Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/
тüвітак
Research Article

Turk J Math
(2017) 41: $869-887$
(C) TÜBİTAK
doi:10.3906/mat-1510-77

On golden semisymmetric metric F-connections

Aydın GEZER ${ }^{1}$, Çağrı KARAMAN ${ }^{2, *}$
${ }^{1}$ Department of Mathematics, Faculty of Science, Atatürk University, Erzurum, Turkey
${ }^{2}$ Department of Geomatics Engineering, Oltu Faculty of Earth Sciences, Atatürk University, Erzurum, Turkey

| Received: 21.10 .2015 | Accepted/Published Online: 26.09 .2016 | • Final Version: 25.07 .2017 |
| :--- | :--- | :--- | :--- | :--- |

Abstract

In this paper, we construct a golden semisymmetric metric F-connection on a locally decomposable golden Riemannian manifold and investigate some properties of its curvature, conharmonic curvature, Weyl projective curvature, and torsion tensors. Moreover, we define the transposed connection of this connection and study its curvature properties.

Key words: Golden Riemannian structure, semisymmetric metric F-connection, Tachibana operator, transposed connection

1. Introduction

Hayden introduced the idea of a metric connection with torsion on a Riemannian manifold [4]. A linear connection $\widetilde{\nabla}$ on a Riemannian manifold (M, g) is called a metric connection with torsion with respect to g if $\widetilde{\nabla} g=0$ and its torsion tensor is nonzero. In [15], Yano defined a semisymmetric metric connection on a Riemannian manifold. A semisymmetric metric connection is a metric connection whose torsion tensor is in the form: $S(X, Y)=p(Y) X-p(X) Y$, where p is a 1-form. Chaki and Konar [1] obtained the expression for the curvature tensor of a Riemannian manifold that admits a semisymmetric metric connection with vanishing curvature and recurrent torsion tensors.

A locally decomposable Riemannian manifold can be defined as a triplet (M, g, F), which consists of a manifold M endowed with an almost product structure F and a Riemannian metric g such that $g(F X, Y)=$ $g(X, F Y)$ and $\nabla F=0$ for all vector fields X and Y on M, where ∇ is the Levi-Civita connection of g. For a locally decomposable Riemannian manifold (M, g, F), Prvanovic defined a product semisymmetric F-connection that is a generalization of semisymmetric metric connections and proved that if this has a zero curvature tensor then the Riemannian space is product conformally flat [11]. A more general product semisymmetric F-connection is also studied: this is not a metric connection but is a product-recurrent metric connection. For further references, we refer to [7-10].

The notion of golden Riemannian structure was introduced in [2] as a $(1,1)$-tensor field F and a Riemannian metric g on a manifold M that satisfy $F^{2}=F+I$ and $g(F X, F Y)=g(F X, Y)+g(X, Y)$ for all vector fields X and Y on M. In [3], the second author and collaborators proved that a necessary and sufficient condition for the triplet (M, g, F) to be a locally decomposable golden Riemannian manifold is that $\phi_{F} g=0$, where ϕ_{F} is the Tachibana operator applied to g. In this paper, we construct a golden

[^0]semisymmetric metric F-connection on a locally decomposable golden Riemannian manifold. First we study some properties concerning its torsion tensor. Then we calculate curvature, conharmonic curvature, and Weyl projective curvature tensors of this connection and investigate their properties. Finally we define and study the transposed connection of this connection.

2. Preliminaries

Let M be an n-dimensional differentiable manifold of class C^{∞} covered by any system of coordinate neighbourhoods $\left(x^{h}\right)$, where here and in the sequel the indices h, i, j, k, \ldots run over the range $1,2, \ldots, n$. Also note that summation over repeated indices is always implied.

Consider a $(1,1)$-tensor F with components $F_{i}{ }^{j}$ and a (p, q)-tensor K with components $K_{i_{1} i_{2} \ldots i_{q}}^{j_{1} j_{2} \ldots j_{p}}$ satisfying the condition

$$
\begin{aligned}
& K_{m i i_{2} \ldots i_{q}}^{j_{1} \ldots j_{p}} F_{i_{1}}^{m}=K_{i_{1} m \ldots i_{q}}^{j_{1} \ldots j_{p}} F_{i_{2}}^{m}=\ldots=K_{i_{1} i_{2} \ldots m}^{j_{1} \ldots j p} F_{i_{q}}^{m}= \\
& K_{i_{1} \ldots i_{q}}^{m j_{2} \ldots j_{p}} F_{m}^{j_{1}}=K_{i_{1} \ldots i_{q}}^{j_{1} m \ldots j_{p}} F_{m}^{j_{2}}=\ldots=K_{i_{1} \ldots i_{q}}^{j_{1} j_{2} \ldots m} F_{m}^{j_{p}} ;
\end{aligned}
$$

then the tensor K is called a pure tensor with respect to the tensor F.
The Tachibana operator ϕ_{F} applied to a pure (p, q)-tensor K is given by

$$
\begin{align*}
& \left(\phi_{F} K\right)_{k i_{1} \ldots i_{q}}^{j_{1} \ldots j_{p}} \tag{2.1}\\
= & F_{k}^{m} \partial_{m} K_{i_{1} \ldots i_{q}}^{j_{1} \ldots j_{p}}-\partial_{k}(K \circ F)_{i_{1} \ldots i_{q}}^{j_{1} \ldots j_{p}} \\
& +\sum_{\lambda=1}^{q}\left(\partial_{i_{\lambda}} F_{k}^{m}\right) K_{i_{1} \ldots m \ldots i_{q}}^{j_{1} \ldots j_{p}}+\sum_{\mu=1}^{p}\left(\partial_{k} F_{m}^{j_{\mu}}-\partial_{m} F_{k}^{j_{\mu}}\right) K_{i_{1} \ldots i_{q}}^{j_{1} \ldots m \ldots j_{p}},
\end{align*}
$$

where

$$
\begin{aligned}
(K \circ F)_{i_{1} \ldots i_{q}}^{j_{1} \ldots j_{p}} & =K_{m i_{2} \ldots i_{q}}^{j_{1} \ldots j_{p}} F_{i_{1}}^{m}=\ldots=K_{i_{1} i_{2} \ldots m}^{j_{1} \ldots j p} F_{i_{q}}{ }^{m} \\
& =K_{i_{1} \ldots i_{q}}^{m j_{2} \ldots j_{p}} F_{m}^{j_{1}}=\ldots=K_{i_{1} \ldots i_{q}}^{j_{1} j_{2} \ldots m} F_{m}^{j_{p}} .
\end{aligned}
$$

The operator (2.1) first introduced by Tachibana [14] (for Tachibana operator and its applications, see [13] and [16]). If the pure tensor K satisfies $\phi_{F} K=0$, then it is called a ϕ-tensor. If the $(1,1)$-tensor F is a product structure, then a ϕ-tensor is a decomposable tensor [14].

A golden Riemannian manifold is a manifold M equipped with a (1,1)-tensor field F with components F_{i}^{j} and a Riemannian metric g with components $g_{i j}$ that satisfy the following conditions:

$$
\begin{equation*}
F_{i}^{k} F_{k}^{j}=F_{i}^{j}+\delta_{i}^{j} \tag{2.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\left.F_{i}{ }^{k} g_{k j}=F_{j}^{k} g_{k i} \text { (or equivalently } F_{i}^{k} F_{j}^{t} g_{k t}=F_{i}^{k} g_{k j}+g_{i j}\right) \tag{2.3}
\end{equation*}
$$

It follows from (2.3) that $F_{i j}=F_{j i}$. Riemannian golden and almost product structures are related to each other. In fact, the connection between a golden structure F and almost product structure J on M is as follows
[2]:

$$
\begin{equation*}
J=\mp \frac{1}{\sqrt{5}}(2 F-I) \tag{2.4}
\end{equation*}
$$

or conversely

$$
\begin{equation*}
F=\frac{1}{2}(I \mp \sqrt{5} J) \tag{2.5}
\end{equation*}
$$

Furthermore, it is clear that a Riemannian metric g is pure with respect to a golden structure F if and only if the Riemannian metric g is pure with respect to the corresponding almost product structure J. Using the above-mentioned relation, from (2.1) a simple computation gives the following:

$$
\begin{equation*}
\phi_{F} K=\mp \frac{\sqrt{5}}{2} \phi_{J} K \tag{2.6}
\end{equation*}
$$

for any (p, q)-tensor K. A golden Riemannian manifold (M, g, F) is a locally decomposable golden Riemannian manifold if and only if the Riemannian metric g is a decomposable tensor, i.e. $\left(\phi_{J} g\right)_{k i j}=0$ [3]. We note that the condition $\left(\phi_{J} g\right)_{k i j}=0$ is equivalent to $\nabla_{k} J_{i}{ }^{j}=0$ [13]. Here we use the notation ∇_{k} to denote the operator of the Riemannian covariant derivation. Throughout this paper, the notation ∇_{k} will be used for the same purpose.

3. The golden semisymmetric metric F-connection

Let (M, g, F) be a locally decomposable golden Riemannian manifold. We consider an affine connection $\widetilde{\nabla}$ with components $\widetilde{\Gamma}_{i j}^{k}$ on M. If the affine connection $\widetilde{\nabla}$ satisfies

$$
\begin{align*}
\text { i) } \widetilde{\nabla}_{h} g_{i j} & =0 \tag{3.7}\\
\text { ii) } \widetilde{\nabla}_{h} F_{i}^{j} & =0
\end{align*}
$$

then it is called a metric F-connection. When the torsion tensor $\widetilde{S}_{i j}^{k}$ of $\widetilde{\nabla}$ is given by

$$
\begin{equation*}
\widetilde{S}_{i j}^{k}=p_{j} \delta_{i}^{k}-p_{i} \delta_{j}^{k}+p_{t} F_{j}^{t} F_{i}^{k}-p_{t} F_{i}^{t} F_{j}^{k} \tag{3.8}
\end{equation*}
$$

where p_{i} are local components of an 1 -form (covector field), we call the affine connection $\widetilde{\nabla}$ a golden semisymmetric metric F-connection.

Let $\widetilde{\Gamma}_{i j}^{k}$ be the components of the golden semisymmetric metric F-connection $\widetilde{\nabla}$. If we put

$$
\begin{equation*}
\widetilde{\Gamma}_{i j}^{k}=\Gamma_{i j}^{k}+T_{i j}^{k} \tag{3.9}
\end{equation*}
$$

where $\Gamma_{i j}^{k}$ are the components of the Levi-Civita connection ∇ of g and $T_{i j}^{k}$ are the components of a $(1,2)$ tensor field T on M, then the torsion tensor $\widetilde{S}_{i j}^{k}$ of $\widetilde{\nabla}$ is given by

$$
\widetilde{S}_{i j}^{k}=\widetilde{\Gamma}_{i j}^{k}-\widetilde{\Gamma}_{j i}^{k}=T_{i j}^{k}-T_{j i}^{k}
$$

Since the connection (3.9) satisfies the condition (i) of (3.7), by following the method shown in [4], we get

$$
T_{i j}^{k}=p_{j} \delta_{i}^{k}-p^{k} g_{i j}+p_{t} F_{j}^{t} F_{i}^{k}-p_{t} F^{k t} F_{i j}
$$

where $p^{k}=p_{i} g^{i k}, F^{k t}=F_{i}{ }^{t} g^{i k}$ and $F_{i j}=F_{j}{ }^{k} g_{i k}$. Thus the connection (3.9) becomes the following form:

$$
\begin{equation*}
\widetilde{\Gamma}_{i j}^{k}=\Gamma_{i j}^{k}+p_{j} \delta_{i}^{k}-p^{k} g_{i j}+p_{t} F_{j}^{t} F_{i}^{k}-p_{t} F^{k t} F_{i j} . \tag{3.10}
\end{equation*}
$$

Moreover, using (3.10) once verifies

$$
\widetilde{\nabla}_{k} F_{i}^{j}=g_{k i}\left(p^{t} F_{t}^{j}-p_{t} F^{j t}\right)=0
$$

Therefore the components $\widetilde{\Gamma}_{i j}^{k}$ of the golden semisymmetric metric F-connection $\widetilde{\nabla}$ can be expressed in the form (3.10).

