
 

 

 

On Granger-causality and the effect of interventions in
time series
Citation for published version (APA):

Eichler, M., & Didelez, V. (2009). On Granger-causality and the effect of interventions in time series.
METEOR, Maastricht University School of Business and Economics. METEOR Research Memorandum
No. 003 https://doi.org/10.26481/umamet.2009003

Document status and date:
Published: 01/01/2009

DOI:
10.26481/umamet.2009003

Document Version:
Publisher's PDF, also known as Version of record

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can
be important differences between the submitted version and the official published version of record.
People interested in the research are advised to contact the author for the final version of the publication,
or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these
rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above,
please follow below link for the End User Agreement:

www.umlib.nl/taverne-license

Take down policy
If you believe that this document breaches copyright please contact us at:

repository@maastrichtuniversity.nl

providing details and we will investigate your claim.

Download date: 25 Aug. 2022

https://doi.org/10.26481/umamet.2009003
https://doi.org/10.26481/umamet.2009003
https://cris.maastrichtuniversity.nl/en/publications/38480412-0c31-490b-b919-5bb7b6c2d74d


Michael Eichler, Vanessa Didelez 
 
On Granger-causality and the 
effect of interventions in time 
series 
 
RM/09/003 



ON GRANGER–CAUSALITY AND THE EFFECT OF
INTERVENTIONS IN TIME SERIES

Michael Eichler and Vanessa Didelez

University of Maastricht and University of Bristol

December 3, 2008

Abstract. We combine two approaches to causal reasoning. Granger–causality,
on the one hand, is popular in fields like econometrics, where randomised experi-
ments are not very common. Instead information about the dynamic development
of a system is explicitly modelled and used to define potentially causal relations.
On the other hand, the notion of causality as effect of interventions is predomi-
nant in fields like medical statistics or computer science. In this paper, we consider
the effect of external, possibly multiple and sequential, interventions in a system
of multivariate time series, the Granger–causal structure of which is taken to be
known. We address the following questions: under what assumptions about the
system and the interventions does Granger–causality inform us about the effec-
tiveness of interventions, and when does the possibly smaller system of observable
times series allow us to estimate this effect? For the latter we derive criteria that
can be checked graphically and are in the same spirit as Pearl’s back–door and
front–door criteria (Pearl 1995).

1. Introduction

In epidemiology and related fields, causal inference is predominantly regarded
as a decision problem: one of several treatments can potentially be administered
and the causal question is whether the choice of treatment makes any difference to
some outcome, or typically to the average outcome, and if yes, which is the best
treatment. The word ‘treatment’ is used as a generic term here, it comprises also,
for instance, the manner in which a drug is given (e.g. pills or injection, by a nurse
or by a relative etc.) and does not need to be of medical nature at all (e.g. an
educational programme). Rubin (1974, 1978) stresses that the various treatments
to be compared need to be well defined in the sense that it must be clear how an
individual or object under investigation can potentially receive any of the treatments.
This implies that we must at least in principle be able to conceive of a randomised
study (even if impractical or unethical) where each subject receives a randomly
chosen treatment out of those to be compared. An illuminating discussion of this
issue in the context of a public health application can be found in Hernán and
Taubman (2008). Restricting the definition of a treatment in this way precludes,
in most contexts, investigation of variables like sex or birth weight as potential
causes of a disease, for instance. Robins (1986) also emphasises the importance of
a well defined treatment that could in principle be applied to anyone in the target
population (cf. also Robins et al. 2004), and even formulates the causal target of
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2 M. EICHLER AND V. DIDELEZ

inference in terms of a hypothetical randomised study. A decision theoretic approach
to causality is further strongly advocated by Dawid (2000, 2002), pointing out that
typical assumptions underlying causal inference concern not only the system under
investigation but also the contemplated interventions. The approaches chosen by
these authors are clearly influenced by the kind of applications they have in mind,
for example complex treatment strategies for chronically ill patients, public health
or policy interventions.

In the computer science literature, a ‘treatment’ is instead called an ‘interven-
tion’, formalised as an external manipulation that sets a variable to a specific value
independently of the values of other variables; we will henceforth regard the words
‘treatment’ and ‘intervention’ as interchangeable. Although it is not always explic-
itly required that such interventions should actually be feasible, they are central to
the notion of causality underlying causal diagrams (Spirtes et al. 2001, Pearl 2000).
The qualifier ‘causal’ means specifically that such a diagram, and hence the asso-
ciated model, remains invariant under certain interventions except for those nodes
that represent the variables that are being manipulated. Defining causality in terms
of such treatments or interventions facilitates a formal distinction between associ-
ation and causation, and hence helps to make the assumptions underlying causal
inference explicit. For instance, to assess whether we can estimate the effect of an
intervention from observational (especially non–experimental) data, we can use the
well–known back–door and front–door criteria proposed by Pearl (1995), which de-
rive their names from the graphical rules used to check them on causal diagrams.

The above view of causality has been criticised in at least two respects (Granger
1986, Aalen and Frigessi 2007, Commenges and Gegout-Petit 2007). For one, it can
be argued that some systems, like e.g. cells, economies, climate, or the planetary
system, are driven by causal mechanisms regardless of whether humans can inter-
vene in them, let alone subject the system to (randomised) experiments. Once we
understand their functioning it is up to us to devise suitable ways to exploit the
causal relations to achieve our ends, be it to prevent global warming or future finan-
cial crises, or to eradicate the HI–virus etc. Secondly, much of the above literature,
with exception of Robins’ work who usually considers longitudinal studies, does not
involve any dynamic modelling even though it is almost universally agreed that a
cause has to precede the effect.

It is therefore not a surprise that in non–experimental subjects like econometrics,
and especially in typical application of time series methodology, a different approach
to causality is more popular. Granger (1969, 1980, 1988) proposed a notion of
causality that is based on the following important points: the cause occurs before the
effect and the cause must contain unique (i.e. not otherwise available) information
that helps to predict the effect. Formalising this, he defines that a time series Xa(t)
is causal for another time series Xb(t) if the prediction of Xb(t + 1) based on all
the information in the universe up to time t, I∗(t), is better than the prediction of
Xb(t + 1) based on all that information but without {Xa(s) : s ≤ t}, denoted by
I∗−a(t) (note that it is required that I∗(t) does not contain redundant information,
e.g. the same measurements just on different scales). As I∗(t) is not available in
practice, the corresponding operational definition is based on a multivariate time
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series X(t) = XV (t) = (X1(t), . . . , Xd(t))
′, V = {1, . . . , d}, and the information sets

are given by I(t) = {XV (s) : s ≤ t} and I−a(t) = {XV \{a}(s) : s ≤ t}. Granger
then says that the series Xa(t) is noncausal for the series Xb(t) if the prediction of
Xb(t + 1) is the same for I(t) and I−a(t). If the prediction is in fact better based
on I(t), then Xa(t) is called a prima facie cause of Xb(t). We find it noteworthy,
and often overlooked, that according to Granger, a positive definition of causality
relies on ‘all information in the universe’; without this we only have a definition
of noncausality and of prima facie causality (these will henceforth also be called
Granger–(non)causality). Hence we could ask, when is the reduced information set
I(t) used to replace the impractical I∗(t) sufficient to be confident that a prima
facie cause is a cause. This requires to think about latent (unobservable) processes
or time series and how their presence may induce prima facie causal relations among
the observable processes — some suggestions have been made by Hsiao (1982) and
Eichler (2007, 2008).

It is worth mentioning that the essential idea behind Granger’s approach is of
course not restricted to time series. Analogous definitions have also been given
for dynamic systems in continuous time (Schweder 1970, Aalen 1987, Florens and
Fougère 1996).

