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Abstract. The Néron–Ogg–Šafarevič criterion for abelian varieties tells that the Ga-
lois action on the l-adic étale cohomology of an abelian variety over a local field determines
whether the variety has good reduction or not. We prove an analogue of this criterion for a cer-
tain type of K3 surfaces closely related to abelian surfaces. We also prove its p-adic analogue.
This paper includes T. Ito’s unpublished result on Kummer surfaces.

Introduction. We consider the problem of determining whether a variety over a local
field have good reduction in terms of the Galois action on the l-adic étale cohomology of the
variety.

An ideal situation is the case of abelian variety: the reduction type (good or bad) is
completely determined by the Galois action on the (first) l-adic étale cohomology group (the
Néron–Ogg–Šafarevič criterion, see Theorem 1.15). Kulikov [11] essentially showed a similar
(potential) criterion for K3 surfaces in the category of complex manifolds, not schemes. In the
mixed characteristic case, Tetsushi Ito obtained in 2001 a result for some special K3 surfaces,
the Kummer surfaces (see Theorem 1.16).

In this paper, we prove analogous results for K3 surfaces admitting Shioda–Inose struc-
tures of product type (see Definition 1.12), which are closely related to abelian surfaces.

(Recently we obtained a similar result for far more general classes of K3 surfaces ([15])
by using different methods.)

We state our main theorems. First let us fix the notation. LetK be a local field (by which
we mean a complete discrete valuation field with perfect residue field) of characteristic 0 and
denote by OK its ring of integers, by p the residue characteristic, and by GK the absolute
Galois group of K . A proper smooth variety X over K is said to have good reduction over
K if there exists a proper smooth scheme X over OK having X as the generic fiber. A GK -
module is said to be unramified if the inertia subgroup IK of GK acts on it trivially. Our first
result is the following:

THEOREM 0.1. Let K be a local field of characteristic 0 and of residue characteristic
p �= 2, 3, and l a prime number different from p. Let Y be a K3 surface over K admitting
a Shioda–Inose structure of product type. If H 2

ét(YK,Ql ) is unramified, then YK ′ has good
reduction for some finite extension K ′ of K of ramification index 1, 2, 3, 4 or 6.

2010 Mathematics Subject Classification. Primary 11G25; Secondary 14G20, 14J28.
Key words and phrases. Good reduction, K3 surfaces, Kummer surfaces, Shioda–Inose structure.



84 ON GOOD REDUCTION OF SOME K3 SURFACES

At present we do not know whether a field extension is necessary.
Although we stated our results for K of characteristic 0, they are valid for K of positive

characteristic if we replace the phrases “finite extension of K of ramification index N” in the
statements and the proofs by “finite extension of K which is purely inseparable over a finite
extension of K of ramification index N”. We omit the details.

We also prove results concerning p-adic cohomology, for both Kummer surfaces and K3
surfaces with Shioda–Inose structure of product type. (This time we cannot consider positive
characteristic case, since the notion of crystalline representation is defined only for character-
istic 0.)

THEOREM 0.2. Let K be a local field with residue characteristic p �= 2, and X a
Kummer surface overK . Assume thatX has at least oneK-rational point. IfH 2

ét(XK,Qp) is
crystalline, then XK ′ has good reduction for some finite unramified extension K ′/K .

THEOREM 0.3. Let K be a local field with residue characteristic p �= 2, 3 and Y a
K3 surface overK with Shioda–Inose structure of product type. IfH 2

ét(YK,Qp) is crystalline,
then YK ′ has good reduction for some finite extensionK ′/K of ramification index 1, 2, 3, 4 or
6.

As an immediate corollary of Theorems 0.1 to 0.3 (and Theorem 1.14), we have a cri-
terion for potential good reduction. The word “potential(ly)” means after replacing the base
field by a finite extension.

COROLLARY 0.4. Let X be a K3 surface that belongs to one of the above two types.
Then the following properties are equivalent:

(1) The surface X has potential good reduction.
(2) For some prime l �= p, the second l-adic étale cohomology of X is potentially

unramified.
(3) For any prime l �= p, the second l-adic étale cohomology ofX is potentially unram-

ified.
(4) The second p-adic étale cohomology of X is potentially crystalline.

There is an application to the reduction of singular K3 surface. Recall that a K3 surface
over a field of characteristic 0 is called singular if it has the maximum possible geometric
Picard number 20. Note that the word singular here does not mean non-smooth.

COROLLARY 0.5. Any singularK3 surface has potential good reduction.

The structure of this paper is as follows. In Section 1 we give some preliminary results.
We prove Theorem 0.1 and Corollary 0.5 in Section 2 and Theorems 0.2, 0.3 in Section 3. As
an appendix, we give a proof of Ito’s unpublished result (Theorem 1.16) in Section 4.
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and also for helpful suggestions on Section 3. I also thank Tetsushi Ito for the permission to use his
unpublished master’s thesis as an appendix. I would also like to thank Shouhei Ma and Takeshi Saito
for their helpful comments.
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1. Preliminaries.
1.1. General results. In this subsection, we prove some basic results which will be

used later.

LEMMA 1.1. Let X be a geometrically connected variety over F and assume that X
has at least one F -rational point. Then the natural map PicX → (PicXF )

GF is an isomor-
phism.

PROOF. Recall that PicX ∼= H 1
ét(X,Gm) and PicXF

∼= H 1
ét(XF ,Gm). We use the

Hochschild–Serre spectral sequence

E
p,q

2 = Hp(GF ,H
q

ét(XF ,Gm))⇒ H
p+q
ét (X,Gm) .

Since

E1,0 = H 1(GF ,H
0
ét(XF ,Gm)) = H 1(GF , F

∗
) = 0 ,

we have an exact sequence

0→ PicX→ (PicXF )
GF → H 2

ét(SpecF,Gm)→ H 2
ét(X,Gm) .

Since X has at least one F -rational point by assumption, the morphism X → SpecF has
a section s : SpecF → X, which induces a splitting s∗ : H 2

ét(X,Gm) → H 2
ét(SpecF,Gm)

of the last map in the above sequence. Hence the map H 2
ét(SpecF,Gm) → H 2

ét(X,Gm) is
injective. The conclusion follows from this. �

LEMMA 1.2. Let S be a scheme, X a scheme over S, and Z ⊂ X a closed sub-
scheme of X. Assume that X is smooth over S and that the composite Z ↪→ X → S is
an isomorphism. Then for any S-scheme S′, the canonical morphism Bl(Z×SS ′)(X ×S S′)→
(BlZ X)×S S′ is an isomorphism. (In short, this blow-up is compatible with base change.)

PROOF. An easy computation shows that the assertion holds if X = AdS and Z is the
image of an S-valued point of X. In the general case, since the assertion is local, we may
assume that X→ S factors f : X→ X0 = AdS with f étale. Let Z0 be the scheme-theoretic
image of Z under f . It follows that the composite Z0 ↪→ X0 → S is an isomorphism and
that Z is an open and closed subscheme of Y = X ×X0 Z0. Using the assertion for the case
X = AdS and the fact that blow-up commutes with flat base change, we obtain, for arbitrary
S′ → S,

BlY ′ X
′ ∼= (BlZ′0 X

′
0)×X′0 X′

∼→ (BlZ0 X0)×S S′ ×X′0 X′
∼= (BlZ0 X0)×X0 X ×S S′ ∼= (BlY X)×S S′ .

