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Introduction

By applying precisely the arguments in Richard’s paradox to a formal sys-

tem $P$ K. G\"odel [2] proved that, if $P$ satisfies certain conditions, then the fol-
lowing propositions hold.

PROPOSITION 1. If $P$ is consistent, then $P$ is $\omega$-incomplete.

PROPOSITION 2. If $P$ is consistent, then the statement ‘ $P$ is consistenf’ is not
provable in $P$.

It is well known that conditions which must be satisfied by $P$ are satisfied
by many formal systems, $e$ . $g$ . the system in Principia Mathematica and the
system of Fraenkel-v. Neumann’s axiomatic set theory. From the proposition

2 it is said that, if a system including the theory of natural numbers is wide
enough, then the consistency proof of the system would be very hard.

However, we must notice that the concept of ‘ consistency ‘ in metamathe-
matics and that of ‘ consistency ’ used in Godel’s proposition 2 are not the same.
In the proof of Godel’s proposition 2 G\"odel formulated the statement ‘ a formal
system $P$ is consistent ‘ in a form $\forall xC(x)$ . By G\"odel’s proposition 1 even if

formulas $C(1),$ $C(2),$ $C(3),$ $\cdots$ are provable in $P$, the formula $\forall xC(x)$ is not neces-
sarily provable in $P$. In order to prove in our proof-theory that the system

is consistent it is sufficient to show that formulas $C(1),$ $C(2),$ $C(3),$ $\cdots$ hold, and
it is not necessary to show that $\forall xC(x)$ holds.

In \S 1 we give a formal system $P$. Let $\forall xC(x)$ be a formula to formulate
in $P$ the proposition that $P$ is consistent. In \S 2 we prove that $C(1),$ $C(2),$ $C(3),$ $\cdots$

are provable in $P$ and $\forall xC(x)$ is not provable in $P$ if $P$ is consistent.
In \S 3 and \S 4 we give a consistency proof of $P$ in which the transfinite

induction is not applied. Our proof is a modification of W. Ackermann’s con-
sistency-proof of $P[1]$ .

\S 1. The formal system $P$.
To clarify the distinction between the strong form and the weak form of

consistency formulated in a formal system, we give a formal system $P$ as follows.

1. Symbols. $P$ contains following fundamental symbols: the particular
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symbol $0$ , free variables for natural numbers $\mathfrak{a},$

$\mathfrak{b},$ $c$ etc., bound variables $\mathfrak{x},$ $|J,$ $\partial$ ,

etc., function symbols $’,$ $+$ , etc., the predicate symbol $=$ , logical symbols $7,$ $-$ ,

e-symbol $\epsilon$ , parentheses (and).

We sometimes use several letters for abbreviation.

2. Formulas and terms are constructed inductively as follows.
(1) The particular object $0$ and free variables are terms. (2) If $t$ is a term,

then $t^{\prime}$ is a term. If @ and $t$ are terms, then @+t and @ $\cdot$ l are terms. (3) If 6

and 1 are terms, then $g=t$ is a formula. (4) If $A$ is a formula, then $7A$ is
a formula. If $A$ and $B$ are formulas, then $A|-B$ is a formula. (5) If $A(\mathfrak{a})$ is
a formula and $\mathfrak{x}$ is a bound variable not contained in $A(\mathfrak{a})$ , then $\epsilon \mathfrak{x}A(\mathfrak{x})$ is a term.

In particular term of the form
$0^{\frac{n}{\prime/\cdots J}}$

is called a numeral representing $n$ and

denoted by $n$ .

3. Axioms of $P$ are devided into the following four groups.

I) Axioms for propositional logic

(1) $A|-(B\mapsto A)$

(2) $(A-(B-C))-((A-B)-(A-C))$
(3) $((7A)|-(7B))-(B-A)$ ,

where $A,$ $B$ and $C$ are arbitrary formulas.
II) Arithmetical axioms
(1) $t=t$ (2) @=t–t $=@$

(3) @=t–(t $=\mathfrak{u}-@=n$) (4) $s^{\gamma}=\iota^{J}$ –@=t

(5) @=\downarrow |-s’ $=\tau^{\prime}$ (6) $7t^{\prime}=0$ ,

where \S , $t$ and $\mathfrak{u}$ are arbitrary terms.
III) Axioms for primitive recursive functions

In the following $t_{1},$ $\cdots$ , $t_{n}$ and $t$ are arbitrary terms.
(1) $\mathfrak{f}_{1}(1)=1^{\prime}$

(2) $\mathfrak{f}_{2\cdot 11^{n}\cdot 13^{q}}(t_{1}, \cdots, t_{n})=q$, where $q$ is a numeral representing $q$.
(3) $\mathfrak{f}_{3\cdot 11^{n_{13}i(t_{1},\cdots,t_{n})=t_{i}}}$

(4) $f_{5\cdot 11^{k}\cdot 13^{i_{1}}\cdots p_{m+1}^{i_{m}}}(\iota, \cdots, t_{n})=\mathfrak{f}_{k}(\mathfrak{f}_{i_{1}}(1_{1}, \cdots, t_{n}), \cdots, f_{i_{m}}(t_{1}, \cdots, t_{n}))$

where $p_{1}$ is 11, $p_{2}$ is 13, $p_{3}$ is 17 etc.
(5) $f_{7\cdot 11^{h}\cdot 13^{k}}(0, t_{2}, \cdots, t_{n})=\text{\’{i}}_{h}’(t_{2}, \cdots, t_{n})$

$T_{7\cdot 11^{h}\cdot 13^{k}}(1^{\prime}, 1_{2}, \cdots, 1_{n})=f_{k}(t, \mathfrak{f}_{7\cdot 11^{h_{1^{\prime}}k}}o(t, t_{2}, \cdots, t_{n}), t_{2}, \cdots, t_{n})$

IV) Axioms for $\epsilon$-symbol

(1) $A(t)\leftarrow(R=\epsilon \mathfrak{x}A(\mathfrak{x})-A(\S))$

(2) $A(l)|-7\epsilon \mathfrak{x}A(\mathfrak{x})=l^{\prime}$

(3) $7A(\epsilon \mathfrak{x}A(\mathfrak{x}))-\epsilon \mathfrak{x}A(\mathfrak{x})=0$

(4) @=\downarrow l-\mbox{\boldmath $\epsilon$}gA(x, @)=\mbox{\boldmath $\epsilon$}xA(x, t)

where $A(a)$ is an arbitrary formula, and 6 and $t$ are arbitrary terms.

