

RESEARCH ARTICLE

# On graded 2-absorbing and graded weakly 2-absorbing ideals

Khaldoun Al-Zoubi<sup>1</sup>, Rashid Abu-Dawwas<sup>2</sup>, Seçil Çeken<sup>3\*</sup>

<sup>1</sup>Department of Mathematics and Statistics, Jordan University of Science and Technology, P.O.Box 3030, Irbid 22110, Jordan

<sup>2</sup>Department of Mathematics, Yarmouk University, Irbid, Jordan

<sup>3</sup>Department of Mathematics, Trakya University, Edirne, Turkey

## Abstract

In this paper, we introduce and study graded 2-absorbing and graded weakly 2-absorbing ideals of a graded ring which are different from 2-absorbing and weakly 2-absorbing ideals. We give some properties and characterizations of these ideals and their homogeneous components. We investigate graded (weakly) 2-absorbing ideals of  $R_1 \times R_2$  where  $R_1$  and  $R_2$  are two graded rings.

## Mathematics Subject Classification (2010). 16W50, 13A02, 13C11

**Keywords.** graded 2-absorbing ideal, graded weakly 2-absorbing ideal, graded weakly prime ideal, graded prime ideal

## 1. Introduction

Throughout this paper, all rings are assumed to be commutative with identity elements. The concept of 2-absorbing ideal was introduced by Badawi in [4] as a generalization of the notion of prime ideal and studied in [1], [10], [11]. Let R be a ring. A proper ideal I of R is called a 2-absorbing ideal of R if whenever  $a, b, c \in R$  with  $abc \in I$ , then  $ab \in I$  or  $ac \in I$  or  $bc \in I$ . Weakly prime ideals are also generalizations of prime ideals. Recall from [2] that a proper ideal I of R is called a weakly prime ideal if whenever  $0 \neq ab \in I$ , then  $a \in I$  or  $b \in I$ . The concept of weakly prime ideal was generalized to the concept of weakly 2-absorbing ideal in [5]. A proper ideal I of R is said to be a weakly 2-absorbing ideal of R if whenever  $0 \neq abc \in I$ , then  $ab \in I$  or  $bc \in I$ .

In this paper, we introduce and study graded 2-absorbing and graded weakly 2-absorbing ideals of graded rings. First, we recall some basic properties of graded rings and modules which will be used in the sequel. We refer to [7] and [8] for these basic properties and more information on graded rings and modules. Let G be a multiplicative group and e denote the identity element of G. A ring R is called a graded ring (or G-graded ring) if there exist additive subgroups  $R_g$  of R indexed by the elements  $g \in G$  such that  $R = \bigoplus_{g \in G} R_g$ and  $R_g R_h \subseteq R_{gh}$  for all  $g, h \in G$ . If the inclusion is an equality, then the ring R is called strongly graded. The elements of  $R_g$  are called homogeneous of degree g and all

<sup>\*</sup>Corresponding Author.

Email addresses: kfzoubi@just.edu.jo (K. Al-Zoubi), rrashid@yu.edu.jo (R. Abu-Dawwas),

cekensecil@gmail.com (S. Çeken)

Received: 23.11.2015; Accepted: 11.12.2017

the homogeneous elements are denoted by h(R), i.e.  $h(R) = \bigcup_{g \in G} R_g$ . If  $x \in R$ , then x can be written uniquely as  $\sum_{g \in G} x_g$ , where  $x_g$  is called homogeneous component of x in  $R_g$ . Moreover,  $R_e$  is a subring of R and  $1 \in R_e$ . Also, if  $r \in R_g$  and r is a unit, then  $r^{-1} \in R_{g-1}$ . A G-graded ring  $R = \bigoplus_{g \in G} R_g$  is called a crossed product if  $R_g$  contains a unit for every  $g \in G$ . Note that a G-crossed product  $R = \bigoplus_{g \in G} R_g$  is a strongly graded ring (see [8, 1.1.2. Remark]).

Let  $R = \bigoplus_{g \in G} R_g$  be a *G*-graded ring. An ideal *I* of *R* is said to be a graded ideal if  $I = \bigoplus_{g \in G} (I \cap R_g) := \bigoplus_{g \in G} I_g$ . If *I* is a graded ideal of *R*, then the quotient ring R/I is a *G*-graded ring. Indeed,  $R/I = \bigoplus_{g \in G} (R/I)_g$  where  $(R/I)_g = \{x + I : x \in R_g\}$ . A proper

graded ideal P of R is said to be a graded prime ideal (or gr-prime ideal) of R if whenever a and b are homogeneous elements of R such that  $ab \in P$ , then either  $a \in P$  or  $b \in P$ . A graded ideal I of R is said to be graded maximal ideal of R if  $I \neq R$  and if J is a graded ideal of R such that  $I \subseteq J \subseteq R$ , then I = J or J = R. Let  $R_1$  and  $R_2$  be G-graded rings and  $R = R_1 \times R_2$ . Then R is a G-graded ring with  $h(R) = h(R_1) \times h(R_2)$ .