As Granger’s definition of causality rests entirely on prediction (even if based on
I∗(t)), it does not imply that replacing the ‘natural’ variation in Xa(t) by some
external manipulation, when possible, will have any effect on the distribution of
Xb(t + 1). In this paper we therefore investigate a combination of the decision the-
oretic approach and Granger’s ideas on causality, building on and expanding some
of our earlier work (Eichler and Didelez 2007). As starting point, we assume that
the structure among the components of a multivariate time series XV (t) is given in
terms of prima facie causes, or noncausal relations in Granger’s sense. Furthermore,
this structure is represented graphically as suggested by Eichler (2001, 2006, 2007).
It can be thought of as describing the natural or unperturbed behaviour of the time
series, which we want to contrast with changes induced by external manipulations
of the system. Hence, the quantity of interest is the effect of an intervention in one
or more components of a multivariate time series at one or more points in time on
the development of these series at a later point in time. We address various aspects
of the connection between Granger–causal relations and effects of interventions. For
instance, we formulate conditions under which Granger–noncausality implies no ef-
fect of an intervention, as well as criteria that allow us to compute the effect of
an intervention possibly based on a subset XS(t) of the original multivariate series,
S ⊂ V . Using the graphical representation mentioned above, it becomes obvious
that these criteria are comparable to the back–door and front–door criteria of Pearl
(1995). The assumptions we make correspond to (extended) stability of Dawid and
Didelez (2005) and are twofold: they concern the system under consideration, i.e.
presence or absence of certain Granger–causal relations, as well as the contemplated
interventions.

The outline of the paper is as follows. We start in Section 2 by formalising
Granger’s approach to causality for multivariate time series, as well as the concept
of interventions and effects thereof. For the latter we follow closely the framework
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proposed by Dawid (2002) and Dawid and Didelez (2005) as it makes the role of
interventions particularly explicit. Section 3 then presents our versions of the back–
door and front–door criteria which enable us to compute effects of interventions from
a subset of the multivariate series, as would be relevant when some of the processes
are in fact latent. How these criteria relate to Granger–(non)causality becomes clear
in Section 4, where we show how they can be verified using an intuitive graphical
representation of Granger–(non)causal structures. We conclude with a discussion of
our results and provide technical details as well as all proofs in an appendix.

2. Causality in Time Series

In this section we formalise the two basic approaches to causality that will be
combined later, Ganger–(non)causality on the one hand and the effect of intervention
on the other hand. Throughout the paper we consider a multivariate stationary time
series X = {X(t), t ∈ �} with X(t) = (X1(t), . . . , Xd(t))

′. Let V be the index set
{1, . . . , d}. For any A ⊆ V we define XA = {XA(t)} as the multivariate subprocess
with components Xa, a ∈ A. Furthermore, XA(t) denotes the history of XA up to
and including t, i.e. the set {XA(s), s ≤ t}. The following regularity assumptions
will be required throughout.

Assumptions.

(T1) X = {X(t), t ∈ �} is a stationary stochastic process on some probability space
(Ω, F ,�).

(T2) The conditional distribution of X(t + 1) given the past X(t), denoted by

�
X(t+1)|X(t), has a regular version that is almost surely absolutely continuous

with respect to some product measure ν on �d with ν-a.e. positive density.

(T3) For all A, B, C ⊆ V , the subprocesses XA and XB are measurably separated
conditionally on XC in the sense that

σ{XA∪C(s), s ≤ t} ∩ σ{XB∪C(s), s ≤ t} = σ{XC(s), s ≤ t}.
For this notion of conditional measurable separability we refer to Florens et al.
(1990).

The above assumptions seem technical but essentially ensure that property (C5)
of conditional independence (Lauritzen, 1996, pp. 29; see also our appendix) holds,
as shown in Eichler (2001).

2.1. Granger–Noncausality

Granger–noncausality was introduced by Granger (1969) and has become a popular
concept not only in econometrics. As mentioned in the introduction, the actual
definition addresses causality but requires to condition on ‘all the information in
the universe’. In line with most of the literature we therefore define Granger–
noncausality for a specific information set given by a multivariate time series. When
a series is not Granger–noncausal we will call it Granger–causal or prima facie cause.
The following definition also formalises contemporaneous (in)dependence, which is
not cast in causal terms as we agree with Granger (1980) that there cannot be
contemporaneous causality.
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Further, we use the notion of strong Granger–noncausality, which is formulated
in terms of conditional independence (instead of uncorrelation) and σ-algebras (e.g.
Florens and Mouchart 1982), where the symbol ⊥⊥ denotes independence (Dawid
1979).

Definition 2.1 (Granger-noncausality). Let A and B be disjoint subsets of V
and let XA, XB be the corresponding subprocesses of X = XV as defined above.

(i) Then XA is (strongly) Granger-noncausal for XB up to horizon h, h ∈ �, with
respect to the process XV if

XB(t + k)⊥⊥XA(t) |XV \A(t)

for all k = 1, . . . , h and t ∈ �.
If the above holds only for h = 1 we simply say that XA is (strongly) Granger-
noncausal for XB with respect to XV , and this will be denoted by XA �

XB [XV ].
If the above holds for all h ∈ � we say that XA is (strongly) Granger-noncausal

for XB at all horizons, and this will be denoted by XA
(∞)
� XB [XV ].

(ii) The processes XA and XB are contemporaneously independent with respect to
the process XV if

XA(t + 1)⊥⊥XB(t + 1) |XV (t)

for all t ∈ �. This will be denoted by XA � XB [XV ].

Strong Granger–noncausality means that the past of XA up to time t does not help
to predict the distribution of XB at the next point in time t + 1 given information
about the past of all the remaining components of XV (including XB’s past). In
contrast, strong Granger–noncausality at all horizons implies that this holds not only
for the one-step prediction but for any time in the future. This is more restrictive
and if not stated otherwise we will only deal with strong Granger–noncausality at
horizon h = 1. Note that for ease of notation we usually drop the ‘strong’.

Example 2.2. Consider the following multivariate Gaussian process X with

X1(t) = α1 X4(t− 2) + β12 X2(t− 1) + ε1(t),

X2(t) = α2 X4(t− 1) + β23 X3(t− 1) + ε2(t),

X3(t) = β32 X2(t− 1) + ε3(t),

X4(t) = ε4(t)

where εi, i = 1, 2, 3, 4, are independent Gaussian white noise processes with mean
0 and variance σ2. It is immediately obvious that with respect to the set {X1(t),
X2(t), X3(t), X4(t)}, the component X1 is Granger–noncausal for all other vari-
ables, and for instance X3 is Granger–noncausal for X1. However, with respect to
the reduced set {X1(t), X3(t), X4(t)} it cannot be assumed anymore that X3(t) is
Granger–noncausal for X1. This shows that the Granger–noncausal structure of a
multivariate time series depends on the components chosen to make up the multi-
variate series X.

In Section 4, we introduce a graphical representation for Granger–noncausal re-
lations, where the absence of an arrow from a node a to a node b means that Xa is
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1 2 3

4

Figure 2.1. Mixed graph associated with the processes X and Z in Example 2.2.

Granger–noncausal for Xb with respect to the whole multivariate series. The pres-
ence of an arrow from a to b means that Xa is a prima facie cause of Xb. For the
above example the corresponding graph is shown in Figure 2.1.

2.2. Effects of Interventions

While Granger–noncausality describes the ‘natural’ behaviour of a multivariate time
series, we now develop the idea of defining a causal effect as the effect of an inter-
vention in such a system as has first been proposed by Eichler and Didelez (2007).
We start by introducing the concept of intervention indicators, which allows us to
distinguish formally between the ‘natural’ behaviour of a system and its behaviour
under an intervention (Pearl 1993, 2000, Lauritzen 2001, Dawid 2002, Spirtes et al.
2001).

Definition 2.3 (Regimes). Let X be a multivariate stationary time series. Con-
sider a set of indicators σ = {σa(t); a ∈ A, t ∈ τ} denoting interventions in Xa(t),
a ∈ A ⊆ V , at points t ∈ τ in time. Each σa(t) takes values in {∅, s ∈ Sa}. Different
values of σ indicate different distributions of the time series X in the following way.

(i) Idle Regime: When σa(t) = ∅ we let Xa(t) arise naturally without interven-
tion. With �σa(t)=∅ (which will often be abbreviated to �∅ or even just �)
we denote the distribution of the time series X under the idle regime. We
also call this the observational regime.

(ii) Atomic interventions: Here Sa = Xa, the domain of Xa(t), such that σa(t) =
x∗ means we intervene and force Xa(t) to assume the value x∗. Hence
�σa(t)=x∗ (or shorter �x∗) denotes the distribution of the time series X under
such an atomic intervention, with

�σa(t)=x∗(Xa(t) = x |XV (t− 1)) = δ{x∗}(x),

where δD(x) is one if x ∈ D and zero otherwise.
(iii) Conditional intervention: Here Sa consists of functions g(xC(t − 1)) ∈ Xa,

C ⊂ V , such that σa(t) = g means Xa(t) is forced to take on a value that
depends on past observations of XC(t − 1). With �σa(t)=g denoting the
distribution of the time series X under such a conditional intervention, we
have

�σa(t)=g(Xa(t) = x |XV (t− 1)) = �σa(t)=g(Xa(t) = x |XC(t− 1))

= δ{g(XC(t−1))}(x).

