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Abstract. We generalize results of Homma and Kim [2001, J. Pure Appl. Algebra 162,

273–290] concerning an improvement on the Goppa bound on the minimum distance of

certain Goppa codes.

1. Introduction

Ideas from Algebraic Geometry became useful in Coding Theory after Goppa constructed

linear codes using the following data (see [9]):

• A projective, geometrically irreducible, non-singular algebraic curve X defined

over a finite field F;

• Two F-divisors on X , D = P1 + . . . + Pn and F such that their support do not

intersect, Pi 6= Pj for i 6= j, and Pi a F-rational point of X for all i.

Then the Goppa (or Algebraic Geometric) code C = CX (D, F ) is the image of the F-linear

map:

res : Ω(F − D) → Fn , η 7→ (resP1
(η), . . . , resPn

(η)) ,

where Ω(F −D) is the F-space of differentials η on X such that η = 0 or div(η) � F −D.

The dimension of C can be estimated using the Riemann-Roch theorem since it is equal to

dimFΩ(F −D)−dimFΩ(F ), and one of the main features of this code is that its minimum

distance d satisfies the so-called Goppa bound, namely

(1.1) d ≥ deg(F ) − (2g − 2) .

Goppa [10, pp. 139–141] gave an example where the above bound may be improved for

F = αP , a one-point divisor. Garcia, Kim and Lax (see [6], [5]) gave an explanation

for this fact by showing that it depends on the arithmetical structure of the Weierstrass
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semigroup at P . Matthews [16], Homma and Kim [12] proved similar results for F =

αP + βQ, a two-point divisor with P, Q ∈ X (F), by selecting α and β according to

certain considerations about the arithmetical structure of the Weierstrass semigroup at

P and Q (see below).

The notion of Weierstrass semigroups at several points was introduced by Arbarello,

Cornalba, Griffiths, and Harris [1, p. 365]. The case of two points was extensively studied

by Kim [14] and Homma [11] (see also [15]), and some arithmetical and geometrical

properties concerning the general case can be found in [3], [2] and [13].

In this paper we extend Theorems 3.4 and 3.3 in [12] to the case of several points; see

Theorems 3.3 and 3.4 here. The key point in [12] is the Dual Series Trick Lemma (see

Lemma 3.2 here) which is a result that does not depend on F being a two-point divisor,

and generalizes the fact that divisors of negative degree have no non-trivial sections. To

be more precise, Theorem 3.4 in [12] states that

d ≥ deg(F ) − (2g − 2) + 2

when Lemma 3.2 is applied for F = (n1 +p1−1)P +(n2 +p2−1)Q with (n1, n2), (p1, p2) ∈

N2
0 satisfying the following relations in (a, b) (notation as in Section 2):

`(aP + bQ) = `((a − 1)P + bQ) = `(aP + (b − 1)Q) .

Such pairs (a, b) are in particular Weierstrass gaps at P and Q; i.e., they are in the com-

plement in N2
0 of the Weierstrass semigroup at P and Q, and were called pure Weierstrass

gaps by Homma and Kim [12, p. 276]. It turns out that such pairs (a, b) are characterized

by the relation [12, Lemma 2.3]

`(aP + bQ) = `((a − 1)P + (b − 1)Q) .

This characterization holds true for pure Weierstrass gaps at several points as we shall

see in Lemma 2.5. Using the same approach, Theorem 3.3 in [12] gives

d ≥ deg(F ) − (2g − 2) + 2 + (p2 − n2) + (p1 − n1)

under additional hypotheses on the Weierstrass pure gaps (n1, n2) and (p1, p2) at P and

Q. Therefore the proof of our Theorems 3.3 and 3.4 becomes essentially the same as

the proof of Homma and Kim for the case of two points. We illustrate our results with

Examples 4.1 and 4.3. Section 2 contains semigroup-theoretical properties on Weierstrass

semigroups at several points. For instance, some results of Kim [14] are generalized; see

Remark 2.15.

2. Basic facts on Weierstrass gaps at several points

The aim of this section is to recall the basic definitions and prove some facts on Weierstrass

semigroups at several points.
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Let X be a projective, geometrically irreducible, non-singular algebraic curve defined

over a perfect field F (or simply, a curve over F) . Let m be a positive integer and let

Q1, . . . , Qm be points of X defined over F (or simply, F-rational points). The following

sub-semigroup of Nm
0 (with the usual addition)

H =H(Q1, . . . , Qm)

:={(n1, . . . , nm) ∈ Nm
0 : ∃f ∈ F(X ) with div∞(f) = n1Q1 + . . . + nmQm} ,

is called the Weierstrass semigroup of X at Q1, . . . , Qm (here div∞(f) denotes the divisor

of poles of f , as defined next).