Here the symbol ′ means the base change by S′ → S. The assertion follows from this and the
fact that BlZ X is isomorphic to BlY X outside Y \Z and toX outsideZ and the corresponding
fact for BlZ′ X′. �

LEMMA 1.3. Let F be a field of characteristic �= 2 and X be a connected smooth
proper variety over F . Let Z be an effective divisor onX over F with no multiple component.
Then the class [Z] of Z in Pic(X) is divisible by 2 if and only if there is a double covering
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Y → X whose branch locus is Z. If Pic(X) has no 2-torsion and F is algebraically closed,
then such a covering is unique up to isomorphism.

PROOF. This is easy. �

1.2. K3 surfaces. We collect facts concerning K3 surfaces. Recall that K3 surface is
a proper smooth minimal surface X with H 1(X,OX) = 0 andΩ2

X
∼= OX.

LEMMA 1.4. Let F be an algebraically closed field of characteristic �= 2 andX aK3
surface over F . Then the following properties hold.

(1) Pic(X) is a finitely generated group.
(2) Pic(X) is 2-torsion-free.

PROOF. (1) The Picard group Pic(X) has a scheme structure over F and the connected
component Pic0(X) of the identity is an abelian variety of dimension ≤ dimH 1(X,OX) ([8,
no 236, Proposition 2.10]). Since X is a K3 surface, we have dimH 1(X,OX) = 0. Then
the assertion follows from the fact that the Néron–Severi group Pic(X)/ Pic0(X) is finitely
generated for any proper smooth variety X.

(2) For each n ≥ 1, we have an injection Pic(X)/ln Pic(X) ↪→ H 2
ét(X,μln) by the

Kummer sequence

0→ μln → Gm
ln→ Gm→ 0 .

The inverse limit of these injections is also injective. Since Pic(X) is finitely generated, it fol-
lows that lim←−n Pic(X)/ln Pic(X) = Pic(X)⊗Zl . So it suffices to show that lim←−n H

2
ét(X,μln) =

H 2
ét(X,Zl )(1) is (2-)torsion free for l = 2.

If F is of characteristic 0, since the singular cohomology H 2(X,Z) of a complex K3
surface is torsion-free ([1, Proposition VIII.3.3]), we obtain the assertion by using the com-
parison theorem. If F is not of characteristic 0, we lift X to characteristic 0 (this is always
possible for K3 surfaces by Deligne [5, Corollaire 1.8]) and use the proper base change theo-
rem to reduce to the characteristic 0 case. �

An automorphism of a K3 surface is said to be symplectic if it fixes a non-vanishing
holomorphic 2-form. Note that, since the canonical divisor of a K3 surface is trivial, such a
2-form exists and is unique up to constant multiple.

The next lemma is important in studying symplectic involutions. This is a part of a result
of Nikulin [17, Section 5] for characteristic 0, and Dolgachev–Keum [6, Theorem 3.3] pointed
out that Nikulin’s argument stays valid for arbitrary characteristic �= 2.

LEMMA 1.5. Let ι be a symplectic involution of a K3 surface X over an algebraically
closed field of characteristic �= 2. Then ι fixes exactly eight points and X/〈ι〉 is birational to
a K3 surface.

Next propositions are useful when we want K3 surfaces to have elliptic surface structures.

PROPOSITION 1.6 (Pjateckiı̆-Šapiro–Šafarevič [18, Section 3, Theorem 1]). Let F be
a field of characteristic �= 2, 3. LetX be a K3 surface over F andD a non-trivial nef effective
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divisor on X satisfying D2 = 0. Then the linear system |DF | over F contains a divisor of the
form mC where m > 0 and C is an elliptic curve over F .

PROPOSITION 1.7. (1) LetX andD be as in Proposition 1.6 andZ a smooth rational
curve on X. Assume that D is connected and Z ·D = 1. Then |D| gives an elliptic fibration
X→ P1 having Z as the image of a section.

(2) Let D′ be another divisor on X satisfying the same condition as D, and assume that
SuppD ∩ SuppD′ = ∅. Then D′ is another fiber of the elliptic fibration in (1).

PROOF. (1) We may assume F = F . Let m and C be as in Proposition 1.6. Then m
divides mC · Z = D · Z = 1 and hence we have m = 1.

By the same argument as in [18, Section 3], we have dimF |D| = 2 and hence a morphism
Φ : X→ P1. ThenΦ is an elliptic fibration since Φ has a geometric fiber which is an elliptic
curve by Proposition 1.6. By construction D is a fiber. Since Z · D = 1, the composite
Z ↪→ X→ P1 is an isomorphism, hence its inverse is a section.

(2) Since each component of D′ is disjoint from D, it is mapped to a point by Φ.
Since D′ is connected, every component goes to the same point p. Such a divisor has self-
intersection 0 if and only if it is a rational multiple of the whole fiber Φ−1(p) (this follows
from an elementary computation, or see [24, Proposition III.8.2]). Comparing the intersection
numbers with Z, it follows that D′ coincides with Φ−1(p). �

In the following two lemmas, we consider surfaces over a local field K . We denote by l
a prime different from the residue characteristic of K .

LEMMA 1.8 ([9, Lemmas 2.1 and 2.4]). Let X be a K3 surface or an abelian surface
over K . Assume thatH 2

ét(XK,Ql ) is unramified. Then the following holds.

(1) Let C ⊂ XK be a smooth rational curve. Then C is defined over a finite unramified
extension of K .

(2) Assume that X has a K-rational point. Let X′ → XK be a double covering ramified
along

⋃
i Ci ⊂ XK where each Ci is a smooth rational curve. Then X′ → XK is

defined over a finite unramified extension of K .

PROOF. (1) Recall that there exists the cycle map cl : Z1(XK) → H 2
ét(XK,Ql)(1)

which is compatible with the Galois action and the intersection pairing. Take any σ ∈ IK =
GKun . By the unramifiedness assumption, σ acts trivially on the image of cl. Therefore we
have C · σ(C) = C · C. By the adjunction formula, this value is equal to −2. Since distinct
curves cannot have a negative intersection number, we have σ(C) = C. Since this holds for
any σ ∈ GKun , it follows that C is defined over Kun and hence over an extension of desired
type.

(2) The divisor
⋃
Ci is defined over Kun since each Ci is defined over Kun by (1). By

Lemma 1.3 we can take Y ∈ PicXK such that 2Y = [⋃
Ci

]
. Then since PicXK has no

2-torsion (Lemma 1.4), Y is GKun -invariant. Since X has a K-rational point, Y is in PicXKun

by Lemma 1.1. This shows, by Lemma 1.3 again, that X′ → XK is defined over Kun and
hence over an extension of desired type.
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(Note that we would need further inseparable extensions if K is of positive characteris-
tic.) �

REMARK 1.9. By a similar argument, we have the following: for a K3 surfaceX over
a field F and a field L containing F , any smooth rational curve C on XL is defined over F .

LEMMA 1.10. Let A be an abelian surface over K such that H 2
ét(AK,Ql) is unrami-

fied. If AK is isomorphic to the product of two elliptic curves, then so is AK ′ for some finite
unramified extensionK ′ of K .