4. $P$ contains rule of inference of the form
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$\underline{A}AB|-B$

where $A$ and $B$ are arbitrary formulas.

5, The concept ‘proof-figure ‘ in $P$ is defined recursively as follows.
(1) An axiom of $P$ is a proof-figure to the axiom. (2) Let $S$ and $T$ are

proof-figures to $A$ and $A-B$ respectively. Then the figure of the form

$\frac{ST}{B}$

is the proof-figure to the formula $B$. If we have a proof-figure to a formula
$A$ , then we say that the formula $A$ is provable.

6. We introduce some abbreviations. We write $\exists \mathfrak{x}A(\mathfrak{x}),$ $\forall \mathfrak{x}A(\mathfrak{x}),$ $A\vee B$ and
$A$ $\Lambda B$ for $A(\epsilon \mathfrak{x}A(\mathfrak{x})),$ $A(\epsilon \mathfrak{x}7A(r\vee)),$ $(7A)|-B$ and $7(A|-(7B))$ respectively.

\S 2. The concept of ‘ consistency ’ and K. G\"odel’s theorem.

1. In the informal number theory we can arithmetize the formal system
$P$ in the well known method. Then fundamental symbols, terms, formulas and
proof-figures in $P$ are denoted by numbers in the informal number theory.

Meta-concepts ‘ to be a term ‘, ‘ to be a formula’ and ‘ to be a proof-figure ‘

etc. are represented by primitive recursive number-theoretic predicates.

In particular we denote by $B(a, b)$ the meta-statement ‘ a number $b$ is a
proof-figure to a formula $A$ represented by a number $a$ . Then, of course, the
predicate $B(a, b)$ is primitive recursive.

2. Let the symbol $0$, the predicate symbol $=$ , the function symbol ’, the
numeral $n$ , logical symbols $\exists,$ $\forall,$ $7,$ $-,$ $\Lambda$ and $\vee inP$ correspond to the num-
ber $0$ , the predicate $=$ , the function / the number $n$ and $\exists$ (there exist), $()$

(for all), $-(not),$ $\rightarrow(implies),$ $\Lambda$ (and) and $\vee(or)$ in the informal number theory.

Let the particular function $f_{1},$ $f_{2\cdot 1\iota^{n_{1_{\partial}^{\prime}}q}}$ or $f_{3\cdot 11^{n}\cdot 13^{i}}$ correspond to primitive

recursive functions $\varphi,$
$\psi$ or $\chi$ such that $\varphi(x)=x^{\prime},$ $\psi(x_{1}, \cdots , x_{n})=q$ or $\chi(x_{1},$ $\cdots$ ,

$x_{n})=x_{i}$ respectively. Let the particular function $f_{6\cdot 11^{k}\cdot 13^{i_{1}}\cdots p_{m+1}^{i_{m}}}$ correspond to the
primitive recursive function $\varphi$ in the informal number theory such that $\varphi(x_{1}$ ,

$x_{n})=\psi(\chi_{1}(x_{1}, \cdots , x_{n}), \cdots, \chi_{m}(x_{1}\cdots, x_{m}))$ where $f_{k}$ corresponds to $\psi$ , and $f_{i_{1}},$ $\cdots$ ,
$f_{i_{m}}$ correspond to $\chi_{1},$

$\cdots$ , $\chi_{m}$ respectively. Moreover, let the particular function
symbol $f_{7\cdot 11^{h}\cdot 13^{k}}$ correspond to the primitive recursive function $\varphi$ in the informal
number theory such that $\varphi(0, x_{2}, \cdots , x_{n})=\psi(x_{2}, \cdots, x_{n})$ and $\varphi(y^{\prime}, x_{2}, \cdots , x_{n})=\chi(y$,
$\psi(y)x_{2},$

$\cdots,$ $x_{n}$)
$,$

$x_{2},$ $\cdots,$ $x_{n}$) where $f_{h}$ corresponds to $\psi$ and $f_{k}$ to $\chi$ .
Now let $R$ be a predicate in the informal number theory, and $R$ be a for-

mula in $P$ constructed in the same manner as in $R$ by combination of symbols,

which correspond to symbols in $R$ . Then $R$ is called the formula representing
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in the formal system $P$ the predicate $R$ in the informal number theory.

Then the following theorem holds.
THEOREM. Let $R(a_{1}, \cdots , a_{m})$ be a primitive recursive predicate in the informal

number theory. Let the formula $R(b_{1}, \cdots , \mathfrak{b}_{m})$ be the formula in $P$ representing
$R(a_{1}, \cdots, a_{m})$ in the informal number theory. Then for every m-tuple of numbers
$a_{1},$

$\cdots$ , $a_{m}$ it is true that if $R(a_{1}, \cdots, a_{m})$ , then $-R(a_{1}, \cdots, a_{m})$ and if $\overline{R}(a_{1}, \cdots , a_{n\iota})_{r}$

then }$-7R(a_{1}, \cdots, a_{m})$ . Here $-A$ means that $A$ is provable in $P$.

3. From 2 in this section, we can arithmetize $P$ in $P$. That is, first we
arithmetize expressions in $P$ and concepts on $P$ by numbers and predicates in

the informal number theory respectively, and next we arithmetize by numerals
and formulas representing them in $P$.

Let $B(a, b)$ be the formula in $P$ representing $B(a, b)$ in the informal number
theory. Then the following holds.

THEOREM. For every pair of numbers $a,$
$b$

if $B(a, b)$ , $then\leftarrow B(a, b)$

and if $\overline{B}(a, b)$ , lhen $l-7B(a, b)$ .

