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Abstract. Higher-order recursion schemes are systems of rewrite rules on typed
non-terminal symbols, which can be used to define infinite trees. The Global
Modal Mu-Calculus Model Checking Problem takes as input such a recursion
scheme together with a modal μ-calculus sentence and asks for a finite repre-
sentation of the set of nodes in the tree generated by the scheme at which the
sentence holds. Using a method that appeals to game semantics, we show that for
an order-n recursion scheme, one can effectively construct a non-deterministic
order-n collapsible pushdown automaton representing this set. The level of the
automaton is strict in the sense that in general no non-deterministic order-(n−1)
automaton could do likewise (assuming the requisite hierarchy theorem). The
question of determinisation is left open. As a corollary we can also construct an
order-n collapsible pushdown automaton representing the constructible winning
region of an order-n collapsible pushdown parity game.

Keywords: Recursion Scheme, Model Checking, Game Semantics, Collapsible
Pushdown Automaton, Parity Game.

1 Introduction

Whilst local model checking asks whether a property holds at the root of a structure, a
global model checking algorithm is designed to return a finite representation of the set
of states in a structure at which a property holds.

Our own focus is on model checking modal μ-calculus properties of (possibly infi-
nite) ranked trees generated by higher-order recursion schemes, which are systems of
rewrite rules on typed non-terminals. A number of results exist concerning the local
version [13,14] and it turns out that for an order-n recursion scheme the local problem
is n-EXPTIME complete [14]. The computationally intensive part of our algorithm for
the global result in fact consists of solving a local version of the problem. We have to
compute the winning region of a finite parity game arising from Ong’s method [14]. Al-
gorithms for solving such games from a given node usually follow the global paradigm
and compute the winning region in the process.

Owing to equivalences between recursion schemes and various flavours of higher-
order pushdown automata (PDA) [13,10], the present work is very much related to
computing winning regions of parity games played over the configuration graphs of
such automata. Cachat and Serre independently showed that the winning regions of
parity games over 1-PDA and prefix-recognizable graphs are regular [16,2]. Piterman
and Vardi [15] have also presented a generalisation of automata-theoretic techniques
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used to solve the local problem over these graphs to obtain the same result. (Indeed
we borrow an aspect of their method with what we call in the sequel ‘the versatile
automaton’.) It was subsequently discovered by Carayol et al. that the winning regions
of order-n pushdown parity games are regular and that the problem is n-EXPTIME
complete [4]. As a corollary to this they show that the global model checking problem
for order-n recursion schemes satisfying a syntactic constraint called ‘safety’ can be
solved in n-EXPTIME, with solution represented by a deterministic order-n pushdown
automaton.

An analogous approach to general recursion schemes would require a regular charac-
terisation of the winning region of a collapsible pushdown parity game [10], as provided
by Serre1. The approach we consider here, however, does not go via collapsible push-
down parity games. Despite the difference in method, our final result is similar insofar
as our algorithm represents the required set of tree nodes using an order-n collapsible
pushdown automaton (CPDA). There is an unfortunate difference, however, in that our
CPDA is non-deterministic. Even if this diminishes the practical utility of the output
of our algorithm, our result nevertheless establishes that the μ-calculus definable node-
sets of trees generated by order-n recursion schemes can themselves be generated by
an order-n recursion scheme. In doing so we show how two different incarnations of a
game-semantic approach to the Local Problem [14,10] can be merged.

As a corollary we are able to characterise the configurations with constructible stacks
that are winning in a collapsible pushdown parity game using a CPDA. Constructible
stacks are represented by sequences of stack operations that generate them. This resem-
bles a similar result by Carayol and Slaats for (non-collapsible) PDA [5], although our
version lacks the canonicity exhibited in op. cit.

An Outline Proof of the Local Problem. Space constraints limit the degree to which
we can introduce apparatus from Ong’s original paper [14] but we try to refer to a
section of the long version for the reader interested in more details.

Fix a space of types formed from a single ground type o and the arrow-constructor→.
The order and arity of a type are given their standard definitions. An order-n recursion
scheme ([14], Sec. 1.2) is a 5-tuple 〈Σ,N ,V ,R,S〉 where Σ is a finite ranked alphabet
with a symbol of arity k given the order-1 type of arity k; N is a finite set of non-
terminals assigned types of order no greater than n; V is a finite set of typed variables;
S ∈ N is a distinguished ‘initial symbol’ with type o and R is a finite set of rewrite
rules of the form Fζ1 . . . ζm → t(ζ1, . . . , ζm) where F ∈ N and ζ1, . . . , ζm ∈ V ;
Fζ1, . . . , ζm has type o as does the term t(ζ1, . . . , ζm), which is formed from variables
ζ1, . . . , ζm, non-terminals from N and Σ-symbols. There should be precisely one rule
for each non-terminal. The value-tree �G� defined by a recursion scheme G is the tree
with nodes labelled in Σ that is the limit of the recursion scheme as it unfolds from S
([14], p. 7).

Given a μ-calculus sentence φ and a recursion scheme G, the local problem asks
whether φ holds at the root of �G�. Ong’s proof of decidability for this [14] makes use
of ideas from innocent game semantics [11] via the notion of traversal. A traversal is
a sequence of nodes obeying certain rules in an infinite lambda term λ(G), called the

1 Private communication with Olivier Serre, 7 October 2008.
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computation tree, which represents the recursion scheme G ([14], Sec. 2). The manner
in which a traversal hops around the computation tree can be viewed as both a form
of evaluation of the scheme (linear head reduction) and a manifestation of its game-
semantic denotation.