PROOF. Take a decomposition AK = C1 × C2. We identify C1 with the closed sub-
scheme C1 × {0} of A. By a similar argument as in the proof of Lemma 1.8 (1), it follows
that C1 · σ(C1) = C1 · C1 = 0 for any σ ∈ IK = GKun . The origin of A is in C1, and
since it is a K-rational point, it is also in σ(C1). It follows that σ(C1) = C1 since otherwise
C1 · σ(C1) should be ≥ 1. This means that C1 is defined over Kun and hence over a finite
subextension K ′ of Kun. The same holds for C2. Then the addition map C1 × C2 → AK ′ is
an isomorphism. �

In this paper we consider two specific classes of K3 surfaces: (1) Kummer surfaces and
(2) K3 surfaces which admit Shioda–Inose structures of product type.

DEFINITION 1.11. A K3 surface X over a field F of characteristic �= 2 is a Kummer
surface if, for some abelian surface A over F , XF is isomorphic to the minimal desingular-
ization KmA of the quotient surface A/〈−1〉 of A by the multiplication-by-(−1)map.

DEFINITION 1.12. We say that a K3 surface Y over a field F admits a Shioda–Inose
structure of product type if YF admits an elliptic fibration Φ : YF → P1

F
which admits a

section and two (singular) fibers of type II∗ (in Kodaira’s notation).

REMARK 1.13. The usual notion of Shioda–Inose structure is as follows: a K3 surface
Y over C admits a Shioda–Inose structure if there exists a (necessarily symplectic) involution
ι of Y such that the minimal desingularizationX of the quotient surface Y/〈ι〉 is the Kummer
surface of an abelian surfaceA and that the quotient maps induce a Hodge isometry TY ∼= TA,
where T denotes the transcendental lattice of a complex surface.

A K3 surface Y over C admits a Shioda–Inose structure of product type in the sense
of Definition 1.12 if and only if it admits a Shioda–Inose structure in this sense with the
corresponding abelian surface A being the product of two elliptic curves. For a proof of this
assertion, see Shioda–Inose [23, Theorem 3]. We prefer Definition 1.12 since it is valid for an
arbitrary base field.

One may ask when or how often a K3 surface admits a Shioda–Inose structure, and when
it is of product type.

Naively thinking, since the K3 surfaces which admit Shioda–Inose structures (resp. those
of product type) are in one-to-one correspondence to the abelian surfaces (resp. product
abelian surfaces), they form a 3-dimensional (resp. 2-dimensional) moduli.
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Another answer (for surfaces over C) is the following criterion in terms of transcendental
lattice: a K3 surface X over C admits a Shioda–Inose structure if and only if there exists a
primitive embedding TX ↪→ U3 (Morrison [16, Theorem 6.3]), and it is of product type if and
only if there exists a primitive embedding TX ↪→ U2 ([16, Theorem 6.3] combined with [14,
Corollary 3.5]). Here U denotes the hyperbolic plane (the lattice of rank 2 generated by e1,
e2 with ei · ej = 1− δij ). In particular, if X admits a Shioda–Inose structure (resp. of product
type) then its Picard number is at least 17 (resp. at least 18).

1.3. Known criteria for good reduction. We recall the relation between cohomol-
ogy and reduction of varieties over local fields, and the criteria for good reduction of abelian
varieties. In this subsection K is a local field.

For general varieties, we have the following necessary condition for good reduction.

THEOREM 1.14. Let X be a variety over K which has good reduction. Then the fol-
lowing properties hold.

(1) (consequence of the smooth base change theorem [21, Exposé XVI]) For any prime
l �= p, the l-adic étale cohomology group Hi

ét(XK,Ql) of X is unramified for any i.
(2) (consequence of the crystalline conjecture (Faltings [7, Theorems 5.3 and 5.6] and

Tsuji [25, Theorem 0.2])) The p-adic étale cohomology group Hi
ét(XK,Qp) of X is

crystalline for any i.

For abelian varieties, this condition is also sufficient.

THEOREM 1.15. Let X be an abelian variety over K . Then the condition that X has
good reduction is equivalent to each of the following.

(1) (Néron–Ogg–Šafarevič criterion, Serre–Tate [20, Theorem 1]) For some (any) prime
l �= p, the first (all) l-adic étale cohomology of X is unramified.

(2) (Coleman–Iovita [4, Theorem 4.7]) The first (all) p-adic étale cohomology of X is
crystalline.

The next result of Ito is an analogue of the above criterion for Kummer surfaces. In Ito’s
paper it was assumed that charK = 0, but it is valid for positive characteristic in the sense
we discussed in the introduction. Since his paper is unpublished, we include the proof of this
theorem as an appendix under his permission.

THEOREM 1.16 (Ito [9, Corollary 4.3]). LetK be a local field with residue character-
istic p �= 2 and l be a prime number different from p. Let X be a Kummer surface over K .
Assume thatX has at least one K-rational point. If H 2

ét(XK,Ql) is unramified, then XK ′ has
good reduction for some finite unramified extension K ′ of K .

2. Proof of the l-adic result. In this section we prove Theorem 0.1 and Corollary 0.5.
Since the statement of Theorem 0.1 allows finite unramified extensions, we often use the

same symbolK for finite unramified extensions of the originalK .
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We first outline the proof of Theorem 0.1 briefly. Let Y be as in the statement of the
Theorem 0.1. It is known that there exist rational maps YK → XK and XK → YK of degree
2 for some Kummer surface XK defined overK . We

(1) analyze the first map and construct a model X of XK over a finite unramified exten-
sion of K ,

(2) using the fact that H 2
ét(YK,Ql) is unramified, show that H 2

ét(XK,Ql ) is unramified
after taking a finite extension of K of ramification index 1, 2, 3, 4 or 6,

(3) use Ito’s result to obtain a good model (that is, a smooth proper model) X of X after
taking a finite unramified extension of K , and

(4) analyze the second map to construct a smooth OK -scheme Y , which will be a good
model of Y .

The use of two different rational maps YK → XK and XK → YK seems to be essential. See
Remark 2.7.

Step (1). Let Y be a K3 surface admitting a Shioda–Inose structure of product type. Then
by definition YK admits an elliptic fibration Φ : YK → P1

K
with a section and two singular

fibersD,D′ of type II∗. We will show that this fibration is defined over some finite unramified
extension of K .

The singular fiber D =∑
niCi consists of 9 smooth rational curves C1, . . . , C9 ⊂ XK .

The image Z of a section of Φ is also a smooth rational curve on XK . By Lemma 1.8 (1),
these curves are defined over a finite unramified extension ofK (which again we denote byK
for simplicity). Then by Proposition 1.7, there exists a unique elliptic fibration Φ : Y → P1

defined overK with a section P1 ∼→ Z ↪→ Y and singular fibersD andD′.

CLAIM 2.1. Under this situation, Y is defined up to birational equivalence by an equa-
tion of the form

(∗) y2 = x3 + ax + (b−1t
−1 + b0 + b1t)

for some a, b−1, b0, b1 ∈ K with b−1, b1 �= 0.