Notation

• As usual, for an F-divisor D on the curve X , `(D) stands for the dimension over

F of the F-linear space L(D) = {f ∈ F(X )∗ : D + div(f) � 0} ∪ {0};

• For n := (n1, . . . , nm) ∈ Zm, we set L(n) := L(n1Q1 + . . . + nmQm) and `(n) :=

`(L(n));

• For n = (n1, . . . , nm) ∈ Nm
0 and i ∈ {1, . . . , m}, we set

∇i(n) := {(p1, . . . , pm) ∈ H : pi = ni and pj ≤ nj ∀j 6= i} .

We also set ni := n − niei, where ei denotes the vector in Nm
0 with 1 in the

ith-position and 0 in the other ones;

• 1 stands for the vector with 1 in each position.

• For i ∈ {1, . . . , m}, vi stands for the valuation at the point Qi.

• For any f ∈ F(X )∗ we define div∞(f) :=
∑

Q∈X (F), vQ(f)<0(−vQ(f)) Q and

div0(f) :=
∑

Q∈X (F), vQ(f)>0 vQ(f) Q, where vQ is the valuation at the point Q.

The following two lemmas were proved by Delgado in the case where F is an algebraically

closed field (cf. [3, p. 629]).

Lemma 2.1. Let n ∈ Nm
0 , i ∈ {1, . . . , m} and suppose that #F ≥ m. Then `(n) =

`(n − ei) + 1 if and only if ∇i(n) 6= ∅.

Proof. Let f ∈ L(n) \ L(n − ei). Since #F ≥ m there is an α ∈ F such that (−v1(f +

α), . . . ,−vm(f + α)) ∈ ∇i(n). The converse is clear. �

Lemma 2.2. Let n = (n1, . . . , nm) ∈ Nm
0 , and suppose that #F ≥ m. Then the following

statements are equivalent:

(1) n ∈ H;

(2) `(n) = `(n − ei) + 1, for all i = 1, . . . , m;

(3) The linear system |n1Q1 + . . . + nmQm| is base-point-free.

Proof. The equivalence between (1) and (3) as well as that (1) implies (2) are clear. To

see that (2) implies (1), let f1, . . . , fm ∈ F(X ) such that vi(fi) = −ni and vj(fi) ≥ −nj

for j 6= i, where i, j ∈ {1, . . . , m}. We are going to show that there exists a m-tuple
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(α1, . . . , αm) ∈ Fm such that the pole divisor of
∑m

i=1 αifi is precisely
∑m

i=1 niQi. For

each i = 1, . . . , m, let ti be a local parameter at Qi. Let

fi = ai,jt
vj(fi)
j + . . . ∈ F((tj))

be the local expansion of fi at Qj. Then div∞(
∑m

i=1 αifi) 6=
∑m

i=1 niQi if and only if there

exists j ∈ {1, . . . , m} such that
∑m

i=1 αiai,j = 0; i.e., in order to have div∞(
∑m

i=1 αifi) =∑m
i=1 niQi it is enough to choose the m-tuple (α1, . . . , αm) ∈ Fm outside the union of at

most m linear sub-spaces of dimension m − 1. That this can be done is guaranteed by

the hypothesis #F ≥ m and the proof is complete. �

As an example that the condition on the cardinality of F in the above lemma is truly

necessary, take a nonsingular plane curve X of degree 4 defined over the field with three

elements F3, and let Q1, Q2, Q3 and Q4 be collinear points on the curve. Then `(Q1 +

Q2 + Q3 + Q4) = 3 and `(Qi + Qj + Qk) = 2 for all 1 ≤ i < j < k ≤ 4; but there is no

rational function f ∈ F3(X ) such that div∞(f) = Q1 + Q2 + Q3 + Q4.

The elements of the complement G = G(Q1, . . . , Qm) of H in Nm
0 will be called Weier-

strass gaps at Q1, . . . , Qm. From the previous two lemmas we have the following.

Corollary 2.3. Let n ∈ Nm
0 and suppose that #F ≥ m. Then the following statements

are equivalent:

(1) n ∈ G;

(2) There exists i ∈ {1, . . . , m} such that `(n) = `(n − ei);

(3) There exists i ∈ {1, . . . , m} such that ∇i(n) = ∅.