Thanks to Emerson and Jutla [7], we can convert the μ-calculus sentence φ to an
alternating parity tree automaton (APT) B, which we refer to as the property APT,
such that B has an accepting run-tree on the value-tree �G� generated by G just in case
�G� � φ.2 We can map accepting run-trees to accepting traversal trees (and vice versa),
where the latter allow B to jump over λ(G) according to the rules for traversals ([14],
Definition 2.11). We can then simulate such traversal trees using a traversal simulating
APT C that reads λ(G) in a ‘normal’ top-down manner ([14], Sec. 3). Since λ(G) is
regular, as witnessed by a finite graph Gr(G) ([14], p. 51 ), it can be decided whether C
accepts λ(G) and this gives the result.

Overview. Fix a ranked alphabet Σ, a tree-generating recursion scheme G and a μ-
calculus sentence φ. Let B be the property APT associated with φ. The Global Model-
Checking Problem asks for a finite representation of the set of nodes in the Σ-labelled
tree �G� at which φ holds. We explicate a method that, given an order-n recursion
scheme, constructs an n-CPDA word acceptor that accepts precisely these nodes, where
nodes are represented in the standard way as strings over a ‘directions alphabet’.

We actually establish a slightly stronger result than we need. We provide a finite
representation of the set of ordered pairs (q, α), where q is a state of B and α is a
node of �G�, such that B accepts the subtree of �G� rooted at α starting from state q.
The solution to the Global Model-Checking Problem for G and φ is then provided by
restricting this set to those pairs of the form (q0, α), where q0 is the initial state of B.

The construction begins with what we describe as the versatile property APT, B⊥,
which is able to navigate to an arbitrary node in �G� before proceeding to adopt the
behaviour of B starting at an arbitrary state q. Since B⊥ is just an ordinary APT, there
exists a traversal-simulating APT C⊥ forB⊥. We can thus move on to consider the finite
parity game GG,C⊥ induced by C⊥ and the computation graph Gr(G) of G. The two
players of parity games are named Éloı̈se and Abelard. Éloı̈se can be viewed as trying
to establish a μ-calculus formula whilst Abelard is trying to refute it. We can use a
standard algorithm to find the winning region of GG,C⊥ and thereby label with a symbol
‘W ’ the nodes of GG,C⊥ from which Éloı̈se has a winning strategy. The annotated graph
is called GW

G,C⊥ .

Since GW
G,C⊥ is induced (in part) by Gr(G), it makes sense to speak of traversals over

GW
G,C⊥ . Consider the set of traversals of GW

G,C⊥ travelling only over nodes labelled with

W and halting at a node corresponding to a point where B⊥ starts to simulate B from
state q at node n of the tree. It turns out that this set, when projected to the Σ-labelled
nodes, corresponds to the set of ordered pairs (q, α) that we want to finitely represent.
Since we can program an n-CPDA to navigate traversals of Gr(G) [10], we can also
program it to navigate the traversals of GW

G,C⊥ in the set. This provides the requisite
n-CPDA word acceptor.

2 For an introduction to the modal μ-calculus and parity automata / games we direct the reader
to Bradfield and Stirling’s survey [1].
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2 The Versatile Property APT and Its Simulation

f1

a2 f3

a4 f5

a6 f7

a8 ...

Fig. 1. A Value Tree

By convention the nodes of a (ranked and ordered) Σ-
labelled tree, T : dom(T ) −→ Σ (say), are represented
in the standard way by strings in Dir∗ where Dir = N,
so that dom(T ) ⊆ Dir∗; elements of Dir ∪ {ε} (ε the
empty string) are referred to as directions. Thus the label
of a node α is T (α) (e.g. �G�(α) means the label of
the node α in a value-tree �G�). A path p in a tree is
viewed as a sequence of nodes such that the successor of
an element of a sequence is its child. The trace trace(p)
of a path p = (pi)i∈I is the sequence (T (pi))i∈I . For a node r of a tree T we write Tr

for the maximal subtree of T rooted at r.
An APT that operates over a Σ-labelled tree T is a 5-tuple 〈Σ, Q, δ, q0, Ω 〉 consist-

ing of a finite-set Q of control-states, transition function δ : (Σ × Q) → B+((Dir ∪
{ε}) × Q) (where B+(S) is the set of positive boolean formulae with set of atoms S),
initial state q0 ∈ Q and priority function Ω : Q → N. Whilst reading a node u of
T in state q the automaton will pick a minimal set S ⊆ ((Dir ∪ {ε}) × Q) satisfying
δ(T (u), q), and for each (i, q′) ∈ S will spawn an automaton in state q′ reading the
ith child of u, the ε-child of a node being itself. A run-tree of the APT is an unranked
(dom(T ) × Q)-labelled tree representing such a branching run starting in state q0 at
the root of T . It is deemed accepting if the Q-projection q1 q2 . . . of the trace of every
path satisfies the parity condition meaning that max({Ω(q) : q ∈ inf(q1 q2 . . . )}) is
even, where inf(σ) is the set of states occurring infinitely often in σ.