Let  $R = \bigoplus_{g \in G} R_g$  be a *G*-graded ring. A right *R*-module *M* is said to be a graded *R*-module (or *G*-graded *R*-module) if there exists a family of additive subgroups  $\{M_g\}_{g \in G}$  of *M* such that  $M = \bigoplus_{g \in G} M_g$  and  $M_g R_h \subseteq M_{gh}$  for all  $g, h \in G$ . Also if an element of *M* belongs to  $\bigcup_{g \in G} M_g = h(M)$ , then it is called homogeneous. Note that  $M_g$  is an  $R_e$ -module for every  $g \in G$ . So, if  $I = \bigoplus_{g \in G} I_g$  is a graded ideal of *R*, then  $I_g$  is an  $R_e$ -module for every  $g \in G$ .

In this article, we define graded (weakly) 2-absorbing ideals of a graded ring. We show that the set of all graded 2-absorbing ideals and the set of all 2-absorbing graded ideals need not to be equal in a graded ring (see Example 2.2). According to our definition, every graded prime ideal is a graded 2-absorbing ideal. But we show that not every graded 2absorbing ideal is a graded prime ideal (see Example 2.3). Various properties of graded (weakly) 2-absorbing ideals and their homogeneous components are considered. We also define the concept of g-2-absorbing ideal for  $g \in G$  and prove that if  $I = \bigoplus_{q \in G} I_g$  a graded

weakly 2-absorbing ideal of R, then for each  $g \in G$ , either I is a g-2-absorbing ideal of R or  $I_g^3 = (0)$  (see Theorem 3.4). We give a number of results concerning graded (weakly) 2-absorbing ideals of  $R_1 \times R_2$  where  $R_1$  and  $R_2$  are two graded rings (see Theorem 2.12 and Theorems 3.8-3.11).

### 2. Graded 2-absorbing ideals

**Definition 2.1.** Let R be a G-graded ring and I be a proper graded ideal of R. I is said to be a graded 2-absorbing ideal of R if whenever  $r, s, t \in h(R)$  with  $rst \in I$ , then  $rs \in I$  or  $rt \in I$  or  $st \in I$ .

Clearly, every 2-absorbing graded ideal of a graded ring R is also a graded 2-absorbing ideal. But the next example shows that not every graded 2-absorbing ideal of a graded ring is a 2-absorbing ideal.

**Example 2.2.** Let  $R = \mathbb{Z}[i]$  and  $G = \mathbb{Z}_2$ . Then R is a G-graded ring with  $R_0 = \mathbb{Z}$  and  $R_1 = i\mathbb{Z}$ . Let I = 6R. Then I is not a 2-absorbing ideal of R. Because  $6 = (1+i)(1-i)3 \in I$  but  $(1+i)(1-i) = 2 \notin I$ ,  $(1-i)3 \notin I$  and  $(1+i)3 \notin I$ . However an easy computation shows that I is a graded 2-absorbing ideal of R.

It is also clear that every graded prime ideal of a graded ring R is a graded 2-absorbing ideal. But the next example shows that not every graded 2-absorbing ideal is a graded prime ideal.

**Example 2.3.** Let F be a field and R = F[x, y]. R is a  $\mathbb{Z}$ -graded ring with deg(x) =deg(y) = 1. Let  $Q = (x^2, xy)$ . Then Q is a graded 2-absorbing ideal of R which is not a graded prime ideal of R.

In [14], the concept of 2-absorbing ideal of a ring was extended to the notion of 2absorbing submodule of a module. Let R be a ring and M be an R-module. A proper submodule N of M is called 2-absorbing, if whenever  $a, b \in R, m \in M$  and  $abm \in N$ , then  $am \in N$  or  $bm \in N$  or  $ab \in (N :_R M)$ .

**Theorem 2.4.** Let R be a G-graded ring and  $I = \bigoplus_{g \in G} I_g$  be a graded ideal of R. Then the following hold.

(1) If I is a graded 2-absorbing ideal of R, then  $I_g$  is a 2-absorbing submodule of the  $R_e$ -module  $R_g$  for every  $g \in G$  with  $I_g \neq R_g$ .

(2) If R is a crossed product and  $I_e$  is a 2-absorbing ideal of  $R_e$ , then I is a graded 2-absorbing ideal of R.

**Proof.** (1) Let  $g \in G$  and  $I_g \neq R_g$ . Assume that  $r, s \in R_e$  and  $t \in R_g$  with  $rst \in I_g$ . Since I is a graded 2-absorbing ideal of R, we have,  $rs \in I$  or  $rt \in I$  or  $st \in I$ . If  $rs \in I$ , then  $rs \in (I_g :_{R_e} R_g)$ . If  $st \in I$  or  $rt \in I$ , then  $st \in I_g$  or  $rt \in I_g$ , respectively. This shows that  $I_g$  is a 2-absorbing  $R_e$ -submodule of  $R_g$ .

(2) Clearly,  $I \neq R$ . First we show that if  $I_e$  is a 2-absorbing ideal of  $R_e$ , then  $I_g$  is a 2-absorbing submodule of the  $R_e$ -module  $R_g$  for every  $g \in G$ . Let  $g \in G$ . If  $I_g = R_g$ , then it can be easily seen that  $I_e = R_e$ , a contradiction. So  $I_g \neq R_g$ . Let  $a, b \in R_e, c \in R_g$  such that  $abc \in I_g$ . Let d be a unit in  $R_{g^{-1}}$ . Then  $ab(cd) \in I_e$ . Since  $I_e$  is a 2-absorbing ideal of  $R_e$ , we have  $ab \in I_e$  or  $a(cd) \in I_e$  or  $b(cd) \in I_e$ . If  $ab \in I_e$ , then  $ab \in (I_g :_{R_e} R_g)$ . If  $a(cd) \in I_e$  or  $b(cd) \in I_e$ , then  $ac \in I$  or  $bc \in I$ , respectively.