Remark 2.4. For n = (n1, . . . , nm) ∈ Nm
0 and i ∈ {1, . . . , m}, the meaning of ∇i(n) = ∅ is

that every m-tuple (p1, . . . , pm) ∈ Nm
0 is a Weierstrass gap at Q1, . . . , Qm provided that

pi = ni and 0 ≤ pj ≤ nj for j 6= i.

Observe that G is a finite set; upper bounds for #G have been found in terms of the

genus g of the curve. For instance, when the base field is algebraically closed and of

characteristic zero, Kim [14] showed that #G(Q1, Q2) ≤ (3g2+g)/2, with equality holding

if and only if X is a hyperelliptic curve and Q1 and Q2 are Weierstrass points of X ; Ishii

[13] showed that #G(Q1, Q2, Q3) ≤ g(7g2 + 6g + 5)/6, with equality holding if and only

if X is a hyperelliptic curve and Q1, Q2, Q3 are Weierstrass points of X (cf. also [2] for a

conjecture on a upper bound for #G(Q1, . . . , Qm)).

Following Homma and Kim (cf. [12]), for applications to Goppa codes one is in fact

interested in the so-called pure Weierstrass gaps, namely those Weierstrass gaps that

satisfy Property (2) in the above corollary for all i = 1, . . . , m. The set of such gaps will

be denoted by G0 = G0(Q1, . . . , Qm). Homma and Kim [12] showed that #G0(Q1, Q2) ≤

g(g−1)/2, where g is the genus of X . Observe that each coordinate of a pure Weierstrass

gap is indeed a positive integer since `(ni) = `(ni − ei) + 1.
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Lemma 2.5. Let n = (n1, . . . , nm) ∈ Nm
0 and suppose that #F ≥ m. Then the following

statements are equivalent:

(1) n ∈ G0;

(2) ∇i(n) = ∅, for all i = 1, . . . , m;

(3) `(n) = `(n − 1).

Proof. That (1) is equivalent to (2) follows from Lemma 2.1. Now as `(n) ≥ `(n − ei) ≥

`(n − 1) for all i = 1, . . . , m, it is clear that (3) implies (1). To see the converse, let

f ∈ L(n) \ L(n − 1); then there exists i ∈ {1, . . . , m} such that vi(f) = −ni and

vj(f) ≥ −nj for j 6= i; i.e., f ∈ L(n) \ L(n − ei) so that n 6∈ G0. �

Corollary 2.6. Assume that #F ≥ m.

(1) If (n1, . . . , nm) ∈ G0, then ni is a Weierstrass gap at Qi for each i = 1, . . . , m;

(2) If 1 ∈ H, then G0 = ∅;

(3) Let n = (n1, . . . , nm) ∈ Nm such that the gonality of X over F is at least 1 +∑m
i=1 ni. Then n ∈ G0.

Proof. Item (1) follows from Lemma 2.5(2) and Remark 2.4. To see (2), let us assume that

G0 6= ∅ and let n = (n1, . . . , nm) ∈ G0. Let ni be the minimum among the coordinates of

n. Then, as ∇i(n) = ∅ by Lemma 2.5, we have ni1 ∈ G so that 1 6∈ H. Let us prove (3).

We must have n ∈ G, otherwise the gonality of the curve is at most
∑m

i=1 ni; moreover,

`(n) = 1. Now we also must have `(n − 1) = 1 since ni ≥ 1 for all i; thus the result

follows from Lemma 2.5. �

Example 2.7. The bound on the gonality of the curve in part (3) of the above corollary

cannot be improved as the following example shows. Let X be the Fermat curve of degree

r ≥ 2,

Xr + Y r + Zr = 0 ,

defined over F, a finite field with q2 elements. It is known that its gonality over F is r− 1

provided that char(F) does not divide r and that X (F) 6= ∅; see Sect. 4.

Let us assume that r divides either (q−1) or (q +1). We are going to show that there are

(r − 1) F-rational points of X such that 1 ∈ Nr−1
0 belongs to the Weierstrass semigroup

at such points.

Let x := X/Z and y := Y/Z denote the rational functions on X obtained from projective

coordinates (X : Y : Z) of P2(F̄). Let b1, . . . , br be the roots of Y r + 1 = 0 and set

Qi := (0 : bi : 1). Then each Qi is an F-rational point of X , and it follows that

div(x) =

r∑

i=1

Qi − D∞ and div(y − bi) = rQi − D∞ ,
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where D∞ is the intersection divisor of X and the line Z = 0. In particular,

div(
y − br

x
) = (r − 1)Qr −

r−1∑

i=1

Qi ;

i.e., 1 belongs to H(Q1, . . . , Qr−1).