4. Torsion properties of the golden semisymmetric metric F-connection

In this section, we investigate some properties concerning the torsion tensor of the connection (3.10).
Theorem 4.1 Let (M, g, F) be a locally decomposable golden Riemannian manifold endowed with the connection (3.10). The torsion tensor \widetilde{S} of the connection (3.10) is pure.
Proof By using (2.2) and (3.8), it follows that $\widetilde{S}_{m j}^{k} F_{i}{ }^{m}=\widetilde{S}_{i m}^{k} F_{j}{ }^{m}=\widetilde{S}_{i j}^{m} F_{m}{ }^{k}$, i.e. the torsion tensor \widetilde{S} is pure.

A F-connection is pure if and only if its torsion tensor is pure [13]. Thus we can say that the connection (3.10) is pure with respect to F, i.e., the following condition holds:

$$
\widetilde{\Gamma}_{m j}^{k} F_{i}^{m}=\widetilde{\Gamma}_{i m}^{k} F_{j}^{m}=\widetilde{\Gamma}_{i j}^{m} F_{m}^{k}
$$

Theorem 4.2 Let (M, g, F) be a locally decomposable golden Riemannian manifold endowed with the connection (3.10). The torsion tensor \widetilde{S} of the connection (3.10) is a ϕ-tensor if the generator p is a ϕ-tensor.

Proof Let (M, g, F) be a locally decomposable golden Riemannian manifold and ∇ be its Levi-Civita connection with components $\Gamma_{i j}^{h}$. A zero tensor is pure and therefore we have: a torsion-free F-connection is always pure. Thus the Levi-Civita connection ∇ of g on M is pure with respect to F.

If we apply the Tachibana operator ϕ_{F} to the torsion tensor \widetilde{S} of the connection (3.10), we get

$$
\begin{aligned}
\left(\phi_{F} \widetilde{S}\right)_{k i j}^{l}= & F_{k}^{m}\left(\partial_{m} \widetilde{S}_{i j}^{l}\right)-\partial_{k}\left(\widetilde{S}_{m j}^{l} F_{i}^{m}\right) \\
= & F_{k}^{m}\left(\nabla_{m} \widetilde{S}_{i j}^{l}+\Gamma_{m i}^{s} \widetilde{S}_{s j}^{l}+\Gamma_{m j}^{s} \widetilde{S}_{i s}^{l}-\Gamma_{m s}^{l} \widetilde{S}_{i j}^{s}\right) \\
& -F_{i}^{m}\left(\nabla_{k} \widetilde{S}_{m j}^{l}+\Gamma_{k m}^{s} \widetilde{S}_{s j}^{l}+\Gamma_{k j}^{s} \widetilde{S}_{m s}^{l}-\Gamma_{k s}^{l} \widetilde{S}_{m j}^{s}\right)
\end{aligned}
$$

Using the purity of the torsion tensor \widetilde{S} and Levi-Civita connection ∇, the relation above reduces to

$$
\begin{equation*}
\left(\phi_{F} \widetilde{S}\right)_{k i j}^{l}=F_{k}^{m}\left(\nabla_{m} \widetilde{S}_{i j}^{l}\right)-F_{i}^{m}\left(\nabla_{k} \widetilde{S}_{m j}^{l}\right) \tag{4.11}
\end{equation*}
$$

For the generator p, we calculate

$$
\begin{aligned}
\left(\phi_{F} p\right)_{k j} & =F_{k}^{m}\left(\partial_{m} p_{j}\right)-\partial_{k}\left(F_{j}^{m} p_{m}\right) \\
& =F_{k}^{m}\left(\nabla_{m} p_{j}+\Gamma_{m j}^{s} p_{s}\right)-F_{j}^{m}\left(\nabla_{k} p_{m}+\Gamma_{k m}^{s} p_{s}\right) \\
& =F_{k}^{m}\left(\nabla_{m} p_{j}\right)-F_{j}^{m}\left(\nabla_{k} p_{m}\right)
\end{aligned}
$$

From here, we can say that the generator p is a ϕ-tensor if and only if

$$
\begin{equation*}
F_{k}^{m}\left(\nabla_{m} p_{j}\right)=F_{j}^{m}\left(\nabla_{k} p_{m}\right) \tag{4.12}
\end{equation*}
$$

Substituting (3.8) into (4.11), we find

$$
\begin{aligned}
\left(\phi_{F} \widetilde{S}\right)_{k i j}^{l}= & {\left[F_{k}^{m}\left(\nabla_{m} p_{j}\right)-F_{j}^{m}\left(\nabla_{k} p_{m}\right)\right] \delta_{i}^{l}-\left[F_{k}^{m}\left(\nabla_{m} p_{i}\right)-F_{i}^{m}\left(\nabla_{k} p_{m}\right)\right] \delta_{j}^{l} } \\
& +\left[F_{k}^{m} F_{j}^{s}\left(\nabla_{m} p_{s}\right)-F_{j}^{s}\left(\nabla_{k} p_{s}\right)-\nabla_{k} p_{j}\right] F_{i}^{l} \\
& -\left[F_{k}^{m} F_{i}^{s}\left(\nabla_{m} p_{s}\right)-F_{i}^{s}\left(\nabla_{k} p_{s}\right)-\nabla_{k} p_{i}\right] F_{j}^{l}
\end{aligned}
$$

Assuming that the generator p is a ϕ-tensor, by virtue of (2.2) the last relation becomes $\left(\phi_{F} \widetilde{S}\right)_{k i j}^{l}=0$, i.e. the torsion tensor \widetilde{S} is a ϕ-tensor. This completes the proof.

In view of (2.6), we can easily say that the ϕ-tensor p is also a decomposable tensor, i.e. $\phi_{J} p=0$, where J is the product structure associated with the golden structure F. From on now, we shall consider such a special case of golden semisymmetric metric F-connections whose generator p is a ϕ-tensor (or decomposable tensor), i.e. the following condition always holds:

$$
F_{k}^{m}\left(\nabla_{m} p_{j}\right)=F_{j}^{m}\left(\nabla_{k} p_{m}\right)
$$

or equivalently

$$
J_{k}^{m}\left(\nabla_{m} p_{j}\right)=J_{j}^{m}\left(\nabla_{k} p_{m}\right)
$$

In this case, (4.11) gives the following condition:

$$
\begin{equation*}
F_{k}^{m}\left(\nabla_{m} \widetilde{S}_{i j}^{l}\right)=F_{i}^{m}\left(\nabla_{k} \widetilde{S}_{m j}^{l}\right)=F_{j}^{m}\left(\nabla_{k} \widetilde{S}_{i m}^{l}\right) \tag{4.13}
\end{equation*}
$$

Theorem 4.3 Let (M, g, F) be a locally decomposable golden Riemannian manifold endowed with the connection (3.10). If the torsion tensor \widetilde{S} of the connection (3.10) satisfies the following

$$
\begin{equation*}
\widetilde{\nabla}_{k} \widetilde{S}_{i j}^{l}+\widetilde{\nabla}_{j} \widetilde{S}_{k i}^{l}+\widetilde{\nabla}_{i} \widetilde{S}_{j k}^{l}=0 \tag{4.14}
\end{equation*}
$$

then, under the condition of $(\text { trace } F-2)^{2}-(n-4)(n+$ trace $F-6) \neq 0$, the generator p is closed, i.e. $d p=0$. Conversely, if the generator p is closed, then the relation (4.14) is satisfied.
Proof We calculate

$$
\begin{align*}
& \widetilde{\nabla}_{k} \widetilde{S}_{i j}^{l}+\widetilde{\nabla}_{j} \widetilde{S}_{k i}^{l}+\widetilde{\nabla}_{i} \widetilde{S}_{j k}^{l} \tag{4.15}\\
= & \left(\widetilde{\nabla}_{k} p_{j}-\widetilde{\nabla}_{j} p_{k}\right) \delta_{i}^{l}+\left(\widetilde{\nabla}_{i} p_{k}-\widetilde{\nabla}_{k} p_{i}\right) \delta_{j}^{l} \\
& +\left(\widetilde{\nabla}_{i} p_{j}-\widetilde{\nabla}_{j} p_{i}\right) \delta_{k}^{l}+\left[\left(\widetilde{\nabla}_{k} p_{t}\right) F_{j}^{t}-\left(\widetilde{\nabla}_{j} p_{t}\right) F_{k}^{t}\right] F_{i}^{l} \\
& +\left[\left(\widetilde{\nabla}_{i} p_{t}\right) F_{k}^{t}-\left(\widetilde{\nabla}_{k} p_{t}\right) F_{i}^{t}\right] F_{j}^{l}+\left[\left(\widetilde{\nabla}_{j} p_{t}\right) F_{i}^{t}-\left(\widetilde{\nabla}_{i} p_{t}\right) F_{j}^{t}\right] F_{k}^{l} \\
= & \left(\widetilde{\nabla}_{k} p_{j}-\widetilde{\nabla}_{j} p_{k}\right) \delta_{i}^{l}+\left(\widetilde{\nabla}_{i} p_{k}-\widetilde{\nabla}_{k} p_{i}\right) \delta_{j}^{l}+\left(\widetilde{\nabla}_{i} p_{j}-\widetilde{\nabla}_{j} p_{i}\right) \delta_{k}^{l} \\
& +\left(\widetilde{\nabla}_{k} p_{t}-\widetilde{\nabla}_{t} p_{k}\right) F_{j}^{t} F_{i}^{l}+\left(\widetilde{\nabla}_{i} p_{t}-\widetilde{\nabla}_{t} p_{i}\right) F_{k}^{t} F_{j}^{l}+\left(\widetilde{\nabla}_{j} p_{t}-\widetilde{\nabla}_{t} p_{j}\right) F_{i}^{t} F_{k}^{l}
\end{align*}
$$

It is easy to see that $\widetilde{\nabla}_{k} p_{t}-\widetilde{\nabla}_{t} p_{k}=\nabla_{k} p_{t}-\nabla_{t} p_{k}=(d p)_{k t}$. Because of this, (4.15) immediately gives that $d p=0$ implies $\widetilde{\nabla}_{k} \widetilde{S}_{i j}^{l}+\widetilde{\nabla}_{j} \widetilde{S}_{k i}^{l}+\widetilde{\nabla}_{i} \widetilde{S}_{j k}^{l}=0$.

