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Abstract
In this paper, we introduce and study graded 2-absorbing and graded weakly 2-absorbing
ideals of a graded ring which are different from 2-absorbing and weakly 2-absorbing ideals.
We give some properties and characterizations of these ideals and their homogeneous
components. We investigate graded (weakly) 2-absorbing ideals of R1 × R2 where R1 and
R2 are two graded rings.
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1. Introduction
Throughout this paper, all rings are assumed to be commutative with identity elements.

The concept of 2-absorbing ideal was introduced by Badawi in [4] as a generalization of
the notion of prime ideal and studied in [1], [10], [11]. Let R be a ring. A proper ideal I
of R is called a 2-absorbing ideal of R if whenever a, b, c ∈ R with abc ∈ I, then ab ∈ I
or ac ∈ I or bc ∈ I. Weakly prime ideals are also generalizations of prime ideals. Recall
from [2] that a proper ideal I of R is called a weakly prime ideal if whenever 0 ̸= ab ∈ I,
then a ∈ I or b ∈ I. The concept of weakly prime ideal was generalized to the concept of
weakly 2-absorbing ideal in [5]. A proper ideal I of R is said to be a weakly 2-absorbing
ideal of R if whenever 0 ̸= abc ∈ I, then ab ∈ I or ac ∈ I or bc ∈ I.

In this paper, we introduce and study graded 2-absorbing and graded weakly 2-absorbing
ideals of graded rings. First, we recall some basic properties of graded rings and modules
which will be used in the sequel. We refer to [7] and [8] for these basic properties and more
information on graded rings and modules. Let G be a multiplicative group and e denote
the identity element of G. A ring R is called a graded ring (or G-graded ring) if there
exist additive subgroups Rg of R indexed by the elements g ∈ G such that R = ⊕g∈GRg

and RgRh ⊆ Rgh for all g, h ∈ G. If the inclusion is an equality, then the ring R is
called strongly graded. The elements of Rg are called homogeneous of degree g and all
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the homogeneous elements are denoted by h(R), i.e. h(R) = ∪g∈GRg. If x ∈ R, then x
can be written uniquely as Σg∈Gxg, where xg is called homogeneous component of x in
Rg. Moreover, Re is a subring of R and 1 ∈ Re. Also, if r ∈ Rg and r is a unit, then
r−1 ∈ Rg−1. A G-graded ring R = ⊕g∈GRg is called a crossed product if Rg contains a
unit for every g ∈ G. Note that a G-crossed product R = ⊕g∈GRg is a strongly graded
ring (see [8, 1.1.2. Remark]).

Let R = ⊕
g∈G

Rg be a G-graded ring. An ideal I of R is said to be a graded ideal if

I = ⊕g∈G(I ∩ Rg) := ⊕g∈GIg. If I is a graded ideal of R, then the quotient ring R/I is
a G-graded ring. Indeed, R/I = ⊕

g∈G
(R/I)g where (R/I)g = {x + I : x ∈ Rg}. A proper

graded ideal P of R is said to be a graded prime ideal (or gr-prime ideal) of R if whenever
a and b are homogeneous elements of R such that ab ∈ P , then either a ∈ P or b ∈ P . A
graded ideal I of R is said to be graded maximal ideal of R if I ̸= R and if J is a graded
ideal of R such that I ⊆ J ⊆ R, then I = J or J = R. Let R1 and R2 be G-graded rings
and R = R1 × R2. Then R is a G-graded ring with h(R) = h(R1) × h(R2).

Let R = ⊕
g∈G

Rg be a G-graded ring. A right R-module M is said to be a graded R-

module (or G-graded R-module) if there exists a family of additive subgroups {Mg}g∈G

of M such that M = ⊕g∈GMg and MgRh ⊆ Mgh for all g, h ∈ G. Also if an element of M
belongs to ∪g∈GMg = h(M), then it is called homogeneous. Note that Mg is an Re-module
for every g ∈ G. So, if I = ⊕g∈GIg is a graded ideal of R, then Ig is an Re-module for
every g ∈ G.