Now, let  $r, s, t \in h(R)$  with  $rst \in I$ . There exist  $g, h, \sigma \in G$  such that  $r \in R_g, s \in R_h$ and  $t \in R_{\sigma}$ . Also,  $R_{g^{-1}}$  contains a unit, say r' and  $R_{h^{-1}}$  contains a unit, say s'. It follows that  $(rr')(ss')t \in I_{\sigma}$ . Since  $I_{\sigma}$  is a 2-absorbing submodule of the  $R_e$ -module  $R_{\sigma}$ , we have  $(rr')t \in I_{\sigma}$  or  $(ss')t \in I_{\sigma}$  or  $(rr')(ss') \in (I_{\sigma} :_{R_e} R_{\sigma})$ . If  $(rr')t \in I_{\sigma}$  or  $(ss')t \in I_{\sigma}$ , then  $rt \in I$  or  $st \in I$ , respectively. If  $(rr')(ss') \in (I_{\sigma} :_{R_e} R_{\sigma})$ , then  $rs(r's')R_{\sigma} \in I_{\sigma}$ . Since Ris strongly graded,  $rs(r's') \in I_e$ , this implies that  $rs \in I$ . Thus I is a graded 2-absorbing ideal of R.

The graded radical of a graded ideal I, denoted by Gr(I), is the set of all  $x = \sum_{g \in G} x_g \in R$  such that for each  $g \in G$  there exists  $n_g \in \mathbb{Z}^+$  with  $x_g^{n_g} \in I$ . Note that, if r is a homogeneous element, then  $r \in Gr(I)$  if and only if  $r^n \in I$  for some  $n \in \mathbb{Z}^+$  [13].

**Lemma 2.5.** Let R be a G-graded ring and I be a graded 2-absorbing ideal of R. Then Gr(I) is a graded 2-absorbing ideal of R and  $a^2 \in I$  for every  $a \in h(Gr(I))$ .

**Proof.** Let  $a \in h(Gr(I))$ . Then  $a^k \in I$  for some  $k \in \mathbb{N}$ . Since I is graded 2 absorbing,  $a^2 \in I$ .

Now, let  $r, s, t \in h(R)$ , and  $rst \in Gr(I)$ , then  $(rst)^n \in I$  for some  $n \in \mathbb{Z}^+$ . Since I is a graded 2-absorbing ideal, we have  $(rst)^2 = r^2 s^2 t^2 \in I$  and hence  $r^2 s^2 = (rs)^2 \in I$  or  $r^2 t^2 = (rt)^2 \in I$  or  $s^2 t^2 = (st)^2 \in I$ . Thus,  $rs \in Gr(I)$  or  $rt \in Gr(I)$  or  $st \in Gr(I)$ . Therefore Gr(I) is graded 2-absorbing ideal.

**Proposition 2.6.** Let R be a G-graded ring and I be a graded ideal of R such that  $Gr(I) \neq I$  and Gr(I) is a graded prime ideal of R. If (I:x) is a graded prime ideal of R for all  $x \in h(Gr(I)) - h(I)$ , then I is a graded 2-absorbing ideal of R.

**Proof.** Let  $r, s, t \in h(R)$  with  $rst \in I$ . Since  $I \subseteq Gr(I)$  and Gr(I) is a graded prime ideal, we have  $r \in Gr(I)$  or  $s \in Gr(I)$  or  $t \in Gr(I)$ . We may assume that  $r \in Gr(I)$ . If  $r \in I$ , then  $rs \in I$  and we are done. So, assume that  $r \in Gr(I) - I$ . Then by assumption (I:r) is a graded prime ideal and since  $st \in (I:r)$ , either  $s \in (I:r)$  or  $t \in (I:r)$ . Hence  $rs \in I$  or  $tr \in I$ . Thus, I is graded 2-absorbing ideal.

Recall that a proper graded ideal I of a graded ring R is said to be a graded irreducible ideal if whenever  $J_1$  and  $J_2$  are graded ideals of R with  $I = J_1 \cap J_2$ , then either  $I = J_1$  or  $I = J_2$  [13].

**Theorem 2.7.** Let R be a G-graded ring and I be a graded irreducible ideal of R such that Gr(I) = P is a graded prime ideal of R. If  $P^2 \subseteq I$  and  $(I : x) = (I : x^2)$  for all  $x \in h(R) - P$ , then I is a graded 2-absorbing ideal of R.