If we assume that $\widetilde{\nabla}_{k} \widetilde{S}_{i j}^{l}+\widetilde{\nabla}_{j} \widetilde{S}_{k i}^{l}+\widetilde{\nabla}_{i} \widetilde{S}_{j k}^{l}=0$, then we get

$$
\begin{align*}
& \left(\nabla_{k} p_{j}-\nabla_{j} p_{k}\right) \delta_{i}^{l}+\left(\nabla_{i} p_{k}-\nabla_{k} p_{i}\right) \delta_{j}^{l}+\left(\nabla_{i} p_{j}-\nabla_{j} p_{i}\right) \delta_{k}^{l} \tag{4.16}\\
& +\left(\nabla_{k} p_{t}-\nabla_{t} p_{k}\right) F_{j}^{t} F_{i}^{l}+\left(\nabla_{i} p_{t}-\nabla_{t} p_{i}\right) F_{k}^{t} F_{j}^{l}+\left(\nabla_{j} p_{t}-\nabla_{t} p_{j}\right) F_{i}^{t} F_{k}^{l}=0 .
\end{align*}
$$

Contracting (4.16) with $g_{l m}$, we have

$$
\begin{aligned}
& \left(\nabla_{k} p_{j}-\nabla_{j} p_{k}\right) g_{i m}+\left(\nabla_{i} p_{k}-\nabla_{k} p_{i}\right) g_{j m}+\left(\nabla_{i} p_{j}-\nabla_{j} p_{i}\right) g_{k m} \\
& +\left(\nabla_{k} p_{t}-\nabla_{t} p_{k}\right) F_{j}^{t} F_{i m}+\left(\nabla_{i} p_{t}-\nabla_{t} p_{i}\right) F_{k}^{t} F_{j m}+\left(\nabla_{j} p_{t}-\nabla_{t} p_{j}\right) F_{i}^{t} F_{k m}=0 .
\end{aligned}
$$

Transvecting the last relation with $g^{i m}$ and $F^{i m}$ respectively, it follows that

$$
\begin{equation*}
(n-4)\left(\nabla_{j} p_{k}-\nabla_{k} p_{j}\right)+(\text { trace } F-2) F_{k}^{t}\left(\nabla_{j} p_{t}-\nabla_{t} p_{j}\right)=0 \tag{4.17}
\end{equation*}
$$

and

$$
\begin{equation*}
(\text { trace } F-2)\left(\nabla_{j} p_{k}-\nabla_{k} p_{j}\right)+(n+\text { trace } F-6) F_{k}^{t}\left(\nabla_{j} p_{t}-\nabla_{t} p_{j}\right)=0 . \tag{4.18}
\end{equation*}
$$

When we multiply (4.17) by ($n+$ trace $F-6$) and (4.18) by (trace $F-2$) and subtract the first from the second, then we obtain

$$
\left[(\text { trace } F-2)^{2}-(n-4)(n+\text { trace } F-6)\right]\left(\nabla_{j} p_{k}-\nabla_{k} p_{j}\right)=0
$$

If $(\text { trace } F-2)^{2}-(n-4)(n+$ trace $F-6) \neq 0$, then $\left(\nabla_{j} p_{k}-\nabla_{k} p_{j}\right)=(d p)_{j k}=0$, i.e. the generator p is closed.

5. Curvature properties of the golden semisymmetric metric F-connection

The curvature tensor $\widetilde{R}_{i j k}^{l}$ of the connection (3.10) is obtained from the well-known formula

$$
\widetilde{R}_{i j k}^{l}=\partial_{i} \widetilde{\Gamma}_{j k}^{l}-\partial_{j} \widetilde{\Gamma}_{i k}^{l}+\widetilde{\Gamma}_{i m}^{l} \widetilde{\Gamma}_{j k}^{m}-\widetilde{\Gamma}_{j m}^{l} \widetilde{\Gamma}_{i k}^{m}
$$

Then the curvature tensor $\widetilde{R}_{i j k}^{l}$ can be expressed as follows:

$$
\begin{align*}
\widetilde{R}_{i j k}^{l}= & R_{i j k}{ }^{l}-\delta_{i}^{l} \mathcal{A}_{j k}+\delta_{j}^{l} \mathcal{A}_{i k}+g_{i k} \mathcal{A}_{j}^{l}-g_{j k} \mathcal{A}_{i}^{l} \tag{5.19}\\
& -F_{i}^{l} F_{k}^{t} \mathcal{A}_{j t}+F_{j}^{l} F_{k}{ }^{t} \mathcal{A}_{i t}+F_{i k} F^{l t} \mathcal{A}_{j t}-F_{j k} F^{l t} \mathcal{A}_{i t},
\end{align*}
$$

where $R_{i j k}{ }^{l}$ are the components of the Riemann curvature tensor of the Levi-Civita connection ∇ and

$$
\begin{equation*}
\mathcal{A}_{j k}=\nabla_{j} p_{k}-p_{j} p_{k}+\frac{1}{2} p^{m} p_{m} g_{k j}-p_{m} p_{t} F_{k}^{t} F_{j}^{m}+\frac{1}{2} p^{m} p_{t} F_{m}^{t} F_{j k} . \tag{5.20}
\end{equation*}
$$

On lowering the upper index in (5.19), we obtain

$$
\begin{align*}
\widetilde{R}_{i j k l}= & R_{i j k l}-g_{i l} \mathcal{A}_{j k}+g_{j l} \mathcal{A}_{i k}+g_{i k} \mathcal{A}_{j l}-g_{j k} \mathcal{A}_{i l}-F_{i l} F_{k}{ }^{t} \mathcal{A}_{j t} \tag{5.21}\\
& +F_{j l} F_{k}{ }^{t} \mathcal{A}_{i t}+F_{i k} F_{l}{ }^{t} \mathcal{A}_{j t}-F_{j k} F_{l}{ }^{t} \mathcal{A}_{i t}
\end{align*}
$$

It is obvious that the curvature tensor satisfies $\widetilde{R}_{i j k l}=-\widetilde{R}_{j i k l}$ and $\widetilde{R}_{i j k l}=-\widetilde{R}_{i j l k}$.
In order to use it later, we need the following useful lemma.
Lemma 5.1 Let (M, g, F) be a locally decomposable golden Riemannian manifold endowed with the connection (3.10). Then the tensor \mathcal{A} given by (5.20) is a ϕ-tensor and thus the following relation holds:

$$
\left(\nabla_{m} \mathcal{A}_{i j}\right){F_{k}}^{m}=\left(\nabla_{k} \mathcal{A}_{m j}\right) F_{i}^{m}=\left(\nabla_{k} \mathcal{A}_{i m}\right) F_{j}{ }^{m}
$$

Proof The tensor \mathcal{A} is pure with respect to F. In fact

$$
F_{k}{ }^{t} \mathcal{A}_{i t}-F_{i}{ }^{t} \mathcal{A}_{t k}=\left(\nabla_{i} p_{t}\right) F_{k}^{t}-\left(\nabla_{t} p_{k}\right) F_{i}^{t}=0
$$

We calculate

$$
\begin{aligned}
\left(\phi_{F} \mathcal{A}\right)_{k i j}= & F_{k}{ }^{m}\left(\partial_{m} \mathcal{A}_{i j}\right)-\partial_{k}\left(\mathcal{A}_{m j} F_{i}{ }^{m}\right) \\
= & F_{k}{ }^{m}\left(\nabla_{m} \mathcal{A}_{i j}+\Gamma_{m i}^{s} \mathcal{A}_{s j}+\Gamma_{m j}^{s} \mathcal{A}_{i s}\right) \\
& -F_{i}{ }^{m}\left(\nabla_{k} \mathcal{A}_{m j}+\Gamma_{k m}^{s} \mathcal{A}_{s j}+\Gamma_{k j}^{s} \mathcal{A}_{m s}\right)
\end{aligned}
$$

Using the purity of the tensor \mathcal{A} and the Levi-Civita connection ∇, we get

$$
\begin{equation*}
\left(\phi_{F} \mathcal{A}\right)_{k i j}=\left(\nabla_{m} \mathcal{A}_{i j}\right) F_{k}^{m}-\left(\nabla_{k} \mathcal{A}_{m j}\right) F_{i}^{m} \tag{5.22}
\end{equation*}
$$

Substituting (5.20) into (5.22), standard calculations give

$$
\begin{equation*}
\left(\phi_{F} \mathcal{A}\right)_{k i j}=\left(\nabla_{m} \nabla_{i} p_{j}\right) F_{k}^{m}-\left(\nabla_{k} \nabla_{m} p_{j}\right) F_{i}^{m} \tag{5.23}
\end{equation*}
$$

If we apply the Ricci identity to the generator p, then we have

$$
\begin{aligned}
\left(\nabla_{m} \nabla_{i} p_{j}\right) F_{k}^{m} & =\left(\nabla_{i} \nabla_{m} p_{j}\right) F_{k}^{m}-p_{s} R_{m i}{ }_{j}^{s} F_{k}^{m} \\
& =\left(\nabla_{i} \nabla_{k} p_{m}\right) F_{j}^{m}-p_{s} R_{m i}{ }_{j}^{s} F_{k}^{m}
\end{aligned}
$$

and

$$
\begin{aligned}
\left(\nabla_{k} \nabla_{m} p_{j}\right) F_{i}^{m} & =\left(\nabla_{k} \nabla_{i} p_{m}\right) F_{j}^{m} \\
& =\left(\nabla_{i} \nabla_{k} p_{m}\right) F_{j}^{m}-p_{s} R_{k i m}^{s} F_{j}^{m}
\end{aligned}
$$

With the help of the last two equations, from (5.23), it follows that

$$
\left(\phi_{F} \mathcal{A}\right)_{k i j}=-p_{s}\left(R_{m i j}^{s} F_{k}^{m}-R_{k i m}^{s} F_{j}{ }^{m}\right)
$$

In a locally decomposable golden Riemannian manifold (M, g, F), the Riemannian curvature tensor R is pure [3]. This immediately gives $\left(\phi_{F} \mathcal{A}\right)_{k i j}=0$. Hence, from (5.22) we can write

$$
\left(\nabla_{m} \mathcal{A}_{i j}\right) F_{k}^{m}=\left(\nabla_{k} \mathcal{A}_{m j}\right) F_{i}^{m}=\left(\nabla_{k} \mathcal{A}_{i m}\right) F_{j}{ }^{m}
$$

Theorem 5.2 Let (M, g, F) be a locally decomposable golden Riemannian manifold endowed with the connection (3.10). The curvature tensor \widetilde{R} of the connection (3.10) is a ϕ-tensor and thus the following relation holds:

$$
\left(\nabla_{m} \widetilde{R}_{i j l}^{t}\right) F_{k}^{m}=\left(\nabla_{k} \widetilde{R}_{m j l}^{t}\right) F_{i}^{m}=\left(\nabla_{k} \widetilde{R}_{i m l}^{t}\right) F_{j}^{m}=\left(\nabla_{k} \widetilde{R}_{i j m}^{t}\right) F_{l}^{m}=\left(\nabla_{k} \widetilde{R}_{i j l}^{m}\right) F_{m}^{t}
$$

Proof Using the purity of the tensor \mathcal{A}, standard calculations give

$$
\widetilde{R}_{i j k}^{m} F_{m}^{l}=\widetilde{R}_{m j k}^{l} F_{i}^{m}=\widetilde{R}_{i m k}^{l} F_{j}^{m}=\widetilde{R}_{i j m}^{l} F_{k}^{m},
$$

i.e. the curvature tensor \widetilde{R} is pure.

