuring in condition (6).

4. An Application to Numerical Methods for CSDEs

As an example of applicability of our main result, consider the Itô-interpreted
CSDEs

dXt = −γ2[Xt]2k+1 dt + σ
[Xt]k

1 + t
dWt(14)

with real constants γ, σ, driven by the standard Wiener process W = {Wt}t≥0 and
discretized by the partially drift-implicit trapezoidal method

xn+1 = xn − 1
2
γ2[xn]2k (xn+1 + xn)∆n + σ

[xn]k

1 + tn
ξn+1,(15)

where ξn+1 = ∆Wn are independent random variables with moments IE[ξn+1] = 0
and ηn+1 = IE[ξn+1]2 = ∆n while using non-random step sizes ∆n. For general
theory of CSDEs (14), see Arnold [2], and for an overview on numerical analysis of
(14), see Schurz [20]. Obviously, both equations possess the trivial equilibrium 0
for k > 0. Let us focus our attention on its qualitative asymptotic behavior.

Theorem 2. Assume that the initial values X0 = x0 are independent of the σ-
algebra σ(Ws : s ≥ 0) and k > 0. Then the trivial solution 0 of CSDE (14) is
globally asymptotically stable (a.s.).

Proof. Apply Itô formula to the Lyapunov function V (x) = x2 to the solution of
the equation (14). Thus, combined with Young’s inequality with p = (2k + 2)/2k,



ON GLOBAL ASYMPTOTIC STABILITY OF SOME DISCRETE SDES IN IR1 361

we obtain

dX2
t =

(
−2γ2[Xt]2k+2 + σ2 [Xt]2k

(1 + t)2

)
dt + dmt(16)

≤

−2γ2[Xt]2k+2 + σ2

2
2k+2 + 2k[Xt]

2k+2

2k+2

(1 + t)2


 dt + dmt

for t ≥ 0, where m = {mt}t≥0 with mt = 2σ
∫ t

0
[Xs]k+1

1+s dWs is a square-integrable
martingale. Obviously, we find a non-random real constant µ > 0 such that

dX2
t ≤

(
−µ[Xt]2k+2 +

σ2

(k + 1)(1 + t)2

)
dt + dmt(17)

for all sufficiently large t ≥ t0. Hence, the asymptotic behavior of the non-negative
semimartingale X2

t governed by (17) is controlled by the solution Z = {Zt}t≥t0 of
stochastic differential equation

dZt =
(
−µ[Zt]k+1 +

σ2

(k + 1)(1 + t)2

)
dt + dmt(18)

with sufficiently large t ≥ t0. Therefore we may decompose its drift into non-
decreasing processes A1 = {A1

t}t≥t0 and A2 = {A2
t}t≥t0 given by

A1
t =

σ2

k + 1

∫ t

t0

ds

(1 + s)2
, A2

t = µ

∫ t

t0

[Zs]k+1ds.(19)

Notice that

lim
t→+∞

A1
t =

σ2

(k + 1)(1 + t0)
< +∞.

Now we may apply Lemma 2 (as already noted, a similar statement is also found
by Theorem 7, Chapter 2 from [6], page 139) in order to know about the existence
of the finite limits Z+∞ = limt→+∞X2

t and limt→+∞A2
t < +∞. It remains to

show that Xt converges to 0 (a.s.). Note that Zt ≥ 0 for all t ≥ t0, µ > 0 and
limt→+∞A2

t = µ
∫ +∞

t0
[Zs]k+1ds < +∞ holds. It is well-known that the convergence

of positive integrand [Zs]k+1 to 0 as s tends to +∞ is necessary for the convergence
of the improper integral in limt→+∞A2

t . Hence, limt→+∞ Zk+1
t = 0 (a.s.) implies

that limt→+∞X2
t = 0 and X∞ = limt→∞Xt = 0 (a.s.). Therefore, the proof is

complete. ¤
Remark. The proof of Theorem 2 extends to the more general Itô equation

dXt = −γ2X2k+1
t dt + σ(t)Xk

t dWt.

To guarantee asymptotic stability for this equation one needs to require

lim
t→+∞

σ(t) = 0 and ∃t0
∫ +∞

t0

σ2(s)ds < +∞,
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and one can work through the same proof-steps as before. Remarkable in view of
its asymptotic behavior, it does not really matter what value k > 0 has.

However, for the DSDE (15), the dynamic behavior with respect to asymptotic
stability might depend on the choice of step sizes ∆n. This fact can be seen imme-
diately from the following corollaries to Theorem 1.

