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Abstract. We study gradient Ricci solitons with maximal symmetry. First
we show that there are no non-trivial homogeneous gradient Ricci solitons.
Thus the most symmetry one can expect is an isometric cohomogeneity one
group action. Many examples of cohomogeneity one gradient solitons have
been constructed. However, we apply the main result in [21] to show that
there are no noncompact cohomogeneity one shrinking gradient solitons with
nonnegative curvature.

1. Introduction

The goal of this paper is to study how symmetries can yield rigidity of a gradient
Ricci soliton together with weaker conditions than we used in [21]. Recall that a
Ricci soliton is a Riemannian metric together with a vector �eld (M; g;X) that
satis�es

Ric +
1

2
LXg = �g:

It is called shrinking when � > 0; steady when � = 0, and expanding when � < 0.
In case X = rf the equation can also be written as

Ric + Hessf = �g

and is called a gradient (Ricci) soliton. A gradient soliton is rigid if it is isometric
to a quotient of N � Rk where N is an Einstein manifold and f = �

2 jxj
2 on the

Euclidean factor. Throughout this paper we will also assume that our metrics
have bounded curvature. Shi�s estimates for the Ricci �ow then imply that all the
derivatives of curvature are also bounded (see Chapter 6 of [6]).
First we show that all gradient solitons with maximal symmetry are rigid.

Theorem 1.1. All homogeneous gradient Ricci solitons are rigid.

This is in sharp contrast to the more general Ricci solitons that exist on many
Lie groups and other homogeneous spaces see [1, 14, 15]. It also shows that the
maximal amount of symmetry we can expect on a nontrivial gradient soliton is
a cohomogeneity 1 action that leaves f invariant. Particular cases, such as the
rotationally symmetric case on Rn and the U(n) invariant case on certain Kähler
manifolds, have been studied extensively and many interesting examples have been
found, see e.g. [4, 5, 7, 9, 11, 12, 13, 26, 27]. In particular, Kotschwar [13] has
shown that the only rotationally symmetric shrinking gradient soliton metrics on
Sn; Rn; and Sn�1�R are the rigid ones and Feldman, Ilmanen, and Knopf [9] have
proven that the only U(n) invariant shrinking soliton on Cn is the �at metric. No
curvature assumption is required for these results. On the other hand, there are
non-rigid complete noncompact U(n) invariant gradient shrinking solitons [7, 9, 27].
These examples show that some other assumption is necessary in general to prove
rigidity. Here we show that nonnegative curvature su¢ ces.
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Theorem 1.2. All complete noncompact shrinking gradient solitons of cohomo-
geneity 1 with nonnegative Ricci curvature and sec (E;rf) � 0 are rigid.
Recently Naber [16], building on work of Ni and Wallach [19], has shown that

every 4-dimensional complete shrinking soliton with nonnegative curvature operator
is rigid. (This was proven in dimensions 2 and 3 by Hamilton [10] and Perelman
[20] respectively.) Theorem 1.2 o¤ers further evidence this result extends to higher
dimensions. In fact, in the proof all we use about cohomogeneity one is a much
weaker condition on f we call recti�ability which we will discuss in section 3. (Also
recall that the work of Böhm and Wilking [3] implies that every compact shrinking
gradient Ricci soliton with nonnegative curvature operator is a quotient of the round
sphere.) For other recent results concerning the classi�cation of gradient shrinking
solitons see [8, 17, 18, 22, 23, 25].
The famous Bryant soliton (see [11]) and the examples in [5] show that there

are non-rigid rotationally symmetric steady and expanding gradient solitons with
positive curvature operator.

2. Killing Fields on Gradient Solitons

In this section we establish a splitting theorem involving Killing �elds on a
gradient soliton which leads to Theorem 1.1. The main observation is the following.

Proposition 1. If X is a Killing �eld on a gradient soliton, then rDXf is parallel.
Moreover, if � 6= 0 and rDXf = 0 then also DXf = 0:
Proof. We have that LXg = 0; thus LXRic = 0 and hence

0 = LXHessf

= HessLXf

= HessDXf

this proves the �rst claim.
Next note that if rDXf = 0; then DXf is constant. Thus f � X (t) : R! R is

onto if X is an integral curve for X and DXf doesn�t vanish.
On the other hand recall that the soliton equation implies that

scal + jrf j2 � 2�f = const
So if the scalar curvature is bounded we see that f must either be bounded from
below or above and hence DXf = 0: �
This shows that either DXf = 0 or the metric splits o¤ a Euclidean factor. One

might worry that the soliton structure may not also split, however the next lemma
shows this is not an issue.