In this article, we define graded (weakly) 2-absorbing ideals of a graded ring. We show
that the set of all graded 2-absorbing ideals and the set of all 2-absorbing graded ideals
need not to be equal in a graded ring (see Example 2.2). According to our definition, every
graded prime ideal is a graded 2-absorbing ideal. But we show that not every graded 2-
absorbing ideal is a graded prime ideal (see Example 2.3). Various properties of graded
(weakly) 2-absorbing ideals and their homogeneous components are considered. We also
define the concept of g-2-absorbing ideal for g ∈ G and prove that if I = ⊕

g∈G
Ig a graded

weakly 2-absorbing ideal of R, then for each g ∈ G, either I is a g-2-absorbing ideal of R
or I3

g = (0) (see Theorem 3.4). We give a number of results concerning graded (weakly)
2-absorbing ideals of R1 × R2 where R1 and R2 are two graded rings (see Theorem 2.12
and Theorems 3.8-3.11).

2. Graded 2-absorbing ideals
Definition 2.1. Let R be a G-graded ring and I be a proper graded ideal of R. I is said
to be a graded 2-absorbing ideal of R if whenever r, s, t ∈ h(R) with rst ∈ I, then rs ∈ I
or rt ∈ I or st ∈ I.

Clearly, every 2-absorbing graded ideal of a graded ring R is also a graded 2-absorbing
ideal. But the next example shows that not every graded 2-absorbing ideal of a graded
ring is a 2-absorbing ideal.

Example 2.2. Let R = Z[i] and G = Z2. Then R is a G-graded ring with R0 = Z and
R1 = iZ. Let I = 6R. Then I is not a 2-absorbing ideal of R. Because 6 = (1+i)(1−i)3 ∈ I
but (1 + i)(1 − i) = 2 ̸∈ I, (1 − i)3 ̸∈ I and (1 + i)3 ̸∈ I. However an easy computation
shows that I is a graded 2-absorbing ideal of R.

It is also clear that every graded prime ideal of a graded ring R is a graded 2-absorbing
ideal. But the next example shows that not every graded 2-absorbing ideal is a graded
prime ideal.



726 K. Al-Zoubi, R. Abu-Dawwas, S. Çeken

Example 2.3. Let F be a field and R = F [x, y]. R is a Z-graded ring with deg(x) =
deg(y) = 1. Let Q = (x2, xy). Then Q is a graded 2-absorbing ideal of R which is not a
graded prime ideal of R.

In [14], the concept of 2-absorbing ideal of a ring was extended to the notion of 2-
absorbing submodule of a module. Let R be a ring and M be an R-module. A proper
submodule N of M is called 2-absorbing, if whenever a, b ∈ R, m ∈ M and abm ∈ N ,
then am ∈ N or bm ∈ N or ab ∈ (N :R M).
Theorem 2.4. Let R be a G-graded ring and I = ⊕g∈GIg be a graded ideal of R. Then
the following hold.

(1) If I is a graded 2-absorbing ideal of R, then Ig is a 2-absorbing submodule of the
Re-module Rg for every g ∈ G with Ig ̸= Rg.

(2) If R is a crossed product and Ie is a 2-absorbing ideal of Re, then I is a graded
2-absorbing ideal of R.
Proof. (1) Let g ∈ G and Ig ̸= Rg. Assume that r, s ∈ Re and t ∈ Rg with rst ∈ Ig.
Since I is a graded 2-absorbing ideal of R, we have, rs ∈ I or rt ∈ I or st ∈ I. If rs ∈ I,
then rs ∈ (Ig :Re Rg). If st ∈ I or rt ∈ I, then st ∈ Ig or rt ∈ Ig, respectively. This shows
that Ig is a 2-absorbing Re-submodule of Rg.