Corollary 1. Let x = {xn}n∈IN satisfy the stochastic difference equation (15)
under the above mentioned conditions with γ2 > 0 and non-random variable step
sizes ∆n > 0 which are uniformly bounded such that

∃∆a, ∆b : ∀n ∈ IN 0 < ∆b ≤ ∆n ≤ ∆a < +∞.(20)

Then, the equation (15) for sequences x = {xn}n∈IN possesses an a.s. globally
asymptotically stable trivial solution.

Proof. Apply Theorem 1 from section 3. For this purpose, note that equation (15)
has the form (1) with αn = γ2∆n > 0. It remains to check the conditions (6) and
(7). Define λn = σ2/(1 + tn)2. One easily estimates

|σn((xl)0≤l≤n)| = |σ2 x2k
n

(1 + tn)2
| <

σ2

(1 + tn)2
(1 + x2k

n ) = λn(1 + x2k
n ),

+∞∑
n=0

max(1,
1

αn
)λnIE[ξ2

n+1] =
+∞∑
n=0

max
(

1,
1

γ2∆n

)
σ2

(1 + tn)2
∆n

≤ σ2 max
(

1,
1

γ2∆b

)
∆a

+∞∑
n=0

1
(1 + n∆b)2

< σ2 max
(

1,
1

γ2∆b

)
∆a

(∆b)2
π2

6
< +∞

and ∀ε > 0
+∞∑

i=0

αi

(ε + αi)2
=

+∞∑

i=0

γ2∆i

(ε + γ2∆i)2
≥ γ2∆b

(ε + γ2∆a)2

+∞∑

i=0

(1) = +∞.

These computations confirm the validity of (6) and (7), hence Theorem 1 can be
applied and the proof of Corollary 1 is complete. ¤

Remark. Consequently, our main result says that 0 is an asymptotically stable
equilibrium for the method (15) with probability one. Thus, as in the linear case
k = 0 (cf. [18]), there is no discrepancy between the qualitative behavior of CSDE
(14) and its discretization (15) using the reasonable choice of both constant and
uniformly bounded, but variable step sizes ∆n. Again we have some indications that
the choice of step sizes following the restriction (20) gives meaningful qualitative
results for stochastic-numerical methods (cf. [16], [19], [20]).

More care is needed when choosing variable step size algorithms with variable
step sizes tending to zero as n advances in order to achieve adequate convergence
and asymptotic stability results. Obviously, we note that conditions (6) are not
always fullfilled in the case of variable step sizes ∆n. However, when ∆n = K/nβ
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(note this can run below any natural machine accuracy!) we arrive at the following
mathematical results.

Corollary 2. Let x = {xn}n∈IN satisfy the stochastic difference equation (15)
under the above mentioned conditions with γ2 > 0 and non-random variable step
sizes ∆n > 0 which are uniformly bounded such that

∃K1, K2, β ∈ (0, 1/2) ∀n ≥ 1 :
K2

nβ
≤ ∆n ≤ K1

nβ
.(21)

Then, the equation (15) for sequences x = {xn}n∈IN possesses an a.s. globally
asymptotically stable trivial solution.

Proof. Apply Theorem 1 from section 3. For this purpose, note that equation (15)
has the form

xn+1 − xn = −αnx2k
n

(
xn+1 + xn

2

)
+ σn((xl)0≤l≤n) ξn+1.(22)

αn = γ2∆n > 0. Suppose that γ2∆n < 1. Define λn = σ2/(1 + tn)2. At first, we
note that

K2n
1−β = n

K2

nβ
≤ tn =

n−1∑

i=0

∆i

≤ n
K1

nβ
= K1n

1−β and

1
1 + tn

≤ 1
1 + K2n1−β

≤ 1
K2n1−β

for n ≥ 1.

It remains to check the conditions (6) and (7). We have

|σn((xl)0≤l≤n)| = |σ2 x2k
n

(1 + tn)2
| <

σ2

(1 + tn)2
(1 + x2k

n ) = λn(1 + x2k
n ),

+∞∑
n=1

max(1,
1

αn
)λnIE[ξ2

n+1] ≤
+∞∑
n=1

1
γ2∆n

σ2

(1 + tn)2
∆n

≤ σ2

γ2

+∞∑
n=1

1
(1 + tn)2

≤ σ2

γ2K2
2

+∞∑
n=1

1
n2−2β

< +∞

if 2− 2β > 1 or equivalently β < 1/2 by Abel’s convergence test. Furthermore, for
all ε > 0, estimate