Next we prove more results about the semigroup H = H(Q1, . . . , Qm). Although these

properties are not explicitly used in Sections 3 and 4, they are interesting in their own

right and led us to natural generalizations of some results from [14]; see Remark 2.15. In

what follows we will always assume that #F ≥ m.

Lemma 2.8. For (n1, . . . , nm), (p1, . . . , pm) ∈ H, let qi := max(ni, pi) for i = 1, . . . , m.

Then (q1, . . . , qm) ∈ H.

Proof. Let f, g ∈ F(X ) such that div∞(f) =
∑m

i=1 niQi and div∞(g) =
∑m

i=1 piQi. For

i = 1, . . . , m, let ti be a local parameter at Qi and

f = ai,−ni
t−ni

i + . . . ∈ F((ti)) , g = bi,−pi
t−pi

i + . . . ∈ F((ti))

the local expansions of f and g at Qi. Let h = hα,β := αf + βg with α, β ∈ F. Then

vi(h) = −qi provided that either ni 6= pi, or ni = pi and αai,−ni
+ βbi,−pi

6= 0. The last

condition is satisfied for all i if (α, β) is chosen in the complement in F2 of the union of

at most m linear sub-spaces of dimension one; since #F ≥ m, such a selection is possible

and the proof follows. �

Corollary 2.9. Let n = (n1, . . . , nm) ∈ Nm
0 and i ∈ {1, . . . , m} such that ∇i(n) 6= ∅. Let

p be a non-negative integer such that p < ni. If p := ni + pei ∈ H, then n ∈ H.

Proof. There exists q := (q1, . . . , qm) ∈ H such that qi = ni and qj ≤ nj for j 6= i. Then

the result follows by applying Lemma 2.8 to p and q. �

Lemma 2.10. Let j ∈ {1, . . . , m} and (n1, . . . , nm), (p1, . . . , pm) ∈ H such that nj = pj.

Then there exists (q1, . . . , qm) ∈ H whose coordinates satisfy: qi = max(ni, pi) for i 6= j

and ni 6= pi; qi ≤ ni for i 6= j and ni = pi; and qj = nj = 0, or qj < nj.

Proof. With notation as in the proof of Lemma 2.8, let h := bj,−pj
f −aj,−nj

g and take the

vector with coordinates qi := max(−vi(h), 0) for i = 1, . . . , m. �

Let us recall that by the Riemann-Roch theorem a vector (n1, . . . , nm) ∈ Nm
0 belongs to

H whenever
∑m

i=1 ni ≥ 2g, where g is the genus of X .

Corollary 2.11. For n = (n1, . . . , nm) ∈ Nm
0 and i ∈ {1, . . . , m}, suppose that ni ∈ G.

Let

n := min{p ∈ N : ni + pei ∈ H} .

Then any vector p = (p1, . . . , pm) ∈ Nm
0 belongs to G whenever pi = n, and pj = nj = 0

or pj < nj for j 6= i. In particular, n is a Weierstrass gap at Qi.
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Proof. Suppose by means of absurd that such a vector p belongs to H. Then from Lemma

2.10 applied to p and ni + nei we get that ni + pei ∈ H for some non-negative integer

p < n, a contradiction with the choice of n. �

Corollary 2.12. Let n = (n1, . . . , nm), i,ni, and n be as in Corollary 2.11. Let p =

(p1, . . . , pm) ∈ Nm
0 such that pi ∈ G. If either pj < nj for all j 6= i, or pj > nj for all

j 6= i, then

n 6= min{p ∈ N : pi + pei ∈ H} .

Proof. If the result is not true, then applying Lemma 2.10 to ni + nei and pi + nei we

would have that either ni + qei ∈ H, or pi + qei ∈ H for some non-negative integer q < n,

a contradiction with the choice of n. �

Let us equip Nm
0 with the partial order � defined by

(n1, . . . , nm) � (p1, . . . , pm) ⇔ ni ≤ pi for all i = 1, . . . , m .

Corollary 2.13. Let i ∈ {1, . . . , m} and n = (n1, . . . , nm) be a minimal element of the

set

{(p1, . . . , pm) ∈ H : pi = ni}

with respect to the partial order � . Suppose that ni > 0 and that there exists j ∈

{1, . . . , m}, j 6= i, with nj > 0. Then

(1) ni ∈ G;

(2) ni = min{p ∈ N : ni + pei ∈ H}; in particular ni is a Weierstrass gap at Qi.