Applying the Tachibana operator ϕ_{F} to the curvature tensor \widetilde{R}, we have

$$
\begin{align*}
& \left(\phi_{F} \widetilde{R}\right)_{k i j l}^{t} \tag{5.24}\\
= & F_{k}^{m}\left(\partial_{m} \widetilde{R}_{i j l}{ }^{t}\right)-\partial_{k}\left(\widetilde{R}_{m j l}^{t} F_{i}^{m}\right) \\
= & F_{k}^{m}\left(\nabla_{m} \widetilde{R}_{i j l}^{t}+\Gamma_{m i}^{s} \widetilde{R}_{s j l}^{t}+\Gamma_{m j}^{s} \widetilde{R}_{i s l}^{t}+\Gamma_{m l}^{s} \widetilde{R}_{i j s}^{t}-\Gamma_{m s}^{t} \widetilde{R}_{i j l}{ }^{m}\right) \\
& -F_{i}^{m}\left(\nabla_{k} \widetilde{R}_{m j l}^{t}+\Gamma_{k m}^{s} \widetilde{R}_{s j l}^{t}+\Gamma_{k j}^{s} \widetilde{R}_{m s l}^{t}+\Gamma_{k l}^{s} \widetilde{R}_{m j s}^{t}-\Gamma_{k s}^{t} \widetilde{R}_{m j l}^{s}\right) \\
= & \left(\nabla_{m} \widetilde{R}_{i j l}{ }^{t}\right) F_{k}^{m}-\left(\nabla_{k} \widetilde{R}_{m j l}^{t}\right) F_{i}^{m}
\end{align*}
$$

from which, by (5.19), we find

$$
\begin{aligned}
\left(\phi_{F} \widetilde{R}\right)_{k i j l}^{t}= & \left(\phi_{F} R\right)_{k i j l}^{t}+\left[\left(\nabla_{k} \mathcal{A}_{j m}\right) F_{l}^{m}-\left(\nabla_{m} \mathcal{A}_{j l}\right) F_{k}^{m}\right] \delta_{i}^{t} \\
& +\left[\left(\nabla_{m} \mathcal{A}_{i l}\right) F_{k}^{m}-\left(\nabla_{k} \mathcal{A}_{i m}\right) F_{l}{ }^{m}\right] \delta_{j}^{t}
\end{aligned}
$$

In a locally decomposable golden Riemannian manifold (M, g, F), the Riemannian curvature tensor R is a ϕ-tensor [3]. Thus, taking into account Lemma 5.1, the preceding relation becomes $\left(\phi_{F} \widetilde{R}\right)_{k i j l}{ }^{t}=0$, i.e. the curvature tensor \widetilde{R} is a ϕ-tensor. Thus, by (5.24), we can write

$$
\left(\nabla_{m} \widetilde{R}_{i j l}^{t}\right) F_{k}^{m}=\left(\nabla_{k} \widetilde{R}_{m j l}^{t}\right) F_{i}^{m}=\left(\nabla_{k} \widetilde{R}_{i m l}^{t}\right) F_{j}^{m}=\left(\nabla_{k} \widetilde{R}_{i j m}^{t}\right) F_{l}^{m}
$$

This completes the proof.
Using (2.6), we obtain, as a result to Theorem 4.2 and 5.2, the following theorem.

Theorem 5.3 Let (M, g, F) be a locally decomposable golden Riemannian manifold endowed with the connection (3.10). Both the torsion tensor \widetilde{S} and the curvature tensor \widetilde{R} of the connection (3.10) are decomposable tensors with respect to the product structures associated with the golden structure F.

Theorem 5.4 Let (M, g, F) be a locally decomposable golden Riemannian manifold endowed with the connection (3.10). If the curvature tensor \widetilde{R} of the connection (3.10) satisfies the following

$$
\left\{\begin{array}{c}
i) \widetilde{R}_{i j k l}-\widetilde{R}_{k l i j}=0 \tag{5.25}\\
i i) \widetilde{R}_{i j k l}+\widetilde{R}_{k i j l}+\widetilde{R}_{j k i l}=0
\end{array}\right.
$$

then, under the condition of $(\text { trace } F-2)^{2}-(n-4)(n+$ trace $F-6) \neq 0$, the generator p is closed. Conversely, if the generator p is closed, then the relations (5.25) are satisfied.
Proof i) From (5.21), we obtain

$$
\begin{aligned}
\widetilde{R}_{i j k l}-\widetilde{R}_{k l i j}= & \left(\mathcal{A}_{l i}-\mathcal{A}_{i l}\right) g_{j k}+\left(\mathcal{A}_{k j}-\mathcal{A}_{j k}\right) g_{i l}+\left(\mathcal{A}_{i k}-\mathcal{A}_{k i}\right) g_{j l} \\
& +\left(\mathcal{A}_{j l}-\mathcal{A}_{l j}\right) g_{i k}+F_{i l}\left(F_{j}{ }^{t} \mathcal{A}_{k t}-F_{k}{ }^{t} \mathcal{A}_{j t}\right) \\
& +F_{j l}\left(F_{k}{ }^{t} \mathcal{A}_{i t}-F_{i}{ }^{t} \mathcal{A}_{k t}\right)+F_{i k}\left(F_{l}{ }^{t} \mathcal{A}_{j t}-F_{j}{ }^{t} \mathcal{A}_{l t}\right) \\
& -F_{j k}\left(F_{l}{ }^{t} \mathcal{A}_{i t}-F_{i}{ }^{t} \mathcal{A}_{l t}\right)
\end{aligned}
$$

from which

$$
\begin{aligned}
& \widetilde{R}_{i j k l}-\widetilde{R}_{k l i j} \\
= & \left(\mathcal{A}_{l i}-\mathcal{A}_{i l}\right) g_{j k}+\left(\mathcal{A}_{k j}-\mathcal{A}_{j k}\right) g_{i l}+\left(\mathcal{A}_{i k}-\mathcal{A}_{k i}\right) g_{j l} \\
& +\left(\mathcal{A}_{j l}-\mathcal{A}_{l j}\right) g_{i k}+F_{i l} F_{j}^{t}\left(\mathcal{A}_{k t}-\mathcal{A}_{t k}\right) \\
& +F_{j l} F_{k}^{t}\left(\mathcal{A}_{i t}-\mathcal{A}_{t i}\right)+F_{i k} F_{l}^{t}\left(\mathcal{A}_{j t}-\mathcal{A}_{t j}\right) \\
& -F_{j k} F_{l}^{t}\left(\mathcal{A}_{i t}-\mathcal{A}_{t i}\right) .
\end{aligned}
$$

It immediately follows from (5.26) that $d p=0$ implies $\widetilde{R}_{i j k l}-\widetilde{R}_{k l i j}=0$.
If we assume that $\widetilde{R}_{i j k l}-\widetilde{R}_{k l i j}=0$, then (5.26) becomes

$$
\begin{aligned}
0= & \left(\mathcal{A}_{l i}-\mathcal{A}_{i l}\right) g_{j k}+\left(\mathcal{A}_{k j}-\mathcal{A}_{j k}\right) g_{i l}+\left(\mathcal{A}_{i k}-\mathcal{A}_{k i}\right) g_{j l} \\
& +\left(\mathcal{A}_{j l}-\mathcal{A}_{l j}\right) g_{i k}+F_{i l} F_{j}^{t}\left(\mathcal{A}_{k t}-\mathcal{A}_{t k}\right) \\
& +F_{j l} F_{k}^{t}\left(\mathcal{A}_{i t}-\mathcal{A}_{t i}\right)+F_{i k} F_{l}^{t}\left(\mathcal{A}_{j t}-\mathcal{A}_{t j}\right) \\
& -F_{j k} F_{l}^{t}\left(\mathcal{A}_{i t}-\mathcal{A}_{t i}\right)
\end{aligned}
$$

Transvecting the last relation with $g^{i l}$ and $F^{i l}$ respectively, we find

$$
(n-4)\left(\mathcal{A}_{j k}-\mathcal{A}_{k j}\right)+(\text { trace } F-2) F_{k}^{t}\left(\mathcal{A}_{j t}-\mathcal{A}_{t j}\right)=0
$$

and

$$
(\text { trace } F-2)\left(\mathcal{A}_{j k}-\mathcal{A}_{k j}\right)+(n+\text { trace } F-6) F_{k}^{t}\left(\mathcal{A}_{j t}-\mathcal{A}_{t j}\right)=0
$$

The common solution of the two equations above gives

$$
\left[(\text { trace } F-2)^{2}-(n-4)(n+\operatorname{trace} F-6)\right]\left(\mathcal{A}_{j k}-\mathcal{A}_{k j}\right)=0
$$

If $(\text { trace } F-2)^{2}-(n-4)(n+\operatorname{tarce} F-6) \neq 0$, then the last relation gives

$$
\mathcal{A}_{j k}-\mathcal{A}_{k j}=0
$$

from which the result follows because of $\mathcal{A}_{j k}-\mathcal{A}_{k j}=\nabla_{j} p_{k}-\nabla_{j} p_{k}$.
ii) From (5.21) and (3.8), we have

$$
\begin{equation*}
\widetilde{R}_{i j k l}+\widetilde{R}_{k i j l}+\widetilde{R}_{j k i l}=\left(\widetilde{\nabla}_{k} \widetilde{S}_{i j}^{h}+\widetilde{\nabla}_{j} \widetilde{S}_{k i}^{h}+\widetilde{\nabla}_{i} \widetilde{S}_{j k}^{h}\right) g_{h l} \tag{5.27}
\end{equation*}
$$

With the help of (5.27) and Theorem 4.3, the result immediately follows.

Example 5.5 The Euclidean space \mathbb{R}^{n} is given by Euclidean metric

$$
\begin{aligned}
g & =\left(g_{\alpha \beta}\right)=\left(\begin{array}{ll}
g_{i j} & g_{\bar{i} j} \\
g_{i \bar{j}} & g_{\overline{i j}}
\end{array}\right) \\
& =\left(\begin{array}{cc}
\delta_{i j} & 0 \\
0 & \delta_{\overline{i j}}
\end{array}\right), i, j=1, \ldots, k, \bar{i}, \bar{j}=k+1, \ldots, n .
\end{aligned}
$$

In the example, Greek indices take on values 1 to n. Take J as the standard product structure on \mathbb{R}^{n}, so that we have

$$
\begin{aligned}
\left(J_{\alpha}{ }^{\beta}\right) & =\left(\begin{array}{cc}
J_{i}^{j} & J_{\bar{i}}^{j} \\
J_{i}^{\bar{j}} & J_{\bar{i}}^{j}
\end{array}\right) \\
& =\left(\begin{array}{cc}
0 & \delta_{\bar{i}}^{j} \\
\delta_{i}^{\bar{j}} & 0
\end{array}\right), i, j=1, \ldots, k, \quad \bar{i}, \bar{j}=k+1, \ldots, n
\end{aligned}
$$

Then the triplet $\left(\mathbb{R}^{n}, g, J\right)$ is a locally decomposable Euclidean space. The golden structures $F_{ \pm}$on \mathbb{R}^{n} obtained from J are as follows:

$$
F_{ \pm}=\left(\begin{array}{cc}
F_{i}^{j} & F_{\bar{i}}^{j} \\
F_{i}^{\bar{j}} & F_{\bar{i}}^{j}
\end{array}\right)=\left(\begin{array}{cc}
\frac{1}{2} \delta_{i}^{j} & \pm \frac{\sqrt{5}}{2} \delta_{\bar{i}}^{j} \\
\pm \frac{\sqrt{5}}{2} \delta_{i}^{\bar{j}} & \frac{1}{2} \delta_{\bar{i}}^{j}
\end{array}\right)
$$

Also note that the triplet $\left(\mathbb{R}^{n}, g, F_{ \pm}\right)$is a locally decomposable golden Euclidean space.
We suppose that p_{α} is a gradient, $p_{\alpha}=\left(p_{i}, p_{\bar{i}}\right)=\left(\partial_{i} f, \partial_{\bar{i}} f\right), f$ being a decomposable function. The condition for the function f to be locally decomposable is given by [13]

$$
\left(\phi_{J} d f\right)_{\sigma \beta}=J_{\sigma}^{\alpha} \partial_{\alpha} \partial_{\beta} f-\partial_{\sigma}\left(J_{\beta}^{\alpha} \partial_{\alpha} f\right)+\left(\partial_{\beta} J_{\sigma}^{\alpha}\right) \partial_{\alpha} f=0
$$

