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Abstract: In ZMP trajectory generation using simple models, often a considerable 

amount of trials and errors are involved to obtain locally stable gaits by manually 

tuning the gait parameters. In this paper a 15 degrees of Freedom dynamic model 

of a compliant humanoid robot is used, combined with reinforcement learning to 

perform global search in the parameter space to produce stable gaits. It is shown 

that for a given speed, multiple sets of parameters, namely step sizes and lateral 

sways, are obtained by the learning algorithm which can lead to stable walking. 

The resulting set of gaits can be further studied in terms of parameter sensitivity 

and also to include additional optimization criteria to narrow down the chosen 

walking trajectories for the humanoid robot. 

Keywords: Humanoid robot walking, compliance, reinforcement learning. 

1.  Introduction 

Walking trajectory generation for a humanoid robot is a challenging control 

problem. Humanoid robots have many Degrees of Freedom (DoF), with unstable, 

nonlinear and underactuated dynamics. Moreover, humanoid robots need to adapt 

their walking gait based on the environment, for instance to avoid an obstacle the 

robot needs to adapt its walking gait to take a different step size while keeping the 

same average speed.  

Due to the complexity of the walking model several studies in the literature 

have approached the walking problem using machine learning techniques [1]. For 

example, in [2] a model-based reinforcement learning method was used for bipedal 
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walking on a planar 5 DoF robot fixed to a rotating boom. Learning was applied to 

learn the Poincare return map of the bipedal robot. The learning algorithm was used 

to minimize the torques while keeping a certain height to avoid falling. In [3] 

Central Pattern Generators (CPG) for QRIO humanoid were tuned using a policy 

gradient method and stable gaits were shown in simulation and in experiments. The 

robot’s pelvis states were used to describe the motion of the robot. In [4] a 

stochastic policy gradient reinforcement learning was applied to a toy robot with a 

carefully designed passive mechanical dynamics and resulted in stable walking 

mainly due to the passive dynamics design. In [5] a map was constructed offline for 

a given trajectory to verify the feasibility of an step size. The set of all possible 

steps was considered to be a 6 dimensional space. The set was constrained to have a 

one to one correspondence between each trajectory and step size. Geometric and 

Zero Moment Point (ZMP) constraints where used to verify the feasibility of the 

desired walking step. In [6] reinforcement learning was used on a compliant bipedal 

legs to reduce the electrical energy consumption by changing the centre of mass of 

the robot during walking. 

In terms of walking models, often simplified ones such as the inverted 

pendulum model [7-8] or the compass gait model [9] are used in trajectory 

generation and stability analysis while detailed and accurate models are used in 

simulation studies. 

In addition to use of centre of mass, limit cycle criterion and capture point, one 

of the most commonly used stability criteria for humanoid walking is Zero Moment 

Point (ZMP) which is often formulated as a closed form solution of the linear 

inverted pendulum model of walking [10-11]. In a dynamically stable gait ZMP of a 

robot is the same as the centre of pressure. 

Despite using simplified models for walking trajectory generation, a 

considerable effort in manual tuning is needed before the generated trajectory can 

be applied in practice on an actual humanoid robot. In order to address this 

problem, in this study an automatic way of tuning a walking gait using 

reinforcement learning methods is investigated. The goal of learning is to find 

dynamically stable gait parameters for a desired walking speed. In summary, 

reinforcement learning varies the walking gait parameters such as the step size and 

lateral sway amplitude to generate walking trajectories using the inverted pendulum 

model [8]. The produced gaits are verified in terms of stability walking speed using 

dynamic simulation of the compliant humanoid robot with 15 DoF. The simulation 

output, i.e. multibody stability and achieved walking speed are evaluated as a 

reward function for the learning algorithm to better tune the gait parameters. 

Applying this method on the robot is time consuming and can be risky, but in 

simulation we can obtain many stable solutions that can be further narrowed down 

using additional criteria such as energy efficiency. Hence, using the simulator the 

gaits are tested in advance, which creates a more reliable and feasible gait for the 

experiments. 

In this paper, instead of using state-action based reinforcement learning which 

suffers from the curse of dimensionality, direct policy search reinforcement learning 

is used. This method works in a low dimensional policy space which bypasses the 
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dimensionality problem of the state-action space. The contributions of this study are 

twofold. Firstly, the method performs global search in the walking gait parameter 

space to yield multiple alternative solutions which can then be narrowed down 

using further optimization criteria such as energy. Secondly, it investigates the 

importance of different parameters on the walking gait. 