PROOF. Since Y is an elliptic surface over P1, it is defined up to birational equivalence
by a minimal Weierstrass form

y2 = x3 + A(t)x + B(t)
in P2 × P1 with coordinates ((x, y), t) with A,B ∈ K[t]. Comparing the (topological) Euler
numbers of Y and the singular fibers (Kodaira [10, Theorem 12.2]), we have

max{3 degA, 2 degB} ≤ χ(Y ) = 24

where χ(Y ) is the Euler number of Y . (To be precise, Kodaira proved this for complex vari-
eties and χ = χtop, but this is valid in our case (with χ = χl,ét) provided that the characteristic
is different from 2, 3.) Hence we have degA ≤ 8 and degB ≤ 12. We may assume that the
two singular fibers of type II∗ are above t = 0,∞. Since the fiber above t = 0 is of type II∗,
we have ordt A ≥ 4 and ordt B = 5. Similarly, since the fiber above t = ∞ is of type II∗, we
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have degA ≤ 8− 4 = 4 and degB = 12− 5 = 7. Consequently we obtain an equation

y2 = x3 + at4x + (b−1t
5 + b0t

6 + b1t
7)

with b−1, b1 �= 0. The true defining equation of Y (which we omit) is obtained by performing
successive blow-ups on the above formula. By a simple change of variables, we obtain the
desired equation

y2 = x3 + ax + (b−1t
−1 + b0 + b1t) .

(This argument is similar to the one given by Shioda [22, Section 4]. However, since we are
working on a field not algebraically closed, our formula is slightly more complicated than
his.) �

Using the coordinates of (∗) above, we define an involution ι : Y → Y by (x, y, t) �→
(x,−y, b′/t) where b′ = b−1/b1. Then the fixed points of ι (overK) are exactly the 2-torsion
points ofΦ−1(±β) (there are four for each) where β ∈ K is a square root of b′. We can check
by some computation that the number of 2-torsion points is always four even if Φ−1(±β)
are not smooth (elliptic). The quotient Y/〈ι〉 has 8 double points over K and its minimal
desingularization X is a K3 surface (Lemma 1.5); in fact, it is the Kummer surface which
appears in the definition of Shioda–Inose structure, and the corresponding abelian surface is
the product of two elliptic curves after taking base change to the algebraic closure (Shioda [22,
Theorem 1.1]).

Now we proceed to Step (2). The étale cohomology of X is given by

H 2
ét(XK,Ql)

∼= H 2
ét(YK,Ql )

〈ι〉 ⊕
8⊕
i=1

Ql(−1)[Ei] .

Here the last term is the Tate twist of the permutation representation corresponding to the eight
ι-fixed points (or the eight exceptional curves of X → Y/〈ι〉). Let H ⊂ GK be the kernel
of this permutation action and KH/K the corresponding (finite) extension. Then the inertia
subgroup of GKH acts on H 2

ét(XK,Ql) trivially. (This is the only place we need a (possibly)
ramified extension.) In order to estimate the ramification index f of KH/K , we use the next
lemma.

LEMMA 2.2. Let E be an elliptic curve defined over a local field K of residue char-
acteristic �= 2, 3. Then K(E[2])/K is (at worst) tamely ramified and of ramification index at
most 3.

The same holds if E is a singular fiber of type I2 or IV.

PROOF. We prove only the elliptic case. The remaining cases are similar. Since E[2] \
{0} consists of 3 points, the extension K(E[2])/K has a Galois group isomorphic to a sub-
group of S3, and in particular the order of the Galois group divides 6. Hence the ramification
is (at worst) tame and therefore the inertia group of K(E[2])/K is cyclic. The order of a
cyclic subgroup of S3 is at most 3. �
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FIGURE 1. Curves ui , vj and wij .

An element of GK belongs to H if and only if it fixes β and it fixes each 2-torsion point
of both E+ and E−, where E± are the fibers of Φ above±β ∈ P1. Let f± be the ramification
indices of K ′(E±[2])/K ′ whereK ′ = K(β). By Lemma 2.2 we have f± ≤ 3.

If K ′ = K , then KH is the compositum of K(E±[2]) and hence of ramification index
equal to lcm(f+, f−) (by tameness).

If K ′ �= K , then E+ and E− are conjugate under the nontrivial element of Gal(K ′/K)
and hence K ′(E+[2]) and K ′(E−[2]) have the same ramification index f+ = f− over K ′.
By tameness again, KH = K ′(E±[2]) has ramification index f± over K ′. Hence KH has
ramification index f± or 2f± overK .

In each case we have f ∈ {1, 2, 3, 4, 6}.
Step (3). SinceH 2

ét(XK,Ql ) is unramified as a representation ofGKH , we can use The-
orem 1.16 of Ito to obtain a good model X over OK ′′ for some finite unramified extensionK ′′
of KH . (Note that X indeed has a K-rational point, for example the image of the intersection
point of Z and D.)

Furthermore, by Lemma 1.10, the abelian surface A over OK ′′ appearing in the proof of
Theorem 1.16 (see the proof of Lemma 4.2) is the product of two elliptic curves over OK ′′
after replacingK ′′ by a finite unramified extension. This fact is used in the next step to obtain
“rational curves” on X .

Hereafter we write simply K instead of K ′′. But note that this is a possibly ramified
extension of the originalK .

Now we turn to Step (4): the construction of a good model Y from X . This is the longest
part of the proof. We first recall the construction of Shioda [22, Theorem 1.1], which describes
Y (up to desingularization) as a quotient of X by an involution (instead of a double cover of
X), and then extend this construction to the relative case (that is, over OK ).

Fix a numberingC1[2] = {pi}0≤i≤3 andC2[2] = {qj }0≤j≤3: sinceC1 andC2 are defined
and have good reduction overK , these points are defined overK after some finite unramified
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FIGURE 2. Divisors D0, D∞ and w00.

extension. The surface X = Km(C1 × C2) has 24 specific rational curves (defined over K):
ui , the strict transforms of the images of pi ×C2 under the quotient map; vj , that of C1× qj ;
and the exceptional curves wij corresponding to the images of pi × qj . The configuration of
these curves are displayed in Figure 1: each wij meets ui and vj once, and there are no other
intersections. We focus on three divisors

D0 = v0 + v1 + v2 + 2w30 + 2w31 + 2w32 + 3u3 ,

D∞ = u0 + u1 + u2 + 2w03 + 2w13 + 2w23 + 3v3

and w00.
It is easily seen, from the configuration of these divisors displayed in Figure 2, that

D0 and D∞ are disjoint divisors of type IV∗ with w00 · D0 = w00 · D∞ = 1. Then by
Proposition 1.7 there exists an elliptic fibration ΦX : X → P1 having D0 and D∞ as fibers
and w00 as the image of a section.

Define two involutions ι1 and ι2 onX as follows. The multiplication-by-(−1)map on the
generic fiber Xη (regarded as an elliptic curve over η = SpecK(P1), the origin given by w00)
induces an involution ι1 on X, which acts on each fiber also by (−1). The multiplication-by-
(−1, 1) (or (1,−1)) map on C1 × C2 induces an involution ι2 on X = Km(C1 × C2). Put
ιX = ι1ι2.

CLAIM 2.3. This automorphism ιX is a symplectic involution and the minimal desin-
gularization of X/〈ιX〉 is a K3 surface isomorphic to Y .