(2) Clearly, I ̸= R. First we show that if Ie is a 2-absorbing ideal of Re, then Ig is a
2-absorbing submodule of the Re-module Rg for every g ∈ G. Let g ∈ G. If Ig = Rg, then
it can be easily seen that Ie = Re, a contradiction. So Ig ̸= Rg. Let a, b ∈ Re, c ∈ Rg such
that abc ∈ Ig. Let d be a unit in Rg−1 . Then ab(cd) ∈ Ie. Since Ie is a 2-absorbing ideal
of Re, we have ab ∈ Ie or a(cd) ∈ Ie or b(cd) ∈ Ie. If ab ∈ Ie, then ab ∈ (Ig :Re Rg). If
a(cd) ∈ Ie or b(cd) ∈ Ie, then ac ∈ I or bc ∈ I, respectively.

Now, let r, s, t ∈ h(R) with rst ∈ I. There exist g, h, σ ∈ G such that r ∈ Rg, s ∈ Rh

and t ∈ Rσ. Also, Rg−1 contains a unit, say r′ and Rh−1 contains a unit, say s′. It follows
that (rr′)(ss′)t ∈ Iσ. Since Iσ is a 2-absorbing submodule of the Re-module Rσ, we have
(rr′)t ∈ Iσ or (ss′)t ∈ Iσ or (rr′)(ss′) ∈ (Iσ :Re Rσ). If (rr′)t ∈ Iσ or (ss′)t ∈ Iσ, then
rt ∈ I or st ∈ I, respectively. If (rr′)(ss′) ∈ (Iσ :Re Rσ), then rs(r′s′)Rσ ∈ Iσ. Since R
is strongly graded, rs(r′s′) ∈ Ie, this implies that rs ∈ I. Thus I is a graded 2-absorbing
ideal of R. �

The graded radical of a graded ideal I, denoted by Gr(I), is the set of all x =
∑

g∈G xg ∈
R such that for each g ∈ G there exists ng ∈ Z+ with x

ng
g ∈ I. Note that, if r is a

homogeneous element, then r ∈ Gr(I) if and only if rn ∈ I for some n ∈ Z+ [13].
Lemma 2.5. Let R be a G-graded ring and I be a graded 2-absorbing ideal of R. Then
Gr(I) is a graded 2-absorbing ideal of R and a2 ∈ I for every a ∈ h(Gr(I)).
Proof. Let a ∈ h(Gr(I)). Then ak ∈ I for some k ∈ N. Since I is graded 2 absorbing,
a2 ∈ I.

Now, let r, s, t ∈ h(R), and rst ∈ Gr(I), then (rst)n ∈ I for some n ∈ Z+. Since I
is a graded 2-absorbing ideal, we have (rst)2 = r2s2t2 ∈ I and hence r2s2 = (rs)2 ∈ I
or r2t2 = (rt)2 ∈ I or s2t2 = (st)2 ∈ I. Thus, rs ∈ Gr(I) or rt ∈ Gr(I) or st ∈ Gr(I).
Therefore Gr(I) is graded 2-absorbing ideal. �
Proposition 2.6. Let R be a G-graded ring and I be a graded ideal of R such that
Gr(I) ̸= I and Gr(I) is a graded prime ideal of R. If (I : x) is a graded prime ideal of R
for all x ∈ h(Gr(I)) − h(I), then I is a graded 2-absorbing ideal of R.
Proof. Let r, s, t ∈ h(R) with rst ∈ I. Since I ⊆ Gr(I) and Gr(I) is a graded prime
ideal, we have r ∈ Gr(I) or s ∈ Gr(I) or t ∈ Gr(I). We may assume that r ∈ Gr(I). If
r ∈ I, then rs ∈ I and we are done. So, assume that r ∈ Gr(I) − I. Then by assumption
(I : r) is a graded prime ideal and since st ∈ (I : r), either s ∈ (I : r) or t ∈ (I : r). Hence
rs ∈ I or tr ∈ I. Thus, I is graded 2-absorbing ideal. �
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Recall that a proper graded ideal I of a graded ring R is said to be a graded irreducible
ideal if whenever J1 and J2 are graded ideals of R with I = J1

∩
J2, then either I = J1 or

I = J2 [13].

Theorem 2.7. Let R be a G-graded ring and I be a graded irreducible ideal of R such
that Gr(I) = P is a graded prime ideal of R. If P 2 ⊆ I and (I : x) = (I : x2) for all
x ∈ h(R) − P , then I is a graded 2-absorbing ideal of R.