Now ‘ the formal system $P$ is consistent ‘ is ‘ the formula $0^{\prime}=0$ is not $prova\rightarrow$

ble in $P$ ‘. When the formula $0^{\prime}=0$ is arithemetized to a number rc in the
arithmetization in the informal number theory, it is arithmetized to the numeraL
$\kappa$ in the arithmetization in $P$. Then the statement

‘ the formal system $P$ is consistent ‘

is represented by infinite propositions in the informal number theory

$\overline{B}(\kappa, 0),\overline{B}(\kappa, 1),\overline{B}(\kappa, 2)$ , $\cdot$ .. ... ... .
In the informal number theory the statement that the above infinite pro-

positions are true is equivalent to $(x)\overline{B}(\kappa, x)$ . Then we have the following

theorem.

THEOREM. If $P$ is consistent, then il is provable in $P$ that $P$ is consistent (in

our sense), $i$ . $e$.
if $(x)\overline{B}(\kappa, x)$ , then $(x)-7B(\kappa, x)$ .

$CoROLLARY$ . If $P$ is $\omega$-consistenf, then the formula $\forall \mathfrak{x}7B(\kappa, \mathfrak{x})$ is undecidable,
$i$. $e$. both $\forall \mathfrak{x}7B(\kappa, \mathfrak{x})$ and 7 $\forall \mathfrak{x}7B(\kappa, \mathfrak{x})$ are not provable in $P$.

PROOF. By K. G\"odel’s proposition 2 the formula $\forall \mathfrak{x}7B(\kappa, \mathfrak{x})$ is not provable

in $P$. By the above theorem and the $\omega$-consistency of $P$ the formula 7 $\forall \mathfrak{x}$

$7B(\kappa, \mathfrak{x})$ is not provable in $P$.

\S 3. W. Ackermann’s reduction for proof-figure in $P$.

In this section we give W. Ackermann’s reduction for proof-figure in $P$
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and some of its properties which were given in [1]. Proofs are omitted here.

1. We prove that the formula $0^{\prime}=0$ is not provable in $P$. That is, we
show that, if $\mathfrak{p}$ is any proof-figure in $P$, then $\mathfrak{p}$ is not a proof-figure to $0^{\prime}=0$.
In order to do so we substitute numerals for all terms so that terms of the
same form are substituted by the same numeral and we reduce all axioms in
$\mathfrak{p}$ to true formulas. Then the consistency proof is finished.

2. Preliminary definitions.
A combination of symbols of the form $\epsilon \mathfrak{r}.A(])$ is called an $\epsilon- figure$ . If it is

a term, then it is called an $\epsilon$-term.

2.1. The rank of an $\epsilon$-figure is defined as follows. If $A(\mathfrak{x})$ contains no $\epsilon-$

figures of the form $\epsilon \mathfrak{h}B(\mathfrak{h})$ which contain $\mathfrak{x}$ , then the rank of $\epsilon_{\grave{\dot{\epsilon}}}A(\mathfrak{x})$ is one. If
$A(r)$ contains $\epsilon- figures$ of the form $\epsilon$ ) $B(\mathfrak{y})$ which contain $\mathfrak{x}$ , then the rank of
$\epsilon_{6^{X}}A(\mathfrak{x})$ is greater by one than the maximum of ranks of such $\epsilon- figures$ .

For example the rank of $\epsilon \mathfrak{h}(\mathfrak{y}^{\prime}=\epsilon;(\mathfrak{x}=0^{\prime}))$ is one and the rank of $eL(\mathfrak{x}=$

$\epsilon_{1}^{t})(t)=\mathfrak{x}))$ is two.
2.2. When $\epsilon \mathfrak{x}A(\mathfrak{x})$ is an $\epsilon$-term, we define the fundamental type (W. Acker-

mann’s Grundtypus) belonging to $\epsilon \mathfrak{r}.A(\mathfrak{r})$ as follcws. We arrange all terms in
$A(r)$ such that each term is not a part of other terms.1) If 6 and { are terms

of the same form and occur in different places in $A(\mathfrak{x})$ , then we take up them
as different terms. Let these terms in $A(\mathfrak{x})$ be $t_{1},$

$\cdots,$
$l_{n}$ . Then $\epsilon c\mathfrak{r}A(\mathfrak{x})$ is of the

form
$\epsilon \mathfrak{x}B(\mathfrak{x}, t_{1}, \cdots, t_{n})$

where $B(\mathfrak{x}, t_{1}, \cdots, t_{n})$ contains no terms except $t_{1},$ $\cdots$ , $t_{n}$ indicated above. $\epsilon \mathfrak{x}B(\mathfrak{x}$ ,

$a_{1},$
$\cdots$ , $\mathfrak{a}_{n}$ ) is called the fundamental type belonging to $\epsilon_{6}\backslash \cdot A(\mathfrak{x})$ , where $a_{1},$ $\cdots,$

$\mathfrak{a}_{n}$

are arbitrary free variables. If $A(r)$ contains no terms, then the fundamental
type belonging to $\epsilon \mathfrak{x}A(\mathfrak{x})$ is $\epsilon \mathfrak{x}A(\mathfrak{x})$ itself.

Then the rank of an $\epsilon$-term $\epsilon^{\vee}A(\sim’)$ and that of the fundamental type be-
longing to it are the same.

3. Total substitution (W. Ackermann’s Gesammtersetzung).

For the consistency proof of $P$ it is sufficient to consider proof-figures which
contain no free variables. Therefore we fix a proof-fiure which contains no
free variables and we define a total substitution for the proof-figure.