Then the components of the golden semisymmetric metric $F_{ \pm}$-connection in $\left(\mathbb{R}^{n}, g, F_{ \pm}\right)$are the following:

$$
\begin{aligned}
\widetilde{\Gamma}_{i j}^{k} & =\widetilde{\Gamma}_{\bar{i} j}^{\bar{k}}=\widetilde{\Gamma}_{i \bar{j}}^{\bar{k}}=\widetilde{\Gamma}_{\overline{i j}}^{k} \\
& =\frac{5}{4}\left[\left(\partial_{j} f\right) \delta_{i}^{k}-\left(\partial_{h} f\right) \delta^{h k} \delta_{i j}\right] \pm \frac{\sqrt{5}}{4}\left[\left(\partial_{\bar{j}} f\right) \delta_{i}^{k}-\left(\partial_{\bar{h}} f\right) \delta^{\overline{h k}} \delta_{i j}\right] \\
\widetilde{\Gamma}_{\bar{i} j}^{k} & =\widetilde{\Gamma}_{i \bar{j}}^{k}=\widetilde{\Gamma}_{\overline{i j}}^{\bar{k}}=\widetilde{\Gamma}_{i j}^{\bar{k}} \\
& =\frac{5}{4}\left[\left(\partial_{\bar{j}} f\right) \delta_{i}^{k}-\left(\partial_{\bar{h}} f\right) \delta^{\overline{h k}} \delta_{i j}\right] \pm \frac{\sqrt{5}}{4}\left[\left(\partial_{j} f\right) \delta_{i}^{k}-\left(\partial_{h} f\right) \delta^{h k} \delta_{i j}\right]
\end{aligned}
$$

The torsion tensor of the golden semisymmetric metric $F_{ \pm}$-connection has the components

$$
\begin{aligned}
\widetilde{S}_{i j}^{k} & =\widetilde{S}_{\bar{i} j}^{k}=\widetilde{S}_{i \bar{j}}^{k}=\widetilde{S}_{\overline{i j}}^{k} \\
& =\frac{5}{4}\left[\left(\partial_{j} f\right) \delta_{i}^{k}-\left(\partial_{i} f\right) \delta_{j}^{k}\right] \pm \frac{\sqrt{5}}{4}\left[\left(\partial_{\bar{j}} f\right) \delta_{i}^{k}-\left(\partial_{\bar{i}} f\right) \delta_{j}^{k}\right] \\
\widetilde{S}_{\bar{i} j}^{k} & =\widetilde{S}_{i \bar{j}}^{k}=\widetilde{S}_{\overline{i j}}^{k}=\widetilde{S}_{i j}^{k} \\
& =\frac{5}{4}\left[\left(\partial_{\bar{j}} f\right) \delta_{i}^{k}-\left(\partial_{\bar{i}} f\right) \delta_{j}^{k}\right] \pm \frac{\sqrt{5}}{4}\left[\left(\partial_{j} f\right) \delta_{i}^{k}-\left(\partial_{i} f\right) \delta_{j}^{k}\right]
\end{aligned}
$$

Simple calculations show that the torsion tensor \widetilde{S} is pure with respect to $F_{ \pm}$and furthermore $\left(\phi_{F_{ \pm}} S\right)_{\sigma \alpha \beta}^{\gamma}=0$ or equivalently $\left(\phi_{J} S\right)_{\sigma \alpha \beta}^{\gamma}=0$, i.e. \widetilde{S} is decomposable.

The components of the curvature tensor \widetilde{R} of the golden semisymmetric metric $F_{ \pm}$-connection are the following:

$$
\begin{aligned}
\widetilde{R}_{i j k}^{l}= & \widetilde{R}_{\overline{i j k}}^{l}=\widetilde{R}_{\bar{i} j \bar{k}}^{l}=\widetilde{R}_{i \overline{j \bar{k}}}^{l}=\widetilde{R}_{\bar{i} j k}^{\bar{l}} \\
= & \widetilde{R}_{i \bar{j} k}^{\bar{l}}=\widetilde{R}_{i j \bar{k}}^{\bar{l}}=\widetilde{R}_{\overline{i j k}}^{\bar{l}} \\
= & -\delta_{i}^{l}\left(\frac{5}{4} \mathcal{A}_{j k} \pm \frac{\sqrt{5}}{4} \mathcal{A}_{\bar{j} k}\right)+\delta_{j}^{l}\left(\frac{5}{4} \mathcal{A}_{i k} \pm \frac{\sqrt{5}}{4} \mathcal{A}_{\bar{i} k}\right) \\
& +\delta_{i k}\left(\frac{5}{4} \mathcal{A}_{j}^{l} \pm \frac{\sqrt{5}}{4} \mathcal{A}_{\bar{j}}^{l}\right)-\delta_{j k}\left(\frac{5}{4} \mathcal{A}_{i}^{l} \pm \frac{\sqrt{5}}{4} \mathcal{A}_{\bar{i}}^{l}\right) \\
\widetilde{R}_{\bar{i} j k}^{l}= & \widetilde{R}_{i \bar{j} k}^{l}=\widetilde{R}_{i j \bar{k}}^{l}=\widetilde{R}_{i j k}^{\bar{l}} \\
= & \widetilde{R}_{\overline{i j} k}^{\bar{l}}=\widetilde{R}_{\bar{i} j \bar{k}}^{\bar{l}}=\widetilde{R}_{i \overline{j k}}^{\bar{l}}=\widetilde{R}_{\overline{i j k}}^{l} \\
= & -\delta_{i}^{l}\left(\frac{5}{4} \mathcal{A}_{\bar{j} k} \pm \frac{\sqrt{5}}{4} \mathcal{A}_{j k}\right)+\delta_{j}^{l}\left(\frac{5}{4} \mathcal{A}_{\bar{i} k} \pm \frac{\sqrt{5}}{4} \mathcal{A}_{i k}\right) \\
& +\delta_{i k}\left(\frac{5}{4} \mathcal{A}_{\bar{j}}^{l} \pm \frac{\sqrt{5}}{4} \mathcal{A}_{j}^{l}\right)-\delta_{j k}\left(\frac{5}{4} \mathcal{A}_{\bar{i}}^{l} \pm \frac{\sqrt{5}}{4} \mathcal{A}_{i}^{l}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
\mathcal{A}_{j k}= & \mathcal{A}_{\overline{j k}}=\partial_{k} \partial_{j} f-\frac{5}{4}\left[\left(\partial_{\bar{k}} f\right)\left(\partial_{\bar{j}} f\right)+\left(\partial_{k} f\right)\left(\partial_{j} f\right)\right] \\
& \mp \frac{\sqrt{5}}{4}\left[\left(\partial_{k} f\right)\left(\partial_{\bar{j}} f\right)+\left(\partial_{\bar{k}} f\right)\left(\partial_{j} f\right)\right] \\
& +\frac{5}{8} \delta^{h m} \delta_{j k}\left[\left(\partial_{\bar{h}} f\right)\left(\partial_{\bar{m}} f\right)+\left(\partial_{h} f\right)\left(\partial_{m} f\right)\right] \\
& \pm \frac{\sqrt{5}}{8} \delta^{h m} \delta_{j k}\left[\left(\partial_{\bar{h}} f\right)\left(\partial_{m} f\right)+\left(\partial_{h} f\right)\left(\partial_{\bar{m}} f\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
\mathcal{A}_{\overline{j k}}= & \mathcal{A}_{j \bar{k}}=\partial_{\bar{k}} \partial_{j} f-\frac{5}{4}\left[\left(\partial_{k} f\right)\left(\partial_{\bar{j}} f\right)+\left(\partial_{\bar{k}} f\right)\left(\partial_{j} f\right)\right] \\
& \mp \frac{\sqrt{5}}{4}\left[\left(\partial_{\bar{k}} f\right)\left(\partial_{\bar{j}} f\right)+\left(\partial_{k} f\right)\left(\partial_{j} f\right)\right] \\
& \pm \frac{\sqrt{5}}{8} \delta^{h m} \delta_{j k}\left[\left(\partial_{\bar{h}} f\right)\left(\partial_{\bar{m}} f\right)+\left(\partial_{h} f\right)\left(\partial_{m} f\right)\right] \\
& +\frac{5}{8} \delta^{h m} \delta_{j k}\left[\left(\partial_{\bar{h}} f\right)\left(\partial_{m} f\right)+\left(\partial_{h} f\right)\left(\partial_{\bar{m}} f\right)\right]
\end{aligned}
$$

and $\mathcal{A}_{\sigma}^{\beta}=g^{\alpha \beta} \mathcal{A}_{\sigma \alpha}$. One checks that $\left(\phi_{F_{ \pm}} \mathcal{A}\right)_{\sigma \alpha \beta}=0$. Using this, one verifies that the curvature tensor \widetilde{R} is pure with respect to $F_{ \pm}$and furthermore $\left(\phi_{F_{ \pm}} \widetilde{R}\right)_{\sigma \alpha \beta \gamma}^{\eta}=0$ or equivalently $\left(\phi_{J} \widetilde{R}\right)_{\sigma \alpha \beta \gamma}^{\eta}=0$, i.e. \widetilde{R} is decomposable.

The components of the curvature (0,4)-tensor \widetilde{R} are the following:

$$
\begin{aligned}
\widetilde{R}_{i j k l}= & \widetilde{R}_{\overline{i j k l}}=\widetilde{R}_{\bar{i} j \overline{k l}}=\widetilde{R}_{i \overline{j k l}}=\widetilde{R}_{\bar{i} j k \bar{l}} \\
= & \widetilde{R}_{i \bar{j} k \bar{l}}=\widetilde{R}_{i j \overline{k l}}=\widetilde{R}_{\overline{i j k l}} \\
= & -\delta_{i l}\left(\frac{5}{4} \mathcal{A}_{j k} \pm \frac{\sqrt{5}}{4} \mathcal{A}_{\bar{j} k}\right)+\delta_{j l}\left(\frac{5}{4} \mathcal{A}_{i k} \pm \frac{\sqrt{5}}{4} \mathcal{A}_{\bar{i} k}\right) \\
& +\delta_{i k}\left(\frac{5}{4} \mathcal{A}_{j l} \pm \frac{\sqrt{5}}{4} \mathcal{A}_{\bar{j} l}\right)-\delta_{j k}\left(\frac{5}{4} \mathcal{A}_{i l} \pm \frac{\sqrt{5}}{4} \mathcal{A}_{\bar{i} l}\right) \\
\widetilde{R}_{\bar{i} j k l}= & \widetilde{R}_{i \bar{j} k l}=\widetilde{R}_{i j \bar{k} l}=\widetilde{R}_{i j k \bar{l}} \\
= & \widetilde{R}_{\overline{i j} k \bar{l}}=\widetilde{R}_{\overline{\bar{j}} \overline{k \bar{l}}}=\widetilde{R}_{i \overline{j k l}}=\widetilde{R}_{\overline{i j k} l} \\
= & -\delta_{i l}\left(\frac{5}{4} \mathcal{A}_{\bar{j} k} \pm \frac{\sqrt{5}}{4} \mathcal{A}_{j k}\right)+\delta_{j l}\left(\frac{5}{4} \mathcal{A}_{\bar{i} k} \pm \frac{\sqrt{5}}{4} \mathcal{A}_{i k}\right) \\
& +\delta_{i k}\left(\frac{5}{4} \mathcal{A}_{\bar{j} l} \pm \frac{\sqrt{5}}{4} \mathcal{A}_{j l}\right)-\delta_{j k}\left(\frac{5}{4} \mathcal{A}_{\bar{i} l} \pm \frac{\sqrt{5}}{4} \mathcal{A}_{i l}\right)
\end{aligned}
$$

It is a straightforward verification that the conditions

$$
\begin{gathered}
\left\{\begin{array}{l}
\widetilde{R}_{\sigma \alpha \beta \gamma}=-\widetilde{R}_{\alpha \sigma \beta \gamma}, \\
\widetilde{R}_{\sigma \alpha \beta \gamma}=-\widetilde{R}_{\sigma \alpha \gamma \beta},
\end{array}\right. \\
\left\{\begin{array}{c}
\widetilde{R}_{\sigma \alpha \beta \gamma}=\widetilde{R}_{\beta \gamma \sigma \alpha}, \\
\widetilde{R}_{\sigma \alpha \beta \gamma}+\widetilde{R}_{\alpha \beta \sigma \gamma}+\widetilde{R}_{\beta \sigma \alpha \gamma}=0,
\end{array} \text { for } n>4\right.
\end{gathered}
$$

are fulfilled.
Contracting (5.19) with respect to i and l, we obtain

$$
\begin{align*}
\widetilde{R}_{j k}= & R_{j k}-(n-4) \mathcal{A}_{j k}-\operatorname{trace} \mathcal{A} g_{j k} \tag{5.28}\\
& -(\text { trace } F-2) F_{k}^{t} \mathcal{A}_{j t}-F_{j k} F^{l t} \mathcal{A}_{l t}
\end{align*}
$$

for Ricci tensors of the connection (3.10) ($\widetilde{R}_{j k}$) and the Levi-Civita connection ($R_{j k}$) respectively. Contracting the preceding relation with $g^{j k}$, for the scalar curvatures $\bar{\tau}$ and τ of these connections, we have

$$
\bar{\tau}=\tau-2(n-2) \operatorname{trace} \mathcal{A}-2(\operatorname{trace} F-1) F^{l t} \mathcal{A}_{l t} .
$$