(iv) Random intervention: Here Sa consists of distributions meaning that Xa(t)
is forced to arise from such a distribution, i.e. the conditional distribution
�σa(t)=s(Xa(t)|XV (t − 1)) is known and possibly a function of XC(t − 1),
C ⊆ V .
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In the following, when we say that a random variable is independent of σa(t), e.g. if
we write Xb(t+h)⊥⊥σa(t) |XV (t−1), we mean that the distribution �σa(t)=s(Xb(t+

h) |XV (t−1)) under the considered intervention is the same as under the idle regime
�σa(t)=∅(Xb(t+h) |XV (t−1)) (for a discussion of conditional independence involving
non–random quantities cf. Dawid (2002)). Similarly we write �∅ (or shorter just �)
and �σa(t)=s to distinguish between expectations with respect to the idle regime or
under a specific intervention s (the shorthand �s and �s is used when it is clear from
the context what variable is intervened in). In contrast �FX denotes conditional
expectation given F (e.g. Kallenberg 2001).

The above Definition 2.3 does not yet fully specify the distribution of the whole
time series X under any strategy σ. This is addressed by the following assump-
tions. They characterise situations where the multivariate system as well as the
intervention of interest are such that the intervention only changes the conditional
distribution of the variable at the point in time it targets according to Definition 2.3
(ii-iv), while all other conditional distributions remain the same as under the idle
regime. These assumptions are analogous to those of (extended) stability in Dawid
and Didelez (2005).

Assumptions (Stability). Let X be a multivariate stationary time series. The
interventions σ = {σa(t), a ∈ A, t ∈ τ} from Definition 2.3 are assumed to have the
following properties, where we use σA(t) = {σa(t); a ∈ A}.
(I1) for all t /∈ τ : XV (t)⊥⊥σ |XV (t− 1);

(I2) for all t ∈ τ : XV (t)⊥⊥{σA(s); s ∈ τ, s 	= t} | (XV (t− 1), σA(t));

(I3) for all t ∈ τ : XV \A(t)⊥⊥σA(t) |XV (t− 1);

(I4) for all t ∈ τ , a ∈ A: Xa(t)⊥⊥(XV \{a}(t), σA\{a}(t)) | (XV (t− 1), σa(t) = s).

With the above assumptions it follows that the distribution of the time series X
is fully specified by choosing a model �∅ for X under the observational regime, for
instance Example 2.2, together with the conditional distributions given in Definition
2.3 (ii-iv) under the chosen intervention. Therefore, whenever we make model as-
sumptions in the following, especially regarding Granger–noncausal structures, these
are supposed to be under the idle regime.

Note that (I1) – (I3) imply that (XV (t− 1), XV \A(t))⊥⊥σ for t = min{s ∈ τ}, as
can be seen by iterative application of property (C4) for conditional independence.
By a similar reasoning we also obtain that

(2.1) XV \A(t)⊥⊥σ |XV (t− 1).

for any t ∈ �. In the special case of a single intervention in Xa(t), i.e. A = {a},
τ = {t}, the assumptions (I1) – (I3) simplify to

(2.2) (XV (t− 1), XV \{a}(t))⊥⊥σa(t)

and

(2.3) {XV (t + j); j ∈ �}⊥⊥σa(t) |XV (t).
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Whether the assumptions of stability (I1) – (I4) hold with regard to a given system
XV depends on the considered or practically feasible interventions as well as on the
set V of components. It may for example be difficult, in practice, to subject a patient
to a certain treatment without changing other aspects of her life. As an example for
the second issue, assume that an isolated intervention in Xa(t) is possible, but that
a variable Xc that predicts Xa and Xb under the idle regime has been ignored (we
could loosely call Xc a confounder). Then, under σa(t) = x∗, the variable Xa(t) does
not carry any information about Xc(t), whereas under the idle regime it does. As Xc

predicts Xb we can therefore not assume that �σa(t)=x∗(Xb(t+h) |XV (t)) is the same

as �∅(Xb(t + h) |XV (t)), V = {a, b}, as would be required for (2.3). Consequently,
in the following sections, we will often use the distinction between the system XV

which is such that the assumptions of stability are plausible, and a sub–series XS,
S ⊂ V , which could be the smaller set of actually observable components. For a
discussion of the role of latent variables in the context of Granger–noncausality we
refer again to Hsiao (1982) and Eichler (2007, 2008).

Let us now consider effects of interventions. In general, this can be any function
of the post–intervention distribution of {XV (t + j); j ∈ �} given an individual
intervention σa(t) = s, for instance. It will often involve the comparison of setting
Xa(t) to different values, e.g. setting Xa(t) = x∗ as compared to setting it to Xa(t) =
x0 which could be a baseline value in some sense. One may also want to use the
idle case as baseline for the comparison. Typically, one is interested in the mean
difference between interventions or between an intervention and the idle case, where
we note that due to stationarity of X we can assume without loss of generality that
�∅(X(t)) = 0. Hence, the average causal effect defined below can be regarded as
the average difference between a strategy s and no intervention.

Definition 2.4 (Average causal effect). The average causal effect (ACE) of an
individual intervention according to strategy s in Xa(t) on Xb(t+h), a, b ∈ V, h > 0
is given by

ACEs = �σa(t)=sXb(t + h).

The effect of multiple interventions σa(t) = sa, a ∈ A ⊆ V , is given analogously by
ACEsA

= �σA(t)=sA
Xb(t + h), where sA and σA denote the corresponding sets.

The effect of sequential interventions σa(t1) = s1, . . . , σa(tK) = sK , for t1 < · · · <
tK < t + h is further given by ACEs = �σa=sXb(t + h), where s and σa denote the
sets across the points in time when interventions take place.

Note that different strategies can be compared by considering , e.g. ACEs1−ACEs2 .
Even though we will mostly focus on the ACE, the results presented in this paper
hold more generally for �sf

(
Xb(t + h)

)
for any measurable function f and thus for

the post–intervention distribution �s(Xb(t + h)).

With the above definition of a causal effect in terms of interventions a first con-
nection between Granger–noncausality and the effect of an intervention can be es-
tablished as follows.
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Corollary 2.5. Consider a multivariate time series X = XV and an individual
intervention σa(t) = s satisfying (2.2) and (2.3). If Xa is Granger–noncausal for Xb

with respect to XV , i.e. Xa � Xb [XV ], then there is no causal effect of intervening
in Xa(t) on Xb(t + 1).

We cannot say anything analogous for the effect of intervening in Xa(t) on Xb(t+h)
for h > 1 because there might be an ‘indirect’ effect through variables at points in
time between t and t + h. Note that in the proof of Corollary 2.5 we rely on both
conditions (2.2) and (2.3), underpinning that Granger–noncausality on its own is
not enough to make statements about the effect of interventions. However, we do
not need the whole XV to be observable in the above corollary — the system XV

with respect to which Xa � Xb [XV ] can therefore include latent time series if this
helps to justify the stability assumptions (I1 – I4).

3. Identification of Effects of Intervention

In this section we will state some sufficient conditions that enable us to estimate
the ACE of a specific intervention or strategy σ = s from data on the observable
(i.e. non latent) components of the multivariate time series that has been collected
under the observational regime σ = ∅; if this is possible then we say that the ACE is
identifiable. Formally, identifiability means that we can express the ACE in terms of
observable or known quantities alone. We will not refer to Granger–(non)causality
here, but show in Section 4 how the latter can help us to answer the question of
identifiability by providing a graphical check of the conditions.

3.1. Simple Back–Door Criterion

The back–door criterion for an individual intervention in a time series, as given
below, has been established by Eichler and Didelez (2007) and reflects what is known
in epidemiology as adjusting for confounding. The name is due to the graphical way
of checking this criterion (cf. Section 4). As we show further below, it can be
extended to the case of sequential interventions.