Proof. Suppose that P 2 ⊆ I and (I : x) = (I : x2) for all x ∈ h(R) − P . Let a, b, c ∈ h(R)
with abc ∈ I. Assume that ab /∈ I. Since P 2 ⊆ I, either a /∈ P or b /∈ P . So, we may
assume that (I : a) = (I : a2). Let J1 = I + Rac and J2 = I + Rbc. Then J1 and J2
are graded ideals of R containing I. Now, we show that I = J1

∩
J2. Let s ∈ J1

∩
J2.

Then we can write s = i1 + r1ac = i2 + r2bc for some i1, i2 ∈ I and for some r1, r2 ∈ R
and then as = ai1 + r1a2c = ai2 + r2abc. Since abc ∈ I, as ∈ I and hence r1a2c ∈ I.
Since (I : a) = (I : a2), r1ac ∈ I and hence s ∈ I. Thus I = J1

∩
J2. Since I is graded

irreducible, either I = J1 or I = J2 and hence either ac ∈ I or bc ∈ I. Therefore, I is a
graded 2-absorbing ideal of R. �

Recall that a proper graded ideal I of a graded ring R is said to be a graded primary
ideal if whenever r, s ∈ h(R) with rs ∈ I, either r ∈ I or s ∈ Gr(I) [13].

Lemma 2.8. [13, Lemma 1.8] Let R be a G-graded ring and I be a graded primary ideal of
R. Then P = Gr(I) is a graded prime ideal of R, and we say that I is a graded P -primary
ideal of R.

Lemma 2.9. [13, Corollary 1.12] Let R be a G-graded ring and M be a graded maximal
ideal of R. Then, for any positive integer n, Mn is a graded M -primary ideal of R.

Proposition 2.10. Let R be a G-graded ring and I a graded primary ideal of R such that
(Gr(I))2 ⊆ I. Then I is a graded 2-absorbing ideal of R.

Proof. Let r, s, t ∈ h(R) with rst ∈ I. Assume st /∈ I. If r ∈ I, then we are done, so
assume that r /∈ I. Since I is a graded primary ideal, r ∈ Gr(I) and st ∈ Gr(I). Since
Gr(I) is a graded prime ideal, r, s ∈ Gr(I) or r, t ∈ Gr(I). Since (Gr(I))2 ⊆ I, rs ∈ I or
rt ∈ I. �

Corollary 2.11. Let R be a G-graded ring and M a graded maximal ideal of R. Then
M2 is a graded 2-absorbing ideal of R.

Proof. By Lemma 2.9, M2 is a graded primary ideal of R such that Gr(M2) = M . Hence
M2 is a graded 2-absorbing ideal by Proposition 2.10. �

Theorem 2.12. Let R1 and R2 be two graded rings, and let I be a proper graded ideal of
R1. Then I is a graded 2-absorbing ideal of R1 if and only if I ×R2 is a graded 2-absorbing
ideal of R1 × R2.

Proof. Suppose that I is a graded 2-absorbing ideal of R1 and let (a1, b1)(a2, b2)(a3, b3) =
(a1a2a3, b1b2b3) ∈ I×R2 for some a1, a2, a3 ∈ h(R1) and b1, b2, b3 ∈ h(R2). Since a1a2a3 ∈ I
and I is a graded 2-absorbing ideal of R1, we have a1a2 ∈ I or a1a3 ∈ I or a2a3 ∈ I.
Hence, (a1, b1)(a2, b2) ∈ I × R2 or (a1, b1)(a3, b3) ∈ I × R2 or (a2, b2)(a3, b3) ∈ I × R2.
Thus I × R2 is a graded 2-absorbing ideal of R1 × R2. Conversely, suppose that I × R2
is a graded 2-absorbing ideal of R1 × R2, and let a1a2a3 ∈ I for some a1, a2, a3 ∈ h(R1).
Since (a1, 1)(a2, 1)(a3, 1) = (a1a2a3, 1) ∈ I × R2 and I × R2 is a graded 2-absorbing ideal
of R1 × R2, we have (a1, 1)(a2, 1) = (a1a2, 1) ∈ I × R2 or (a1, 1)(a3, 1) = (a1a3, 1) ∈ I × R2
or (a2, 1)(a3, 1) = (a2a3, 1) ∈ I × R2 and hence, a1a2 ∈ I or a1a3 ∈ I or a2a3 ∈ I. Thus I
is a graded 2-absorbing ideal of R1. �
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3. Graded weakly 2-absorbing ideals
Definition 3.1. Let R be a G-graded ring and I be a proper graded ideal of R. I is said
to be a graded weakly 2-absorbing ideal of R if whenever r, s, t ∈ h(R) with 0 ̸= rst ∈ I,
then rs ∈ I or rt ∈ I or st ∈ I.