Actually, we can get

$$
\widetilde{R}_{j k}-\widetilde{R}_{k j}=(n-4)\left(\mathcal{A}_{k j}-\mathcal{A}_{j k}\right)+(t r a c e F-2) F_{j}^{t}\left(\mathcal{A}_{k t}-\mathcal{A}_{t k}\right)
$$

From this, it is easy to see that if the generator p is closed, then $\widetilde{R}_{j k}=\widetilde{R}_{k j}$.
The conharmonic curvature tensor with respect to the connection (3.10) is given by

$$
\begin{equation*}
\widetilde{V}_{i j k l}=\widetilde{R}_{i j k l}-\frac{1}{n-2}\left[\widetilde{R}_{j k} g_{i l}-\widetilde{R}_{i k} g_{j l}-\widetilde{R}_{j l} g_{i k}+\widetilde{R}_{i l} g_{j k}\right] \tag{5.29}
\end{equation*}
$$

Putting the values of $\widetilde{R}_{i j k l}$ and $\widetilde{R}_{i k}$ from (5.21) and (5.28) respectively in (5.29), we have

$$
\begin{align*}
& \tilde{V}_{i j k l} \tag{5.30}\\
= & V_{i j k l}-F_{i l} F_{k}{ }^{t} \mathcal{A}_{j t}+F_{j l} F_{k}^{t} \mathcal{A}_{i t}+F_{i k} F_{l}{ }^{t} \mathcal{A}_{j t} \\
& -F_{j k} F_{l}^{t} \mathcal{A}_{i t}-\frac{1}{n-2}\left[\left(2 \mathcal{A}_{j k}-g_{j k}(\text { trace } \mathcal{A})\right.\right. \\
& \left.+F_{j k} F^{m t} \mathcal{A}_{m t}+(2-\operatorname{trace} F) F_{k}^{t} \mathcal{A}_{j t}\right) g_{i l} \\
& -\left(2 \mathcal{A}_{i k}-g_{i k}(\operatorname{trace} \mathcal{A})+F_{i k} F^{m t} \mathcal{A}_{m t}+(2-\operatorname{trace} F) F_{k}^{t} \mathcal{A}_{i t}\right) g_{j l} \\
& -\left(2 \mathcal{A}_{j l}-g_{j l}(\operatorname{trace} \mathcal{A})+F_{j l} F^{m t} \mathcal{A}_{m t}+(2-\operatorname{trace} F) F_{l}^{t} \mathcal{A}_{j t}\right) g_{i k} \\
& \left.+\left(2 \mathcal{A}_{i l}-g_{i l}(\operatorname{trace} \mathcal{A})+F_{i l} F^{m t} \mathcal{A}_{m t}+(2-\operatorname{trace} F) F_{l}{ }^{t} \mathcal{A}_{i t}\right) g_{j k}\right]
\end{align*}
$$

where $V_{i j k l}$ is the conharmonic curvature tensor with respect to the Levi-Civita connection. Since in a

Riemannian manifold $V_{i j k l}=-V_{j i k l}$ and $V_{i j k l}=-V_{i j l k}$, we can easily find $\widetilde{V}_{i j k l}=-\widetilde{V}_{j i k l}$ and $\widetilde{V}_{i j k l}=-\widetilde{V}_{i j l k}$.

Theorem 5.6 Let (M, g, F) be a locally decomposable golden Riemannian manifold endowed with the connection (3.10). If the conharmonic curvature tensors with respect to the connection (3.10) and the Levi-Civita connection coincide, then the 1 -form p satisfies

$$
\nabla_{l} p^{l}+\lambda_{1}\left(\nabla_{t} p^{l}\right) F_{l}^{t}+\lambda_{2} p_{l} p^{l}+\lambda_{3} p_{t} p^{l} F_{l}^{t}=0
$$

where $\lambda_{1}=\frac{\text { trace } F-1}{n-2}, \lambda_{2}=\frac{(\text { trace } F-1)(\text { trace } F-2)+(n-2)(n-4)}{2(n-2)}$ and
$\lambda_{3}=\frac{(\text { trace } F-2)(n-2)+(\text { trace } F-1)(\text { trace } F+n-6)}{2(n-2)}$.

Proof Let us assume that $\widetilde{V}_{i j k l}=V_{i j k l}$. Then from (5.30) we have

$$
\begin{align*}
& -F_{i l} F_{k}{ }^{t} \mathcal{A}_{j t}+F_{j l} F_{k}{ }^{t} \mathcal{A}_{i t}+F_{i k} F_{l}{ }^{t} \mathcal{A}_{j t} \tag{5.31}\\
& -F_{j k} F_{l}{ }^{t} \mathcal{A}_{i t}-\frac{1}{n-2}\left[\left(2 \mathcal{A}_{j k}-g_{j k}(\text { trace } \mathcal{A})\right.\right. \\
& \left.+F_{j k} F^{m t} \mathcal{A}_{m t}+(2-\operatorname{trace} F) F_{k}{ }^{t} \mathcal{A}_{j t}\right) g_{i l} \\
& -\left(2 \mathcal{A}_{i k}-g_{i k}(\text { trace } \mathcal{A})+F_{i k} F^{m t} \mathcal{A}_{m t}+(2-\operatorname{trace} F) F_{k}{ }^{t} \mathcal{A}_{i t}\right) g_{j l} \\
& -\left(2 \mathcal{A}_{j l}-g_{j l}(\operatorname{trace} \mathcal{A})+F_{j l} F^{m t} \mathcal{A}_{m t}+(2-\operatorname{trace} F) F_{l}{ }^{t} \mathcal{A}_{j t}\right) g_{i k} \\
& \left.+\left(2 \mathcal{A}_{i l}-g_{i l}(\operatorname{trace} \mathcal{A})+F_{i l} F^{m t} \mathcal{A}_{m t}+(2-\operatorname{trace} F) F_{l}{ }^{t} \mathcal{A}_{i t}\right) g_{j k}\right] \\
& =0 \text {. }
\end{align*}
$$

Contracting (5.31) with $g^{i l}$, we find

$$
\operatorname{trace} \mathcal{A}+\frac{\operatorname{trace} F-1}{n-2} F^{l t} \mathcal{A}_{t l}=0
$$

from which it follows that

$$
\nabla_{l} p^{l}+\lambda_{1}\left(\nabla_{t} p^{l}\right) F_{l}^{t}+\lambda_{2} p_{l} p^{l}+\lambda_{3} p_{t} p^{l} F_{l}^{t}=0
$$

where $\lambda_{1}=\frac{\text { trace } F-1}{n-2}, \lambda_{2}=\frac{(\text { trace } F-1)(\text { trace } F-2)+(n-2)(n-4)}{2(n-2)}$ and

$$
\lambda_{3}=\frac{(\text { trace } F-2)(n-2)+(\text { trace } F-1)(\text { trace } F+n-6)}{2(n-2)}
$$

Theorem 5.7 Let (M, g, F) be a locally decomposable golden Riemannian manifold endowed with the connection (3.10). If the conharmonic curvature tensor with respect to the connection (3.10) vanishes, then the 1 -form p satisfies

$$
\nabla_{l} p^{l}+\lambda_{1}\left(\nabla_{t} p^{l}\right) F_{l}^{t}+\lambda_{2} p_{l} p^{l}+\lambda_{3} p_{t} p^{l} F_{l}^{t}+\lambda_{4} \tau=0
$$

where $\lambda_{1}=\frac{\text { trace } F-1}{n-2}, \lambda_{2}=\frac{(\text { trace } F-1)(\text { trace } F-2)+(n-2)(n-4)}{2(n-2)}$,

$$
\lambda_{3}=\frac{(\text { trace } F-2)(n-2)+(\text { trace } F-1)(\operatorname{trace} F+n-6)}{2(n-2)}, \lambda_{4}=\frac{1}{2(2-n)} \text { and } \tau \text { is the scalar curvature of }(M, g)
$$

Proof Let us assume that $\widetilde{V}_{i j k l}=0$. Then from (5.30) we have

$$
\begin{aligned}
& V_{i j k l}-F_{i l} F_{k}^{t} \mathcal{A}_{j t}+F_{j l} F_{k}^{t} \mathcal{A}_{i t}+F_{i k} F_{l}^{t} \mathcal{A}_{j t} \\
& -F_{j k} F_{l}^{t} \mathcal{A}_{i t}-\frac{1}{n-2}\left[\left(2 \mathcal{A}_{j k}-g_{j k}(\operatorname{trace} \mathcal{A})\right.\right. \\
& \left.+F_{j k} F^{m t} \mathcal{A}_{m t}+(2-\operatorname{trace} F) F_{k}^{t} \mathcal{A}_{j t}\right) g_{i l} \\
& -\left(2 \mathcal{A}_{i k}-g_{i k}(\operatorname{trace} \mathcal{A})+F_{i k} F^{m t} \mathcal{A}_{m t}+(2-\operatorname{trace} F) F_{k}^{t} \mathcal{A}_{i t}\right) g_{j l} \\
& -\left(2 \mathcal{A}_{j l}-g_{j l}(\operatorname{trace} \mathcal{A})+F_{j l} F^{m t} \mathcal{A}_{m t}+(2-\operatorname{trace} F) F_{l}^{t} \mathcal{A}_{j t}\right) g_{i k} \\
& \left.=\left(2 \mathcal{A}_{i l}-g_{i l}(\operatorname{trace} \mathcal{A})+F_{i l} F^{m t} \mathcal{A}_{m t}+(2-\operatorname{traceF}) F_{l}^{t} \mathcal{A}_{i t}\right) g_{j k}\right] \\
& =0
\end{aligned}
$$

When we contract the last equation by $g^{i l}$, using the condition $V_{i j k l} g^{i l}=V_{l j k}{ }^{l}=-\frac{\tau}{n-2} g_{j k}$, we obtain

$$
\begin{aligned}
\operatorname{trace} \mathcal{A}+\frac{\text { trace } F-1}{n-2} F^{l t} \mathcal{A}_{t l}+\frac{1}{2(2-n)} \tau & =0 \\
\nabla_{l} p^{l}+\lambda_{1}\left(\nabla_{t} p^{l}\right) F_{l}^{t}+\lambda_{2} p_{l} p^{l}+\lambda_{3} p_{t} p^{l} F_{l}^{t}+\lambda_{4} \tau & =0
\end{aligned}
$$

where $\lambda_{1}=\frac{\text { trace } F-1}{n-2}, \lambda_{2}=\frac{(\text { trace } F-1)(\text { trace } F-2)+(n-2)(n-4)}{2(n-2)}$,
$\lambda_{3}=\frac{(\text { trace } F-2)(n-2)+(\text { trace } F-1)(\text { trace } F+n-6)}{2(n-2)}, \lambda_{4}=\frac{1}{2(2-n)}$ and τ is the scalar curvature of (M, g). This completes the proof.