**Proof.** Suppose that  $P^2 \subseteq I$  and  $(I:x) = (I:x^2)$  for all  $x \in h(R) - P$ . Let  $a, b, c \in h(R)$  with  $abc \in I$ . Assume that  $ab \notin I$ . Since  $P^2 \subseteq I$ , either  $a \notin P$  or  $b \notin P$ . So, we may assume that  $(I:a) = (I:a^2)$ . Let  $J_1 = I + Rac$  and  $J_2 = I + Rbc$ . Then  $J_1$  and  $J_2$  are graded ideals of R containing I. Now, we show that  $I = J_1 \cap J_2$ . Let  $s \in J_1 \cap J_2$ . Then we can write  $s = i_1 + r_1ac = i_2 + r_2bc$  for some  $i_1, i_2 \in I$  and for some  $r_1, r_2 \in R$  and then  $as = ai_1 + r_1a^2c = ai_2 + r_2abc$ . Since  $abc \in I$ ,  $as \in I$  and hence  $r_1a^2c \in I$ . Since  $(I:a) = (I:a^2)$ ,  $r_1ac \in I$  and hence  $s \in I$ . Thus  $I = J_1 \cap J_2$ . Since I is graded irreducible, either  $I = J_1$  or  $I = J_2$  and hence either  $ac \in I$  or  $bc \in I$ . Therefore, I is a graded 2-absorbing ideal of R.

Recall that a proper graded ideal I of a graded ring R is said to be a graded primary ideal if whenever  $r, s \in h(R)$  with  $rs \in I$ , either  $r \in I$  or  $s \in Gr(I)$  [13].

**Lemma 2.8.** [13, Lemma 1.8] Let R be a G-graded ring and I be a graded primary ideal of R. Then P = Gr(I) is a graded prime ideal of R, and we say that I is a graded P-primary ideal of R.

**Lemma 2.9.** [13, Corollary 1.12] Let R be a G-graded ring and M be a graded maximal ideal of R. Then, for any positive integer n,  $M^n$  is a graded M-primary ideal of R.

**Proposition 2.10.** Let R be a G-graded ring and I a graded primary ideal of R such that  $(Gr(I))^2 \subseteq I$ . Then I is a graded 2-absorbing ideal of R.

**Proof.** Let  $r, s, t \in h(R)$  with  $rst \in I$ . Assume  $st \notin I$ . If  $r \in I$ , then we are done, so assume that  $r \notin I$ . Since I is a graded primary ideal,  $r \in Gr(I)$  and  $st \in Gr(I)$ . Since Gr(I) is a graded prime ideal,  $r, s \in Gr(I)$  or  $r, t \in Gr(I)$ . Since  $(Gr(I))^2 \subseteq I, rs \in I$  or  $rt \in I$ .

**Corollary 2.11.** Let R be a G-graded ring and M a graded maximal ideal of R. Then  $M^2$  is a graded 2-absorbing ideal of R.

**Proof.** By Lemma 2.9,  $M^2$  is a graded primary ideal of R such that  $Gr(M^2) = M$ . Hence  $M^2$  is a graded 2-absorbing ideal by Proposition 2.10.

**Theorem 2.12.** Let  $R_1$  and  $R_2$  be two graded rings, and let I be a proper graded ideal of  $R_1$ . Then I is a graded 2-absorbing ideal of  $R_1$  if and only if  $I \times R_2$  is a graded 2-absorbing ideal of  $R_1 \times R_2$ .

**Proof.** Suppose that I is a graded 2-absorbing ideal of  $R_1$  and let  $(a_1, b_1)(a_2, b_2)(a_3, b_3) = (a_1a_2a_3, b_1b_2b_3) \in I \times R_2$  for some  $a_1, a_2, a_3 \in h(R_1)$  and  $b_1, b_2, b_3 \in h(R_2)$ . Since  $a_1a_2a_3 \in I$  and I is a graded 2-absorbing ideal of  $R_1$ , we have  $a_1a_2 \in I$  or  $a_1a_3 \in I$  or  $a_2a_3 \in I$ . Hence,  $(a_1, b_1)(a_2, b_2) \in I \times R_2$  or  $(a_1, b_1)(a_3, b_3) \in I \times R_2$  or  $(a_2, b_2)(a_3, b_3) \in I \times R_2$ . Thus  $I \times R_2$  is a graded 2-absorbing ideal of  $R_1 \times R_2$ . Conversely, suppose that  $I \times R_2$  is a graded 2-absorbing ideal of  $R_1 \times R_2$  and let  $a_1a_2a_3 \in I$  for some  $a_1, a_2, a_3 \in h(R_1)$ . Since  $(a_1, 1)(a_2, 1)(a_3, 1) = (a_1a_2a_3, 1) \in I \times R_2$  and  $I \times R_2$  is a graded 2-absorbing ideal of  $R_1 \times R_2$  or  $(a_1, 1)(a_3, 1) = (a_1a_3, 1) \in I \times R_2$  or  $(a_2, 1)(a_3, 1) = (a_2a_3, 1) \in I \times R_2$  and hence,  $a_1a_2 \in I$  or  $a_1a_3 \in I$  or  $a_2a_3 \in I$ . Thus I is a graded 2-absorbing ideal of  $R_1$ .

#### 3. Graded weakly 2-absorbing ideals

**Definition 3.1.** Let R be a G-graded ring and I be a proper graded ideal of R. I is said to be a graded weakly 2-absorbing ideal of R if whenever  $r, s, t \in h(R)$  with  $0 \neq rst \in I$ , then  $rs \in I$  or  $rt \in I$  or  $st \in I$ .

Clearly, a graded 2-absorbing ideal of a graded ring R is a graded weakly 2-absorbing ideal. However, since (0) is a graded weakly 2-absorbing ideal of R (by definition), (0) need not to be a graded 2-absorbing ideal of R.