3.1. We consider the set of all fundamental types belonging to all $\epsilon$-terms

contained in the proof-figure. We extend the set so that, if $\epsilon \mathfrak{x}B(r,$
$\mathfrak{a}_{1},$

$\cdots$ , $(1_{m})$ is
a fundamental type contained in the set, then the set contains all fundamental
types belonging to all $\epsilon$-terms contained in $B(n, n_{1}, \cdots, n_{m})$ where $n_{1},$

$\cdots$ , $n_{m}$ and

1) For example, the fundamental types of $\hat{c}\mathfrak{y}(0^{\prime}=\epsilon\int(\mathfrak{z}<\mathfrak{h}^{\prime/}))$ and $\epsilon \mathfrak{x}(0^{\prime 1}<\mathfrak{x}\wedge\epsilon \mathfrak{y}(0^{\prime\prime}$

$+0^{\prime}=\mathfrak{y})=\mathfrak{x}-0^{\prime}<0^{\prime\prime})$ are $\epsilon \mathfrak{h}((\ddagger=\epsilon a(\mathfrak{z}<\mathfrak{y}^{1/}))$ and $\in \mathfrak{x}(\alpha<\mathfrak{x}\Lambda_{\hat{C}}U(\mathfrak{b}=\mathfrak{y})=\mathfrak{x}\leftarrow c<\mathfrak{d})$ respec $\cdot$

tively.
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$n$ are numerals. We arrange all fundamental $typ_{-}^{3}s$ in an order such that a
fundamental type with smaller rank is ordered before that with greater rank.
Orders between fundamental types with the same rank are arbitrary, but we
fix the sequence once for all.

Let it be

(1) $\epsilon \mathfrak{x}B_{1}(\mathfrak{x}, \mathfrak{a}_{1}, \cdots, \mathfrak{a}_{m_{1}}),$
$\cdots,$

$\epsilon \mathfrak{x}B_{r}(\mathfrak{x}, \mathfrak{a}_{1}, \cdots, \mathfrak{a}_{m_{\gamma}})$ .

In the following we call this sequence the $f$[-sequence.

3.2. We call an operation a total substitution. which substitutes a suitable
function $\varphi(\mathfrak{a}_{1}, \cdots , \mathfrak{a}_{m})$ for every fundamental type $\epsilon \mathfrak{x}B(\mathfrak{x}, a_{1}, \cdots, a_{m})$ contained in the
$\mathfrak{s}\downarrow$-sequence. Here if $n_{1},$ $\cdots,$ $n_{m}$ are numerals, then the numerical value of
$\varphi(n_{1}, \cdots , n_{m})$ is calculable.

By a total substitution all $\epsilon$-terms in the proof-figure are substituted by

numerals in a manner such that the same $\epsilon$-terms are substituted by the same
numeral. Then it is clear that the axioms I), II), III) and IV) 4) are reduced

to true formulas by any total substitution. Therefore it is sufficient that we
construct a total substitution which reduces the axioms IV) 1), 2) and 3) to
true formulas.

4. We define a sequence of total substitutions.
First we arrange all axioms of the form IV) 3) in $\mathfrak{p}$ and let them be

(2) $A_{1}(\{1)\mapsto(@_{1}=\epsilon_{\cup}\mathfrak{r}A_{1}(\zeta)-A_{1}(@_{1})),$ $\cdots$ $A_{\epsilon,b}(t_{\xi})|-(i_{\sim\xi_{G}}\backslash =\epsilon \mathfrak{r}A_{\xi}(\mathfrak{x})\mapsto A_{\xi}(@_{\xi}))$ .

4.1. The first total substitution $\tau_{1}$ . By the first total substitution $\tau_{1}$ we
substitute the numeral $0$ for fundamental types without arguments and sub-
stitute the function, the value of which is always zero, for fundamental types

with arguments.

4.2. A total substitution $\tau$ is said to be normal, when it satisfies the fol-
lowing conditions: (1) if $n_{1},$ $\cdots,$ $n_{m}$ are arbitrary numerals and $\epsilon \mathfrak{x}B(\mathfrak{x}, n_{1}, \cdots, n_{m})$

is reduced by $\tau$ to a numeral $n$ which is not $0$ , then the formula $B(n, n_{1}, \cdots, n_{m})$

is reduced by $\tau$ to a true formula, and (2) for every numeral $n^{*}(<n)$ the for-

mula $B(n^{*}, n_{1}, \cdots, n_{m})$ is reduced by $\tau$ to a false formula.
Then it is clear that the first total substitution $\tau_{1}$ is normal. Moreover by

a normal total substitution the axioms IV) 2) and 3) are reduced to true for-

mulas.

4.3. The $(i+1)- st$ total substitution $\tau_{i+1}$ .
We assume that the i-th total substitution $\tau_{i}$ is already defined and that

$\tau_{i}$ is normal. Then we define the next total substitution $\tau_{i+1}$ .
If all the axioms of the form IV) 3) in $\mathfrak{p}$ are reduced by $\tau_{i}$ to true for-

mulas, then $\tau_{i}$ is the last total substitution and $\tau_{i+1}$ is not defined.
If we have an axiom of the form IV) 3) which is reduced by $\tau_{i}$ to a false

formula, then we pick up the first of such one in the sequence (2). Let it be



Godel’s theorem 7

$A(t)|-(@=\epsilon \mathfrak{x}A(\mathfrak{x})\leftarrow A(\S))$ ,

and the fundamental type belonging to $\epsilon \mathfrak{x}A(\mathfrak{x})$ be

$\epsilon \mathfrak{x}B(\mathfrak{x}, a_{1}, \cdots, \mathfrak{a}_{m})$ .
Then $\epsilon \mathfrak{x}A(\mathfrak{r}\vee)$ is of the form

$\epsilon \mathfrak{x}B(\mathfrak{x}, t_{1}, \cdots, t_{m})$ ,

and $A(t)$ is of the form

$B(t, t_{1}, \cdots, t_{m})$ .

If $t_{1},$
$\cdots,$

$t_{m}$ and $l$ are reduced by $\tau_{i}$ to numerals $n_{1},$
$\cdots$ , $n_{m}$ and $n$ respectively,

then $\mathfrak{B}(n, n_{1}, , n_{m})$ is reduced by $\tau_{i}$ to a true formula and $\epsilon\cup \mathfrak{r}B(\mathfrak{x}, n_{1}, \cdot.. , n_{m})$ to $0$.
Now let $B(n^{*}, n_{1}, \cdots , n_{m})$ be the first formula reduced by $\tau_{i}$ to true for-

mula in
$B(O, n_{1}, \cdots , n_{m}),$ $B(O^{\prime}, n_{1}, \cdots, n_{m})$ , , $B(n, n_{1}, \cdots, n_{m})$ .