The Weyl projective curvature tensor with respect to the connection (3.10) is given by

$$
\begin{equation*}
\widetilde{P}_{i j k l}=\widetilde{R}_{i j k l}-\frac{1}{n-1}\left[\widetilde{R}_{j k} g_{i l}-\widetilde{R}_{i k} g_{j l}\right] . \tag{5.32}
\end{equation*}
$$

Substituting the values of $\widetilde{R}_{i j k l}$ and $\widetilde{R}_{i k}$ from (5.21) and (5.28) respectively into (5.32) we get

$$
\begin{align*}
\widetilde{P}_{i j k l}= & P_{i j k l}+g_{i k} \mathcal{A}_{j l}-g_{j k} \mathcal{A}_{i l} \tag{5.33}\\
& -F_{i l} F_{k}^{t} \mathcal{A}_{j t}+F_{j l} F_{k}{ }^{t} \mathcal{A}_{i t}+F_{i k} F_{l}{ }^{t} \mathcal{A}_{j t}-F_{j k} F_{l}{ }^{t} \mathcal{A}_{i t} \\
& -\frac{1}{n-1}\left[\left(3 \mathcal{A}_{j k}-g_{j k}(\operatorname{trace} \mathcal{A})+F_{j k} F^{m t} \mathcal{A}_{m t}\right.\right. \\
& \left.+(2-\operatorname{trace} F) F_{k}{ }^{t} \mathcal{A}_{j t}\right) g_{i l}-\left(3 \mathcal{A}_{i k}-g_{i k} \mathcal{A}_{m}^{m}+\right. \\
& \left.\left.F_{i k} F^{m t} \mathcal{A}_{m t}+(2-\operatorname{trace} F) F_{k}{ }^{t} \mathcal{A}_{i t}\right) g_{j l}\right]
\end{align*}
$$

where $P_{i j k l}$ is the Weyl projective curvature tensor with respect to the Levi-Civita connection. Interchanging i and j in (5.33), and then adding it to (5.33), we obtain

$$
\widetilde{P}_{i j k l}+\widetilde{P}_{j i k l}=P_{i j k l}+P_{j i k l}
$$

Since in a Riemannian manifold $P_{i j k l}+P_{j i k l}=0$, we have $\widetilde{P}_{i j k l}=-\widetilde{P}_{j i k l}$.

Theorem 5.8 Let (M, g, F) be a locally decomposable golden Riemannian manifold endowed with the connection (3.10). If the Weyl projective curvature tensor with respect to the connection (3.10) vanishes, then the 1 -form p is closed, under the condition of $(\text { trace } F-2)^{2}-(n-4)(n+$ trace $F-6) \neq 0$.
Proof Let us assume that $\widetilde{P}_{i j k l}=0$. Then from (5.33) it follows that

$$
\begin{aligned}
0= & P_{i j k l}+g_{i k} \mathcal{A}_{j l}-g_{j k} \mathcal{A}_{i l} \\
& -F_{i l} F_{k}{ }^{t} \mathcal{A}_{j t}+F_{j l} F_{k}{ }^{t} \mathcal{A}_{i t}+F_{i k} F_{l}{ }^{t} \mathcal{A}_{j t}-F_{j k} F_{l}{ }^{t} \mathcal{A}_{i t} \\
& -\frac{1}{n-1}\left[\left(3 \mathcal{A}_{j k}-g_{j k}(\operatorname{trace} \mathcal{A})+F_{j k} F^{m t} \mathcal{A}_{m t}\right.\right. \\
& \left.+(2-\operatorname{trace} F) F_{k}{ }^{t} \mathcal{A}_{j t}\right) g_{i l}-\left(3 \mathcal{A}_{i k}-g_{i k} \mathcal{A}_{m}^{m}+\right. \\
& \left.\left.F_{i k} F^{m t} \mathcal{A}_{m t}+(2-\operatorname{trace} F) F_{k}{ }^{t} \mathcal{A}_{i t}\right) g_{j l}\right] .
\end{aligned}
$$

Contracting the previous equation with $g^{k l}$, using $P_{i j k}{ }^{k}=0$ we get

$$
\begin{equation*}
(n-4)\left(\nabla_{j} p_{k}-\nabla_{k} p_{j}\right)+(\text { trace } F-2) F_{k}^{t}\left(\nabla_{j} p_{t}-\nabla_{t} p_{j}\right)=0 \tag{5.34}
\end{equation*}
$$

Transvecting (5.34) by $F_{k}{ }^{i}$, we find

$$
\left[(\text { trace } F-2)^{2}-(n-4)(n+\text { trace } F-6)\right]\left(\nabla_{j} p_{k}-\nabla_{k} p_{j}\right)=0
$$

from which the result immediately follows, under the condition of $(\text { trace } F-2)^{2}-(n-4)(n+$ trace $F-6) \neq 0$.

6. The transposed connection of the golden semisymmetric metric F-connection

The transpose of a connection ∇^{\prime} on M is defined by

$$
\begin{equation*}
{ }^{t} \nabla_{X}^{\prime} Y=\nabla_{Y}^{\prime} X+[X, Y] \tag{6.35}
\end{equation*}
$$

for all vector fields X and Y on M. These type connections have been studied by some author (see [5, 6, 10]). Taking into account $S^{\prime}(X, Y)=\nabla_{X}^{\prime} Y-\nabla_{Y}^{\prime} X-[X, Y]$, (6.35) can be rewritten in the form

$$
{ }^{t} \nabla_{X}^{\prime} Y=\nabla_{X}^{\prime} Y-S^{\prime}(X, Y)
$$

The torsion tensor ${ }^{t} S^{\prime}$ of the transposed connection ${ }^{t} \nabla^{\prime}$ is ${ }^{t} S^{\prime}=-S^{\prime}$. Denoting by ${ }^{t} \widetilde{\nabla}$ the transposed connection of the connection (3.10), the relations (3.8) and (3.10) lead to

$$
\begin{equation*}
{ }^{t} \widetilde{\Gamma}_{i j}^{k}=\Gamma_{i j}^{k}+p_{i} \delta_{j}^{k}-p^{k} g_{i j}+p_{t} F_{i}^{t} F_{j}^{k}-p^{t} F_{t}^{k} F_{i j} \tag{6.36}
\end{equation*}
$$

In view of Theorem 5.3, the torsion tensor ${ }^{t} S^{\prime}$ of the transposed connection (6.36) is a decomposable tensor.
Covariant differentiating the golden structure F and the Riemannian metric g with respect to the transposed connection ${ }^{t} \widetilde{\nabla}$ we find

$$
{ }^{t} \widetilde{\nabla}_{k} F_{i}^{j}=0
$$

and

$$
{ }^{t} \widetilde{\nabla}_{k} g_{i j}=p_{i} g_{j k}+p_{j} g_{i k}-2 p_{k} g_{i j}-2 p_{t} F_{t}^{k} F_{i j}+p_{t} F_{j}^{t} F_{k i}+p_{t} F_{i}^{t} F_{k j} \neq 0
$$

Hence we can say that the transposed connection (6.36) is a golden semisymmetric nonmetric F-connection.
Now we shall prove the following lemma.

Lemma 6.1 Let (M, g, F) be a locally decomposable golden Riemannian manifold endowed with the connection (3.10) and \widetilde{S} be the torsion tensor of the connection (3.10). Then for all vector fields X, Y and Z on M

$$
\underset{X, Y, Z}{\sigma} \widetilde{S}(\widetilde{S}(X, Y) Z)=0
$$

where σ is the cyclic sum by three arguments.

Proof In local coordinates, we can write

$$
\underset{X, Y, Z}{\sigma} \widetilde{S}(\widetilde{S}(X, Y) Z)_{i j k}^{l}=\widetilde{S}_{i j}^{m} \widetilde{S}_{m k}^{l}+\widetilde{S}_{k i}^{m} \widetilde{S}_{m j}^{l}+\widetilde{S}_{j k}^{m} \widetilde{S}_{m i}^{l}
$$

from which, using (3.8), standard calculations directly give the result.
For the curvature tensor ${ }^{t} \widetilde{R}$ of the transposed connection (6.36), we have

$$
\begin{aligned}
{ }^{t} \widetilde{R}_{i j k}^{l} & =\partial_{i}{ }^{t} \widetilde{\Gamma}_{j k}^{l}-\partial_{j}{ }^{t} \widetilde{\Gamma}_{i k}^{l}+{ }^{t} \widetilde{\Gamma}_{i m}^{l}{ }^{t} \widetilde{\Gamma}_{j k}^{m}-{ }^{t} \widetilde{\Gamma}_{j m}^{l}{ }^{t} \widetilde{\Gamma}_{i k}^{m} \\
& =\widetilde{R}_{i j k}^{l}-\widetilde{\nabla}_{i} \widetilde{S}_{j k}^{l}-\widetilde{\nabla}_{j} \widetilde{S}_{k i}^{l}-\left(\widetilde{S}_{i j}^{m} \widetilde{S}_{m k}^{l}+\widetilde{S}_{k i}^{m} \widetilde{S}_{m j}^{l}+\widetilde{S}_{j k}^{m} \widetilde{S}_{m i}^{l}\right)
\end{aligned}
$$

In view of Lemma 6.1, we obtain

$$
\begin{equation*}
{ }^{t} \widetilde{R}_{i j k}^{l}=\widetilde{R}_{i j k}^{l}-\widetilde{\nabla}_{i} \widetilde{S}_{j k}^{l}-\widetilde{\nabla}_{j} \widetilde{S}_{k i}^{l} \tag{6.37}
\end{equation*}
$$

It follows immediately by (6.37) that

$$
{ }^{t} \widetilde{R}_{j i k}^{l}=\widetilde{R}_{j i k}^{l}-\widetilde{\nabla}_{j} \widetilde{S}_{i k}^{l}-\widetilde{\nabla}_{i} \widetilde{S}_{k j}^{l}=-\widetilde{R}_{i j k}^{l}+\widetilde{\nabla}_{i} \widetilde{S}_{j k}^{l}+\widetilde{\nabla}_{j} \widetilde{S}_{k i}^{l}=-{ }^{t} \widetilde{R}_{i j k}^{l}
$$

Theorem 6.2 Let (M, g, F) be a locally decomposable golden Riemannian manifold endowed with the transposed connection (6.36). The curvature tensor ${ }^{t} \widetilde{R}$ of the transposed connection (6.36) is a ϕ-tensor.
Proof From (6.37), we get

$$
\begin{aligned}
{ }^{t} \widetilde{R}_{i j k}^{m} F_{m}^{l} & =\widetilde{R}_{i j k}^{m} F_{m}^{l}-\left(\widetilde{\nabla}_{i} \widetilde{S}_{j k}^{m}\right) F_{m}^{l}-\left(\widetilde{\nabla}_{j} \widetilde{S}_{k i}^{m}\right) F_{m}^{l}, \\
{ }^{t} \widetilde{R}_{m j k}^{l} F_{i}{ }^{m} & =\widetilde{R}_{m j k}^{l} F_{i}^{m}-\left(\widetilde{\nabla}_{m} \widetilde{S}_{j k}^{l}\right) F_{i}^{m}-\left(\widetilde{\nabla}_{j} \widetilde{S}_{k m}^{l}\right) F_{i}^{m}, \\
{ }^{t} \widetilde{R}_{i m k}^{l} F_{j}^{m} & =\widetilde{R}_{i m k}^{l} F_{j}^{m}-\left(\widetilde{\nabla}_{i} \widetilde{S}_{m k}^{l}\right) F_{j}^{m}-\left(\widetilde{\nabla}_{m} \widetilde{S}_{k i}^{l}\right) F_{j}^{m}, \\
{ }^{t} \widetilde{R}_{i j m}^{l} F_{k}^{m} & =\widetilde{R}_{i j m}^{l} F_{k}^{m}-\left(\widetilde{\nabla}_{i} \widetilde{S}_{j m}^{l}\right) F_{k}^{m}-\left(\widetilde{\nabla}_{j} \widetilde{S}_{m i}^{l}\right) F_{k}^{m} .
\end{aligned}
$$

Due to $\left(\widetilde{\nabla}_{m} \widetilde{S}_{i j}^{l}\right) F_{k}^{m}-\left(\widetilde{\nabla}_{k} \widetilde{S}_{m j}^{l}\right) F_{i}^{m}=\left(\nabla_{m} \widetilde{S}_{i j}^{l}\right) F_{k}^{m}-\left(\nabla_{k} \widetilde{S}_{m j}^{l}\right) F_{i}^{m}=0$, using the purity of the curvature tensor \widetilde{R} and the torsion tensor \widetilde{S} of the connection (3.10) we have

$$
{ }^{t} \widetilde{R}_{i j k}^{m} F_{m}^{l}={ }^{t} \widetilde{R}_{m j k}^{l} F_{i}^{m}={ }^{t} \widetilde{R}_{i m k}^{l} F_{j}^{m}={ }^{t} \widetilde{R}_{i j m}^{l} F_{k}^{m}
$$

i.e. the curvature tensor ${ }^{t} \widetilde{R}$ is pure.