Proof. (1) Suppose, on the contrary, that ni ∈ H. Then from Lemma 2.10 applied to ni

and n, and the hypothesis on nj, there exists (p1, . . . , pm) ∈ H such that pi = ni, p` ≤ n`

for ` 6= i, j, and pj < nj. This is a contradiction to the choice of n.

(2) Let p ∈ N0. If ni + pei ∈ H, a similar argument as above implies ni ≤ p. Since

ni > 0 and n ∈ H then the first part of (2) holds; the second part follows from Corollary

2.11. �

Next we give a bound on the dimension of the sections of the divisors arising from Corollary

2.11.

Lemma 2.14. Let n = (n1, . . . , nm) ∈ Nm
0 , i,ni, and n be as in Corollary 2.11. Then

`(ni + nei) ≤ g + 1, where g is the genus of X .

Proof. Let G :=
∑m

j=1 njQj − niQi + nQi. If G is a special divisor then `(G) ≤ g;

otherwise, by the Riemann-Roch theorem `(G) = deg(G) + 1 − g. If `(G) ≥ g + 2, then

deg(G) ≥ 2g + 1 so that deg(G − Qi − Qj) ≥ 2g − 1. Then, again by the Riemann-Roch

theorem, `(G − Qi) = `(G − Qi − Qj) + 1 for all j = 1, . . . , m. Thus by Lemma 2.2 we

get that ni + (n − 1)ei ∈ H which is a contradiction with the selection of n. �
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Remark 2.15. Let m ≥ 2 and i ∈ {1, . . . , m}.

(1) Since `(ni) = `(ni − ei) + 1, the elements of the Weierstrass semigroup (resp. Weier-

strass gaps) at Q1, . . . , Qi−1, Qi+1, . . . , Qm are in a one-to-one correspondence with those

ni ∈ Nm
0 such that ni ∈ H (resp. ni ∈ G).

(2) Corollaries 2.11 and 2.13 determine the following surjective function:

Γi : {ni ∈ Nm
0 : ni ∈ G} → G(Qi) , ni 7→ min{n ∈ N : ni + nei ∈ H} .

For m = 2, this was already noticed by Kim in [14]. Indeed, here we have a bijection

between G(Q1) and G(Q2):

n1 ∈ G(Q1) ↔ (n1, 0) ∈ G(Q1, Q2) 7→ βn1
:= Γ2((n1, 0)) ∈ G(Q2) .

Moreover, n1 = min{p ∈ N : (p, βn1
) ∈ H(Q1, Q2)}.

For a pair of distinct Weierstrass points Q1 and Q2 of the Hermitian curve (i.e., the one in

Example 2.7 with r = q + 1), Matthews [16, Sect. 4] computed the arithmetical function

βn and consequently G(Q1, Q2); based on these results Homma and Kim [12, Prop. 4.2]

computed G0(Q1, Q2).

3. Goppa codes arising from pure gaps

In this section we improve the Goppa bound on the minimum distance of certain Goppa

codes.

Throughout this section X will be a curve defined over a finite field F. Let us recall the

following two results due to Homma and Kim.

Lemma 3.1. ([12, Lemma 3.1]) Let B, N, and P be F-divisors on X with B and N

effective. Suppose that `(P ) = `(P − B), and that Supp(B) ∩ Supp(N) = ∅. Then `(P −

N) = `(P − N − B).

Lemma 3.2. (Dual series trick, [12, Lemma 3.2]) Let B, E, L, and M be F-divisors on

X with B and E effective. Then deg(B) ≤ deg(E) provided that:

(1) E + L + M is a canonical divisor;

(2) `(L) = `(L + B);

(3) `(M − B) = `(M).

For a given positive integer m such that #F ≥ m and #X (F) > m, we fix m pairwise dif-

ferent F-rational points of X , say Q1, . . . , Qm. Let n = (n1, . . . , nm) and p = (p1, . . . , pm)

be two pure gaps at Q1, . . . , Qm. Let n be a positive integer. Set

• D := P1 + . . . + Pn, where Pi 6= Pj for i 6= j, and each point Pi belongs to

X (F) \ {Q1, . . . , Qm};

• F :=
∑m

i=1(ni + pi − 1)Qi.
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Suppose that Ω(F − D) 6= 0 and let C = CX (D, F ) be the [n, k, d] Goppa code defined

in the introduction. Let us explain how to use Lemma 3.2 to improve the Goppa bound

(1.1) on d.