Theorem 3.1 (Back–door criterion). Let a, b ∈ S ⊆ V , where a = b is possible.
If a conditional intervention is considered as in Definition 2.3 (iii, iv), we also
assume for the conditioning set C that C ⊆ S. Suppose that assumptions (2.2) and
(2.3) hold and that

(3.1) Xb(t + h)⊥⊥σa(t) | XS(t) ∀ h ∈ �.

Then S identifies the effect of σa(t) = s on Xb(t + h) for all h ∈ �, and the average
causal effect ACEs is given by

(3.2) �sXb(t + h) = �∅�
Xa(t−1),XS\{a}(t)
s �

XS(t)
∅ Xb(t + h).

In (3.2) we can estimate �
XS(t)
∅ Xb(t+h) from observational data, while the second

expectation is with respect to the interventional distribution, which is fully known.
The outer expectation is again observational. Hence, provided that XS has been
observed, we can use the above to estimate the causal effect ignoring XV \S. Dawid

(2002) calls such a set XS(t) ‘sufficient covariates’ or ‘de–confounder’. Note that
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under the stability assumptions, V always identifies the causal effect due to condition
(2.3). In this sense we could say that the whole system V contains all ‘relevant’
variables or components to identify an individual causal effect of Xa(t) on Xb(t+h).
Note however, that if an intervention σd = s in a different variable, say Xd, d 	=
a, is considered, a different system V ′ might be required to justify the stability
assumptions with respect to this σd.

An example for Theorem 3.1 is given in Eichler and Didelez (2007). We will
provide a more complex example for sequential interventions further below.

3.2. Multiple and Sequential Back–Door Criterion

Consider the effect of a joint intervention sA = {sa; a ∈ A} in more than one
variable at a given point in time, i.e. σA(t) = {σa(t), a ∈ A}, A ⊂ V on a set
XB(t + h), B ⊂ V . The causal effect �sA

XB(t + h) is given component wise by
�sA

Xb(t+h), b ∈ B. Assuming that (I1) – (I4) are valid, we replace condition (3.1)
by XB(t + h)⊥⊥σA(t) |XS(t) and obtain the causal effect in complete analogy to
(3.2) as

�sA
Xb(t + h) = �∅�

XA(t−1),XS\A(t)
sA �

XS(t)
∅ Xb(t + h).

More interesting is the following theorem that addresses the identifiability of se-
quential interventions, i.e. those at different points in time.

Theorem 3.2 (Sequential back–door criterion). Let a, b ∈ S ⊆ V , where a = b
is possible. If conditional interventions are considered as in Definition 2.3 (iii, iv),
we also assume for the conditioning set C that C ⊆ S. Consider interventions
σ = {σa(tk), k = 1, . . . , K, t1 < t2 < · · · < tK} and suppose that assumptions (I1)
– (I4) hold. Let σ>k = {σa(tk+1), . . . , σa(tK)} and σ<k = {σa(t1), . . . , σa(tk−1)} and
s>k analogously. Assume that

(3.3) Xb(t + h)⊥⊥σa(tk) | (XS(tk), σ
<k = ∅, σ>k = s>k)

Then S identifies the effect of sequential interventions s = {s1, . . . , sK} in Xa(t1),
. . ., Xa(tK) on Xb(t + h), and the average causal effect ACEs is given by

(3.4) ACEs = �∅
K∏

k=1

(
�

XS(tk−1),XS\{a}(tk)
sk �

XS(tk)
∅

)
Xb(t + h),

Similar to the simple back–door criterion, (3.4) consists of conditional expecta-
tions that can either be estimated if XS is observable, or that are known by the
chosen intervention. For longitudinal and survival settings, formula (3.4) is well
known as G–formula (Robins 1986). The conditions (3.3) are in the same spirit as
those given in Dawid and Didelez (2005) for the longitudinal case.

Example 3.3. Let X be a stationary and purely nondeterministic Gaussian process.
In order to satisfy the technical conditions (T1) to (T3), we furthermore assume
that X has spectral matrix f(λ), λ ∈ [−π, π], with eigenvalues that are bounded
and bounded away from zero uniformly for all λ ∈ [−π, π] (Eichler 2007).

Suppose now that, for time points t1 < t2 < t3, we are interested in the average
causal effect of setting Xa(t1) and Xa(t2) to the values x∗1,a and x∗2,a, respectively, on
Xb(t3), and that the effect is identified by the variables in S. By the assumptions on
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the spectral matrix, the subprocess XS has a mean-square convergent autoregressive
representation

(3.5) XS(t) =
∞∑

j=1

Φ(j) XS(t− j) + εS(t),

where ε(t), t ∈ �, are independent and identically normally distributed with mean
zero and non-singular covariance matrix Σ. Moreover, the best h–step predictor
�

XS(t)X(t + h) is equal to the best linear h-step predictor, that is,

(3.6) �
XS(t)X(t + h) =

∞∑
j=1

Φ(h)(j) X(t− j + 1).

Here, the coefficients Φ(h)(k) of the multi–step predictor can be computed recursively
from the coefficients of the autoregressive representation in (3.5) using the relations

Φ(h)(k) =
k−1∑
j=1

∑
s∈S

Φ(1)(j) Φ(h−j)(k) + Φ(1)(h + k − 1),

where Φ(1)(j) = Φ(j) (e.g. Box et al. 1994, Section 5.3).
From Theorem 3.2, we find that the causal effect of an intervention at Xa(t1) and

Xa(t2) on Xb(t3) is given by

�∅�
XS(t1−1),XS\{a}(t1)
s1 �

XS(t1)
∅ �

XS(t2−1),XS\{a}(t2)
s2 �

XS(t2)
∅ Xb(t3).

Letting hi = ti+1 − ti, i = 1, 2 and applying (3.6) twice, we obtain

�s

(
Xb(t3)

)
= φ

(h2)
ba (1) x∗2,a + φ

(h2)
ba (h1 + 1) x∗1,a +

∑
c∈S\{a}

φ
(h2)
bc (1) φ(h1)

ca (1) x∗1,a

+
h1∑

j=2

∑
c∈S

φ
(h2)
bc (j) φ(h1−j+1)

ca (1) x∗1,a.

Here, the first term represents the causal effect of the intervention in Xa(t2) on
Xb(t3), the second term gives the effect of the intervention on Xa(t1) that is not
mediated by any of the variables X(t2), . . . , X(t1 + 1) while the remaining terms
collect the indirect effects mediated by all variables in X(t2), . . . , X(t1 + 1) but
Xa(t2).

3.3. Front–Door Criterion

As counterpart to the back–door criterion, Pearl (1995) introduced the so–called
front–door criterion to identify causal effects. In brief, it characterises situations
where there is unobserved confounding between the cause and effect of interest, but
where the causal effect can still be recovered because it is fully mediated by a third
variable (or set of variables) which is not affected by the confounding factors. It
turns out that the computation of the causal effect can then be decomposed in the
effect of the cause of interest on the mediator and the effect of the mediator on the
target variable, without the need to actually be able to intervene in the mediating
variable (Pearl, 2000, p. 82). We show here that the same principle can be applied
to time series. However, we need somewhat more technical preliminaries than for
the back–door criterion.

We consider the causal effect of a sequential intervention in all of Xa(t− h), . . .,
Xa(t−1) on Xb(t), a 	= b, specified by s = {sh, . . . , s1}. The interventions are allowed
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to be conditional on XS(t−h−1) as well as previous values of Xa(t−h), . . . , Xa(t−2)
(which is only relevant if they are random interventions). Let XC be the set of me-
diating series, then S = {a, b} ∪ C is the identifying set and U = V \S stands for
the unobserved set of possible confounders. The assumptions following below char-
acterise the situation in which the front–door criterion applies to time series. The
first of the two assumptions is stated with respect to a measure �k, in which the
conditional distribution of XC(t−j) given XV \C(t−j) and XV (t−j−1) is replaced
by the marginal distribution of XC(t− j) for 1 ≤ j ≤ k. The exact definition of �k

is given in the appendix. Heuristically one can say that the measure �k mimicks an
interventional regime where XC(t − k), . . . , XC(t − 1) is drawn randomly from its
marginal distribution. Note however, that it is not necessary to assume that such
interventions in XC(t− j) are practically feasible, nor that they would indeed result
in an intervention distribution corresponding to �k if they were feasible, as can be
seen from the proof of the following theorem in the appendix.