Then the totol substitution $\tau_{i+1}$ is defined as follows: (1) for fundamental
types before $\epsilon \mathfrak{x}B(\mathfrak{x}, \mathfrak{a}_{1}, \cdots, a_{m})$ in the $\mathfrak{s}$:-sequence we substitute the same functions
as in $\tau_{i},$ (2) for fundamental types after $\epsilon \mathfrak{x}B(\mathfrak{x}, a_{1}, \cdots , \mathfrak{a}_{m})$ in the $\mathfrak{s}\downarrow$-sequence we
substitute functions which have always the value $0$ , and (3) for the fundamental
types $\epsilon \mathfrak{x}B(\mathfrak{x}, \mathfrak{a}_{1}, \cdots, \mathfrak{a}_{m})$ we substitute the function $\varphi(\mathfrak{a}_{1}, \cdots , \mathfrak{a}_{m})$ where $\varphi(l_{1}, \cdots, l_{m})$

has the same value as in $\tau_{i}$ if the m-tuple $l_{1},$ $\cdots$ , $l_{m}$ of numerals is distinct from
$n_{1},$ $\cdots$ , $n_{m}$ , and has the value $n$ if $l_{1},$ $\cdots$ , $l_{m}$ coincide with $n_{1},$ $\cdots,$ $n_{m}$ .

5. Definitions with respect to a total substitution.
5.1. DEFINITION.

With a total substitution $\tau_{i}$ we have a fundamental type which is not sub-
stituted by the function the value of which is always zero. Then we have
the last such fundamental type in the $ft$-sequence. Let $m$ be the number of
the fundamental type counted from the last in the $ft$-sequence. We call $m$ the
characteristic number of the total substitution $\tau_{i}$ .

5.2. DEFINITION.

Let $4-0$ ’ be a sequence of $\epsilon$-terms where if $i<j$ , then $\S_{j}$ is not a part

of $ii\sim i$ . Moreover we assume that the fundamental types belonging to e-terms
$@_{0’}ii$ are contained in the $f^{\iota}$ -sequence. Then these $a_{0}\wedge\cdots$ , $s_{k}$ are reduced by

a total substitution $\tau$ to numerals. Now we define a function $\varphi$ such that $\varphi(i)=$

$1$ if $e_{i}\wedge$ is reduced by $\tau$ to $0$ , otherwise $\varphi(i)=0$ . The number

$2^{k}\cdot\varphi(0)+2^{k-1}\cdot\varphi(1)+\cdots+2^{0}\cdot\varphi(k)$

is called the index of $\tau$ with respect to the sequence $a_{0}\wedge\cdots$ , $8\sim k$ .
If $s_{0},$ $\cdots,\wedge e_{k}$ are all $\epsilon$-terms contained in $\mathfrak{p}$ , then the index of $\tau$ with respect

to the sequence $@_{0},$ $\mathfrak{g}ck$ is called the first index of $\tau$ .
Let $A(t)-(@=\epsilon \mathfrak{x}A(\mathfrak{x})|-A(\sim e))$ be the first formula in the sequence (2) which

is reduced by $\tau$ to a false formula, and $\epsilon \mathfrak{x}B(\mathfrak{x}, a_{1}, \cdots , \mathfrak{a}_{m})$ be the fundamental
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type belonging to $\epsilon \mathfrak{x}A(\mathfrak{x})$ , where $\epsilon_{\grave{\dot{6}}}A(\mathfrak{x})$ is $\epsilon_{\check{\mathfrak{x}}}B(\mathfrak{x}, t, \cdot.. t_{m})$ . If $\underline{8}_{0}$ ... $e_{k}\wedge$ are all $\epsilon-$

terms contained in $B(O, n_{1}, \cdot.. , n_{m}),$ $B(O^{\prime}, n_{1}, \cdot.. , n_{m})$ , $\cdot$ .. , $B(n, n_{1}, \cdot.. , n_{m})$ , then the
index $ 0_{\perp}^{c}\tau$ with respect to $g_{0}\ldots\circ$ is called the second index of $\tau$ , where
$n_{1}$ , , $n_{m}$ and $n$ are numerals to which $t_{1}$ , $\cdot$ .. , $t_{m}$ and $t$ are reduced by $\tau$ re-
spectively.

When the first index of $\tau$ is $a$ and the second index is $b$ , then the pair $(a, b)$

is called the index of $\tau$ .
When $\alpha=(a, b)$ and $\beta=(c, d)$ , then $\alpha<\beta$ if and only if $a=c$ and $b<d$,

or $a<c$ .

6. Properties with respect to the sequence of total substitutions.
6.1. DEFINITION. A l-series (W. Ackermann’s l-Reihe) of total substitutions

is a total substitution itself. An $(m+1)$-series (W. Ackermann’s $(m+1)$-Reihe) of

total substitutions is a connected sequence $\tau_{i},$ $\tau_{i+1},$
$\cdots$

$\tau_{i+k}$ of total substitutions
in which the characteristic numbers of $\tau_{i}$ and $\tau_{i+k+1}$ are not smaller than $m+1$ .
Here if $\tau_{i+k}$ is the last total substitution, then the condition for $\tau_{i+k+1}$ is not

needed. And if $\tau_{i}$ is the first total substitution $\tau_{1}$ , then the condition for $\tau_{i}$

is not needed.

6.2. DEFINITION. Let $\Xi_{1}$ be an m-series of connected total substitutions $\kappa_{1}$ ,

$\kappa_{k}$ the indices of which are $\alpha_{1},$
$\cdots$ , $\alpha_{k}$ respectively, and $\Xi_{2}$ be an m-series of

connected total substitutions $\delta_{1},$

$\cdots,$
$\delta_{l}$ the indices of which are $\beta_{1},$ $\beta_{\iota}$ re-

spectively. Now if $\alpha_{1}=\beta_{1},$
$\cdots,$

$\alpha_{k}=\beta_{k}$ and $k=l$ , then we say that $\Xi_{1}$ is equiva-

lent to $\Xi_{2}$ . If we have a $j(1\leqq j\leqq k, 1\leqq j\leqq l)$ such that $\alpha_{j}>\beta_{j}$ and $\alpha_{i}=\beta_{i}$ for
$i$ as $i<j$ , then we say that $\Xi_{2}$ is strictly progressive to $\Xi_{1}$ . Moreover we call
$\delta_{j}$ the total substitution distinguishing $\Xi_{2}$ from $\overline{\underline{\mapsto}}1$ .