This paper is organized as follows. In Section 2, the mechanical overview of 

COMAN humanoid robot and the dynamic walking simulator are described. In 

Section 3 the trajectory generation method is briefly described. The reinforcement 

learning algorithm is described in Section 4. The results of using this algorithm are 

presented in Section 5, and finally the conclusions and future work are briefly 

discussed. 

2.  Dynamic model of the humanoid robot COMAN 

In this section, first, the mechanical description of the compliant humanoid robot 

COMAN is given. Next, an overview of the dynamic walking simulator and its 

features are discussed.  

2.1.  Overview of the mechanical model 

COMAN (stands for COmpliant huMANoid) is powered by series elastic actuators 

and is being developed within the AMARSI European project [12] at the Italian 

Institute of Technology (IIT) as a derivative of the original iCub, and cCub [13] 

which added passive compliance in the major joints of the legs (see Fig. 1 (a)). The 

use of passive compliance provides shock protection, robust locomotion, safer 

interaction and potentially energy efficient locomotion. Currently, COMAN has 23 

DoF, with passive compliance in the pitch joints in the legs, the waist, and the pitch 

and roll shoulder joints. In addition, COMAN uses brushless DC motors and 

harmonic drives, which are modeled in the dynamic simulator described in 

Subsection 2.2. In terms of control software architecture, currently COMAN uses a 

decentralized PID control architecture. Further details about the first prototype of 

COMAN, cCub are available in [13] with the major kinematic difference being the 

addition of passive compliance in the hip pitch and the orders of the ankle and the 

waist pitch and roll joints being swapped. 

The coupled mechanical model of the robot is described in (1), where M, C 

and G are mass-inertia, Coriolis and gravity matrices. ,q q  and q  are positions, 

velocities and accelerations of all joints in vector form. Similarly, ,m mq q  and mq

are the positions, velocities and accelerations of the motors. J and Bm are the 

motors’ inertia and damping matrices. Bs and Ks are the passive compliance 

damping and stiffness matrices. mτ  is the motors’ torque expressed in vector form, 

(1) 
( ) ( )

( ) ( )
.

s m s m

m m m s m s m m

Mq Cq Gq B q q K q q

Jq B q B q q K q q τ
⎧ + + = − + −⎪
⎨ + + − + − =⎪⎩

 

In the next section, the dynamic walking simulator under Matlab is described. 
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(3) 0

0
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There are four points at each corner of the foot where the ground models are 

introduced as external forces as shown in Fig. 2. The parameters of the ground 

model are given in Table 1. 

Table 1.  Ground model coefficients 

Symbol Description Value Units 

KG Vertical spring 150 000 N/m 

DG Vertical damper 150 (N.s)/m 

KF Friction stiffness 150 000 N/m 

DF Friction damper 150 (N.s)/m 

μ   Friction coefficient 0.9 〈unitless〉 

 
Having developed a realistic simulation of walking for COMAN, the next 

section discusses the method used for walking trajectory generation. 

3.  Trajectory generation 

A trajectory generator computes the reference trajectory for the robot’s joints. This 

control system translates the desired walking parameters such as foot locations, step 

length, walking speed and walking direction into feasible and stable joints’ 

trajectories. In this paper, the preview control method of ZMP based on the cart 

table model, proposed in [10], is used. The advantages of using this method are the 

ability of the robot to modify the reference trajectories according to the walking 

path and low computational cost which makes it suitable for online calculations. A 

brief description of this method is given below. 

In this method, the cart-table linear model (Fig. 3) is used to formulate the 

relation between the centre of mass motion and the ZMP. This model has linear and 

decoupled dynamics in sagittal and lateral planes due to the constraint on the height 

of the centre of mass, which moves along a plane. This simplification in the 

nonlinear dynamics of an inverted pendulum results in derivation of the closed form 

equation between centre of mass and zero moment point c
x

z
p x x

g
= − , where x 

denotes the position of centre of mass and px is the position of the zero moment 

point in x direction. Since the dynamics are decoupled (constant height), the same 

equation holds for the y direction. 

 
Fig. 2. Four ground contact point is introduced under each foot 
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In order to generate the motion of the centre of the mass using (1) the initial 

position of the CoM and the ZMP should coincide. Based on the foot paths of the 

robot, a reference ZMP is derived as shown in Fig. 4 which shows the trajectory for 

three steps with 0.1 m step size. The continuous time based ZMP reference can be 

designed by using either linear or spline interpolation of a set of ZMP points with 

respect to time. The overall pattern generation scheme as well as the dynamic 

simulator and the learning algorithm are shown in Fig. 5. The objective locomotion 

parameters such as the walking speed and foothold planning are assumed to be 

given. Further details about the trajectory generator are provided in [10]. 