Assumptions. Consider a multivariate time series XV (t) with intervention indica-
tor σ = {σa(t−h), . . . , σa(t−1)}, a 	= b ∈ V , C ⊂ V \{a, b} and U = V \(C∪{a, b}).
For all t ∈ � and k ≥ 1 we assume

(F1) Xb(t)⊥⊥(Xa(t− k), σa(t− k)) |XV \{a}(t− k) [�k−1];

(F2) XC(t)⊥⊥XU∪{b}(t) |Xa(t), XC(t− 1) [�]

A rough interpretation of assumption (F1) is that if we control XC between t− k
and t then there is no effect of Xa(t − k) on Xb(t), or in other words the effect is
fully mediated by XC . In addition, (F2) can be thought of as ensuring that XC is
not affected by confounding. Note that (F2) is with respect to the observational
regime σ = ∅. The causal effect can now be computed as follows.

Theorem 3.4 (Front-door criterion). Suppose that (F1) and (F2) hold for XV ,
as well as (I1) – (I4). For any h ≥ 2 the causal effect of interventions in Xa(t −
h), . . . , Xa(t − 1) on Xb(t), a 	= b, is identified by S = {a, b} ∪ C, and is given by
ACEs =

�sXb(t) = �∅
h∏

j=1

[
�

XC∪{a}(t−j)

sj �
XC∪{a}(t−j−1),Xa(t−j)

∅
]
�

XS(t−h−1),XC(t−1)
�h

Xb(t),(3.7)

where �
XS(t−h−1),XC(t−1)
�h

Xb(t) for fixed values of XS(t − h − 1) and XC(t − 1) is
given by∫

xb(t) dQh

(
xb(t)|x̄C(t− 1), x̄S(t− h− 1)

)

=

∫
· · ·

∫
xb(t) dP

(
xb(t)|x̄S(t− 1)

) h∏
j=1

dP
(
x{a,b}(t− j)|x̄S(t− j − 1)

)
.

The last expectation in (3.7) is in fact the same as the effect of XC on Xb if an
intervention in XC were possible, while the product of expectations corresponds to
the effect of sequential interventions in Xb on XC . Both can be compared to the
G–formula (3.4).
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Similar to the back–door criterion, all expected values required to compute the
ACE with the front–door criterion are either known or can be estimated from ob-
servable quantities if XS can be observed. The expectation with respect to �h relies
entirely on S as can be seen from the last line of the above theorem; note that this
is the same expression as given (without proof) in Eichler and Didelez (2007).

Example 3.5. Consider again the situation in Example 3.3 and suppose that the
assumptions of Theorem 3.4 are satisfied. To compute the joint average causal effect
of Xa(t − 2) and Xa(t − 1) on Xb(t), we first evaluate the conditional expectation
with respect to �2. We have

�
XC(t−1),XS(t−3)
�2

Xb(t) = ΦbC(1) XC(t− 1) +
[
ΦbC(2) + Φbb(1)Φbc(1)

+ Φba(1)Φac(1)
]
XC(t− 2) + terms linear in XS(t− 3).

Thus the average causal effect is given by

�sXb(t) = ΦbC(1) ΦCa(1) Xa(t− 2).

We note that Xa(t− 1) has no effect on Xb(t) since any causal effect from Xa on Xb

must be mediated by XC and thus takes at least two time steps to reach Xb.
For larger lags h, the average causal effect can be computed similarly. For instance,

for h = 3, we obtain

�sXb(t) = ΦbC(1)ΦCa(1) Xa(t− 2) +
[
ΦbC(2) + ΦbC(1)ΦCC(1)ΦCa

+ Φbb(1)ΦbC(1) + Φba(1)ΦaC(1)
]
Xa(t− 3).

4. Graphical Representation

In this section we revisit the graphical representation of Granger–(non)causal
relations in a multivariate time series suggested by Eichler (2001) and Eichler (2007).
An example was given in Figure 2.1 for the time series in Example 2.2. Using these
graphs or path diagrams, we devise graphical rules to check if a set S ⊂ V exists
that satisfies the back–door or front–door criteria. This will provide us with further
interesting insights into the relation between Granger–causality and intervention
causality.

Note that we do not address, here, the question of how to find the Granger–
causal relations among a multivariate time series, but instead we assume that they
are given, e.g. due to background knowledge. Causal search algorithms are detailed
in Spirtes et al. (2001) (and briefly in Pearl (2000)), some issues concerning their
application to multivariate time series are discussed in Eichler (2008).

4.1. Graph Notation

The graphs G = (V, E), with nodes (or vertices) V and edges E, used here are so–
called mixed graphs that may contain two types of edges directed edges a� b or
a� b, and (dashed) undirected1 edges a� b for distinct nodes a, b ∈ V . Multiple
edges between two nodes are allowed if they are of different type or orientation, i.e.

1In contrast to Richardson (2003), we use dashed undirected edges� instead of bi–directed
edges� as we use directed edges exclusively for indicating direction in time; dashed edges with
a similar connotation have been used by Cox and Wermuth (1996).
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there can be up to three edges between two nodes. Most of the terminology known
for directed acyclic graphs can still be applied for these mixed graphs. For instance
when a� b, we call a a parent of b, and the set pa(b) is the set of all parents of b;
and when a� b then a is a spouse of b, where sp(b) is the set of all spouses of b. As
in Frydenberg (1990), a node b is said to be an ancestor of a if either b = a or there
exists a directed path b� · · ·� a in G. The set of all ancestors of elements in A
is denoted by an(A), which by definition includes A itself. Notice that this differs
from Lauritzen (1996).

The notion of a path in a mixed graph deserves some special attention. A path
in our graphs cannot uniquely be defined by a sequence of nodes as there may be
different edges between two nodes. Hence a path π from a to b is defined as a
sequence π = (e1, . . . , en) of not necessarily distinct edges ei ∈ E, such that ei is
an edge between vi−1 and vi for some sequence of not necessarily distinct vertices
v0 = a, v1, . . . , vn = b. A path π in G is called a directed path if it is of the form
a� . . .� b or a� . . .� b; in the former case we say it is a directed path from
a to b and in the latter from b to a. Similarly, if π consists only of undirected edges,
it is called an undirected path. Furthermore, a path between vertices a and b is said
to be b–pointing if it has an arrowhead at the endpoint b, that is, en = vn−1� b.
More generally, we call a path a B-pointing path if it is b-pointing for some b ∈ B.
Similarly, we call a path between vertices a and b bi–pointing if it has an arrowhead
at both endpoints, that is, e1 = a� v1 and en = vn−1� b. In particular we will
make use of the following definition.

Definition 4.1 (Front– and back–door paths). Let π = (e1, . . . , en) be a path
from a to b. We say that π is a front-door path from a to b if e1 = a� v1. Otherwise
we call π a back-door path from a to b.

An intermediate vertex c ∈ {v1, . . . , vn−1} on a path π is said to be an m–collider
if the edges preceding and succeeding c on the path both have an arrowhead or a
dashed tail at c (e.g.� c�,� c�,� c�); otherwise the vertex c is said to
be an m–noncollider on the path (e.g.� c�,� c�,� c�). Notice that at
least one of the edges that are adjacent to an m–noncollider c on a path must be a
directed edge with a tail at c. Also notice that the first and last vertices on a path
are neither colliders nor noncolliders. Furthermore, if the path passes through a
vertex c more than once, this vertex may be a m–collider as well as a m–noncollider
depending on its position on the path.

Definition 4.2 (m–blocked). With the above definitions, a path π between ver-
tices a and b is said to be m–connecting given a set S if

(i) every m–noncollider on the path is not in S, and

(ii) every m–collider on the path is in S,

otherwise we say the path is m–blocked given S.

Note that a path is also m–blocked when the same node is a m–collider and a
m–noncollider at different stages on the path because then (i) and (ii) cannot both
be satisfied.
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a b c

Figure 4.1. Example of a mixed graph.

Example 4.3. In the simple graph given in Figure 4.1 we find that on some paths
between a and b the node c is a m–collider like a� c� b and on others it is a
m–noncollider like a� c� b. Hence, the latter paths are m–blocked by c but the
former are not. Further, for example, any path between a and a itself is only blocked
by the empty set. This is because on any such path either c or b is a m–collider.