Suppose that the property APT B has initial state q0 so that B = 〈Σ, Q, δ, q0, Ω 〉.
A template for an APT is a quadruple B = 〈Σ, Q, δ, Ω 〉 with Q a finite set such that
for any q ∈ Q it is the case that Bq = 〈Σ, Q, δ, q, Ω 〉 is an APT. We may view B as
representing the family of automata: B = { Bq : q ∈ Q }.

Consider a ranked and ordered tree T . It is possible to construct an automaton B⊥
that can behave as any member of B acting on any ranked and ordered subtree of T .
We call this automaton the versatile property APT for B. The versatile APT traverses
the tree T starting at its root whilst in a kind of ‘nascent state’ ⊥. Once it reaches the
desired node r of the tree, it switches into the required state q and starts behaving as
though it were Bq. We call this point q-initialisation.

Definition 1. Let B = 〈Σ, Q, δ, Ω 〉 be a template for an APT. The versatile automa-
ton B⊥ for B is the APT B⊥ given by:

B⊥ =
〈
Σ, Q 	 {⊥}, δ⊥,⊥, Ω⊥〉

where δ⊥ extends δ by the rule: δ⊥ : (⊥, f) 
→ ∨
1≤i≤ar(f)(i,⊥)∨∨

q∈Q(ε, q) and Ω⊥

extends Ω with Ω⊥(⊥) := −1.

So the APT B⊥ has an ‘initialisation phase’ during which it is in state ⊥.

Definition 2. Let t be a run-tree of the versatile APT B⊥ on a Σ-labelled tree T . Let
t⊥ be the unique path in t consisting of precisely the nodes associated with ⊥.
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Let p be the unique path in T corresponding to the path in t of the form t⊥ β where
β is a node in t with label (α, q) such that q ∈ Q, the state space of the template B (i.e.
q �= ⊥). We then say that q-initialization occurs at (the path) p or at (the node) β. We
call the path t⊥ the initialisation phase of the automaton (during the run t).

λ1

@2

λφ3

φ4

λ5

@6

λφ7

φ8

λ9...

λx10

f11

λ12

a13

λ14

x15

λx16

f17

λ18

a19

λ20

x21

Fig. 2. A Computation Tree

(f1,⊥)

(f3,⊥)

(f3, q1) q1-initialization

(a4, q1) (a4, q2) (f5, q2)

(a6, q1) (a6, q2) ...

Fig. 3. A Run-Tree of a Versatile APT

The following lemma summarises the signifi-
cance of B⊥.

Lemma 1. Let B⊥ be a versatile automaton and
let T be a Σ-labelled tree. Given a state q of B
and a node r of T , it is the case that Bq accepts
Tr if and only if B⊥ has an accepting run-tree on
T with q-initialisation taking place at r.

Example 1. We use the following automaton as
our working example. It acts on trees with nodes
labelled by f and a with arities 2 and 0 re-
spectively. It has state space {q0, q1, q2} each of
which is given priority 2.

(f, q0) 
→ (1, q1) ∧ (2, q1) (a, ) 
→ t
(f, q1) 
→ (1, q1) ∧ (1, q2) ∧ (2, q1)

We additionally use as an example the recursion
scheme with initial non-terminal S : o, non-
terminal F : (o → o) → o and rules: S →
F (fa) and Fφ → φ(F (fa)). The scheme’s
value tree and computation tree are illustrated in
Figures 1 and 2 respectively.

Example 2. The versatile APT for the property
APT in Example 1 has state space {q0, q1, q2} ∪
{⊥}with ⊥ the initial state. All states of the form
qi have priority 2 but ⊥ has priority −1. Its tran-
sition function is given by:

(f, q0) 
→ (1, q1) ∧ (2, q1) (f,⊥) 
→ (1,⊥) ∨ (2,⊥) ∨ ∨
0≤i≤2(ε, qi)

(f, q1) 
→ (1, q1) ∧ (1, q2) ∧ (2, q1) (a, q ) 
→ t

with t the positive boolean formula that is always true (i.e. the empty conjunction) and
f is that which is always false (i.e. the empty disjunction).

A run-tree of this versatile APT on the value tree in Figure 1 is given in Figure 3.

Traversals and the Versatile APT. Now consider a Σ-labelled tree �G� generated by
some higher-order recursion scheme G. Let us fix a versatile APT B⊥ that can run on
Σ-labelled trees.

We now make use of the notions of traversals and the traversal tree of an APT
on the computation tree λ(G) of the recursion scheme. We speak interchangeably of
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traversals over the computation graph Gr(G), which unravels to form λ(G). The Path-
Traversal Correspondence Theorem from the proof of the decidability of the Local
Model-Checking Problem ([14], Thm. 7) ensures that the following definition is well-
defined, which for any node α in �G� gives the corresponding node αΛ in λ(G):

Definition 3. Let α = a1 . . . am (with ai ∈ Dir for 1 ≤ i ≤ m) be a node in �G�. Let
tα be a traversal of λ(G) and for 1 ≤ i ≤ m + 1 let us name vi the i-th occurrence
of a terminal-labelled node in tα. Suppose that v1 bears the same label as the root of
�G� and for i ≥ 2, �G�(a1 . . . ai−1) = �λ(G)�(vi) (where a1 . . . ai−1 is a node in
�G�). Further assume that for 1 ≤ i ≤ m the successor of vi−1 in tα is its ai-th child
in λ(G). We define αΛ to be vm+1.