PROOF. We look at the defining equation (∗). (By the uniqueness of the minimal smooth
model, we can ignore desingularizations and consider only generic equations.) Letting

u = (t + b′/t) and w = (t − b′/t)−1y ,
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we see that X is defined by the equation

(u2 − 4b′)w2 = x3 + ax + (b0 + b1u) ,

which indicates two elliptic fibration structure: one over P1 with coordinate u, with singular
fibers of type {II∗, I∗c , I∗

c′ } or {II∗, I∗0, IV∗}, and another over P1 with coordinate w. Letting
v = uw + b1/2w, we obtain a Weierstrass equation

v2 = x3 + ax +
(
b0 + 4b′w2 + b

2
1

4
w−2

)
relative to the latter fibration, with two singular fibers of type IV∗ over w = 0,∞. Then, by
the explicit calculation of Kuwata–Shioda [12, Sections 2.2 and 5.3]), we see that this fibration
coincides with our (D0,D∞)-fibration and that the involution ιX acts on this equation by
(w, x, v) �→ (−w, x, v). Then the quotientX/ιX is birational to Y . �

We now describe the fixed points of ιX explicitly. Let Pij and Qij (i, j ∈ {0, 1, 2, 3})
be the intersection of wij with ui and vj respectively. Let φ (resp. ψ) be the involution of u3

(resp. v3) which fixes P30 (resp.Q03) and interchangesP31 and P32 (resp.Q13 andQ23) (such
an involution is unique). Denote by P3∞ (resp.Q∞3) the fixed point of φ (resp. ψ) other than
P30 (resp.Q03).

CLAIM 2.4. The fixed points of ιX are P00, Q00, P03, Q03, P30, Q30, P3∞ andQ∞3.

PROOF. By Lemma 1.5, we only have to show that ιX indeed fixes these eight points.
We will show that both ι1 and ι2 fix these points.

It is clear that ι2 fixes each ui and vj pointwise. Hence ι2 in particular fixes each Pij ,
Qij , P3∞ andQ∞3.

By construction ι1 fixes w00 pointwise and hence P00 and Q00. Since ι1 also fixes each
fiber (not pointwise), ι1 fixes the components u0, w03, v3, and similarly v0, w30, u3 (all not
pointwise). Hence ι1 fixes P03, Q03, P30 and Q30. As ι1 acts by −1 on the group scheme
(D∞)sm (which is the disjoint union of three components each isomorphic to Ga), ι1 inter-
changes u1 and u2, hence w13 and w23, and hence Q13 and Q23. This means that ι1 acts on
v3 by ψ . Hence it fixes Q∞3. Similarly it fixes P3∞. �

Let X̃ be the blow-up of X at these eight points and ι̃X the involution of X̃ induced by
ιX. Then one can easily check that Y , which is isomorphic to the minimal desingularization
of X/〈ιX〉, is also isomorphic to X̃/〈ι̃X〉.

We will now extend this construction to the relative case (over OK ). By the construction
of X and the fact that the abelian surface A is the fibered product of two elliptic curves
over OK , the 24 rational curves on X extends naturally to closed subschemes on X each of
which is isomorphic to P1

OK
. Using these subschemes, we define divisors D0, D∞ and W00

similarly as D0, D∞ and w00. Also we define closed subschemes Pij , Qij , P3∞ and Q∞3

(each isomorphic to SpecOK ) similarly as Pij , Qij , P3∞ and Q∞3.
Hereafter, we denote schemes over OK by calligraphic letters (e.g. C) and their generic

fibers and special fibers by italic letters equipped with suffixes K and k (e.g. CK and Ck). For
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sheaves on OK -schemes or morphisms of OK -schemes, we denote their restrictions to the
generic and the special fibers by the same letter with suffixes K and k (e.g.ΦK andΦk are the
restrictions of Φ).

We use the next proposition, which is a relative version of Proposition 1.7.

PROPOSITION 2.5. Let X be a smooth proper scheme over OK such that XK and
Xk are K3 surfaces respectively over K and k. Let Z and Ci be subschemes of X and let
D =∑

niCi be a (finite) linear combination. Assume that

• each Ci and Z is isomorphic to P1
OK

,
• the intersection of Z and D is a scheme isomorphic to SpecOK , and
• D = ∑

niCi is a configuration of the type In (n ≥ 2), I∗n (n ≥ 0), II∗, III(∗) or
IV(∗) in Kodaira’s notation. (Here, the intersection of two components should be the
spectrum of a ring (OK ) instead of the spectrum of a field. We exclude types I0, I1

and II because their components are not P1.)

(It then follows that bothDK ⊂ XK andDk ⊂ Xk satisfy conditions of Proposition 1.7.)
Then there exists an “elliptic fibration” Φ : X → P1

OK
having D as a “singular fiber”

and Z as the image of a section, that is, Φ satisfies the following:

• Φ is a proper surjection.
• ΦK : XK → P1

K and Φk : Xk → P1
k are elliptic fibrations in the usual meaning.

• The composite Z ↪→ X → P1
OK

is an isomorphism.

• There exists an OK -valued point s ∈ P1
OK
(OK) such that Φ−1(s) = D.

Moreover if D′ is as in Proposition 1.7 (2) then D′ is another “singular fiber”.

To prove this, we need a well-known lemma on cohomology of fibers. For a proof see
[13, Theorem 5.3.20].

LEMMA 2.6. Let X be a proper OK -scheme and F a coherent sheaf on X , flat over
OK . Then

(1) dimk H
p(Xk,Fk) ≥ dimK H

p(XK,FK),
(2) the equality in (1) holds if and only if Hp(X ,F ) is a free OK -module such that the

canonical morphism Hp(X ,F ) ⊗OK
k→ Hp(Xk,Fk) is an isomorphism, and

(3) the morphism in (2) is an isomorphism if and only if Hp+1(X ,F ) is a free OK -
module.

PROOF OF PROPOSITION 2.5. First we show that H 0(X ,OX (D)) ∼= O⊕2
K .

We make use of the cohomology long exact sequence of the sequence

0→ OX → OX (D)→ OX(D)⊗OD → 0 .

First note that OX (D)|D ∼= OD: This isomorphism is true restricted on the generic fiber
DK since (Ci)K · DK = 0 for each component Ci of D, and then it is true on D since
Pic Ci is isomorphic to Pic(Ci)K (since C ∼= P1

OK
). Connectedness of XK and Xk yields

H 0(XK,OXK ) = K and H 0(Xk,OXk ) = k. Hence by Lemma 2.6 we have H 0(X ,OX ) =
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OK , and again by the lemmaH 1(X ,OX ) is free over OK . Since cohomology commutes with
taking the generic fiber (which is a flat base change),H 1(X ,OX )⊗OK

K = H 1(XK,OXK ) =
0 and hence H 1(X ,OX ) = 0. Similarly, H 0(D,OD) = OK , and H 1(D,OD) is free over
OK . Combining these information, we obtain an exact sequence

0 → OK → H 0(X ,OX (D)) → OK

→ 0 → H 1(X ,OX (D)) → H 1(D,OD) .

It follows thatH 0(X ,OX (D)) ∼= O⊕2
K . So this “linear system” defines a morphismΦ : X →

P1
OK

.
Next we will show that this construction is compatible with that of Proposition 1.7 (1),

that is,ΦK : XK → P1
K andΦk : Xk → P1

k is the same as those constructed in Proposition 1.7
(1). This will show that Φ is the morphism wanted in the proposition.