4.2. Graphical Time Series Models

In order to represent Granger–noncausality graphically we identify the components
X1, . . . , Xd of the time series with the nodes V = {1, . . . , d} of a mixed graph
G = (V, E). The case that Xa is Granger–causal for Xb with respect to XV is
represented by a directed edge a� b, and the case that both time series are con-
temporaneously dependent with respect to XV is represented by an undirected edge
a� b. Vice versa, the absence of a directed (undirected) edge implies Granger–
noncausality (contemporaneous independence) with respect to XV . When the graph
G is constructed in this way for a given multivariate time series XV , and assuming
(T1) – (T3), then it satisfies the following Markov properties, as shown in Eichler
(2001, 2007).

Definition 4.4 (Global Markov properties). Let X be a multivariate stationary
time series and G = (V, E) be a mixed graph. Then X satisfies the global Granger-
causal Markov property with respect to G if the following two conditions hold for all
disjoint subsets A, B, and C of V .

(i) If every B-pointing path between A and B is m-blocked given B∪C, then XA is
Granger–noncausal for XB with respect to XA∪B∪C , i.e. XA � XB [XA∪B∪C ].

(ii) If every bi–pointing path between A and B is m-blocked given A∪B ∪C and
there is no undirected edge between A and B, then XA and XB are contem-
poraneously independent with respect to XA∪B∪C , i.e. XA � XB [XA∪B∪C ].

To confirm the construction of these graphs, we note that if there is no directed
edge a� b, then every b-pointing path between a and b is m-blocked given V \{a}
because every such path has an edge v� b with v 	= a. Hence the above implies that
the absence of an individual directed edge a� b indeed means that Xa � Xb [XV ];
more generally we have for B ⊂ V

XV \(pa(B)∪{B}) � XB [XV ].(4.1)

With a similar reasoning we obtain

XV \(sp(B)∪{B}) � XB [XV ].(4.2)

Example 4.5. For the graph in Figure 4.2 it follows from (4.1) that X{a,d} is non-
causal for Xb with respect to X{a,b,c,d}, and from (4.2) it follows that X{a,c,d} is
contemporaneously independent of Xb. With the Global Markov properties we can,
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a d c b

Figure 4.2. Illustration of global Markov property.

however, also determine what the relations are in subsets of {a, b, c, d}. For instance,
it is obvious that every path between a and b is b–pointing, and c but not d m–
separates these two nodes. This is because every path has to go through c which is
always a m–noncollider due to the directed edge to b. In contrast, d can be a m–
collider or m–noncollider on different paths and it is hence not enough to condition
on d. Consequently, Xa is Granger–noncausal for Xb with respect to X{a,b,c} but not
with respect to X{a,b,d}. In contrast, Xb � Xa [X{a,b,c}] as well as Xb � Xa [X{a,b,d}]
because on every a–pointing path c as well as d are always m–noncolliders. For the
same reason Xa � Xb [X{a,b,c}] as well as Xa � Xb [X{a,b,d}].

In particular cases we can read off a time series graph when Granger-noncausality
holds at all horizons. These are characterised as follows (cf. Eichler 2007, Thm 4.5).

Theorem 4.6 (Noncausality at all horizons). Suppose that X satisfies the
global Markov properties with respect to a mixed graph G. Let A, B, C be dis-
joint subsets of V . If every an(B)-pointing path between A and an(B) is m–blocked
given B ∪C, then XA is Granger–noncausal at all horizons with respect to XA∪B∪C

(XA
(∞)
�XB [XA∪B∪C ])

As every an(B)–pointing path between V \an(B) and an(B) is m–blocked by
an(B), an immediate implication of the above is that

(4.3) XV \an(B)
(∞)
�XB [XV ],

i.e., as one would expect intuitively, those variables that are not a graphical ancestor
of XB are Granger–noncausal for XB at all horizons with respect to XV . In Figure
4.2, for instance, Xb is Granger–noncausal for X{a,c,d} at all horizons. The following
corollary addresses the question if a similar statement can be made about the effect
of an intervention in a node Xa that is not an ancestor of Xb.

Corollary 4.7. Consider a multivariate time series X that obeys the global Markov
properties for a graph G under the observational regime, and a single intervention
σa(t) satisfying (2.2) and (2.3). For a, b ∈ V , whenever a /∈ an(b), then intervening
in Xa(t) has no causal effect on Xb(t + h) for all h ∈ �.

Like Corollary 2.5, the above relies on the stability assumptions (2.2) and (2.3),
and again XV may be chosen to contain suitable latent series if this helps to justify
these assumptions. Note that the converse of Corollary 4.7 is not necessarily the
case: a ∈ an(b) does not necessarily imply that an intervention in Xa(t) has an effect
on Xb(t + h) as the overall effect is a combination of direct and indirect effects that
may cancel each other.

A special case arises when the graph G associated with a multivariate time series
XV contains no undirected edges, i.e. when there is no contemporaneous dependence
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among the variables. The above graphical representation and properties are then
analogous to the local independence graphs for continuous time processes proposed
by Didelez (2007, 2008).

4.3. Graphical Criteria for Identifiability

Let us now address the question of how we can see from the Granger–causal structure
of a multivariate time series whether any of the criteria that permit identification
of causal effects are satisfied. The following result has been shown by Eichler and
Didelez (2007) for the case of an individual intervention; we show here that it also
applies to multiple and sequential interventions and we specify how to construct the
minimal identifying set. Due to Corollary 4.7 we only need to consider the case
a ∈ an(b).

Theorem 4.8 (Back–door criterion). Consider a multivariate time series X that
obeys the global Markov properties for a graph G. Assume that a ∈ an(b).

(i) The assumptions of Theorems 3.1 and 3.2 are satisfied if all an(b)-pointing
back-door paths between a and an(b) are m-blocked given S.

(ii) The minimal set S satisfying (i) is given by S = {a, b} ∪ pa(a) ∪D, where D
is the set of all nodes v such that there is a back–door path from node a to v
for which all intermediate nodes are m–colliders and all intermediate nodes as
well as v itself are ancestors of b.

Example 4.9. Consider the graph in Figure 4.2 and assume we are interested in the
(individual or sequential) effect of Xc on Xb. According to Theorem 4.8 part (ii),
the minimal set S required to identify this is S = {a, b, c, d}, i.e. the whole system.
Note that a has to be included because it is connected to c via a back–door path
c� d� a such that the intermediate node d is an m–collider and both a, d are
ancestors of b. It may seem counterintuitive that we need to take Xa and Xd into
account as neither have a directed edge into Xb. However, they both predict Xc at
points in time between t and t+h which in turn predicts Xb(t+h) and therefore act
as confounders. If, in contrast, we are interested in the (individual or sequential)
effect of Xa on Xb then the minimal identifying set is S = {a, b, d}. The node c is
not included because any back–door path from a to c starts with a� d, so the node
d is an m–noncollider. Again, this might seem counterintuitive as c has a directed
path into a as well as b and may therefore be suspected to be a confounding process.
However, the confounding is, in this case, fully accounted for by including Xd.

When more specific knowledge about the time series model is available, e.g. at
what lags dependencies occur, it may be possible to reduce the identifying set S
given in Theorem 4.8 (ii). However, at the general level considered here, where we
do not impose any other structure than the Granger–(non)causal relations shown in
the graph, this is not possible.

We mentioned earlier the special case of graphs without any undirected edges.
For such graphs the following is obvious from the definition of the set S in Theorem
4.8 (ii).
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Corollary 4.10. If the graph G contains no undirected edges, then the set S in
Theorem 4.8 (ii) is given by S = {a, b} ∪ pa(a).

Example 4.11. This is a continuation of Example 2.2. Suppose that we are inter-
ested in the effect of an intervention setting X3(t) to x∗3 on X1(t + 2). From the full
model, we obtain immediately that

�σ3(t)=x∗
3
X1(t + 2) = β12β23x

∗
3.

Using Corollary 4.10 (or Theorem 4.8 part (ii)), however, we see that the minimal
set required for identification of the above causal effect is given by S = {1, 2, 3} as
pa(3) = 2 and there are no undirected edges. Simple calculations show that X{1,2,3}
has the autoregressive representation

X1(t) =
(

α1α2

1 + α2
2

+ β12

)
X2(t− 1)− α1α2β23

1 + α2
2

X3(t− 2) + ε̃1(t),

X2(t) = β23 X3(t− 1) + ε̃2(t),

X3(t) = β32 X2(t− 1) + ε̃3(t),

(4.4)

where ε̃i, i = 1, 2, 3, are again independent zero mean Gaussian white noise pro-
cesses. Thus, the effect of setting X3(t) = x∗3 on X1(t + 2), as identified by
S = {1, 2, 3}, can be obtained from the autoregressive representation (4.4) as

�σ3(t)=x∗
3
X1(t + 2) = φ

(2)
13 (1) = φ12(1)φ23(1) + φ13(2) = β12β23x

∗
3.