Clearly, a graded 2-absorbing ideal of a graded ring R is a graded weakly 2-absorbing
ideal. However, since (0) is a graded weakly 2-absorbing ideal of R (by definition), (0)
need not to be a graded 2-absorbing ideal of R.

Proposition 3.2. Let I, P be graded ideals of R with I ⊆ P and P ̸= R. Then the
following hold.

(1) If P is a graded weakly 2-absorbing ideal of R, then P/I is a graded weakly 2-
absorbing ideal of R/I.

(2) If I and P/I are graded weakly 2-absorbing ideals of R and R/I, respectively, then
P is a graded weakly 2-absorbing ideal of R.

Proof. (1) Clearly, P/I ̸= R/I. Let 0 ̸= (r + I)(s + I)(t + I) = rst + I ∈ P/I, where
r, s, t ∈ h(R). Since rst + I ̸= 0, we have rst ̸= 0. Since 0 ̸= rst ∈ P and P is a graded
weakly 2-absorbing ideal of R, we conclude that rs ∈ P or rt ∈ P or st ∈ P . Hence
(r + I)(s + I) ∈ P/I or (r + I)(t + I) ∈ P/I or (s + I)(t + I) ∈ P/I. Thus P/I is a graded
weakly 2-absorbing ideal of R/I.

(2) Clearly, P ̸= R. Let 0 ̸= rst ∈ P, where r, s, t ∈ h(R). Hence (r + I)(s + I)(t + I) =
rst + I ∈ P/I. If rst ∈ I, then rs ∈ I ⊆ P or rt ∈ I ⊆ P or st ∈ I ⊆ P. So we may
assume rst /∈ I and hence rst + I ̸= 0. Since P/I is a graded weakly 2-absorbing ideal
of R/I, we have (r + I)(s + I) = rs + I ∈ P/I or (r + I)(t + I) = rt + I ∈ P/I or
(s + I)(t + I) = st + I ∈ P/I. Hence rs ∈ P or rt ∈ P or st ∈ P. Thus P is a graded
weakly 2-absorbing ideal of R. �
Definition 3.3. Let R = ⊕g∈GRg be a graded ring, I = ⊕g∈GIg be a graded ideal of R
and g ∈ G. We say that I is a (weakly) g-2-absorbing ideal of R if Ig ̸= Rg and whenever
r, s, t ∈ Rg with (0 ̸= rst ∈ I) rst ∈ I, then rs ∈ I or rt ∈ I or st ∈ I.

Theorem 3.4. Let R = ⊕g∈GRg be a graded ring and I = ⊕
g∈G

Ig be a graded weakly

2-absorbing ideal of R. Then, for each g ∈ G, either I is a g-2-absorbing ideal of R or
I3

g = (0).