Again by the compatibility with flat base change, we have H 0(XK,OXK (DK))
∼=

H 0(X ,OX (D))⊗OK
K . For the special fiber,H 1(X ,OX (D)) is a free OK -module (since it

is a submodule of a free moduleH 1(D,OD)), so by the lemma we haveH 0(Xk,OXk (Dk))
∼=

H 0(X ,OX (D))⊗OK
k. These equalities show thatΦK andΦk are those constructed in Propo-

sition 1.7 (1).
The last assertion is proved by following the proof of Proposition 1.7 (2). �

We return to the proof of Theorem 0.1. Proposition 2.5 shows that there exists an “elliptic
fibration” ΦX : X → P1

OK
. One defines ιX : X → X similarly and observes (following the

proof of Claim 2.4) that the fixed points are the union of P00, Q00, P03, Q03, P30, Q30, P3∞
and Q∞3. Let Y = X̃ /〈ι̃X 〉 where X̃ is the blow-up of X at the (union of) fixed points and
ι̃X is the involution on X̃ induced by ιX . We shall show that this Y is a smooth proper model
of Y .

Properness and flatness of Y over OK is clear from the construction. We also know that
Y and Y ′ are nonsingular, where we denote by Y ′ the surface obtained by performing similar
operations on the special fiber Xk of X . Hence it suffices to check that the generic fiber and
the special fiber of Y are isomorphic to Y and Y ′ respectively. Since we have assumed that
the residue characteristic is not equal to the order of ιX (=2), (X̃ /〈ι̃X 〉) ×OK

k is isomorphic
to (X̃ ×OK

k)/〈ι̃k〉. Since this blow-up commutes with base change by Lemma 1.2, we have
X̃ ×OK

k ∼= (Xk)
∼, and hence (X̃ ×OK

k)/〈ι̃k〉 ∼= (Xk)
∼/〈ι̃k〉 ∼= Y ′. The generic case is

easier, as we do not need Lemma 1.2 since blow-up always commutes with flat base change.
This concludes the proof of Theorem 0.1.

REMARK 2.7. In the proof, we used two different rational maps YK → XK and
XK → YK . Here we explain why we needed both.

Let us try to construct X from Y via the map XK → YK . We can determine the branch
locus of XK → YK explicitly (it is the union of the components of odd multiplicity in two
fibers of type II∗) and so we can define X and X → Y over a finite unramified extension of
K . However, for the relationship of their cohomology groups, we merely obtain

H 2
ét(YK,Ql )

∼= H 2
ét(XK,Ql)

〈ι〉 ⊕
⊕

Ql (−1)[Ei]
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and we cannot deduce that H 2
ét(XK,Ql) is unramified, even after taking some (ramified) ex-

tension on K .
Next let us try to construct Y from X via the map YK → XK . According to the con-

struction of Shioda–Inose [23, Section 2], X admits an elliptic fibration with (at least) three
singular fibers of types {II∗, I∗c , I∗

c′ } or {II∗, I∗0, IV∗}, and the branch locus of the morphism
Y → X is the union of the components of multiplicity 1 in the fibers of type I∗c or IV∗. Un-
fortunately, the types of singular fibers might differ between the generic and the special fibers
of X , and we have trouble constructing Y as a double cover of X .

REMARK 2.8. We can give an explicit but far from best possible bound for the degree
of the extension needed.

Checking the proofs of Theorems 0.1 and 1.16, we see that the only places we need field
extensions are (i) where we use Lemmas 1.8 (twice) and 1.10, and (ii) where we take the
kernel of the permutation action on 8 fixed points. The degree of extension in (ii) has trivial
bound 8!. For each time in (i), it suffices to take an extension K ′ so that GK ′ acts trivially
on NS(WK) where W is one of Y , X, A. The same arguments as in Remark 4.3 give explicit
bounds.

Combining these, we have a bound 3484+484+36 · 8!, which is < 10484.
(In the positive characteristic case, this gives a bound for the separable degree, but we

could not control the inseparable degree.)

REMARK 2.9. We shall note the difficulties in the case residue characteristicp is equal
to 2 or 3. The case p = 2 had to be excluded as involutions in characteristic 2 behaves so badly
(for example, a “Kummer surface” (the desingularization ofA/〈−1〉 for an abelian surface A)
even may not be a K3 surface). If p = 3, things are better than p = 2, but elliptic surfaces in
characteristic (2 or) 3 might have wild fibers which do not appear in the other characteristics,
and this causes many troubles, so we had to exclude this case also.

We conclude this section with the proof of Corollary 0.5.

PROOF OF COROLLARY 0.5. Any singular K3 surface has Shioda–Inose structure of
product type such that corresponding elliptic curves C1, C2 have complex multiplication
(Shioda–Inose [23, Theorem 4]). Any elliptic curve with complex multiplication is defined
over some number field and has good reduction over some extension. Using the construction
of Y from X above, the corollary follows. �

3. p-adic criterion. We now focus on p-adic cohomology. We denote by K0 the
unramified closure of Qp in K .

We first overview the proofs of Theorems 0.2 and 0.3. As in the l-adic case, the main idea
for the Kummer case (resp. Shioda–Inose case) is to reduce to the abelian case (resp. Kum-
mer case). However, there are some additional difficulties, and we need our l-adic results to
overcome these difficulties. Given a Kummer surface X as in Theorem 0.2, we

(Km1) construct an abelian surface A corresponding to it over a finite extension of K ,
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(Km2) using the crystallineness hypothesis, show that H 2
ét(AK,Qp) is crystalline after tak-

ing a finite unramified extension of K and a quadratic twist of A,
(Km3) hence obtain a good model A (by Coleman–Iovita [4, Theorem 4.7]),
(Km4) construct a good model X using the rational map AK → XK , and
(Km5) show that we can take the extension in step (Km1) to be unramified.

Similarly, given a K3 surface Y admitting a Shioda–Inose structure of product type as in
Theorem 0.3, we

(SI1) construct a Kummer surface X corresponding to it over a finite extension of K ,
(SI2) using the crystallineness hypothesis, show that H 2

ét(XK,Qp) is crystalline after tak-
ing a finite extension of K of ramification index 1, 2, 3, 4 or 6,

(SI3) hence by Theorem 0.2, after some finite unramified extension, obtain a good model
X ,

(SI3′) which we may assume, after further finite unramified extension, to be obtained from
the product of two elliptic curves and hence have 24 specific smooth “rational curves”,

(SI4) construct a good model Y using the rational map XK → YK , and
(SI5) show that we can take the extension in step (SI1) to be unramified.

Steps (Km1) and (SI1) are easy. As in the l-adic case, it suffices to take an extension
over which certain (finitely many) curves are rational. Note that we do not, at this moment,
require the extension to be unramified.

Step (Km2): Let X be a Kummer surface such that H 2
ét(XK,Qp) is crystalline and A

an abelian surface over K such that KmA ∼= X. We show that (after taking some finite
unramified extension of K) there exists an abelian surface A′ such that KmA′ ∼= KmA and
H 1

ét(A
′
K
,Qp) is semi-stable, and show that it is then automatically crystalline.