(λ1,⊥)

(@2,⊥)

(λφ3,⊥)

(φ4,⊥)

(λx16,⊥)

(f17,⊥)

(λ20,⊥)

(x21,⊥)

(λ5,⊥)

(@6,⊥)

(λφ7,⊥)

(φ8,⊥)

(λx10,⊥)

(f11,⊥)

(f11, q1) q1-initialization

(λ12, q1)

(a13, q1)

(λ12, q2)

(a13, q1)

(λ14, q2)

(x15, q2)

(λ9, q2)...

Fig. 4. A Traversal Tree of a Versatile APT

Note that αΛ also makes sense when speak-
ing of traversals over Gr(G) except that in
this case it should be viewed as a particular
instance of a Gr(G)-node in a traversal.

We can also speak of q-initialisation in a
traversal tree of B⊥ in a completely anal-
ogous way – q-initialisation is the point in
the traversal at which the automaton switches
from being in state ⊥ to being in state q. We
illustrate in Figure 4 a traversal tree of the
versatile APT in Example 2 on the compu-
tation tree in Figure 2.

Now we make use of the traversal-
simulating APT C⊥ associated with B⊥ (in
the sense of Ong ([14], sec. 3)). The essential
property of C⊥ is that it is possible to convert
an accepting traversal tree of B⊥ on λ(G)
into an accepting run-tree of C⊥ on λ(G) and
conversely an accepting run-tree of C⊥ can
be converted into an accepting traversal tree
of B⊥.

Each state s of C⊥ includes a component
sim(s) which is the state of B⊥ that is being
simulated. Similarly for a sequence of states
σ = (si)i∈X we write sim(σ) to denote the
sequence (sim(si))i∈X . In contrast to B⊥,
however, the transition function of C⊥ maps ⊥-states to boolean formulae that are not
necessarily disjunctions so that it can both guess how the simulated traversal will evolve
as well as later verify these guesses. As a result q-initialization cannot be considered
unique for C⊥ and so we adjust the definition appropriately.

Definition 4. Let t be a run-tree of C⊥ on λ(G) and q be a state of B. For a finite path
p in λ(G) (starting at the root), we say that an instance of q-initialisation occurs at p
if there exists some path t⊥ in t such that sim(trace(t⊥)) consists only of ⊥ and β is
some node such that t⊥ β is also a path in t with the projection of trace(t⊥) onto the
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(λ1,⊥∅)

(@2,⊥∅)

(λφ3,⊥{θ}) (λx16,⊥∅θ)

(f17,⊥{θ′})

(λ20,⊥{θ′})

(x21,⊥{θ′}θ′)

(φ4,⊥{θ}θ)

(λ5,⊥∅θ′)

(@6,⊥∅)

(λφ7,⊥{θ1})

(φ8,⊥{θ1}θ1)

(λx10,⊥∅θ1)

(f11,⊥{θ′
1})

(f11, q1{θ′
1}) corresponding q1-initialization

Part of a run-tree of the traversal-simulating APT on λ(G). The
states of the traversal-simulating automaton are either of the form qθ
or qSθ where q represents the property APT state being simulated and
S and θ describe how the automaton has guessed the traversal being
simulated should evolve ([14], Sec. 3). The fragment of the run-tree
illustrated here is precisely the fragment that corresponds to the frag-
ment of the traversal tree illustrated to the right.

(λ1,⊥)

(@2,⊥)

(λφ3,⊥)

(φ4,⊥)

(λx16,⊥)

(f17,⊥)

(λ20,⊥)

(x21,⊥)

(λ5,⊥)

(@6,⊥)

(λφ7,⊥)

(φ8,⊥)

(λx10,⊥)

(f11,⊥)

(f11, q1)

corresp. q1-initialization

The part of the
traversal tree up
to the point of q-
initialisation.

The traversal associated with the two diagrams above is:

λ1 @2 λφ3

0

φ4

1

λx16

1

f17 λ20

2

x21

1

λ5

1

@6 λφ7

0

φ8

1

λx10

1

f11

which has P -View:

λ1 @2 λφ3

0

φ4

1

λ5

1

@6 λx10

1

f11 .

The path corresponding to this P -view in the traversal-simulating APT run-tree has been highlighted.

Fig. 5. An illustration of Lemma 2
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nodes of λ(G) equal to p and β labelled (s, α) where α is the last node in p and s is a
state of C⊥ such that sim(s) = q.

Given a sequence of nodes s := (α1, p1) . . . (αm, pm) in Gr(G) × QC⊥ let us write
πGr(G)(s) to mean α1, . . . , αm and πNDup

Gr(G)(s) to mean the largest subsequence of
πGr(G)(s) whose adjacent elements are pairwise distinct. Given a traversal t we write
�t� to denote its P -view ([14], Def. 2.5) which is a subsequence of t of a certain game-
semantic significance.

Lemma 2. Let α be a node in �G� and q be a state of B. The following are equivalent:

1. Property APT Bq ∈ B accepts �G�α.
2. The APT B⊥ has an accepting traversal tree t with q-initialisation occurring at αΛ.
3. There exists a finite subtree Tα of a run-tree of C⊥, all of whose nodes are associ-

ated with states simulating ⊥. For some traversal tα on λ(G) ending in αΛ it is the
case that

{πNDup
Gr(G)(p) : p is a path in Tα} = {�πGr(G)(s)� : s is an initial segment of tα} .