6.3. DEFINITION. Let $\Xi_{1}$ and $\Xi_{2}$ be the same as in Definition 6.2. Let $\Xi_{1}$

consist of connected $(m-1)$-series $\Phi_{1},$ $\Phi_{2},$
$\cdots,$

$\Phi_{\mu}$ and $\Xi_{2}$ consist of connected $(m-$

$1)- series\Psi_{1},$ $\Psi_{2},$
$\cdots,$

$\Psi_{\nu}$ . We assume that $\Xi_{2}$ is strictly progressive to $\Xi_{1}$ , where
$\delta_{j}$ in $\Psi_{\gamma}$ is the total substitution distinguishing $\Xi_{2}$ from $\Xi_{1}$ . Then $\Phi_{1},$ $\cdots$ , $\Phi_{T-1}$

are equivalent to $\Psi_{1},$ $\cdots$ , $\Psi_{r-1}$ respectively and $\Psi_{\gamma}$ is strictly progressive to $\Phi_{\gamma}$

and $\delta_{j}$ is the total substitution distinguishing $\Psi_{\gamma}$ from $\Phi_{\gamma}$ . We call $\Psi_{\gamma}$ the $(m-1)-$

series distinguishing $\Xi_{2}$ from $\Xi_{1}$ .
6.4. THEOREM. Let $\Xi_{1}$ and $\Xi_{2}$ be two connected m-series and the characteristic

number of the first total substitution of $\Xi_{2}$ be $m$ . Then $\Xi_{2}$ is strictly progressive

to $\Xi_{1}$ .
6.5. THEOREM. Let $\Xi_{1},$ $\Xi_{2},$ $\Xi_{3},$ $\cdots$ be connected m-series contained in an $(m-$

$1)- series$ . Then $\Xi_{i+1}$ is strictly progressive to $\Xi_{i}$ for every $i$ .

\S 4. Finiteness proof for the sequence of total substitutions.

If we have the last normal total substitution of the sequence of normal
total substitution given in \S 3, then all the axioms in $\mathfrak{p}$ are reduced by the
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total substitution to true formulas. Hence the consistency-proof is completed.

1. PRINCIPAL THEOREM. The sequence of total substitutions given in \S 3 is

finite.
The theorem is proved from the following Theorems 2 and 3.

2. THEOREM. Let $\Xi_{1},$ $\Xi_{2},$ $\Xi_{3},$ $\cdots$ be a sequence, connected or not, of m-series
which occur in this order. If $\Xi_{i+1}$ is strictly progressive to $\Xi_{i}$ for every $i$ , then

the sequence is finite and we can give $N$ such that $\Xi_{N}$ is the last.

Proof is given in 4.

3. THEOREM. For every $m$ an m-series contains only finite total substitutions.

PROOF. When $m=1$ , then an m-series contains only one total substitution
from the definition of l-series. Assuming that the theorem is already proved

for m-series, we prove for $(m+1)$-series. Let $\Xi$ be an $(m+1)$-series consisting

of connected m-series $\Xi_{1},$ $\Xi_{2},$ $\Xi_{3},$ $\cdots$ . From Theorem 6.5 in \S 3 $\Xi_{i+1}$ is strictly

progressive to $\Xi_{i}$ for every $i$ , so that the sequence of m-series is finite by

Theorem 2 in this section. Let it be

$\Xi_{1},$ $\Xi_{2},$ $\cdots$ $\Xi_{N}$ .

By the assumption of the induction every $\Xi_{i}$ contains only finite total substitu-
tions. Therefore $\Xi$ contains only finite total substitutions.

4. PROOF OF THEOREM 2.

We prove Theorem 2 by induction on $m$ .
4.1. LEMMA. Let $\kappa_{1},$ $\kappa_{2},$ $\kappa_{3},$

$\cdots$ be a sequence of total substitutions the indices

of which are $\alpha_{1},$ $\alpha_{2},$ $\alpha_{3},$
$\cdots$ respectively. If $\alpha_{1}>\alpha_{2}>\alpha_{3}>\cdots$ , then the sequence is

finite, and we can give the $N$ such that $\kappa_{N}$ is the last total substitution.

PROOF. We can easily prove this by double induction on the first index

and the second index of total substitutions in this order.

4.2. By Lemma 4.1 the theorem is obtained in the case $m=1$ . Assuming

that the theorem is proved for $m$ , we prove the theorem for $m+1$ .
Now let $\Xi(1),$ $\Xi(2),$ $\Xi(3),$ $\cdots$ be a sequence of $(m+1)$-series where $\Xi(i+1)$ is

strictly progressive to $\Xi(i)$ for every $i$ and $\Xi(i)$ consists of $\Phi(i, 1),$ $\cdots$ , $\Phi(i, k_{i})$ : a
sequence connected of m-series. Then we construct a sequence of finite se-
quences of the form

$\Phi(1,1),$ $\Phi(h_{2}, i_{2}),$ $\cdots$ , $\Phi(h_{n}, i_{n})$

of m-series such that it satisfies the following conditions 1), 2) $and\supset$ ,

1) $1\leqq h_{2}\leqq\ldots\leqq h_{n}$ and $1\leqq i_{2}\leqq\ldots\leqq i_{n}$ .
2) If $h_{\gamma}<h_{\xi}$ , then $\Phi(h_{\gamma}, 1)$ is equivalent to $\Phi(h_{\xi}, 1),$ $\cdots$ , and $\Phi(h_{\gamma}, i_{\gamma-1})$ is

equivalent tc $\Phi(h_{\xi}, i_{r-1})$ . Moreover if $i_{\gamma}<i_{\xi}$ and $\Phi(h_{\xi}, i_{\gamma})$ is not contained in
$\Phi(1,1),$ $\Phi(h_{2}, i_{2})$ , , $\Phi(h_{n}, i_{n})$ , then $\Phi(h_{\gamma}, i_{\gamma})$ is equivalent to $\Phi(h_{\xi}, i_{\xi})$ .