There exists a finite Galois extension L/K such that V = H 1
ét(AK,Qp) is a semi-stable

representation of GL. By replacing K by its unramified closure in L, we may assume that
L/K is totally ramified. Put D = Dst,L(V ) = (Bst ⊗ V )GL . Since Dst,L commutes with
exterior product for semi-stable representations of GL, we have

Dst,K

( 2∧
V

)
=

(
Dst,L

( 2∧
V

))G
=

( 2∧
D

)G
,

where G = Gal(L/K). Since
∧2

V = H 2
ét(AK,Qp) is a crystalline (hence semi-stable)

representation of GK by assumption, and since V is semi-stable representation of GL, we
have

dimK0

( 2∧
D

)G
= dimQp

2∧
V = dimL0

2∧
D .

Since L0 = K0, it follows thatG acts on
∧2

D trivially. Then by the next lemma, there exists
a subgroupG′ ⊂ G of index at most 2 such that G′ acts on D trivially.
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LEMMA 3.1. Let W be a vector space over a field with dimW ≥ 3 and f a linear
automorphism of W . If

∧2
f acts as the identity on

∧2
W then f is either the identity or

(−1) times the identity.

PROOF. This is an easy exercise of linear algebra. �

If G′ = G then H 1
ét(AK,Qp) is already semi-stable, so we can take A′ = A. As-

sume G′ � G. We follow the construction in the proof of Theorem 4.1. Let M be the
quadratic extension of K corresponding to G′. Then we have dimK0 D

G′ = dimK0 D =
dimQp V , which means that V is semi-stable as a representation of GM = G′. Put G′′ =
G/G′ = Gal(M/K). Let G′′ ∼= {±1} act on A by ±1 and consider another abelian surface
A′ = (A ×K M)/G′′ over K , where G′′ acts diagonally on A ×K M . It is clear from the
construction that KmA ∼= KmA′. The surfaces A′M and AM are naturally isomorphic and
hence H 1

ét(A
′
K
,Qp) ∼= H 1

ét(AK,Qp) as a representation of GM . The action of g ∈ GK on

H 1
ét(A

′
K
,Qp) is equal to ±1 times the action of g on H 1

ét(AK,Qp), where the sign is positive
if g ∈ GM and negative otherwise.

Put V ′ = H 1
ét(A

′
K
,Qp) and D′ = Dst,L(V

′) = (V ′ ⊗ Bst)
GL . Then as in the proof

of Theorem 4.1, Dst,K(V
′) = (D′)GK has an appropriate dimension over K0. Thus V ′ is a

semi-stable representation of GK .
It remains to show that the monodromy N of Dst,K(V

′) is zero. From the crystalline-
ness hypothesis the monodromy of Dst,K(

∧2
V ′) is zero, that is, N ∧ 1 + 1 ∧ N = 0 on∧2

Dst,K(V
′). By applying Lemma 3.1 to f = expN = ∑

Nk/k! (which is a finite sum
since N is nilpotent) we obtain expN = ±1 and hence N = 0. This means V ′ is crystalline,
thus concludes step (Km2).

Step (SI2): Assume surfaces Y and X are given, where X is the minimal desingulariza-
tion of Y/〈ι〉. As in the l-adic case we have

H 2
ét(XK,Qp)

∼= H 2
ét(YK,Qp)

〈ι〉 ⊕
8⊕
i=1

Qp(−1)[Ei] ,

where the last term is the Tate twist of the permutation representation corresponding to the
eight ι-fixed points. As before, let H ⊂ GK be the kernel of this permutation action and
KH/K the corresponding (finite) extension, which is of ramification index 1, 2, 3, 4 or 6.
Then

⊕
Qp(−1)[Ei], being the Tate twist of a trivial representation, is a crystalline represen-

tation of GKH . Also H 2
ét(YK,Qp)

〈ι〉, being a direct summand of a crystalline representation
H 2

ét(YK,Qp), is crystalline. So step (SI2) is done.
Steps (Km3) and (SI3) are just applying the indicated results.
For step (SI3′), we need a p-adic analogue of Lemma 1.10. But we can reduce this

to l-adic Lemma 1.10: if H 1
ét(AK,Qp) is crystalline, then A has good reduction and hence

H 1
ét(AK,Ql ) is unramified.

Steps (Km4) and (SI4) are the same as in the l-adic case.
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For steps (Km5) and (SI5), we need a p-adic analogue of Lemma 1.8. The next propo-
sition reduces this to l-adic Lemma 1.8. Note that the potential good reduction assumption is
satisfied since we have already proved steps (Km1–Km4) and (SI1–SI4).

PROPOSITION 3.2. Let X be a K3 surface over K with potential good reduction. As-
sume that H 2

ét(XK,Qp) is crystalline. Then H 2
ét(XK,Ql ) is unramified for any prime l �= p.

PROOF. Take a finite Galois extension K ′/K such that XK ′ has good reduction. Then
the action of IK onH 2

ét(XK,Ql ) factors through I (K ′/K) = IK/IK ′ . Let X be a good model
of XK ′ over OK ′ , and let X = X ×OK′ k

′.
Take an arbitrary element σ ∈ I (K ′/K) and denote by X σ the scheme obtained from X

by the base change σ ∗ : SpecOK ′ → SpecOK ′ . Denote by Γ the scheme-theoretic closure
of Δ(XK ′) in X ×OK′ X σ , where Δ : XK ′ → XK ′ ×K ′ XK ′ is the diagonal map. Since
X ×OK′ X σ is regular there exists a resolution E• → OΓ of finite length by locally free
modules of finite rank. Put

Γ̃ =
∑
i

(−1)i ch2(Ei ) ∈ CH2(X ×OK′ X σ )Q and

Γ = Γ̃ |X×k′X =
∑
i

(−1)i ch2(Ei |X×k′X) ∈ CH2(X ×k′ X)Q

(these do not depend on the choice of the resolution).
Then by the Riemann–Roch theorem (see [19, Lemma 2.17]) the restriction of Γ̃ on the

generic fiber coincides with Δ(XK ′). Hence we have a commutative diagram

Hi
ét(XK,Ql)

σ∗
��

Hi
ét(Xk′ ,Ql )

=��

Γ
∗
��

Hi
ét(XK,Ql) H i

ét(Xk′ ,Ql )
=��

(Saito [19, Corollary 2.20]) and hence an equality

Tr(σ∗ | Hi
ét(XK,Ql)) = Tr(Γ

∗ | Hi
ét(Xk′ ,Ql )) .

By the Lefschetz trace formula we have

∑
i

(−1)i Tr(Γ
∗ | Hi

ét(Xk′,Ql )) = (Γ ,Δ(X)) =
∑
i

(−1)i Tr(Γ
∗ | Hi

crys(X)) ,

where the intersection number is taken in X ×k′ X.
Since the isomorphism in the crystalline conjecture is compatible with pull-backs, cup

products with cycle classes and direct images (Tsuji [25], [26, Theorem A2] and Berthelot–
Ogus [2, Proposition 3.4]), it is compatible with the action of a correspondence. So we have



Y. MATSUMOTO 101

a commutative diagram

Dcrys,K ′(H i
ét(XK,Qp))

= ��

σ∗
��

Hi
crys(X)

Γ
∗
��

Dcrys,K ′(H i
ét(XK,Qp))

= �� Hi
crys(X).