Let η ∈ Ω(F −D) \ {0} and let w be the weight of the word res(η) in C corresponding to

η. Without loss of generality we can assume that resPi
(η) 6= 0 for i = 1, . . . , w and that

η is regular at Pi for i ≥ w + 1. Thus η ∈ Ω(F −
∑w

i=1 Pi) and the divisor

(3.1) E := div(η) − F +
w∑

i=1

Pi

is effective with deg(E) = 2g − 2 − deg(F ) + w. Set

(3.2) L :=

m∑

i=1

(ni − 1)Qi , and M :=

m∑

i=1

piQi −
w∑

i=1

Pi .

Therefore

E + L + M = div(η)

is a canonical divisor so that

w ≥ deg(F ) − (2g − 2) + deg(B)

for any F-divisor B which together with the divisors E, L and M defined above satisfy

Lemma 3.2. Notice that the above considerations implies the Goppa bound (1.1) with

B = 0.

Theorem 3.3. d ≥ deg(F ) − (2g − 2) + m.

Proof. Let E, L, M be the divisors defined in (3.1) and (3.2). Let B :=
∑m

i=1 Qi. Then

the result will follow from Lemma 3.2 applied to B, E, L and M once we prove that

conditions (1), (2), and (3) in that lemma are satisfied. We have already noticed that (1)

holds true; from Lemma 2.5(3) we get `(L) = `(L + B); finally `(M − B) = `(B) follows

from Lemma 3.1 applied to the divisors B above, N :=
∑w

i=1 Pi, and P :=
∑m

i=1 piQi

since the hypothesis of that lemma is satisfied again by Lemma 2.5(3). �

Under an additional and somewhat stronger hypothesis on pure gaps, the above lower

bound can be improved as follows.

Theorem 3.4. Suppose that ni ≤ pi for all i = 1, . . . , m, and that each m-tuple

(q1, . . . , qm), with ni ≤ qi ≤ pi for each i = 1, . . . , m, is also a pure gap at Q1, . . . , Qm.

Then

d ≥ deg(F ) − (2g − 2) + m +

m∑

i=1

(pi − ni) .
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Proof. Let E, L, M be as in (3.1) and (3.2), and B :=
∑m

i=1(pi−ni +1)Qi. Then the proof

is also a consequence of Lemma 3.2. Let us verify the hypothesis of that lemma. We know

already that E + L + M is canonical. Now L + B =
∑m

i=1 piQi and so `(L + B) = `(L)

by Lemma 2.5(2)(3). Finally, `(M − B) = `(B) follows from Lemma 3.1 applied to the

divisors B, N :=
∑w

i=1 Pi, and P :=
∑m

i=1 piQi. �

4. Examples

In this section we present two examples illustrating Theorems 3.3 and 3.4. In Example

4.1 below we will need to know some elements of the gonality sequence of plane curves;

hence we first recall some facts about such a sequence.

Let X be a curve over a perfect field F. For i ∈ N0, let

γi = γi(X ,F) := min {deg(D) : D ∈ DivF(X ) and `(D) ≥ i + 1} .

Notice that γ0 = 0 and that γ1 is the F-gonality of X . The F-gonality sequence of the curve

X is the sequence GS(X ) = GS(X ,F) = (γi : i ∈ N0). This sequence was introduced

and used by Yang, Kumar and Stichtenoth to get a lower bound for the weight hierarchy

of Goppa codes [20, Thm. 12]. The following properties hold true (see [20, Prop. 11]):

• The sequence GS(X ) is strictly increasing;

• γg−1 = 2g − 2 and γi = i + g for i ≥ g, where g is the genus of X .

If X is plane curve of degree r such that X (F) 6= ∅, Pellikaan [17, Cor. 2.4] noticed that

GS(X ) is the strictly increasing sequence obtained from the semigroup generated by r−1

and r.

Example 4.1. Let X be the Hermitian curve over the finite field F of order q2; i.e.,

the Fermat curve of degree r := q + 1. This curve has genus g = q(q − 1)/2, (q3 + 1)

F-rational points (i.e., it attains the Hasse-Weil upper bound over F), see e.g. [7], and

the Weierstrass semigroup at any F-rational point is generated by q and q + 1 as follows

from Example 2.7. In particular, the strictly increasing sequence obtained from such a

semigroup is the F-gonality sequence of X . Let us assume q > 5. Thus γg−2r+4 = (r−5)r

and γg−2r+5 = (r − 4)(r − 1).

Let Q1, Q2 and Q3 be three pairwise different F-rational points of X .