Further using Corollary 4.10, we see that identification of the effect of an intervention
in X2(t) on X1(t+h) would require all variables as pa(2) = {3, 4}, while identification
of the effect of an intervention in X2(t) on X3(t + h) requires S = {2, 3, 4}.

The following theorem provides a graphical check for the assumptions (F1) and
(F2) of Theorem 3.4.

Theorem 4.12 (Front–door criterion). Consider a multivariate time series X
that obeys the global Markov properties for a graph G. Assumptions (F1) and (F2)
for the front-door criterion hold if

(G1) every directed path from a to b is m-blocked given C;

(G2) there are no directed edges v� c for all v ∈ V \(C ∪ {a}) and c ∈ C;

(G3) there are no undirected edges v� c for all v ∈ V \C and c ∈ C.

Example 4.13. Mit dem besprochenen beispiel graphen ersetzten!

Consider the graph in Figure ??? and assume we are interested in the effect of
intervening in X3 on X1. The back–door criterion requires the minimal set S =
{1, 3, 4}. However, assume that X4 is a latent process, so we have to check if,
instead, the front–door criterion can be applied with C = {2}. The only directed
path from X3 to X1 is 3 � 2 � 1 which is clearly m–blocked by 2. Further
V \(C ∪ {3}) = {1, 4} has no directed edges into C = {2}, and V \C = {1, 3, 4}
has no undirected edges with {2}. Hence, the front–door theorem can be used to
compute the effect of an intervention in X3(t−h), . . . , X3(t−1) on X1(t) if X̄{1,2,3}(t)
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is observable. This illustrates nicely that the back–door principle works by adjusting
for confounding, while the front–door principle is based on obtaining a total effect
by exploiting mediating variables.

5. Discussion and Conclusions

In this paper we have proposed a way of combining Granger’s ideas on causal-
ity with an intervention based approach. Granger (1980) himself points out that
controllability, as aimed at by interventions, is a deeper concept than Granger–
causality, and he gives an example for a situation where the structure of a system
is altered by changing a previously uncontrolled variable to one that is controlled.
This latter case is exactly what is excluded by our assumptions of stability. While
Granger–noncausal and prima facie causal relations describe the ‘natural’ behaviour
of a multivariate system of time series, we have to believe that certain aspects of this
system remain the same (i.e. stable) under intervention (i.e. control) in order to be
able to draw any inference for the latter case. The stability assumptions essentially
demand that the system as well as the intervention can be chosen so that all condi-
tional distributions, except for the ones of the variables targeted by the intervention,
remain the same. Then, we can deduce that if a process is Granger–noncausal for
another process (with respect to this system) an intervention in the former will not
affect the latter one time lag later.

Related to the previous comments is the observation that the notion of Granger–
noncausality describes the absence of a direct causal relation, as we can only infer
the absence of a causal effect at one time lag. Hence, Granger–causality (or prima
facie cause) implies the possibility of a direct as well as indirect effect over several
lags. We showed that it is in fact the absence of a directed path from Xa to Xb,
i.e. of a chain of Granger–causal relations, that permits to exclude a causal effect of
an intervention at any lag h. Vice versa, one may say that when we investigate the
causal effect of an intervention in Xa(t) on Xb(t + h) we do not care whether this is
a direct effect or whether it is mediated by other (or the same) components at the
times between t and t + h.

A problem with Granger’s original definition is that it relies on conditioning on all
the information in the universe up to time t. Similarly, our assumptions of stability
will also be easier to justify when the system XV is ‘large’ enough, in practice this
will often mean that it contains latent time series. The global Markov properties
can then be used to infer what the Granger–(non)causal relations among a, say
observable, subset XS of the whole system are; and the identifying back–door and
front–door criteria characterise when the effect of interventions can be computed
from XS. The graphical rules to find a minimal set S illustrate that the notion
of ‘confounding’ is less obvious for the time series case, due to the potential for
indirect relations via several time lags. However, interestingly, the graphical check
of the back–door criterion is the same for single, multiple or sequential interventions.

Our approach is complicated by the possible presence of contemporaneous depen-
dencies, which allow for correlated errors at a given point in time that are inde-
pendent across time points. It is clear that these are not relevant to the effects of
interventions. However, they can affect identifiability by giving rise to what is known
as selection effect (Hernán et al. 2004) when conditioning, for instance, on the past
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of certain components. The proposed identifying criteria take this into account. The
special case where there is no contemporaneous dependence may often be unrealis-
tic for multivariate time series, but it is plausible for certain multivariate stochastic
processes in continuous time, like marked point processes. The corresponding graph-
ical representation (Didelez 2007, 2008) is based on the continuous time analogue of
Granger–noncausality called local independence (Schweder 1970). As local indepen-
dence graphs correspond essentially to the graphs for time series without undirected
edges, we suspect that our results about the effects of interventions, here, can be
transferred to the continuous time case. A formal investigation of this conjecture
will, however, necessitate some subtle measure–theoretic considerations.

Appendix A. Conditional Independence

The following properties of conditional independence are heavily used for the
proofs and are therefore stated here. They go back to Dawid (1979) (see also Lau-
ritzen (1996, pp. 29)).

Let (Ω, F ,�) be a probability space and let Fi, i = 1, . . . , 4 be sub-σ-algebras
of F . Recall that two sub-σ-algebras F1 and F2 are said to be independent con-
ditionally on F3 if �(X|F2 ∨ F3) = �(X|F3) a.s. for all real-valued, bounded,
F1-measurable random variables X. Then the basic axioms of conditional indepen-
dence are:

(C1) F1⊥⊥F2 |F3 ⇒ F2⊥⊥F1 |F3 (symmetry)

(C2) F1⊥⊥F2 ∨F3 |F4 ⇒ F1⊥⊥F2 |F4 (decomposition)

(C3) F1⊥⊥F2 ∨F3 |F4 ⇒ F1⊥⊥F2 ∨F3 |F3 ∨F4 (weak union)

(C4) F1⊥⊥F2 |F4 and F1⊥⊥F3 |F2 ∨F4 ⇒ F1⊥⊥F2 ∨F3 |F4 (contraction)

(C5) F1⊥⊥F2 |F3 ∨F4 and F1⊥⊥F3 |F2 ∨F4 ⇒ F1⊥⊥F2 ∨F3 |F4 (intersec-
tion property)

Properties (C1) – (C4) are always satisfied, while poperty (C5) requires additional
assumptions that essentially ensure that there are no logical redundancies. In our
case, assumptions (T1) – (T3) ensure that (C5) holds for the multivariate time series
we consider. Dawid (1979) discusses more general notions of the above properties.

Appendix B. Proofs

Proof of Corollary 2.5. As Xa � Xb [XV ] (under the idle regime), we know that
Xb(t + 1)⊥⊥Xa(t) |XV \{a}(t). From (2.3) it follows that Xb(t + 1)⊥⊥σa(t) |XV (t).
Both together imply with (C4) of the properties of conditional independence that
Xb(t+1)⊥⊥σa(t) | (XV \{a}(t), XV (t−1)). With (2.2) and again (C4) it follows in turn
that Xb(t+1)⊥⊥σa(t) which implies �sXb(t+1) = �∅Xb(t+1), i.e. the intervention
has no effect on Xb(t + 1). �

Proof of Theorems 3.1 and 3.2. By the law of iterated conditional expectation

�sXb(t + h) = �s�
XS(t1−1),XS\{a}(t1)
s �

XS(t1)
s Xb(t + h).

The last expectation in the above line can be modified exploiting (3.3). The middle
expectation can be modified due to Assumption (I4) and the first one is equal to
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the expectation under the idle regime because using (I1)–(I3) we obtain XS(t1 −
1), XS\{a}(t1)⊥⊥σ. Hence

�sXb(t + h) = �∅�
XS(t1−1),XS\{a}(t1)
s1 �

XS(t1)

s>1 Xb(t + h),

where s>k = {sk+1, . . . , sk}. Similarly, the last expectation can now be written as

�
XS(t1)

s>1 Xb(t + h) = �
XS(t1)
∅ �

XS(t2−1),XS\{a}(t2)
s2 �

XS(t2)

s>2 Xb(t + h).