In particular there is a maximal branch b in Tα such that �πNDup
Gr(G)(b)� = �tα�.

Moreover, Tα can be extended to an accepting run-tree of C⊥ such that
q-initialisation occurs on the tip of b.

Proof. The equivalence of 1 and 2 is given by the Path-Traversal Correspondence Theo-
rem of Ong ([14], Thm 7). The equivalence of 2 and 3 is given by the inter-translations
between traversal trees of B⊥ and run-trees of C⊥ given in op. cit. (Sec 4 and 5) to-
gether with the result from that same paper ([14], Prop. 6) stating that there is a 1 − 1
correspondence between P -views of traversals and paths in the computation tree. This
is illustrated in Figure 5. ��

3 The Versatile Parity Game

We now move on to consider the parity game induced by C⊥ acting on Gr(G). Let us
call this parity game the versatile parity game GG,C⊥ . To retain a simple description,
we assume that C⊥ is presented in such a form that the image of its transition function
consists of just pure disjunctions and pure conjunctions. Let us write

C⊥ := 〈ΛG, QC⊥ , δC⊥ , p0C⊥ , ΩC⊥〉

for the traversal-simulating automaton in such a form. This means that every element
in the image of δC⊥ can be written as

∧
i∈I(di, pi) or

∨
i∈I(di, pi).

Definition 5. Let N be the set of nodes in Gr(G) and let QC⊥ be the state space of C⊥.
The versatile parity game is the parity game played on a directed graph with nodes in
N × QC⊥ such that:
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1. The start node of the game is (n0, p0C⊥) where n0 is the root of Gr(G).
2. There is an edge from (n, p) to (n′, p′) just in case

δC⊥(l, p) =
∧

i∈I

(di, pi) or δC⊥(l, p) =
∨

i∈I

(di, pi)

where l is the label of n and for some i ∈ I , pi = p′ and n′ is the dith child of n.
Note that we may have di = ε (the automaton does not move in the tree), in which
case n′ = n.

3. A game node (n, p) is owned by Éloı̈se if it is mapped by δC⊥ onto a
∨

-formula
and is owned by Abelard if it is mapped onto a

∧
-formula.

4. The only nodes in the game are those reachable from its start node.
5. The priority of a node (n, p) is ΩC⊥(p).

We write GG,C⊥ to denote this parity game and let us write legalMove((n, p), (n′, p′))
if there is an edge from (n, p) to (n′, p′).

We refer to a run-tree of C⊥, whose nodes associated with a
∨

-state must have a unique
child, as strategies for Éloı̈se in the game GG,C⊥ . Such a strategy is termed winning
just in case it is an accepting run-tree. A finite subtree of a strategy is called a partial
strategy.

By the definition of a traversal-simulating APT we may assume the following w.l.o.g:

Lemma 3

1. Suppose that (n, p) is a node in GG,C⊥ such that the label of n is either an @ symbol
or a variable φ. It is then the case that (n, p) is owned by Abelard and n′ �= n for
every (n′, p′) such that legalMove((n, p), (n′, p′)) if and only if there exists some
(n′, p′) such that n �= n′ and legalMove((n, p), (n′, p′)).

2. A game node (n, p) with n labelled by a terminal f ∈ Σ and sim(p) = ⊥ is owned
by Éloı̈se. The successor nodes of (n, p) include nodes of the form:
(a) (n, pq) with sim(pq) = q for each q ∈ Q, the state space of B.
(b) (ni, pi) for 1 ≤ i ≤ ar(f) where ni is the ith child of n and sim(pi) = ⊥.

3. Any node (n, p) in GG,C⊥ such that the label of n is a λ-node is owned by Éloı̈se.

We can extend the notion of traversal on Gr(G) (or λ(G)) to GG,C⊥ . Such traversals
must respect the edge-relation of GG,C⊥ in the sense that they could be ‘reassembled’
into a tree embeddable in GG,C⊥ .

Definition 6. Consider a finite sequence of nodes (n1, p1), . . . , (nm, pm) in GG,C⊥

such that an element (ni, pi) might be endowed with an integer labelled pointer to
an element (nj , pj) for 1 ≤ j < i. We say that such a sequence is a traversal of GG,C⊥

just in case all of the following conditions hold:

1. (n1, p1) is the initial node of GG,C⊥ (so n1 will have label λ).
2. The sequence n1, . . . , nm together with pointers is a traversal of Gr(G), which we

refer to as the underlying traversal.
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3. Suppose that the traversal includes an instance of

. . . (n, p) . . . (n′, p′)

i

. . .

where n′ is a λ-node, or . . . (n, p) (n′, p′) . . . where n is a λ-node and (n′, p′)
may or may not source a pointer.

We require that there is a path from (n, p) to (n′, p′) in GG,C⊥ . Note that this
path will necessarily be of the form

(n, p), (s1, p1), . . . , (sl, pl), (sl+1, pl+1), . . . , (sk, pk), (n′, p′)

for some l, k ∈ N such that for all 1 ≤ i ≤ l we have the label of si being the label
of n and for all l + 1 ≤ j ≤ k we have the label of sj being the label for n′.