Proof. It is enough to show that if I3
g ̸= (0) for g ∈ G, then I is a g-2-absorbing ideal

of R. Let rst ∈ I where r, s, t ∈ Rg. If 0 ̸= rst, then rs ∈ I or st ∈ I or rt ∈ I by
the hypothesis. So we may assume that rst = 0. Suppose first that rsIg ̸= (0), then
there exists i ∈ Ig such that rsi ̸= 0. Hence 0 ̸= rs(t + i) = rsi ∈ I. Since I is a
graded weakly 2-absorbing ideal of R, we have rs ∈ I or r(t + i) ∈ I or s(t + i) ∈ I, and
hence rs ∈ I or rt ∈ I or st ∈ I. So we can assume that rsIg = (0). Similarly, we can
assume that rtIg = (0) and stIg = (0). If rI2

g ̸= (0), then there exist a, b ∈ Ig such that
rab ̸= 0. Hence 0 ̸= r(s + a)(t + b) = rab ∈ I. Since I is a graded weakly 2-absorbing
ideal of R, we have r(s + a) ∈ I or r(t + b) ∈ I or (s + a)(t + b) ∈ I and hence rs ∈ I
or rt ∈ I or st ∈ I. So we can assume that rI2

g ̸= (0). Similarly, we can assume that
sI2

g ̸= (0) and tI2
g ̸= (0). Since I3

g ̸= (0), there exist i1, i2, i3 ∈ Ig such that i1i2i3 ̸= 0.
Hence 0 ̸= (r + i1)(s + i2)(t + i3) = i1i2i3 ∈ Ig. Since I is a graded weakly 2-absorbing
ideal of R, we get that (r + i1)(s + i2) ∈ I or (s + i2)(t + i3) ∈ I or (r + i1)(t + i3) ∈ I and
hence rs ∈ I or st ∈ I or rt ∈ I. Therefore, I is a g-2-absorbing ideal of R. �
Corollary 3.5. Let R = ⊕g∈GRg be a graded ring and I = ⊕

g∈G
Ig be a graded weakly

2-absorbing ideal of R such that I is not a g-2-absorbing ideal of R for every g ∈ G. Then
Gr(I) = Gr(0).
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Proof. Clearly, Gr(0) ⊆ Gr(I). By Theorem 3.4, I3
g = (0) for every g ∈ G. This implies

that Gr(I) ⊆ Gr(0). �
Proposition 3.6. Let R = ⊕g∈GRg be a graded ring, P = ⊕g∈GPg be a graded weakly
2-absorbing ideal of R and g ∈ G. Then, for a, b ∈ Rg with ab ∈ Rg2 − Pg2, we have
(Pg2 :Re ab) = (Pg :Re a) or (Pg2 :Re ab) = (Pg :Re b) or (Pg2 :Re ab) = (0 :Re ab) or
(Pg2 :Re ab)3 ⊆ (Pg :Re a) ∩ (Pg :Re b) ∩ (0 :Re ab).

Proof. First, we show that (Pg2 :Re ab) = (Pg :Re a) ∪ (Pg :Re b) ∪ (0 :Re ab). Clearly,
(Pg :Re a) ∪ (Pg :Re b) ∪ (0 :Re ab) ⊆ (Pg2 :Re ab). Let c ∈ (Pg2 :Re ab). Then cab ∈ Pg2 . If
cab = 0, then c ∈ (0 :Re ab). If cab ̸= 0, then we have ca ∈ P or cb ∈ P by the hypothesis.
It follows that c ∈ (Pg :Re a) ∪ (Pg :Re b).Thus (Pg2 :Re ab) = (Pg :Re a) ∪ (Pg :Re

b) ∪ (0 :Re ab). According to [6, Theorem 1] and its proof (Pg2 :Re ab) is contained in the
union of any two of these ideals or (Pg2 :Re ab)3 ⊆ (Pg :Re a) ∩ (Pg :Re b) ∩ (0 :Re ab).
In the first case, (Pg2 :Re ab) is contained in one of these ideals and this implies that
(Pg2 :Re ab) = (Pg :Re a) or (Pg2 :Re ab) = (Pg :Re b) or (Pg2 :Re ab) = (0 :Re ab). �

Recall that a ring in which every finitely generated ideal is principal is called a Bezout
ring.

Corollary 3.7. Let R = ⊕g∈GRg be a graded ring such that Re is a Bezout ring, P =
⊕g∈GPg be a graded weakly 2-absorbing ideal and g ∈ G. Then, for a, b ∈ Rg with ab ∈
Rg2 − Pg2, we have (Pg2 :Re ab) = (Pg :Re a) or (Pg2 :Re ab) = (Pg :Re b) or (Pg2 :Re ab) =
(0 :Re ab).