 

 

However, this method has a number of limitations. Firstly, the cart-table model 

only considers the overall CoM therefore the multi-body dynamics is not 

considered. Secondly, the control scheme assumes ideal position tracking and the 

dynamic effect of the springs in the compliant joints is not included. Therefore, the 

process of generating models using the simple cart table model and applying it to 

the full multibody system with compliance involves a considerable number of trial 

and errors. In other words, this method has only been applied before to find a 

locally stable gait, while for the first time in this paper, reinforcement learning for 

global search is proposed to explore the whole parameter space using the accurate 

dynamic walking simulation of COMAN. The result of the search yields multiple 

Fig. 4. The centre of mass and ZMP trajectories in sagittal and lateral planes 
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stable solutions which can then be studied further for walking sensitivity analysis to 

gait parameter variations and also to include additional optimization criteria such as 

energy efficiency to choose among the dynamically feasible gaits. The learning 

algorithm is described in the next section. 

 
 

Fig. 5. Diagram of the overall learning based trajectory generation method is illustrated. The Cartesian 

position of the CoM of the robot is defined by xcom, ycom and zcom. The reference ZMP trajectory is pref 

and p is the ZMP feedback signal from the Cart table model which consists of xZMP and yZMP. The 

objective locomotion parameters namely, lateral sway and step size are provided by RLPF for a 

desired walking speed 

4. Reinforcement learning 

This section describes a recently proposed Reinforcement Learning algorithm 

based on Particle Filters (RLPF) for global search in policy space, which is capable 

of finding multiple alternative optimal policies [1]. The algorithm performs global 

search in the policy space, therefore eliminating the dependency on the policy 

initialization, and it has the ability to find the globally optimal policy. 

Linking particle filters and RL is explained by the following observation. The 

landscape, defined by the reward function ( )R θ ∈ over the whole continuous 

domain of the parameter spaceθ ∈Θ , can be viewed as defining an Improper 

Probability Density Function (IPDF).  An IPDF is similar to probability density 

function except that the integral of it does not have to be equal to one. This is 

possible even if the reward function ( )R θ has negative values in its range, because a 

constant positive number can be added to the reward to obtain a non-negative 

reward function ( )R θ′ which has exactly the same set of optimizers 
*θ ∈Θ  as
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( )R θ . Hence, optimizing ( )R θ′ will also optimize ( )R θ . Based on this assumption 

that ( )R θ is an IPDF, the RL problem can be reformulated as follows. Each trial 

( )( )τ π θ
 
(τ  denotes each trial and π is the policy for a given parameter vectorθ ) 

can be considered as an independent sample from the unknown IPDF. The RL 

algorithm chooses a finite number of sample points to find the values and modes 

of the unknown IPDF. 

The main idea of RLPF is to use particle filtering as a method for choosing the 

sampling points, i.e. for calculating a parameter vector θ  for each trial, which 

consist of the step size and lateral sway. A policy particle ip  is defined to be the 

tuple , ,i i i i ip Rθ τ ω= , where the particle ip  represents the outcome of a single 

trial iτ  performed by executing an RL policy ( )iπ θ , where iθ is a vector of policy 

parameter values modulating the behavior of the RL policyπ . The policy particle 

also stores the value of the reward function evaluated for this trial ( )( )( )i i iR R τ π θ= . 

The variable iτ contains task-specific information recorded during the trial 

depending on the nature of the task. The information in iτ is used by the reward 

function to perform its evaluation. The variable iω is the importance weight of this 

policy particle, and the way of its calculation is explained as follows. 

It is assumed that the set of particles { }ip  is an approximate implicit 

representation of the underlying unknown IPDF defined by ( )R θ . Therefore, in 

order to select a new particle consistent with the real IPDF distribution, the samples 

are taken from the approximate distribution while correcting for the discrepancy. 

The mechanism for this correction is provided by the importance weights{ }iω . 

Firstly, each policy particle ip  is assigned a scalar importance weight iω  

derived from its corresponding reward iR  using a transformation function g, such 

that ( )i ig Rω ∝ . In the simplest case, ( )g ⋅  could be the identity, but in the general 

case, it could be an arbitrary non-negative function. The function g is applied in 

such a way, that the importance weights are normalized, in the sense that

0 1i iω ω∀ < < , and also 1iω =∑ . Secondly, an auxiliary function ( )
u

uh u duω
−∞

= ∫ is 

constructed, which takes the form ( )
1

k

j

j

h k ω
=

=∑ in the discrete case. This function can 

be thought of as the (approximate) Cumulative Density Function (CDF) of the 

unknown PDF. Indeed, due to the way we create the importance weights, it follows 

directly that 1uduω
+∞

−∞

=∫ , and thus ( )h u  is a proper CDF. This is important because, 
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creasing and 



 48

Thirdly, a random variable z is introduced which is uniformly distributed in the 

interval (0, 1). Now, it can be shown that the random variable y defined as 

( )1y h z−=  is distributed (approximately) according to the desired unknown PDF, 

see e.g. [17]. 