+∞∑

i=0

αi

ε + αi
≥ γ2

+∞∑

i=1

K2i
−β

(ε + γ2K1i−β)2
= γ2K2

+∞∑

i=1

i2β

iβ(εiβ + γ2K1)2

=
γ2K2

ε2

+∞∑

i=1

i2β

iβ(iβ + γ2K1/ε)2
≥ γ2K2

(ε + γ2K1)2

+∞∑

i=1

1
iβ

= +∞

by Abel’s divergence test. Now, apply Theorem 1. Similarly, we arrive at the
conclusion for the case γ2∆n ≥ 1. This completes the proof of Corollary 2. ¤

Again we recognize that a bound of variable step sizes from below is essential to
establish asymptotic stability of numerical methods. A slightly modified example
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is given as follows. Suppose that the process X = {Xt}t≥0 satisfies the Itô SDE

dXt = −γ2[Xt]2k+1 dt + σ
[Xt]k

(1 + t)τ
dWt(23)

with real constants γ, σ and τ > 1/2, discretized by the partially drift-implicit
trapezoidal method

xn+1 = xn − 1
2
γ2[xn]2k (xn+1 + xn)∆n + σ

[xn]k

(1 + tn)τ
ξn+1,(24)

where ξn+1 = ∆Wn with ηn+1 = IE[ξn+1]2 = ∆n while using non-random step sizes
∆n.

Corollary 3. Let x = {xn}n∈IN satisfy the stochastic difference equation (24)
under the above mentioned conditions with γ2 > 0 and non-random variable step
sizes ∆n which are uniformly bounded such that

∃K1,K2, β ∈ (0, 1− 1
2τ

) ∀n ≥ 1 :
K2

nβ
≤ ∆n ≤ K1

nβ
.(25)

Then, the equation (24) for sequences x = {xn}n∈IN possesses an a.s. globally
asymptotically stable trivial solution.

Proof. Apply Theorem 1 from section 3. For this purpose, note that equation (24)
has the form (22) with αn = γ2∆n > 0. As in proof before, suppose that γ2∆n < 1.
Define λn = σ2/(1 + tn)2τ . We have

K2n
1−β = n

K2

nβ
≤ tn =

n−1∑

i=0

∆i ≤ n
K1

nβ
= K1n

1−β ,

for all n ≥ 1, hence
1

1 + tn
≤ 1

K2n1−β
.

It remains to check the conditions (6) since condition (7) was proved in Corollary
2.

|σn((xl)0≤l≤n)| = |σ2 x2k
n

(1 + tn)2τ
| <

σ2

(1 + tn)2τ
(1 + x2k

n ) = λn(1 + x2k
n ),

+∞∑
n=1

max(1,
1

αn
)λnIE[ξ2

n+1] =
+∞∑
n=1

1
γ2∆n

σ2

(1 + tn)2τ
∆n

=
σ2

γ2

+∞∑
n=1

1
(1 + tn)2τ

≤ σ2

γ2K2τ
2

+∞∑
n=1

1
n2τ(1−β)

< +∞

if 2τ(1 − β) > 1 or equivalently β < 1− 1
2τ by Abel’s convergence test. Thus, the

proof of Corollary 3 is complete. ¤

Remark. It is easy to see that τ > 1
2(1−β) → +∞ when β ↑ 1 and vice versa. For

example, from condition (25) we have
(1) if τ = 2/3, then β < 1− 3/4 = 1/4,
(2) if τ = 1, then β < 1/2,
(3) if τ = 2, then β < 1− 1/4 = 3/4,
(4) if τ = 4, then β < 1− 1/8 = 7/8 and so on.
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5. Concluding Remarks

All in all, we established a fairly general approach to verify asymptotic stability
of stochastic difference equations with some monotone structure in its drift. This
approach is heavily based on martingale convergence theorems and allows to treat
difference equations with nonautonomous and random coefficients. Some of the
remarks of this paper might be interesting for the implementation and convergence
proofs referring to the use of variable step sizes in stochastic-numerical algorithms
instead of the more trivial case of constant ones. In this direction we have provided
some illustrative examples in the previous section.

Our results can be also extended to the case of stochastic Volterra-type difference
equations while using the method of Lyapunov-Krasovskǐi functionals as similarly
done in [13]. See author’s works (e.g. [14]) in the nearest future. An application
to the sequence of gains incurred by an insurance company as indicated by [12] is
also conceivable.
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