**Proposition 3.2.** Let I, P be graded ideals of R with  $I \subseteq P$  and  $P \neq R$ . Then the following hold.

(1) If P is a graded weakly 2-absorbing ideal of R, then P/I is a graded weakly 2-absorbing ideal of R/I.

(2) If I and P/I are graded weakly 2-absorbing ideals of R and R/I, respectively, then P is a graded weakly 2-absorbing ideal of R.

**Proof.** (1) Clearly,  $P/I \neq R/I$ . Let  $0 \neq (r+I)(s+I)(t+I) = rst + I \in P/I$ , where  $r, s, t \in h(R)$ . Since  $rst + I \neq 0$ , we have  $rst \neq 0$ . Since  $0 \neq rst \in P$  and P is a graded weakly 2-absorbing ideal of R, we conclude that  $rs \in P$  or  $rt \in P$  or  $st \in P$ . Hence  $(r+I)(s+I) \in P/I$  or  $(r+I)(t+I) \in P/I$  or  $(s+I)(t+I) \in P/I$ . Thus P/I is a graded weakly 2-absorbing ideal of R/I.

(2) Clearly,  $P \neq R$ . Let  $0 \neq rst \in P$ , where  $r, s, t \in h(R)$ . Hence  $(r+I)(s+I)(t+I) = rst + I \in P/I$ . If  $rst \in I$ , then  $rs \in I \subseteq P$  or  $rt \in I \subseteq P$  or  $st \in I \subseteq P$ . So we may assume  $rst \notin I$  and hence  $rst + I \neq 0$ . Since P/I is a graded weakly 2-absorbing ideal of R/I, we have  $(r+I)(s+I) = rs + I \in P/I$  or  $(r+I)(t+I) = rt + I \in P/I$  or  $(s+I)(t+I) = st + I \in P/I$ . Hence  $rs \in P$  or  $rt \in P$  or  $st \in P$ . Thus P is a graded weakly 2-absorbing ideal of R.

**Definition 3.3.** Let  $R = \bigoplus_{g \in G} R_g$  be a graded ring,  $I = \bigoplus_{g \in G} I_g$  be a graded ideal of R and  $g \in G$ . We say that I is a (weakly) g-2-absorbing ideal of R if  $I_g \neq R_g$  and whenever  $r, s, t \in R_g$  with  $(0 \neq rst \in I) rst \in I$ , then  $rs \in I$  or  $rt \in I$  or  $st \in I$ .

**Theorem 3.4.** Let  $R = \bigoplus_{g \in G} R_g$  be a graded ring and  $I = \bigoplus_{\substack{g \in G \\ g \in G}} I_g$  be a graded weakly 2-absorbing ideal of R. Then, for each  $g \in G$ , either I is a g-2-absorbing ideal of R or  $I_q^3 = (0)$ .

**Proof.** It is enough to show that if  $I_g^3 \neq (0)$  for  $g \in G$ , then I is a g-2-absorbing ideal of R. Let  $rst \in I$  where  $r, s, t \in R_g$ . If  $0 \neq rst$ , then  $rs \in I$  or  $st \in I$  or  $rt \in I$  by the hypothesis. So we may assume that rst = 0. Suppose first that  $rsI_g \neq (0)$ , then there exists  $i \in I_g$  such that  $rsi \neq 0$ . Hence  $0 \neq rs(t+i) = rsi \in I$ . Since I is a graded weakly 2-absorbing ideal of R, we have  $rs \in I$  or  $r(t+i) \in I$  or  $s(t+i) \in I$ , and hence  $rs \in I$  or  $rt \in I$  or  $st \in I$ . So we can assume that  $rsI_g = (0)$ . Similarly, we can assume that  $rtI_g = (0)$  and  $stI_g = (0)$ . If  $rI_g^2 \neq (0)$ , then there exist  $a, b \in I_g$  such that  $rab \neq 0$ . Hence  $0 \neq r(s+a)(t+b) = rab \in I$ . Since I is a graded weakly 2-absorbing ideal of R, we have  $r(s+a) \in I$  or  $r(t+b) \in I$  or  $(s+a)(t+b) \in I$  and hence  $rs \in I$  or  $rt \in I$ . So we can assume that  $rI_g^2 \neq (0)$ . Similarly, we can assume that  $rI_g^2 \neq (0)$ . Hence  $0 \neq r(s+a)(t+b) = rab \in I$ . Since I is a graded weakly 2-absorbing ideal of R, we have  $r(s+a) \in I$  or  $r(t+b) \in I$  or  $(s+a)(t+b) \in I$  and hence  $rs \in I$  or  $rt \in I$ . So we can assume that  $rI_g^2 \neq (0)$ . Similarly, we can assume that  $sI_g^2 \neq (0)$  and  $tI_g^2 \neq (0)$ . Since  $I_g^3 \neq (0)$ , there exist  $i_1, i_2, i_3 \in I_g$  such that  $i_1i_2i_3 \neq 0$ . Hence  $0 \neq (r+i_1)(s+i_2)(t+i_3) = i_1i_2i_3 \in I_g$ . Since I is a graded weakly 2-absorbing ideal of R, we get that  $(r+i_1)(s+i_2) \in I$  or  $(s+i_2)(t+i_3) \in I$  or  $(r+i_1)(t+i_3) \in I$  and hence  $rs \in I$  or  $st \in I$  or  $st \in I$  or  $rt \in I$ . Therefore, I is a g-2-absorbing ideal of R.