When we apply the Tachibana operator ϕ_{F} to the curvature tensor ${ }^{t} \widetilde{R}$, we obtain

$$
\begin{aligned}
\left(\phi_{F}{ }^{t} \widetilde{R}\right)_{k i j l}^{s}= & F_{k}{ }^{m}\left(\partial_{m}{ }^{t} \widetilde{R}_{i j l}^{s}\right)-\partial_{k}\left({ }^{t} \widetilde{R}_{i j l}{ }^{m} F_{m}^{s}\right) \\
= & F_{k}{ }^{m}\left(\nabla_{m}{ }^{t} \widetilde{R}_{i j l}^{s}+\Gamma_{m i}^{n}{ }^{t} \widetilde{R}_{n j l}^{s}+\Gamma_{m j}^{n}{ }^{t} \widetilde{R}_{i n l}^{s}+\Gamma_{m l}^{n} t \widetilde{R}_{i j n}{ }^{s}-\Gamma_{m n}^{s}{ }^{t} \widetilde{R}_{i j l}{ }^{n}\right) \\
& -F_{m}^{s}\left(\nabla_{k}{ }^{t} \widetilde{R}_{i j l}^{m}+\Gamma_{k i}^{n t} \widetilde{R}_{n j l}^{m}+\Gamma_{k j}^{n}{ }^{t} \widetilde{R}_{i n l}^{m}+\Gamma_{k l}^{n t} \widetilde{R}_{i j n}^{m}-\Gamma_{k l}^{n t} \widetilde{R}_{i j n}{ }^{m}\right) \\
= & \left(\nabla_{m}{ }^{t} \widetilde{R}_{i j l}{ }^{s}\right) F_{k}{ }^{m}-\left(\nabla_{k}{ }^{t} \widetilde{R}_{i j l}{ }^{m}\right) F_{m}^{s} .
\end{aligned}
$$

Substituting (6.37) into the above relation, we obtain

$$
\begin{align*}
\left(\phi_{F}{ }^{t} \widetilde{R}\right)_{k i j l}^{s}= & \left(\nabla_{m} \widetilde{R}_{i j l}^{s}\right) F_{k}^{m}-\left(\nabla_{k} \widetilde{R}_{i j l}^{m}\right) F_{m}^{s}-\left(\nabla_{m} \widetilde{\nabla}_{i} \widetilde{S}_{j l}^{s}\right) F_{k}^{m} \tag{6.38}\\
& -\left(\nabla_{m} \widetilde{\nabla}_{j} \widetilde{S}_{l i}^{s}\right) F_{k}^{m}+\left(\nabla_{k} \widetilde{\nabla}_{i} \widetilde{S}_{j l}^{m}\right) F_{m}^{s}+\left(\nabla_{k} \widetilde{\nabla}_{j} \widetilde{S}_{l i}^{m}\right) F_{m}^{s}
\end{align*}
$$

Substituting (3.8) into (6.38), in view of Theorem 5.2, we get

$$
\begin{align*}
\left(\phi_{F}{ }^{t} \widetilde{R}\right)_{k i j l}^{s}= & {\left[\left(\nabla_{m} \widetilde{\nabla}_{i} p_{j}\right) F_{k}^{m}-\left(\nabla_{k} \widetilde{\nabla}_{i} p_{m}\right) F_{j}^{m}\right] \delta_{l}^{s} } \tag{6.39}\\
& -\left[\left(\nabla_{m} \widetilde{\nabla}_{i} p_{l}\right) F_{k}^{m}-\left(\nabla_{k} \widetilde{\nabla}_{i} p_{m}\right) F_{l}^{m}\right] \delta_{j}^{s} \\
& +\left[\left(\nabla_{m} \widetilde{\nabla}_{j} p_{i}\right) F_{k}^{m}-\left(\nabla_{k} \widetilde{\nabla}_{j} p_{m}\right) F_{i}^{m}\right] \delta_{l}^{s} \\
& +\left[\left(\nabla_{m} \widetilde{\nabla}_{j} p_{l}\right) F_{k}^{m}-\left(\nabla_{k} \widetilde{\nabla}_{j} p_{m}\right) F_{l}^{m}\right] \delta_{i}^{s} .
\end{align*}
$$

It is easy to see that $\left(\nabla_{m} \widetilde{\nabla}_{i} p_{j}\right) F_{k}{ }^{m}-\left(\nabla_{k} \widetilde{\nabla}_{i} p_{m}\right) F_{j}{ }^{m}=\left(\nabla_{m} \nabla_{i} p_{j}\right) F_{k}{ }^{m}-\left(\nabla_{k} \nabla_{i} p_{m}\right) F_{j}{ }^{m}$. Thus (6.39) can be rewritten in the form

$$
\begin{aligned}
\left(\phi_{F}{ }^{t} \widetilde{R}\right)_{k i j l}^{s}= & {\left[\left(\nabla_{m} \nabla_{i} p_{j}\right) F_{k}^{m}-\left(\nabla_{k} \nabla_{i} p_{m}\right) F_{j}^{m}\right] \delta_{l}^{s} } \\
& -\left[\left(\nabla_{m} \nabla_{i} p_{l}\right) F_{k}^{m}-\left(\nabla_{k} \nabla_{i} p_{m}\right) F_{l}^{m}\right] \delta_{j}^{s} \\
& +\left[\left(\nabla_{m} \nabla_{j} p_{i}\right) F_{k}^{m}-\left(\nabla_{k} \nabla_{j} p_{m}\right) F_{i}^{m}\right] \delta_{l}^{s} \\
& +\left[\left(\nabla_{m} \nabla_{j} p_{l}\right) F_{k}^{m}-\left(\nabla_{k} \nabla_{j} p_{m}\right) F_{l}^{m}\right] \delta_{i}^{s}
\end{aligned}
$$

from which the result follows from the fact that $\left(\nabla_{m} \nabla_{i} p_{j}\right) F_{k}{ }^{m}=\left(\nabla_{k} \nabla_{i} p_{m}\right) F_{j}{ }^{m}$ (see the proof of lemma 5.1).
As a direct consequence of (2.6) and Theorem 6.2, we state the following theorem.

Theorem 6.3 Let (M, g, F) be a locally decomposable golden Riemannian manifold endowed with the transposed connection (6.36). The curvature tensor ${ }^{t} \widetilde{R}$ of the transposed connection (6.36) is a decomposable tensor with respect to the product structures associated with the golden structure F.

By (5.27) and (6.37), we obtain

$$
\begin{aligned}
{ }^{t} \widetilde{R}_{i j k}^{l}+{ }^{t} \widetilde{R}_{j k i}^{l}+{ }^{t} \widetilde{R}_{k i j}^{l}= & \widetilde{R}_{i j k}^{l}+\widetilde{R}_{j k i}^{l}+\widetilde{R}_{k i j}^{l} \\
& -2\left(\widetilde{\nabla}_{k} \widetilde{S}_{i j}^{l}+\widetilde{\nabla}_{j} \widetilde{S}_{k i}^{l}+\widetilde{\nabla}_{i} \widetilde{S}_{j k}^{l}\right) \\
= & -\left(\widetilde{R}_{i j k}^{l}+\widetilde{R}_{j k i}^{l}+\widetilde{R}_{k i j}^{l}\right),
\end{aligned}
$$

which in view of Theorem 5.4 gives the following theorem.
Theorem 6.4 Let (M, g, F) be a locally decomposable golden Riemannian manifold endowed with the transposed connection (6.36). If the curvature tensor ${ }^{t} \widetilde{R}$ of the connection (6.36) satisfies the following:

$$
\begin{equation*}
{ }^{t} \widetilde{R}_{i j k}{ }^{l}+{ }^{t} \widetilde{R}_{j k i}^{l}+{ }^{t} \widetilde{R}_{k i j}^{l}=0 \tag{6.40}
\end{equation*}
$$

then, under the condition of $(\text { trace } F-2)^{2}-(n-4)(n+$ trace $F-6) \neq 0$, the generator p is closed. Conversely, if the generator p is closed, then the relation (6.40) is satisfied.

GEZER and KARAMAN/Turk J Math

References

[1] Chaki MC, Konar A. On a type of semisymmetric connection on a Riemannian manifold. J Pure Math 1981; 1: 77-80.
[2] Crasmareanu M, Hretcanu CE. Golden differential geometry. Chaos Solitons Fractals 2008; 38: 1229-1238.
[3] Gezer A, Cengiz N, Salimov A. On integrability of Golden Riemannian structures. Turk J Math 2013; 37: 693-703.
[4] Hayden HA. Sub-spaces of a space with torsion. Proc London Math Soc 1932; 34: 27-50.
[5] Hirica IE, Nicolescu L. On quarter-symmetric metric connections on pseudo-Riemannian manifolds. Balkan J Geom Appl 2011; 16: 56-65.
[6] Mincic SM. On Ricci type identities in manifolds with non-symmetric affine connection. Publ Inst Math (Beograd) (N S) 2013; 94: 205-217.
[7] Pusic N. On some connections on locally product Riemannian manifolds-part II. Novi Sad J Math 2011; 41: 41-56.
[8] Pusic N. On some connections on locally product Riemannian manifolds-part I. Novi Sad J Math 2011; 41: 29-40.
[9] Prvanovic M. Locally decomposable Riemannian manifold endowed with some semi-symmetric F-connection. Bull Cl Sci Math Nat Sci Math 1977; 22: 45-56.
[10] Prvanovic M. $\left({ }^{1} F,{ }^{2} F\right)$ - and $\left({ }^{3} F,{ }^{4} F\right)$ - connexions of an almost complex and an almost product space. Publ Inst Math (Beograd) (N S) 1977; 22: 223-229.
[11] Prvanovic M. Product semi-symmetric connections of the locally decomposable Riemannian spaces. Bull Acad Serbe Sci Arts Cl Sci Math Natur (N S) 1979; 10: 17-27.
[12] Prvanovic M. Some special product semi-symmetric and some special holomorphically semi-symmetric F connections. Publ Inst Math (Beograd) (N S) 1984; 35: 139-152.
[13] Salimov A. Tensor Operators and Their Applications. Mathematics Research Developments Series. New York, NY, USA: Nova Science Publishers, Inc, 2013.
[14] Tachibana S. Analytic tensor and its generalization. Tohoku Math J 1960; 12: 208-221.
[15] Yano K. On semi-symmetric metric connection. Rev Roumaine Math Pures Appl 1970; 15: 1579-1586.
[16] Yano K, Ako M. On certain operators associated with tensor fields. Kodai Math Sem Rep 1968; 20: 414-436.

[^0]: *Correspondence: cagri.karaman@atauni.edu.tr
 2010 AMS Mathematics Subject Classification: 53B20, 53B15, 53C15.