The goal of RLPF is not to approximate the expectation of a function, but 

rather, to find the mode (or modes) of the unknown function ( )R θ . The pseudo-

code for RLPF is given in Algorithm 1. In the results section the reward function, 

number of trials, and gait parameter space are provided. 

5. Simulation results 

In this section, the results of applying RLPF algorithm to find optimal gait 

parameters for two desired walking speeds are presented. The reward function is 

defined in (4) where θ denotes the gait parameters, namely the step size and the 

lateral sway, B is a Boolean variable which is zero when the robot falls in the last 

trial and one otherwise, Vd is the desired average walking speed and V is the 

achieved walking speed in the dynamic simulator. The coefficients c1 and c2 are 

chosen to be 1000, and c3 is 100. The goal of the reward function in (4) is to 

distinguish between the dynamically stable and unstable gaits and to feed back the 

achieved walking speed to the learning algorithm.  

(4) ( ) ( )2

3

1 2(1 ) .dc V V
R c B c eθ −= − +  

Initially the desired speed was set to 0.05 m/s and learning was used in 120 

trials, where both a stable gait and the desired walking speed were achieved. The 

reward function is shown in Fig. 7. It can be seen that after the 30th trial the robot 

has not fallen since the reward is above 1000 points and the algorithm is only 

adjusting the walking speed. Moreover, the reward of each trial is color coded and 

plotted in Fig. 8 which shows that two clusters of parameters are found which gives 

the highest rewards (i.e., gaits which are stable and close to the desired walking 

speed). These two clusters of stable gaits have a vertical spread which suggests the 

lateral sway parameter has less sensitivity on stability compared to the step length. 

The lateral sway parameter is related to the dynamics of the robot in the lateral 

plane which has stiff joints (no passive compliance) and the step length parameter is 

directly related to the sagittal dynamics of the robot with passive compliance in the 

ankles, knees and the hips. Therefore, for a fixed passive compliance and using 120 

trials a set of step sizes are derived which are between 1-3 cm. increasing the 

number of trials can further explore the parameter space and provide walking gaits 

with larger step sizes as shown in second experiment of this section. Also, this 

effect is due to the joint servo designs which are controlling the motors’ positions to 

track the walking trajectories. Designing the servo controllers to control the link 

positions can improve the range of step sizes, while the achieved walking speed will 

depend on the bandwidth of the servo controllers. The robot will only be able to 

walk with trajectories speeds which are within its tracking bandwidth. The snapshot 
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Moreover, the desired walking speed was set to 0.15 m/s and the RLPF 

algorithm was applied to 400 trials. This speed is above the tracking bandwidth of 

the current PID controllers set in the simulation and the robot achieved stable 

walking but the maximum achieved walking speed was lower (0.75 m/s).  

 

 
Fig. 10. Reward values in the walking gait parameter space with desired speed of 0.15 m/s 

The reward values are shown in Fig. 9, which essentially distinguishes 

between the stable and unstable gaits, since the extra reward of walking close to the 

desired speed of 0.15 m/s is not obtained in the dynamic simulations. However, it 

can be seen that the falling frequency is decreasing with the number of trials and the 

learning is converging to higher rewards. The reward values in the parameter space 

are shown in Fig. 10, which shows the robot has taken steps sizes between 1-12 cm 

and has been stable. 

 

 
Fig. 9. Reward values during learning for desired speed of 0.15 m/s 
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6. Conclusion 

In this paper the common problem of ZMP trajectory generation using simplified 

cart-table model which involves considerable amount of trials and errors to find 

locally stable gaits was considered. A reinforcement learning algorithm was 

combined with a dynamic walking simulator to perform automated global search for 

stable gaits in the walking parameter space. The algorithm was tested on two 

relatively low (0.05 m/s) and high (0.15 m/s) walking speeds and it found multiple 

sets of stable walking for a given speed with different step lengths and lateral sway. 

The result of this algorithm can be used to study the sensitivity of the gaits to 

parameter changes as well as including additional optimization criteria (such as 

energy efficiency) to narrow down the set of stable gaits.  

In the future work, the designed walking gaits will be applied on the real robot, 

and in a possible future study to investigate the energy efficiency of a certain gait 

using simple models and learning methods to predict the optimal step length for a 

given walking speed. Also the simple reward function used in this study can be 

improved to better distinguish among different type of gaits. 
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