3) $\Phi(h_{j+1}, i_{j+1})$ is strictly progressive to $\Phi(h_{j}, i_{j})$ .
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We construct the sequence. The first finite sequence of m-series consists
only of $\Phi(1,1)$ . We assume that the n-th finite sequence of m-series is already

defined so that the conditions 1), 2) and 3) are satisfied. Let it be

$\Phi(1,1),$ $\Phi(h_{2}, i_{2}),$ $\cdots$ , $\Phi(h,.,, i_{\vee})$ .

Then we define the $(n+1)- st$ finite sequence of m-series. Let $\Xi(h_{\kappa})$ be the
$last\wedge(m+1)$-series of $\Xi(1),$ $\Xi(2),$ $\cdots$ . If $\Phi(h_{\kappa}, i_{\kappa})$ is the last m-series of $\Xi(h_{\kappa})$ , then
the n-th finite sequence of m-series is the last, otherwise the $(n+1)- st$ finite
sequence of m-series is

$\Phi(1,1),$ $\Phi(h_{2}, i_{2}),$ $\cdots$ , $\Phi(h_{\kappa}, i_{\kappa}),$ $\Phi(h_{\kappa}, i_{\kappa}+1)$ .

Next let $\Xi(h_{\kappa})$ be not the last $(m+1)$-series of $\Xi(1).\Xi(2),$ $\cdots$ . Then we have

the m-series distinguishing $\Xi(h_{\kappa}+1)$ from $\Xi(h_{\kappa})$ . Let it be $\Phi(h_{\overline{\iota}}+1,j)$ .
(1) If $j=i_{\kappa}$ , then the $(n+1)- st$ is

$\Phi(1,1),$ $\Phi(h_{2}, i_{2})$ , $\cdot$ .. , $\Phi(h_{\kappa}, i_{\kappa}),$ $\Phi(h_{\kappa}+1,j)$

which clearly satisfies the conditions 1), 2) and 3).

(2) If $j>i_{\kappa}$ , then the $(n+1)- st$ finite sequence is

$\Phi(1,1),$ $\Phi(h_{2}, i_{2}),$ $\Phi(h_{\kappa}, i_{\kappa}),$ $\Phi(h,., i_{\kappa}+1)$

which clearly satisfies the conditions 1), 2) and 3).

(3) In the case where $j<i_{r}$ , let $j_{\mu}$ be the last of 1, $i_{1},$ $\cdots$ , $i_{\kappa}$ such that $\leqq j$ .
(We surely have such an $i_{\mu}$ because $1\leqq j$). Then $i_{U,}<i_{\ell+1},$ $\cdots$ , $i_{\kappa}$ .

(3.1) If $i_{\mu}<j$ , then the $(n+1)- st$ finite sequence is

$\Phi(1,1),$ $\Phi(h_{2}, i_{2}),$ $\cdots$ , $\Phi(h_{\mu}, i_{\mu}),$ $\Phi(h_{f}, i_{\ell}+1)$

which clearly satisfies the conditions 1), 2) and 3).

(3.2) If $i_{\mu}=j$ , then the $(n+1)- st$ finite sequence is

$\Phi(1,1),$ $\Phi(h_{2}, i_{2}),$ $\Phi(h_{t,}, i_{\mu}),$ $\Phi(h_{\kappa}+1,j)$

which clearly satisfies the conditions 1), 2) and 3).

4.3. DEFINITION. We call $i_{\kappa}$ the rank of a finite sequence of m-series $\Phi(1,1)$ ,

$\Phi(h_{2}, i_{2}),$ $\cdots$ , $\Phi(h_{\kappa}, i_{\kappa})$ . Now we rearrange the sequence of finite sequence of $ m\rightarrow$

series given in 4.2 in this section into a double sequences as follows: (1) in
the i-th row occur all finite sequences of m-series with the rank $i$ and do

not occur finite sequences of m-series with rank $j(\neq i)$ , and (2) in the i-th row
the order between finite sequences of m-series are the same as in the sequence

given in 4.2.

4.4. LEMMA. The j-th finite sequence of m-series in the first row is of the form
$\Phi(1,1),$ $\Phi(h_{2},1)$ , $\cdot$ .. , $\Phi(h_{j}, 1)$ .

PROOF. We prove by induction on $j$ . If $j=1$ , then the lemma is clear be-
cause the first is $\Phi(1,1)$ . Now let the j-th and $(j+1)- st$ of the first row be the
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M-th and $(n+1)- st$ of the previous sequence respectively. Then the n-th of

the previous sequence is of the form $\Phi(1,1),$ $\Phi(h_{2},1),$
$\cdots,$ $\Phi(h_{j}, 1),$ $\Phi(h_{\mu}, i_{\mu}),$ $\cdots$ ,

$\Phi(h_{\kappa}, i_{\kappa})$ where $1<i_{\mu},$ $\cdots$ , $i_{\kappa}$ . From the definition of the $(n+1)- st$ finite sequence,

therefore, it is of the form

$\Phi(1,1),$ $\Phi(h_{2},1)$ , , $\Phi(h_{j}, 1),$ $\Phi(h_{j+1},1)$ .
4.5. Now we consider the sequence of m-series

$\Phi(1,1),$ $\Phi(h_{2},1),$ $\Phi(h_{3},1),$ $\cdots\cdots$

where $\Phi(h_{i+1},1)$ is strictly progressive to $\Phi(h_{i}, 1)$ , from the condition 3) and
Lemma 4.4 in this section. By the assumption of the induction therefore the
sequence is finite and we have the last m-series $\Phi(h_{N}$ ., 1 $)$ . Then the finite se-
quence of m-series

$\Phi(1,1),$ $\Phi(h_{2},1),$ $\cdots$ , $\Phi(h_{N}$., 1 $)$

is the last of the first row.
4.6. LEMMA. We assume that the last finite sequence of the $\xi$-th row is given

and it is
$\Phi(1,1),$ $\Phi(h_{2},1),$ $\cdots$ , $\Phi(h_{N_{1}},1),$ $\Phi(h_{N_{1}+1},2),$ $\cdots$ , $\Phi(h_{N_{2}},2)$ ,

... , $\Phi(h_{N_{\xi-1}+1}, \xi),$ $\cdots$ $\Phi(h_{N\xi}, \xi)$ .