Proof. In the proof of Proposition 3.6, we showed that (Pg2 :Re ab) = (Pg :Re a) ∪ (Pg :Re

b) ∪ (0 :Re ab). By [12, Proposition 1.1], (Pg2 :Re ab) is equal to one of these ideals. �
Theorem 3.8. Let R1 and R2 be two graded rings, and let I1 and I2 be non-zero proper
graded ideals of R1 and R2, respectively. If I1 × I2 is a graded weakly 2-absorbing ideal of
R1 × R2, then I1 and I2 are graded prime ideals of R1and R2, respectively.

Proof. Suppose that I1 × I2 is a graded weakly 2-absorbing ideal of R1 × R2. We show
that I1 is a graded prime ideal of R1. Let r, s ∈ h(R1) with rs ∈ I1 and let 0 ̸= i2 ∈ h(I2).
Hence (0, 0) ̸= (1, i2)(r, 1)(s, 1) = (rs, i2) ∈ I1 × I2. Since I1 × I2 is a graded weakly
2-absorbing ideal of R1 × R2 and (r, 1)(s, 1) = (rs, 1) /∈ I1 × I2, we conclude that either
(1, i2)(r, 1) = (r, i2) ∈ I1 × I2 or (1, i2)(s, 1) = (s, i2) ∈ I1 × I2, and hence either r ∈ I1 or
s ∈ I1. Thus I1 is a graded prime ideal of R1. Similarly, one can show that I2 is a graded
prime ideal of R2. �
Theorem 3.9. Let R1 and R2 be two graded rings, and let I1 and I2 be non-zero proper
graded ideals of R1 and R2, respectively. Then I1 × I2 is a graded weakly 2-absorbing ideal
of R1 × R2 if and only if I1 × I2 is a graded 2-absorbing ideal of R1 × R2.

Proof. Suppose that I1 × I2 is a graded weakly 2-absorbing ideal of R1 × R2 . We show
that I1 ×I2 is a graded 2-absorbing ideal of R1 ×R2. Suppose that (a1, b1)(a2, b2)(a3, b3) =
(a1a2a3, b1b2b3) ∈ I1 × I2 for some a1, a2, a3 ∈ h(R1) and for some b1, b2, b3 ∈ h(R2).
By Theorem 3.8, we conclude that I1 and I2 are graded prime ideals of R1 and R2,
respectively. Since I1 is a graded prime ideal of R1 and a1a2a3 ∈ I1, we have a1 ∈ I1
or a2 ∈ I1 or a3 ∈ I1. We may assume a1 ∈ I1. Since I2 is a graded prime ideal of
R2 and b1b2b3 ∈ I2, we have b1 ∈ I2 or b2 ∈ I2 or b3 ∈ I2. We may assume b2 ∈ I2.
Hence (a1, b1)(a2, b2) = (a1a2, b1b2) ∈ I1 × I2. Thus I1 × I2 is a graded 2-absorbing ideal
of R1 × R2. The converse is clear. �

Let R be a G-graded ring and P be a proper graded ideal of R. Recall from [3] that P
is said to be a graded weakly prime ideal of R if whenever a, b ∈ h(R) and 0 ̸= ab ∈ P ,
then either a ∈ P or b ∈ P .
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Theorem 3.10. Let R1 and R2 be two graded rings, and let I be a nonzero proper graded
ideal of R1. Then I × (0) is a graded weakly 2-absorbing ideal of R1 × R2 if and only if I
is a graded weakly prime ideal of R1 and (0) is a graded prime ideal of R2.