4. Every occurrence of (ni, pi) such that ni is an @ or a variable node is owned by
Abelard.

Our definition of traversal respects the rules of GG,C⊥ , equivalently the transition func-
tion of C⊥, in the following sense:

Lemma 4. For every traversal t of GG,C⊥ there exists a partial strategy T for Éloı̈se in
GG,C⊥ such that

{πNDup
Gr(G)(trace(r)) : r is a path in T }={�πGr(G)(s)� : s is an initial segment of t} .

Traversals of GG,C⊥ consisting of nothing but nodes (n, p) with sim(p) = ⊥ are partic-
ularly pleasant because nodes associated with a terminal f ∈ Σ never occur in imme-
diate succession; they also allow access to arbitrary children of the f labelled node in
Gr(G). We are also interested in such traversals that then finish with a node (n, p) with
sim(p) = q for q ∈ Q, the state space of B.

Definition 7. A ⊥-traversal of GG,C⊥ is a traversal of GG,C⊥ consisting entirely of
nodes (n, p) that satisfy sim(p) = ⊥. If q is a state of B, then a q-tipped traversal of
GG,C⊥ is a traversal of the form s (n, p) where s is a ⊥-traversal but sim(p) = q.

Using known algorithms (such as Jurdziński’s [12]) we can compute the winning region
for Éloı̈se of finite parity games. We may thus effectively annotate with the symbol ‘W ’
the states of GG,C⊥ from which Éloı̈se has a winning strategy. Let us write GW

G,C⊥ for
this annotated game and refer to it as the decorated game. We interchangeably refer to
traversals as being over GG,C⊥ and GW

G,C⊥ . A traversal of GW
G,C⊥ containing only nodes

annotated with W is referred to as a winning traversal. In particular, the following
lemma is useful to us and comes as a corollary to Lemmas 3 and 4 together with the
fact that a partial strategy labelled everywhere with W can be extended to a winning
strategy:

Lemma 5. Let α be a node in �G� and q a state of the APT template B, and let tα be a
winning q-tipped traversal tα in GW

G,C⊥ whose final element is of the form (αΛ, p) (and

sim(p) = q). There is a minimal partial strategy Tα for Éloı̈se on GW
G,C⊥ that can be

extended to a winning strategy (accepting run-tree of C⊥ on λ(G)) satisfying
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{πNDup
Gr(G)(trace(r)) : r is a path in Tα} = {�πGr(G)(s)� : s initial segment of tα} .

In particular there is a maximal branch b in Tα such that

πNDup
Gr(G)(trace(b)) = �πGr(G)(tα)�

with the tip of b being the sole node to be given a label (n, p) where sim(p) = q.

Note that αΛ is well-defined as used above due to the second observation in Lemma 3,
which ensures that during the initialization phase of a traversal of GG,C⊥ one can leave
a terminal node in any direction and the only time at which an ε-transition may be made
at a terminal node is to q-initialize.

We now make the following claim:

Lemma 6. Let α be a node in �G� and q a state of the property APT template B. TFAE:

1. Property APT Bq ∈ B accepts �G�α.
2. There exists a winning q-tipped traversal in GW

G,C⊥ whose final element is of the

form (αΛ, p) (and sim(p) = q).

The proof from 2 to 1 just consists of combining Lemmas 5 and 2. To go in the other
direction, we use the second equivalence in Lemma 5 and then use Ong’s construction
of an accepting run tree of C⊥ from the accepting traversal tree of B⊥ ([14], Sec. 5).
We appeal to observations concerning @ and variable nodes in GW

G,C⊥ made in Lemma
3 to ensure that Abelard owns the @ and variable elements of the q-tipped traversal.

4 Construction of an n-CPDA Recogniser

Let us formally consider what it means to have an automaton as a solution to the Global
Model-Checking Problem for a tree generated by a higher-order recursion scheme.

Definition 8. Let B be a template for an APT with state space QB and let G be a
higher-order recursion scheme. Let n ∈ N be the maximal rank of any terminal occur-
ring in G and let Dir(Σ) = {1, . . . , n} be the corresponding set of directions (so that
nodes in �G� are denoted by elements in Dir(Σ)∗).

Now let A be an automaton (of any type) that reads (finite) words over the alphabet
Dir(Σ) with a finite state-set QA (and possibly additional memory of some kind such
as a stack). We say that A is an automaton-solution to the Global Model Checking
Problem (GMCP) for (the tree generated by) G with respect to B just in case it can be
endowed with a map Q : QA −→ QB ∪{⊥} such that the following set equality holds
for every state q ∈ QB:

{w ∈ Dir(Σ)∗ : Bq accepts �G�w} = {w ∈ Dir(Σ)∗ : ∃s ∈ ctl(w) .Q(s) = q}
where ctl(w) is the set of control states of A that are reachable on reading word w.3

In particular if we have an APT Bq0 (with initial state q0) then we can represent the set
of subtrees of �G� accepted by Bq0 with an automaton-solutionA to the Global Model-

3 The ⊥ label of a state in A allows one to avoid a state in A being associated with any element
of B. That is, Q could be viewed as a partial function from A to B.
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Checking Problem which is given final states {s ∈ QA : Q(s) = q0} and the standard
acceptance condition for finite strings.