Claim. n := ((r−5)r+1, 1, 1) and p := (1, (r−5)r+1, 1) belong to G0 = G0(Q1, Q2, Q3).

Indeed, the facts that `(n) ≥ g − 2r + 5 and deg(((r − 5)r + 1)Q1 + Q2 + Q3) < γg−2r+5

imply `(n) = g − 2r + 5. Now `(n − 1) = `((r − 5)rQ1) = g − 2r + 5 as (r − 5)r is the

(g−2r+4)-th non-gap at Q1, and so n ∈ G0 by Lemma 2.5(3). The proof for p is similar.

Applying Theorem 3.3 with m = 3 and n and p being as in the claim, we can construct

an [n, k, d] Goppa code C = CX (D, F ) on the Hermitian curve X such that
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• n = deg(D) = q3 − 2 > deg(F ) = 2r2 − 10r + 3 = 2q2 − 6q − 5 > 2g − 2;

• k = dimFΩ(F − D) − dimFΩ(F ) = g − 1 + deg(D) − deg(F );

• d ≥ deg(F ) − (2g − 2) + 3 = r2 − 7r + 6 = q2 − 5q.

Next we compare the parameters of C with those of a one-point Goppa code Cα, α ∈ N,

defined on the Hermitian curve X as follows. Let us consider the following plane model

of X :

V qW + V W q = U q+1 .

Let R := (0 : 1 : 0) be the unique point of X on the line W = 0, and let D′ := R1+. . .+Rq3

with Ri 6= Rj for i 6= j and Ri ∈ X (F) \ {R} for any i. Then Cα is the Goppa code on X

defined by D′ and F ′ := (q3 + 2g− 2−α)R. The dimension kα and minimum distance dα

of Cα depend on the parameter α and have been computed by Stichtenoth [18] and Yang

and Kumar [19]. By observing that Ω(F ′ − D′) ∼= L(αR) and Ω(F ′) ∼= L((α − q3)R), we

get kα = `(αR) − `((α − q3)R). Then

kα = k if and only if α = α0 := 2g − 2 + deg(D) − deg(F ) = q3 − q2 + 5q + 1 .

Looking at the tables in [19] we then see that the minimum distance of Cα0
is exactly q2−5q.

Thus our code C has better relative parameters k/n and d/n than the corresponding code

Cα0
.

Remark 4.2. The previous example can also be constructed on a Fermat curve X of degree

r > 6 over the finite field F of order q2 such that r is a proper divisor of either (q − 1)

or (q + 1), and such that N := #X (F) is large enough (see below). Here the genus is

g = (r−1)(r−2)/2, and Example 2.7 shows that there are at least 3r F-rational points of

X whose Weierstrass semigroup is generated by r−1 and r. Taking three pairwise different

such points Q1, Q2 and Q3 we have that n = ((r−5)r+1, 1, 1) and p = (1, (r−5)r+1, 1)

are pure Weierstrass gaps at Q1, Q2 and Q3. By Theorem 3.3 we obtain an [n, k, d] Goppa

code C = CX (D, F ) on the Fermat curve X such that

• n = deg(D) = N − 3, deg(F ) = 2r2 − 10r + 3 > 2g − 2;

• k = dimFΩ(F − D) − dimFΩ(F ) = g − 1 + deg(D) − deg(F ) + `(F − D);

• d ≥ deg(F ) − (2g − 2) + 3 = r2 − 7r + 6;

provided that

deg(D) = N − 3 > deg(F ) − (g − 1) .

For instance if r divides q + 1, then X attains the Hasse-Weil upper bound over F; i.e.,

N = 1 + q2 + 2qg (see e.g. [8]) and the above bound is satisfied. Unfortunately, there is

no available parameters in the literature of one-point Goppa codes on X that may allow

us to assess the parameters of the code C.

Example 4.3. Let X be the Hermitian curve as in Example 2.7 with r = q + 1 defined

over the finite field F of order q2. Let us assume that q is odd and greater than 5. For

b a root of Y q+1 + 1 = 0, let Q1 := (0 : b : 1) and let Q2, . . . , Q(q+1)/2 be (q − 1)/2
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pairwise different points in the support of the intersection divisor D∞ of X and the line

Z = 0. Notice that each point Qi is F-rational so that the Weierstrass semigroup at Qi

is generated by q and q + 1.

Let n := (n1, . . . , n(q+1)/2) ∈ N(q+1)/2 with 1 ≤ n1 ≤ (q − 3)/2, and ni = q + 2 for

i = 2, . . . , (q + 1)/2.