**Corollary 3.5.** Let  $R = \bigoplus_{g \in G} R_g$  be a graded ring and  $I = \bigoplus_{\substack{g \in G \\ g \in G}} I_g$  be a graded weakly 2-absorbing ideal of R such that I is not a g-2-absorbing ideal of R for every  $g \in G$ . Then Gr(I) = Gr(0).

**Proof.** Clearly,  $Gr(0) \subseteq Gr(I)$ . By Theorem 3.4,  $I_g^3 = (0)$  for every  $g \in G$ . This implies that  $Gr(I) \subseteq Gr(0)$ .

**Proposition 3.6.** Let  $R = \bigoplus_{g \in G} R_g$  be a graded ring,  $P = \bigoplus_{g \in G} P_g$  be a graded weakly 2-absorbing ideal of R and  $g \in G$ . Then, for  $a, b \in R_g$  with  $ab \in R_{g^2} - P_{g^2}$ , we have  $(P_{g^2} :_{R_e} ab) = (P_g :_{R_e} a)$  or  $(P_{g^2} :_{R_e} ab) = (P_g :_{R_e} b)$  or  $(P_{g^2} :_{R_e} ab) = (0 :_{R_e} ab)$  or  $(P_{q^2} :_{R_e} ab)^3 \subseteq (P_g :_{R_e} a) \cap (P_g :_{R_e} b) \cap (0 :_{R_e} ab)$ .

**Proof.** First, we show that  $(P_{g^2} :_{R_e} ab) = (P_g :_{R_e} a) \cup (P_g :_{R_e} b) \cup (0 :_{R_e} ab)$ . Clearly,  $(P_g :_{R_e} a) \cup (P_g :_{R_e} b) \cup (0 :_{R_e} ab) \subseteq (P_{g^2} :_{R_e} ab)$ . Let  $c \in (P_{g^2} :_{R_e} ab)$ . Then  $cab \in P_{g^2}$ . If cab = 0, then  $c \in (0 :_{R_e} ab)$ . If  $cab \neq 0$ , then we have  $ca \in P$  or  $cb \in P$  by the hypothesis. It follows that  $c \in (P_g :_{R_e} a) \cup (P_g :_{R_e} b)$ . Thus  $(P_{g^2} :_{R_e} ab) = (P_g :_{R_e} a) \cup (P_g :_{R_e} b) \cup (0 :_{R_e} ab)$ . According to [6, Theorem 1] and its proof  $(P_{g^2} :_{R_e} ab)$  is contained in the union of any two of these ideals or  $(P_{g^2} :_{R_e} ab)^3 \subseteq (P_g :_{R_e} a) \cap (P_g :_{R_e} b) \cap (0 :_{R_e} ab)$ . In the first case,  $(P_{g^2} :_{R_e} ab)$  is contained in one of these ideals and this implies that  $(P_{g^2} :_{R_e} ab) = (P_g :_{R_e} a)$  or  $(P_{g^2} :_{R_e} ab) = (P_g :_{R_e} ab) = (0 :_{R_e} ab)$ . □

Recall that a ring in which every finitely generated ideal is principal is called a Bezout ring.

**Corollary 3.7.** Let  $R = \bigoplus_{g \in G} R_g$  be a graded ring such that  $R_e$  is a Bezout ring,  $P = \bigoplus_{g \in G} P_g$  be a graded weakly 2-absorbing ideal and  $g \in G$ . Then, for  $a, b \in R_g$  with  $ab \in R_{g^2} - P_{g^2}$ , we have  $(P_{g^2} :_{R_e} ab) = (P_g :_{R_e} a)$  or  $(P_{g^2} :_{R_e} ab) = (P_g :_{R_e} b)$  or  $(P_{g^2} :_{R_e} ab) = (0 :_{R_e} ab)$ .

**Proof.** In the proof of Proposition 3.6, we showed that  $(P_{g^2}:_{R_e} ab) = (P_g:_{R_e} a) \cup (P_g:_{R_e} b) \cup (0:_{R_e} ab)$ . By [12, Proposition 1.1],  $(P_{q^2}:_{R_e} ab)$  is equal to one of these ideals.

**Theorem 3.8.** Let  $R_1$  and  $R_2$  be two graded rings, and let  $I_1$  and  $I_2$  be non-zero proper graded ideals of  $R_1$  and  $R_2$ , respectively. If  $I_1 \times I_2$  is a graded weakly 2-absorbing ideal of  $R_1 \times R_2$ , then  $I_1$  and  $I_2$  are graded prime ideals of  $R_1$  and  $R_2$ , respectively.

**Proof.** Suppose that  $I_1 \times I_2$  is a graded weakly 2-absorbing ideal of  $R_1 \times R_2$ . We show that  $I_1$  is a graded prime ideal of  $R_1$ . Let  $r, s \in h(R_1)$  with  $rs \in I_1$  and let  $0 \neq i_2 \in h(I_2)$ . Hence  $(0,0) \neq (1,i_2)(r,1)(s,1) = (rs,i_2) \in I_1 \times I_2$ . Since  $I_1 \times I_2$  is a graded weakly 2-absorbing ideal of  $R_1 \times R_2$  and  $(r,1)(s,1) = (rs,1) \notin I_1 \times I_2$ , we conclude that either  $(1,i_2)(r,1) = (r,i_2) \in I_1 \times I_2$  or  $(1,i_2)(s,1) = (s,i_2) \in I_1 \times I_2$ , and hence either  $r \in I_1$  or  $s \in I_1$ . Thus  $I_1$  is a graded prime ideal of  $R_1$ . Similarly, one can show that  $I_2$  is a graded prime ideal of  $R_2$ .