Since Hi
ét(XK,Qp) is a crystalline representation for all i (for i = 2 this is the assumption,

for i = 0, 4 it is clear and for i = 1, 3 the cohomologies vanish), we have

Dcrys,K ′(H
i
ét(XK,Qp)) = Dcrys,K(H

i
ét(XK,Qp))⊗K0 K

′
0

and hence I (K ′/K) acts on Dcrys,K ′(H i
ét(XK,Qp)) trivially. By the above diagram, Γ

∗
acts

on Hi
crys(X) trivially. So

Tr(Γ
∗ | Hi

crys(X)) = dimK ′0 H
i
crys(X) = dimQp H

i
ét(XK,Qp) .

Finally (by comparing both sides with the Betti numbers) we have

dimQp H
i
ét(XK,Qp) = dimQl H

i
ét(XK,Ql ) .

Combining these equalities we obtain∑
i

Tr(σ∗ | Hi
ét(XK,Ql )) =

∑
i

dimQl H
i
ét(XK,Ql )

(note again thatH 1 = H 3 = 0). Thus each element in I (K ′/K) acts onH ∗ét(XK,Ql ) by trace
equal to the dimension of this Ql-vector space. It then follows that the action of this group is
trivial. �

4. Appendix: Good reduction of Kummer surfaces. We record the proof of Theo-
rem 1.16, a result of Ito [9].

First we review the relation between Kummer surfaces and abelian surfaces.
Let F be a field of characteristic �= 2. Let A be an abelian surface over F , and X =

Km(A). Let G = {id, ι} where ι is the multiplication-by-(−1) map of A. The surface X is,
by definition, obtained by the blow-ups at 16 singular points of A/G. However we can also
obtain X from A in the following way.

Let Ã be the blow-up of A at A[2]. Since A[2] is the fixed points of the action of G, we
can extend the action ofG on Ã. Then the quotient variety Ã/G is naturally isomorphic toX.
We have a cartesian diagram

Ã ��

��

Ã/G ∼= X

��
A �� A/G ,

where the horizontal maps are the quotient maps and the vertical maps are the blow-ups at 16
points. Let Z be the exceptional divisor of the blow-up X → A/G. This is the union of 16
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curves of self-intersection −2. By construction, Ã → X is a double covering whose branch
locus is Z.

We first prove the following special case of Theorem 1.16.

THEOREM 4.1. Let A be an abelian surface over K and X = Km(A). Then X has
good reduction if and only if H 2

ét(XK,Ql ) is unramified.

LEMMA 4.2. Let A be an abelian surface over K and X = Km(A). If A has good
reduction, then X has good reduction.

PROOF. The Néron model A of A over OK is an abelian scheme over OK ([3, Propo-
sition 1.4/2]). By the Néron mapping property, the multiplication-by-(−1) map on A has a
natural extension to an involution ι : A → A. In the special fiber, ι is the multiplication-by-
(−1) map and has exactly 16 fixed points because the residue characteristic p is not equal to
2. Let Ã be the blow-up of A at A[2]: this is smooth over OK by Lemma 1.2. Then ι induces
an involution ι̃ on Ã. Taking the quotient of Ã by ι̃, we obtain a proper smooth model of X
over OK . �

PROOF OF THEOREM 4.1. Since H 2
ét(AK,Ql ) is a direct summand of H 2

ét(XK,Ql ),

the inertia group IK acts trivially on H 2
ét(AK,Ql ), which is isomorphic to

∧2H 1
ét(AK,Ql ).

By Lemma 3.1, we have a homomorphism f : IK → {±1} which the action of IK on
H 1

ét(AK,Ql ) factors through. If f is trivial we are done by applying Theorem 1.15 and
Lemma 4.2. Assume that f is not trivial. The idea is to take a quadratic twist of A to get an
abelian surfaceA′ overK such thatA′ has good reduction overK and that Km(A) ∼= Km(A′).

Let L be a ramified quadratic extension of K . Since the kernel of f corresponds to
the (unique) ramified quadratic extension LKun of Kun, the homomorphism f̃ : GK �
Gal(L/K) ∼= {±1} extends f . Let G = {±id} be a group of automorphisms of A, and
fix the unique isomorphism Gal(L/K) ∼= G (thus we have an action of Gal(L/K) on A). We
take a quotient A′ = (A×K L)/Gal(L/K), where Gal(L/K) acts diagonally on A×K L.

We shall see that this A′ satisfies the desired conditions. By the above construction we
have AL ∼= A′L, and hence IL acts onH 1

ét(A
′
K
,Ql) trivially. Since IK acts onH 1

ét(AK,Ql) by
IK → IK/IL ∼= Gal(L/K) ∼= {±1}, and since the involution −1 ∈ G acts by −1, it follows
that IK acts onH 1

ét(A
′
K
,Ql ) trivially. HenceA′ has good reduction overOK by Theorem 1.15.

It is easy to see Km(A) ∼= Km(A′): the effect of the quadratic twist vanishes after we
take the quotients by G. It now suffices to apply Lemma 4.2. �

Now we prove Theorem 1.16 by reducing to Theorem 4.1.

PROOF OF THEOREM 1.16. By Theorem 4.1, it suffices to show that, for some finite
unramified extension K ′ of K , XK ′ can be written as XK ′ = KmA for an abelian surface A
overK ′.

Let AK be an abelian surface over K such that XK = Km(AK), and let ZK be the ex-
ceptional divisor of the blow-up XK → AK/{±1}. By the description given at the beginning
of this section, there is a double covering of XK whose branch locus is ZK . By Lemma 1.8,
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all the components of ZK and the covering are defined over some finite unramified extension
K ′ of K . Write XK = XK ′ ×K ′ K and ZK = ZK ′ ×K ′ K . Since we know that the inverse
image of ZK ′ is, over K , the disjoint union of 16 rational curves of self-intersection −1, we
can blow down this inverse image to obtain a variety A over K ′. We see that A×K ′ K is the
abelian surfaceAK overK by the uniqueness of the double covering (Lemma 1.3). Moreover,
since the origin of AK is the image of one of the contracted curves that is defined over K ′,
it is a K ′-rational point. Therefore, A is an abelian surface over K ′ such that XK ′ = Km(A)
overK ′. �

REMARK 4.3. We can give an explicit bound for the degree of the field extension in
the case of characteristic 0.

By the proof of Theorem 1.16, it suffices to estimate the degree ofK ′ such that GK ′ acts
trivially on NS(XK). The rank of NS(XK) is less than or equal to 22 (= dimQl H

2
ét(XK,Ql)).

Since every divisor on XK can be defined over a finite extension of K , the image of GK in
GL(NS(XK)) is torsion. So it remains to give a bound for the order of a torsion subgroup of
GL(22,Z).

Take any prime number l ≥ 3 (which we do not assume to be different from the charac-
teristic). By the exact sequence

1→ 1+ lM(22,Zl)→ GL(22,Zl)→ GL(22,Fl)→ 1

and the fact that 1 + lM(22,Zl ) is torsion-free, a torsion subgroup of GL(22,Z) has order
≤ |GL(22,Fl)| ≤ l222

. By choosing l = 3 we can take 3484 as a bound. Of course this bound
is too rough.
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