Claim. n is an pure Weierstrass gap at Q1, . . . , Q(q+1)/2.

To see this, by Lemma 2.5 and the Riemann-Roch theorem we have to show that

(4.1) `(K − G2) = `(K − G1) + (q + 1)/2 ,

where K is a canonical divisor on X ,

G1 :=

(q+1)/2∑

i=1

niQi , and G2 :=

(q+1)/2∑

i=1

(ni − 1)Qi .

Here we can assume that K = (2g − 2)Q1 = (q − 2)(q + 1)Q1 because the Weierstrass

semigroup at Q1 is symmetric. Let us recall that (q+1)P ∼ (q+1)Q for any P, Q ∈ X (F)

due to the fact that X attains the Hasse-Weil upper bound over F (see e.g. [4]). Therefore

K ∼
q − 3

2
(q + 1)Q1 +

(q+1)/2∑

i=2

(q + 1)Qi ,

so that

K − G1 ∼ ((q − 3)(q + 1)/2 − n1)Q1 −

(q+1)/2∑

i=2

Qi , and

K − G2 ∼ ((q − 3)(q + 1)/2 − (n1 − 1))Q1 .

The hypothesis on n1 implies (q − 3)q/2 ≤ (q − 3)(q + 1)/2 − n1 < (q − 3)(q + 1)/2 and

hence `(((q − 3)(q + 1)/2 − n1)Q1) = `( q−3
2

(q + 1) Q1) − n1 = 1 + . . . + (q − 1)/2 − n1 =

(q−1)(q+1)/8−n1. This hypothesis also implies `(K−G2) = (q−1)(q+1)/8− (n1−1).

Therefore, (4.1) holds true if and only if

`(K −G1) = ((q−1)(q +1)/8−n1)− (q−1)/2 = `(((q−3)(q +1)/2−n1)Q1)− (q−1)/2 .

Now {f igj : i, j ∈ N0, qi + (q + 1)j ≤ (q − 3)(q + 1)/2 − n1} is an F-base of L(( q−3
2

(q +

1) − n1)Q1, where f := x/(y − b) and g := 1/(y − b), with x and y as in Example 2.7.

Then the claim follows from the facts below:

(i) Supp(div0(f
igj)) ∩ D∞ = ∅ if and only if j = 0 and i = 0, 1, . . . , (q − 3)/2; otherwise

D∞ ⊆ Supp(div0(f
igj));

(ii) If h :=
∑(q−3)/2

i=0 aif
i ∈ L(K − G1) with ai ∈ F for all i, then h = 0. Indeed, for

i = 2, . . . , (q + 1)/2 let Qi = (bi : 1 : 0) where b2, . . . , b(q+1)/2 are (q − 1)/2 pairwise

different roots of Xq+1 + 1 = 0. The fact that h(Qi) = 0 for i = 2, . . . , (q + 1)/2 lead

us to consider the linear equation system M(a0, . . . , a(q−3)/2)
t = 0, where M = (mij)
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with mij = f j(Qi) = bj
i/(1 − b)j for i = 2, . . . , (q + 1)/2 and j = 0, . . . , (q − 3)/2.

We have that det(M) = det(bj
i )/(1 − b)(q−3)(q−1)/8 is different from zero since det(bj

i ) =∏
2≤i<j≤(q+1)/2(bj − bi) and thus h = 0.

Applying Theorem 3.4 with m = (q+1)/2, p := (1, q+2, . . . , q+2), and q := ((q−3)/2, q+

2, . . . , q+2) we can construct a [n, k, d] Goppa code C = CX (D, F ) on the Hermitian curve

X such that

• n = deg(D) = q3 − (q − 1)/2, n > deg(F ) = q2 + q − 3 > 2g − 2;

• k = dimFΩ(F − D) − dimFΩ(F ) = g − 1 + deg(D) − deg(F );

• d ≥ deg(F ) − (2g − 2) + 3 + (q − 5)/2 = (5q − 1)/2.

We compare the parameters of the code C with those of the codes Cα introduced in

Example 4.1. We have that

dimFCα = k if and only if α = α0 := 2g − 2 + deg(D) − deg(F ) = q3 − (5q − 3)/2 .

Looking at the tables in [19] we see that the minimum distance dα0
of Cα0

is 16 for q = 7

and 3q for q > 7. Thus for q = 7 we have d ≥ 17 and hence C has better parameters than

the corresponding Cα0
; otherwise, dα0

− d ≤ (q + 1)/2.
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