Lemma 2.1. If a gradient soliton splits (M; g) = (M1 �M2; g1 + g2) as a Rie-
mannian product, then f (x1; x2) = f1 (x1) + f2 (x2) also splits in such a way that
each (Mi; gi; fi) is a soliton

Ricgi +Hessfi = �gi

Proof. Use the (1; 1) version of the soliton equation

Ric +rrf = �I
to see that the operator E ! rErf preserves the manifold splitting as the Ricci
curvature preserves the splitting. This can be used to �rst split the gradient rf:
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To see how, use local coordinates xj such x1; :::; xm are coordinates on M1 and
xm+1; :::; xn coordinates on M2. The splitting of the metric then implies that

r@i@j = 0

if i � m and j � m+ 1 or i � m = 1 and j � m: If we write rf = �j@j ; then

r@irf = r@i�j@j
=

�
@i�

j
�
@j + �

jr@i@j :

If we assume that i � m then

r@irf 2 TM1;

�jr@i@j 2 TM1

showing that @i�j = 0 for j � m + 1: Similarly @i�j = 0 when i � m + 1 and
j � m: This shows that

rf = X1 +X2
where Xi are vector �elds on Mi: We then see that

Xi = rfi

where

f1 (x1) = f (x1; q) ;

f2 (x2) = f (p; x2)� f (p; q)

for some �xed point (p; q) 2M1 �M2: �

Note that the splitting of the metric implies

R (�;rf)rf = R1 (�;rf1)rf1 +R2 (�;rf2)rf2

So if, say, M2 is �at then the radial curvatures of M and M1 are the same.
This implies the reduction result alluded to above.

Corollary 1. If X is a Killing �eld on a gradient soliton, then either DXf = 0 or
we have an isometric splitting M = N � R where N is a gradient soliton with the
same radial curvatures as M:

Intuitively, Corollary 1 says that if the metric of a gradient soliton has some
symmetry, then the only way f can break the symmetry is by splitting o¤a Gaussian
factor. With this fact we can prove the result for homogeneous solitons.

Theorem 2.2. All homogeneous gradient solitons are rigid.

Proof. In case the soliton is steady this is a consequence of the scalar curvature
being constant and hence M is Ricci �at.
When the soliton is expanding or shrinking splitM = N�Rk such thatN doesn�t

have any �at de Rham factors. If G acts transitively on M it also acts transitively
on each of the two factors as isometries preserve the �at de Rham factor.
The previous lemma and corollary now tell us that all Killing �elds on N must

leave f1 invariant. Thus N can�t be homogeneous unless f1 is trivial. �
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3. Rectifiability

In this section we prove the result for cohomogeneity one and more general
recti�able gradient solitons.
We say that a function u is recti�able if it can be written as u = h (r) where r is

a distance function. It is easy to check that a function is recti�able if and only if its
gradient ru has constant length on the level sets of u: We will say that a gradient
soliton (M; g; f) is recti�able if the function f is recti�able on (M; g).
It is easy to see that a gradient soliton with a cohomogeneity 1 group action that

leaves f invariant is recti�able. Assume that G is such a isometric group action.
This gives us a distance function

r :M !M=G � R
(locally if G is noncompact) and f = h (r) as f is constant on the orbits of the
action. Similarly the scalar curvature is also recti�able with respect to r:
We note the following interesting properties of recti�able solitons.

Proposition 2. If (M; g; f) is a recti�able gradient soliton with f = h(r) then
scal, �f , and �r are also recti�able. In particular, Ric(rf;rf) = 0 if and only if
(M; g) has constant scalar curvature.

Proof. If f is recti�able, then jrf j is also recti�able so the equation
scal + jrf j2 � 2�f = const

implies that the scalar curvature is recti�able.
Tracing the soliton equation then gives

scal = �n��f;
so �f is recti�able. Since f is recti�able we can write

�f = h00(r) + h0(r)�r

so �f recti�able implies that �r is also recti�able.
Now since scal and f are recti�able rscal = Ric(rf) is proportional to rf ,

proving the last statement. �

The main result from [21] now shows that a recti�able gradient soliton is rigid
if and only if it is radially �at. We note that, in the case of cohomogeneity one,
radial �atness, even without the soliton equation, is already quite restrictive.