Proof. Suppose that I × (0) is a graded weakly 2-absorbing ideal of R1 × R2. First, we
show that I is a graded weakly prime ideal of R1. Let r, s ∈ h(R1) with 0 ̸= rs ∈ I.
Hence (0, 0) ̸= (r, 1)(s, 1)(1, 0) = (rs, 0) ∈ I × (0). Since I × (0) is a graded weakly 2-
absorbing ideal of R1 × R2 and (r, 1)(s, 1) = (rs, 1) /∈ I × (0), we conclude that either
(r, 1)(1, 0) = (r, 0) ∈ I × (0) or (s, 1)(1, 0) = (s, 0) ∈ I × (0) and hence either r ∈ I
or s ∈ I. Thus I is a graded weakly prime ideal of R1. Now, we show that (0) is a
graded prime ideal of R2. Let r, s ∈ h(R2) with rs ∈ (0), and let 0 ̸= i ∈ h(I). Hence
(0, 0) ̸= (i, rs) = (i, 1)(1, r)(1, s) ∈ I×(0). Since I×(0) is a graded weakly 2-absorbing ideal
of R1 ×R2 and (1, r)(1, s) = (1, rs) /∈ I × (0), we conclude that (i, 1)(1, r) = (i, r) ∈ I × (0)
or (i, 1)(1, s) = (i, s) ∈ I × (0) and hence either r ∈ (0) or s ∈ (0). Thus (0) is a graded
prime ideal of R2. Conversely, assume that I is a graded weakly prime ideal of R1 and (0)
is a graded prime ideal of R2. We show that I × (0) is a graded weakly 2-absorbing ideal
of R1 × R2. Suppose that (0, 0) ̸= (a1, b1)(a2, b2)(a3, b3) = (a1a2a3, b1b2b3) ∈ I × (0) for
some a1, a2, a3 ∈ h(R1) and for some b1, b2, b3 ∈ h(R2). Since I is a graded weakly prime
ideal of R1 and 0 ̸= a1a2a3 ∈ I, we conclude that at least one of the ai’s is in I, say a1.
Since (0) is a graded prime ideal of R2 and b1b2b3 ∈ (0), we conclude that at least one of
the bi’s is in (0), say b2 = 0. Hence (a1, b1)(a2, b2) = (a1a2, 0) ∈ I × (0). Thus I × (0) is a
graded weakly 2-absorbing ideal of R1 × R2. �
Theorem 3.11. Let R1 and R2 be two graded rings, and let I1 be a nonzero proper graded
ideal of R1, and I2 be a proper graded ideal of R2. Then I1 × I2 is a graded weakly 2-
absorbing ideal of R1 × R2 that is not a graded 2-absorbing ideal if and only if I2 = (0) is
a graded prime ideal of R2 and I1 is a graded weakly prime ideal of R1 that is not a graded
prime ideal.

Proof. Assume that I1 × I2 is a graded weakly 2-absorbing ideal of R1 × R2 that is not a
graded 2-absorbing ideal. Theorem 3.9 implies that I2 = (0). By Theorem 3.10, I2 = (0) is
a graded prime ideal of R2 and I1 is a graded weakly prime ideal of R1. Now suppose that
I1 is a graded prime ideal of R1. Then I1 ×I2 is a graded 2-absorbing ideal by the proof of
Theorem 3.9 which contradicts the assumption. Thus I1 is not a graded prime ideal of R1.
Conversely, suppose that I1 is a graded weakly prime ideal of R1 that is not a graded prime
ideal and I2 = (0) is a graded prime ideal of R2. By Theorem 3.10, I1 × I2 is a graded
weakly 2-absorbing ideal of R1×R2. Now, we show that I1×(0) is not a graded 2-absorbing
ideal of R1 × R2. Since I1 is a graded weakly prime ideal of R1, that is not a graded prime
ideal, we conclude that there exist r, s ∈ h(R) such that rs = 0 ∈ I1 and neither r ∈ I1 nor
s ∈ I1. We get that (r, 1)(s, 1)(1, 0) = (rs, 0) ∈ I1 × (0) but (r, 1)(s, 1) = (rs, 1) ̸∈ I1 × (0)
and (r, 1)(1, 0) = (r, 0) ̸∈ I1 × (0) and (s, 1)(1, 0) = (s, 0) ̸∈ I1 × (0). This shows that
I1 × (0) is not a graded 2-absorbing ideal of R1 × R2. �
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