**Theorem 3.9.** Let  $R_1$  and  $R_2$  be two graded rings, and let  $I_1$  and  $I_2$  be non-zero proper graded ideals of  $R_1$  and  $R_2$ , respectively. Then  $I_1 \times I_2$  is a graded weakly 2-absorbing ideal of  $R_1 \times R_2$  if and only if  $I_1 \times I_2$  is a graded 2-absorbing ideal of  $R_1 \times R_2$ .

**Proof.** Suppose that  $I_1 \times I_2$  is a graded weakly 2-absorbing ideal of  $R_1 \times R_2$ . We show that  $I_1 \times I_2$  is a graded 2-absorbing ideal of  $R_1 \times R_2$ . Suppose that  $(a_1, b_1)(a_2, b_2)(a_3, b_3) = (a_1a_2a_3, b_1b_2b_3) \in I_1 \times I_2$  for some  $a_1, a_2, a_3 \in h(R_1)$  and for some  $b_1, b_2, b_3 \in h(R_2)$ . By Theorem 3.8, we conclude that  $I_1$  and  $I_2$  are graded prime ideals of  $R_1$  and  $R_2$ , respectively. Since  $I_1$  is a graded prime ideal of  $R_1$  and  $a_1a_2a_3 \in I_1$ , we have  $a_1 \in I_1$  or  $a_2 \in I_1$  or  $a_3 \in I_1$ . We may assume  $a_1 \in I_1$ . Since  $I_2$  is a graded prime ideal of  $R_2$  and  $b_1b_2b_3 \in I_2$ , we have  $b_1 \in I_2$  or  $b_2 \in I_2$  or  $b_3 \in I_2$ . We may assume  $b_2 \in I_2$ . Hence  $(a_1, b_1)(a_2, b_2) = (a_1a_2, b_1b_2) \in I_1 \times I_2$ . Thus  $I_1 \times I_2$  is a graded 2-absorbing ideal of  $R_1 \times R_2$ . The converse is clear.

Let R be a G-graded ring and P be a proper graded ideal of R. Recall from [3] that P is said to be a graded weakly prime ideal of R if whenever  $a, b \in h(R)$  and  $0 \neq ab \in P$ , then either  $a \in P$  or  $b \in P$ .

**Theorem 3.10.** Let  $R_1$  and  $R_2$  be two graded rings, and let I be a nonzero proper graded ideal of  $R_1$ . Then  $I \times (0)$  is a graded weakly 2-absorbing ideal of  $R_1 \times R_2$  if and only if I is a graded weakly prime ideal of  $R_1$  and (0) is a graded prime ideal of  $R_2$ .

**Proof.** Suppose that  $I \times (0)$  is a graded weakly 2-absorbing ideal of  $R_1 \times R_2$ . First, we show that I is a graded weakly prime ideal of  $R_1$ . Let  $r, s \in h(R_1)$  with  $0 \neq rs \in I$ . Hence  $(0,0) \neq (r,1)(s,1)(1,0) = (rs,0) \in I \times (0)$ . Since  $I \times (0)$  is a graded weakly 2absorbing ideal of  $R_1 \times R_2$  and  $(r,1)(s,1) = (rs,1) \notin I \times (0)$ , we conclude that either  $(r,1)(1,0) = (r,0) \in I \times (0)$  or  $(s,1)(1,0) = (s,0) \in I \times (0)$  and hence either  $r \in I$ or  $s \in I$ . Thus I is a graded weakly prime ideal of  $R_1$ . Now, we show that (0) is a graded prime ideal of  $R_2$ . Let  $r, s \in h(R_2)$  with  $rs \in (0)$ , and let  $0 \neq i \in h(I)$ . Hence  $(0,0) \neq (i,rs) = (i,1)(1,r)(1,s) \in I \times (0)$ . Since  $I \times (0)$  is a graded weakly 2-absorbing ideal of  $R_1 \times R_2$  and  $(1, r)(1, s) = (1, rs) \notin I \times (0)$ , we conclude that  $(i, 1)(1, r) = (i, r) \in I \times (0)$ or  $(i,1)(1,s) = (i,s) \in I \times (0)$  and hence either  $r \in (0)$  or  $s \in (0)$ . Thus (0) is a graded prime ideal of  $R_2$ . Conversely, assume that I is a graded weakly prime ideal of  $R_1$  and (0) is a graded prime ideal of  $R_2$ . We show that  $I \times (0)$  is a graded weakly 2-absorbing ideal of  $R_1 \times R_2$ . Suppose that  $(0,0) \neq (a_1,b_1)(a_2,b_2)(a_3,b_3) = (a_1a_2a_3,b_1b_2b_3) \in I \times (0)$  for some  $a_1, a_2, a_3 \in h(R_1)$  and for some  $b_1, b_2, b_3 \in h(R_2)$ . Since I is a graded weakly prime ideal of  $R_1$  and  $0 \neq a_1 a_2 a_3 \in I$ , we conclude that at least one of the  $a_i$ 's is in I, say  $a_1$ . Since (0) is a graded prime ideal of  $R_2$  and  $b_1b_2b_3 \in (0)$ , we conclude that at least one of the  $b_i$ 's is in (0), say  $b_2 = 0$ . Hence  $(a_1, b_1)(a_2, b_2) = (a_1a_2, 0) \in I \times (0)$ . Thus  $I \times (0)$  is a graded weakly 2-absorbing ideal of  $R_1 \times R_2$ . 