Then we have the last of the $(\xi+1)- st$ row and it is of the form
$\Phi(1,1),$ $\Phi(h_{2},1),$ $\cdots$ , $\Phi(h_{N_{1}},1),$ $\Phi(h_{N_{1}+1},2),$ $\cdots$ , $\Phi(h_{N_{2}},2),$ $\cdots$ , $\Phi(h_{N_{\xi-1}+1}, \xi)$ ,

... , $\Phi(h_{N_{\xi}}, \xi),$ $\Phi(h_{N_{\xi+1}}, \xi+1),$ $\cdots$ $\Phi(h_{N_{\xi+1}}, \xi+1)$ .

PROOF. If $\nu\leqq\xi$ and $ h_{N_{\xi}}<\mu$ , then $\Phi(\mu, \nu)$ is equivalent to $\Phi(h_{N_{\xi}}, \nu)$ from

the assumption of the lemma and the condition 2).

Let the last of the $\xi$-th row be the M-th of the previous sequence. Then
the first of $(\xi+1)- st$ row after the M-th of the previous sequence is of the form

$\Phi(1,1),$ $\Phi(h_{2},1),$ $\cdots$ , $\Phi(h_{N_{1}},1),$ $\Phi(h_{N_{1}+1},2),$ $\cdots$ , $\Phi(h_{N_{2}},2)$ ,

$\Phi(h_{N_{\xi-1}+1}, \xi),$ $\cdots$ $\Phi(h_{N_{\xi}}, \xi),$ $\Phi(h_{N_{\xi}+1}, \xi+1)$ .

Moreover we see that the i-th of the $(\xi+1)- st$ row after the M-th of the pre-

vious sequence is of the form

$\Phi(1,1),$ $\Phi(h_{2},1),$ $\cdots$ $\Phi(h_{N_{1}},1),$ $\Phi(h_{N_{1}+1},2),$ $\cdots$ $\Phi(h_{N_{2}},2),$ $\cdots$ $\Phi(h_{N\xi-1+1}, \xi)$ ,

... , $\Phi(h_{N\xi}, \xi),$ $\Phi(h_{N\xi+1}, \xi+1),$ $\cdots$ $\Phi(h_{N\xi+i}, \xi+1)$

in the same way as in the proof of Lemma 4.4 in this section. Then in the
sequence

$\Phi(1,1),$ $\Phi(h_{2},1),$ $\cdots$ , $\Phi(h_{N_{1}},1),$ $\Phi(h_{N_{1}+1},2),$ $\cdots$ , $\Phi(h_{N_{2}},2),$ $\cdots$ , $\Phi(h_{N_{\xi-1}+1}, \xi)$ ,

... , $\Phi(h_{N\xi}, \xi),$ $\Phi(h_{N\xi+1}, \xi+1),$ $\cdots$ $\Phi(h_{N_{\xi}+n}, \xi+1),$ $\cdots$

the $(i+1)- st$ m-series is strictly progressive to the i-th m-series for every $i$ from
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the condition 3). By the assumption of the induction the $s\circ.quence$ is finite and
the last finite sequence of the $(\xi+1)- st$ row is of the form

$\Phi(1,1),$ $\cdots$ , $\Phi(h_{N_{1}},1),$ $\Phi(h_{N},+1’ 2)$ ,

, $\Phi(h_{N_{3}},2),$ $\cdots$ $\Phi(h_{N_{\xi+1}}, \xi+1),$ $\cdots$ $\Phi(h_{N_{\xi+1}}, \xi+1)$ . $q$ . $e$ . $d$ .
4.7. We consider the sequence of m-series $\Phi(1,1),$ $\Phi(h_{2},1),$

$\cdots,$
$\Phi(h_{N_{1}},1)$ ,

$\Phi(h_{N}.+1’ 2),$ $\cdots,$
$\Phi(h_{N}$ ., 2 $)$ , $\cdots$ . Then the $(i+1)- st$ of the sequence is strictly pro-

gressive to the i-th. By the assumption of the induction therefore the sequence

is finite and we have the last. Let the total sequence be

$\Phi(1,1),$ $\Phi(h_{2},1)$ , $\cdot$ .. , $\Phi(h_{N_{1}},1),$ $\Phi(h_{N_{1}+1},2)$ , $\cdot$ .. , $\Phi(h_{N},, 2)$ ,

... , $\Phi(h_{N\lambda-1+1}, \lambda),$ $\cdots$ $\Phi(h_{N_{\lambda}}, \lambda)$ .

It is clear that the sequence is the last of the $\lambda$ -th row. Finally we show that
$\Xi(h_{N_{\lambda}})$ is the last $(m+1)$-series and $\Phi(h_{N_{\lambda}}, \lambda)$ is the last m-series of $\Xi(h_{N_{\lambda}})$ . Let
$\Xi(h_{N_{\lambda}})$ be not the last and $\Phi(h_{N\lambda+1},j)$ be the m-series distinguishing $\Xi(h_{N}\lambda+1)$ to
$\Xi(h_{N_{\lambda}})$ . Then $\lambda<j$ . In fact, if $\lambda>j$ , the j-th row is not finite, and if $\lambda=j$ ,

the $\lambda$ -th row is not finite. Then the $(M+1)- st$ finite sequence of m-series of

the previous sequence is $\Phi(1,1),$
$\cdots,$ $\Phi(h_{N}\lambda’\lambda),$ $\Phi(h_{N}\lambda\lambda+1)$ and this is the finite

sequence of the $(\lambda+1)- st$ row. This is a contradiction, and completes the proof

of Theorem 2.

Hosei University, Tokyo
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