An order-n pushdown automaton (n-PDA) is an automaton equipped with a stack
of (n − 1)-stacks where a 1-stack contains only atoms and a (k + 1)-stack is a stack
of k-stacks. For m ≥ 2 an order-m push operation copies the top-most (m − 1)-stack
whilst an order-m pop operation discards it. The order-1 push and pop are the standard
pushdown operations acting on the top-most 1-stack. We write top1 to denote the top-
most element of the top-most 1-stack. An order-n collapsible pushdown automaton
(n-CPDA) [10] has an n-stack that allows a pointer from any atomic element (stack
symbol) to a k-stack below it (where 1 ≤ k < n). It has a collapse operation that
discards the stack’s contents above the target of top1 ’s pointer.

We claim that an order-n collapsible pushdown automaton (n-CPDA) can be a solu-
tion to the GMCP for an order-n recursion scheme. Moreover we claim that it is possible
to effectively construct the requisite n-CPDA from B (or Bq) and G. We adapt the au-
tomaton CPDA(G) introduced by Hague et al. [10] that is able to compute traversals of
Gr(G) so that instead it computes winning traversals of GW

G,C⊥ . Its direction at terminal
symbols is guided by reading a node α of �G� (which is just a word in Dir(Σ)∗). By
Lemma 6 this enables the automaton to fulfil the task demanded of it.

Theorem 1. Let G be an order-n recursion scheme and B a property APT template. We
can construct an n-CPDA that is a solution to the associated Global Model Checking
Problem in n-EXPTIME. The constructed automaton has n-exponential size.

Note that deciding whether an n-CPDA accepts a given finite-word turns out to be
(n − 1)-EXPTIME complete in the size of the n-CPDA. We can establish this by first
showing the emptiness problem to be (n − 1)-EXPTIME complete.

In general an (n−1)-CPDA cannot provide a solution to GMCP for order-n schemes
unless (n − 1)-CPDA are equi-expressive with n-CPDA.

Lemma 7. Let G be a (non-deterministic) order-n recursion scheme that generates
a finite-word language L over an alphabet Σ. There exists a deterministic order-n
recursion scheme G′ generating a ranked and ordered tree together with a μ-calculus
sentence φ such that the language L′ := {α ∈ Dir∗ : �G�α � φ } can be viewed as
being over an alphabet Σ′ with Σ ⊆ Σ′ and

L′ �Σ := {w ∈ Σ∗ : w is the maximal Σ-sub-sequence of an element of L′ } = L
Proof. Let G be a non-deterministic order-n recursion scheme generating a finite word
language L over a finite alphabet Σ. The elements of Σ can be viewed as terminals of
arity 1 and we also have an end-of-string marker e �∈ Σ with arity 0. The rules of G will
be of the form Fiζ

i
1 . . . ζi

mi
−→ ti1 | . . . | tiki

for each non-terminal Fi where i
ranges in 1 ≤ i ≤ N (say). Let K be the least integer with ki ≤ K for all 1 ≤ i ≤ N .

We form a deterministic recursion scheme G′ that generates a single tree. The ranked
alphabet Γ used by G′ consists of two arity-0 terminals e and b together with a terminal
h of arity |Σ| + K . Let σ : Σ −→ { i : 1 ≤ i ≤ |Σ| } be some bijection.

We give G′ a terminal F ′
i for every terminal Fi in G such that F ′

i has the same type
as Fi. We take the initial non-terminal of G′ to be S′; we further provide a non-terminal
Cc with type o → o for each c ∈ Σ. The rules of G′ are as follows:
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F ′
i ζi

1 . . . ζi
mi

−→ h b . . . b︸ ︷︷ ︸
|Σ| times

ti1
�
. . . tiki

�
b . . . b︸ ︷︷ ︸

(K−ki) times

Cc x −→ h b . . . b︸ ︷︷ ︸
σ(c)−1 times

x b . . . b︸ ︷︷ ︸
|Σ|−σ(c) times

b . . . b︸ ︷︷ ︸
K times

for 1 ≤ i ≤ N and c ∈ Σ, where til
�

(1 ≤ l ≤ ki) is formed from til by replacing each
occurrence of a terminal c ∈ Σ with a non-terminal Cj . Note that the end-of-string
marker e is never replaced as our convention leaves it out of Σ.

Let α be a node of �G�. Let us identify Σ with the first |Σ| directions {1, . . . , |Σ|}
of h. By the construction of G′ from G we have �G�(α) = e if and only if α �Σ ∈ L.
The μ-calculus formula φ asserting a node is labelled with e then gives the result. ��

The languageL′ in the above Lemma is the set that should be recognised by the solution
to the GMCP for G′ and φ. If an n-CPDA can recognise L′, then there must exist an n-
CPDA that can recogniseL′ �Σ . There exists a hierarchy theorem of Damm [6] for PDA
and modulo the assumption of a similar theorem for CPDA we obtain the following:

Theorem 2. Assuming that the CPDA generated word-languages form a strict hierar-
chy, there exists an order-n recursion scheme G and a μ-calculus sentence φ such that
no m-CPDA with m < n can be a solution to the corresponding GMCP.