Theorem 3.1. A radially �at cohomogeneity 1 space coming from a compact action
is a �at bundle.

Proof. Let r : M ! R be the distance function coming from the quotient M !
M=G: It is smooth except at the singular orbits. The singular orbits correspond to
the minimum and/or maximum of r if they exist.
Let Sr = rrr; then

rrrSr + S2r = 0
This means that Sr is completely determined by the singular orbits where Sr ! 0
on vectors tangent to the singular orbit and Sr ! 1 on vectors normal to the
singular orbit and perpendicular to rr:
If there are no singular orbits, then Sr = 0 is the only possibility as all other

solutions blow up in �nite time going forwards or backwards. Thus the space splits.
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If r has a minimum set, then solutions that start out being zero stay zero, while
the other solutions that start out being 1 decay to zero. As they never become
zero the space is noncompact. We see that the space must then be a �at bundle
N �� Rk where N=� is the singular orbit. �

We now turn our attention to proving rigidity for recti�able shrinking solitons
with nonnegative radial curvature.

Proposition 3. Let (M; g) be a Riemannian manifold and r :M ! [0;1) a proper
distance function that is smooth outside a compact set. If sec (E;rr) � 0; then r
is convex outside a compact set.

Proof. De�ne Sr = rrr and use that it solves the equation
rrrSr = �S2r �R (�;rr)rr:

As E ! R (E;rr)rr is assumed to be nonnegative we see that if Sr has a neg-
ative eigenvalue somewhere, then it will go to �1 before r reaches in�nity. This
contradicts that r is smooth. �

Lemma 3.2. Let (M; g; f) be a noncompact nontrivial shrinking gradient soliton
with recti�able and proper f . If the radial curvatures, sec (E;rf) are nonnegative,
then f is convex at in�nity.

Proof. Since f is recti�able: f = h (r) ; where r :M ! [0;1) is a distance function
that is smooth outside a compact set. Since f and r have proportional gradients,
rf = h0rr; our curvature assumption guarantees that r is convex at in�nity.
First note that the equation

scal + jrf j2 � 2�f = const
shows that jrf j ! 1 as scal is bounded and f is proper, i.e., jf j ! 1: In particular
h0 > 0 outside a compact set.
De�ne Sf = rrf and Sr = rrr; they are related by

Sf = rrf
= h00dr 
rr + h0rrr
= h00dr 
rr + h0Sr

The soliton equation shows that

Ric (rr;rr) + h00 = �
Since Ric (rr;rr) is nonnegative this shows that h00 � �.
Next we claim that Ric (rr)! 0 as r !1: This follows from the formula

Ric (rr) = �Ric (rf)jrf j

= �1
2

rscal
jrf j

where we note that rscal is bounded and jrf j ! 1 at in�nity.
Thus

Sf (rr) = h00rr � �rr
at in�nity. This proves that outside some large compact set h00 � �=2 and h0 > 0:
Thus f is convex outside a compact set. �
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Theorem 3.3. A complete, noncompact, recti�able, shrinking gradient soliton with
nonnegative radial sectional curvature, and nonnegative Ricci curvature is rigid.

Proof. Let f = h(r). Since we have a shrinking gradient Ricci soliton with bounded
nonnegative curvature f is proper [20]. Therefore, the previous lemmas show that
f and r are proper and convex outside a compact set. This implies that Ric � �g
outside a compact set. De�ne �f = ��Drf to be the f -Laplacian, then (see [21])

�f scal = tr (Ric � (�I � Ric))
So Ric � �g outside a compact set implies

�f scal � 0
outside a set 
R = fx 2M : r � Rg : We also know that scal is increasing along
gradient curves for rf as

Drf scal = 2Ric (rf;rf) � 0:
If

sR = min
p2@
R

scalp

then the function
u = max fscal; sRg

satis�es
�fu � 0

From Theorem 4.2 in [22] it follows that u is constant (also see [24]). This shows
that scal = sR on M � 
R: Since (M; g) is analytic (see [2]) the scalar curvature
is constant on all of M: This in turn shows that Ric (rf;rf) = 0 everywhere and
hence sec(E;rf) � 0 implies that (M; g) is radially �at. The main theorem from
[21] then shows that M is rigid. �
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