**Theorem 3.11.** Let  $R_1$  and  $R_2$  be two graded rings, and let  $I_1$  be a nonzero proper graded ideal of  $R_1$ , and  $I_2$  be a proper graded ideal of  $R_2$ . Then  $I_1 \times I_2$  is a graded weakly 2absorbing ideal of  $R_1 \times R_2$  that is not a graded 2-absorbing ideal if and only if  $I_2 = (0)$  is a graded prime ideal of  $R_2$  and  $I_1$  is a graded weakly prime ideal of  $R_1$  that is not a graded prime ideal.

**Proof.** Assume that  $I_1 \times I_2$  is a graded weakly 2-absorbing ideal of  $R_1 \times R_2$  that is not a graded 2-absorbing ideal. Theorem 3.9 implies that  $I_2 = (0)$ . By Theorem 3.10,  $I_2 = (0)$  is a graded prime ideal of  $R_2$  and  $I_1$  is a graded weakly prime ideal of  $R_1$ . Now suppose that  $I_1$  is a graded prime ideal of  $R_1$ . Then  $I_1 \times I_2$  is a graded 2-absorbing ideal by the proof of Theorem 3.9 which contradicts the assumption. Thus  $I_1$  is not a graded prime ideal of  $R_1$ . Conversely, suppose that  $I_1$  is a graded weakly prime ideal of  $R_1$  that is not a graded prime ideal of  $R_1$ . Conversely, suppose that  $I_1$  is a graded weakly prime ideal of  $R_1$  that is not a graded prime ideal of  $R_1 \times R_2$ . Since  $I_1$  is a graded weakly prime ideal of  $R_1$ , that is not a graded 2-absorbing ideal of  $R_1 \times R_2$ . Now, we show that  $I_1 \times (0)$  is not a graded 2-absorbing ideal of  $R_1 \times R_2$ . Now, we show that  $I_1 \times (0)$  is not a graded prime ideal of  $R_1 \times R_2$ . Now, we show that  $I_1 \times (0)$  is not a graded prime ideal, we conclude that there exist  $r, s \in h(R)$  such that  $rs = 0 \in I_1$  and neither  $r \in I_1$  nor  $s \in I_1$ . We get that  $(r, 1)(s, 1)(1, 0) = (rs, 0) \in I_1 \times (0)$  but  $(r, 1)(s, 1) = (rs, 1) \notin I_1 \times (0)$  and  $(r, 1)(1, 0) = (r, 0) \notin I_1 \times (0)$  and  $(s, 1)(1, 0) = (s, 0) \notin I_1 \times (0)$ . This shows that  $I_1 \times (0)$  is not a graded 2-absorbing ideal of  $R_1 \times R_2$ .

### References

- D.F. Anderson and A. Badawi, On n-absorbing ideals of commutative rings, Comm. Algebra 39 (5), 1646-1672, 2011.
- [2] D.D. Anderson and E. Smith, Weakly prime ideals, Houston J. Math. 29 (4), 831-840, 2003.
- [3] S.E. Atani, On graded weakly prime ideals. Turk. J. Math. **30** (4), 351-358, 2006.
- [4] A. Badawi, On 2-absorbing ideals of commutative rings, Bull. Aust. Math. Soc. 75 (3), 417-429, 2007.
- [5] A. Badawi and A.Y. Darani, On weakly 2-absorbing ideals of commutative rings, Houston J. Math. 39 (2), 441-452, 2013.

- [6] N.H. McCoy, A note on finite unions of ideals and subgroups, Proc. Amer. Math. Soc. 8, 633-637, 1957.
- [7] C. Nastasescu and V.F. Oystaeyen, *Graded Ring Theory*, Mathematical Library 38, North Holand, Amsterdam, 1983.
- [8] C. Nastasescu and V.F. Oystaeyen, Methods of Graded Rings, LNM 1836, Springer-Verlag, Berlin-Heidelberg, 2004.
- [9] S.H. Payrovi and S. Babaei, On 2-absorbing submodules, Algebra Collq. 19, 913-920, 2012.
- [10] S.H. Payrovi and S. Babaei, On the 2-absorbing ideals, Int. Math. Forum 7 (6), 265-271, 2012.
- [11] S.H. Payrovi and S. Babaei, On the 2-absorbing ideals in commutative rings, Bull. Malays. Math. Soc. 23, 1511-1526, 2013.
- [12] P.Jr. Quartaro and H.S. Butts, *Finite unions of ideals and modules*, Proc. Amer. Math. Soc. 52, 91-96, 1975.
- [13] M. Refai and K. Al-Zoubi, On graded primary ideals, Turk. J. Math. 28 (3), 217-229, 2004.
- [14] A. Yousefian-Darani and F. Soheilnia, 2-absorbing and weakly 2-absorbing submodules, Thai J. Math. 9 (3), 577-584, 2011.