5 Winning Region of a Collapsible Pushdown Game

We characterise the constructible winning region of a collapsible pushdown parity game
in terms of the sequences of stack operations that can generate the winning configura-
tions. We refer to the automaton-generator of the underlying digraph as a collapsible
pushdown system (CPDS) and its configuration graph as a CPDS graph.

Some stacks cannot be constructed by operations on the empty-stack: [ [ a ] [ a ] [ b ] ].

The Unravelling of a CPDS Graph and Winning Condition APT. The unravelling
of a CPDS graph G is a tree unrav(G) formed by labelling each node (q, s) (q a control
state and s a stack) of the configuration graph with (q, top1 s) and then unfolding from
the initial configuration. We can view this tree as being ranked and ordered by giving
a label (q, a) an arity equal to the size of the set { (q′, θ) : (q, a, q′, θ) ∈ Δ }, where
Δ ⊆ Q × Γ × Q × Opn is the transition relation and Opn the set of order-n stack
operations. We make the tree ordered by placing a linear order on the set.

For any CPDS parity game with underlying CPDS graph G the ownership O(q) and
priority Ω(q) of a configuration (q, s) are given entirely by q. We can thus [7] construct
an APT B that, for a given node r in unrav(G) corresponding to a configuration (q, s) in
G, accepts unrav(G)r if and only if Éloı̈se has a winning strategy from (q, s). Whenever
B reads a node labelled (q, a), it transitions to a state with priority Ω(q) that is a

∨
state

if O(q) is Abelard and
∧

otherwise. We call B the winning condition APT (WCAPT).

The Versatile CPDS Parity Game. Let us fix an n-CPDS parity game A. We convert
it to a game A0, which by analogy with the work in previous sections is referred to as
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the versatile CPDS parity game. The game A0 extends A with a single control state 0.
The priority and owner of 0 does not matter and so may be arbitrarily selected.

We make 0 the initial control state of A0. Whilst in control state 0, Éloı̈se is allowed
to perform arbitrary stack operations whilst remaining at 0. She may also opt at any
point to transition from 0 into a control state q of A without performing any stack
operation. After doing so, play proceeds as in A. Consider the set:

S0 := {(0, θ) : θ a stack operation} ∪ {(q, id) : q a control state of A}

where id is the stack operation that leaves the stack unchanged. Let G0 be the underly-
ing CPDS-graph of A0. The directions emanating from a node r in unrav(G0) having
label (0, a), for any stack symbol a, are in 1− 1 correspondence with S0. We may thus
label a direction of such a node r with θ if this direction corresponds to a transition
(0, θ) and q (q a control state of A) if it corresponds to a transition (q, id).

Consider a finite path p = p0 p1 . . . pm p′m in unrav(G0), where p0 is the root
of the tree, with trace of the form (0, a1) (0, a2) . . . (0, am) (q, am) such that q is a
control state of A. The node p′m is represented as a string of directions, but this string
can be represented by a string of the form θ1 . . . θm q. The final element p′m of p
will correspond to a configuration (q, s) in G0 where s is a stack produced from the
empty stack by performing the composite operation θ1; . . . ; θm. Conversely, for any
sequence of stack operations followed by a control state q of A there must exist a node
in unrav(G0) represented by this sequence which corresponds to a configuration (q, s)
with s formed by the sequence of stack operations starting at the empty stack.

Éloı̈se has a winning strategy from such a configuration (q, s) in A if and only
if she has a winning strategy from (q, s) in A0, since the games proceed identically
from this configuration. Let us write B0 for the WCAPT of A0. Suppose further that
s can be formed from the empty stack by a sequence θ1 . . . θm of stack operations.
It follows that (q, s) is a winning configuration in A if and only if B0 accepts the tree
unrav(G0)θ1 ... θm q, viewing θ1 . . . θm q as a string of directions – i.e. a node.

The Constructible Winning Region of an n-CPDS Parity Game. It has been shown
by Hague et al. [10] that the unravelling of a CPDS graph can be generated by a deter-
ministic n-CPDA and consequently by a (deterministic) order-n recursion scheme. Let
G0 be such a recursion scheme for our n-CPDS parity game A0. Let us apply Theo-
rem 1 to generate a solution D for the GMCP with G0 and the property expressed by
B0. We then restrict D to form an automaton D− that only accepts words of the form
θ1 . . . θm q that are also accepted by D. The automaton D− witnesses the following:

Theorem 3. Let A be an n-CPDS parity game with stack operations Opn and control
states Q. We can construct in n-EXPTIME an n-CPDA that recognises a subset L of
(Opn)∗Q such that Éloı̈se has a winning strategy from a configuration (q, s) with s
constructible (via operations in Opn) from the empty stack, if and only if for every
operation sequence θ1; . . . ; θm generating s from the empty stack, θ1 . . . θm q ∈ L.

Given any configuration (q, s) with constructible stack s we can thus determine whether
it is a winning configuration by picking any operation sequence θ1 . . . θm witnessing
the constructibility of s and deciding whether θ1 . . . θm q is accepted by the automaton.
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Further Directions. A pressing question is whether one can construct a more succinct
and deterministic n-CPDA providing a solution to the GMCP for the trees in question.

Theorem 3 is weak as it stands. Carayol and Slaats [5] have shown that constructible
n-PDS (non-collapsible) parity game winning regions are ‘n-regular’ [3,9] and admit a
canonical representation. An analogous result for CPDS games would be good.
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