Substituting back into the expression for �sXb(t+h), replacing the inner expectation

iteratively for k = 1, . . . , K, and noting that �
X(tK)

s>K = �
X(tK)
∅ we obtain

�sXb(t + h) = �∅
K∏

k=1

[
�

XS(tk−1),XS\{a}(tk)
sk �

X(tk)
∅

]
Xb(t + h)

which was the claim. For K = 1, this proves in particular Theorem 3.1. �

Preliminaries for the proof of Theorem 3.4. For ease of notation, we use the following
abbreviations

Yt = Xb(t) Xt = Xa(t) Zt = XC(t) Ut = XU(t),

furthermore, let Wt = XS(t) = (Xa(t), Xb(t), XC(t)) and let Vt = XV (t).
Under assumptions (T1) to (T3) on the time series, the conditional distribu-

tion of Zt given V t−1, Ut, Xt, Yt and the marginal distribution of Zt have densities
f(zt|vt−1, ut, xt, yt) and f(zt), respectively, with respect to a product measure ν and
are related by∫

h(zt) dP (zt) =

∫
h(zt)

f(zt)
f(zt|vt−1, ut, xt, yt)

dP (zt|vt−1, ut, xt, yt)

for every measurable function h(zt).

Let �j be measures on (Ω, F ) obtained iteratively from � by setting �0 = �

and

�j(A) = ��j−1

(
f(Zt−j)

f(Zt−j |V t−j−1, Ut−j , Xt−j , Yt−j)
1A

)

for j = 1, . . . , h, and let Qj = �V t
j be the measures on��

V
induced by V t. Similarly,

we define measures �j,s for experimental regimes with interventions in Xt obtained
from �s instead of �. Since the construction of �j leaves the marginal distribution
of V t−j−1 unchanged, we have �j(A) = �(A) and �j,s(A) = �s(A) for all A ∈
σ{V t−j−1}. Further, under �j (or �j,s), Zt−1, . . . , Zt−j are independent of any past
or contemporaneous variables or interventions. Hence condition (F1) is equivalent
to Yt⊥⊥X t−j, σt−j |Zt−1, Y t−j, U t−j [�j−1]

Note also that under (F2), f(zt|vt−1, ut, xt, yt) = f(zt|wt−1, xt, yt). It follows that
the marginal distribution of W t under �h can be determined from its marginal
distribution under �.
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Proof of Theorem 3.4. Writing the ACE in integral notation, �s(Yt) =
∫

yt dPs(yt),
we will first show that

dPs(yt) =

∫
· · ·

∫
dQk,s>k(yt|zt−1, vt−k−1)

k∏
j=1

[
dP (zt−j|xt−j−1, zt−j−1)

· dPsj(xt−j|xt−j−1, wt−h−1)
]
dPs>k(vt−k−1)

(B.1)

for 0 ≤ k ≤ h, where s>k = {sh, . . . , sk+1}. We proceed by induction over k. For
k = 0, the relation follows immediately from dPs(yt) =

∫
dPs(yt|vt−1) dPs(vt−1) and

Q0,s = Ps. For the induction step, assume that (B.1) holds for k− 1. First, we note
that by assumption (F1)

(B.2) dQk−1,s≥k(yt|zt−1, vt−k) = dQk−1,s>k(yt|zt−1, yt−k, ut−k).

Next, the last factor in (B.1) can be factorized as

dPs≥k(vt−k) = dPs≥k(vt−k|vt−k−1) dPs>k(vt−k−1).

Since with assumption (F2), intervention in Xt−k and exploiting (2.1), the variables
Zt−k, Xt−k, and (Ut−k, Yt−k) are independent conditionally on V t−k−1, dPs≥k(vt−k|vt−k−1)
can further be factorised into

(B.3) dPs≥k(yt−k, ut−k|vt−k−1) dPs≥k(zt−k|vt−k−1) dPs≥k(xt−k|vt−k−1).

For the first factor of (B.3), we find

dPs≥k(yt−k, ut−k|vt−k−1) = dPs>k(yt−k, ut−k|vt−k−1)

since the distribution of Ut−k and Yt−k is not affected by the intervention in Xt−k

(due to (I3)), while the third factor of (B.3) equals the intervention distribution due
to (I4)

dPs≥k(xt−k|vt−k−1) = dPsk(xt−k|xt−k−1, wt−h−1).

For the second factor of (B.3), we obtain again by assumption (F2), and using (2.1)
to drop the subscript of P ,

dPs≥k(zt−k|vt−k−1) = dP (zt−k|xt−k−1, zt−k−1).

Substituting the factors and (B.2) back into (B.1), we obtain dPs(yt) =

∫
· · ·

∫ [ ∫
dQk−1,s>k(yt|zt−1, yt−k, ut−k) dPs>k(yt−k, ut−k|vt−k−1)

]

k∏
j=1

[
dP (zt−j|xt−j−1, zt−j−1) dPsj(xt−j|xt−j−1, wt−h−1)

]

· dPs>k(vt−k−1).

(B.4)
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Evaluating the first term in brackets, using (F1), as∫
dQk−1,s>k(yt|zt−1, yt−k, ut−k) dPs>k(yt−k, ut−k|vt−k−1)

=

∫∫
dQk−1,s>k(yt|zt−1, yt−k, ut−k) dPs>k(yt−k, ut−k, xt−k|vt−k−1)

=

∫∫
dQk−1,s>k(yt|zt−1, vt−k) dPs>k(yt−k, ut−k|xt−k, vt−k−1) dPs>k(xt−k|vt−k−1)

=

∫
dQk−1,s>k(yt|zt−1, xt−k, vt−k−1) dPs>k(xt−k|vt−k−1)

Since, under �k−1,s>k , Zt−k depends only on Xt−k and Vt−k−1, the conditional dis-

tribution of Yt given Zt−1, Xt−k, and V t−k−1 is the same under �k−1,s>k and �k,s>k .
Similarly, the conditional distribution of Xt−k is the same under �s>k and �k,s>k .

Noting furthermore that Zt−1⊥⊥Xt−k |V t−k−1 under �k, we finally obtain in (B.4)
for the first term in brackets∫

dQk,s>k(yt|z̄t−1, xt−k, v̄t−k−1) dQk,s>k(xt−k|z̄t−1, v̄t−k−1) = dQk,s>k(yt|z̄t−1, v̄t−k−1),

This proves (B.1) by induction.
It now follows for k = h, and with Ps>h = P and Qh,s>h = Qh

dPs(yt) =

∫
· · ·

∫ [ ∫
dQh(yt|zt−1, wt−h−1, ut−h−1) dP (ut−h−1|wt−h−1)

]

·
h∏

j=1

[
dP (zt−j|xt−j−1, zt−j−1)dPsj(xt−j|xt−j−1, wt−h−1)

]

· dP (wt−h−1)

=

∫
· · ·

∫
dQh(yt|zt−1, wt−h−1)

h∏
j=1

[
dP (zt−j|xt−j−1, zt−j−1)

· dPsj(xt−j|xt−j−1, wt−h−1)
]
dP (wt−h−1),

which yields the asserted expression for the ACE.
To conclude the proof of the front–door criterion, we need to show that the ex-

pectation with respect to �h in the expression of the ACE is indeed of the stated
form. We have

�
Zt−1,W t−h−1

�h
Yt =

∫
dQh(yt|wt−1)

h∏
j=1

dQh(yt−j, xt−j|wt−j−1).

Here, the conditional distribution dQh(yt|wt−1) has the density

f�h
(yt|wt−1) =

f�h
(yt, wt−1|wt−h−1)

f�h
(wt−1|wt−h−1)

=

∫
f�h

(yt|vt−1)f�h
(vt−1|vt−h−1)dut−1 · · · dut−hdP (ut−h−1)∫

f�h
(vt−1|vt−h−1)dut−1 · · · dut−hdP (ut−h−1)

.(B.5)

The density f�h
(vt−1|vt−h−1) can be further factorized as

f�h
(vt−1|vt−h−1) =

h∏
j=1

f�h
(zt−j)f�h

(ut−j, yt−j, xt−j|vt−j−1),
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where f�h
(ut−j, yt−j, xt−j|vt−j−1) = f�(ut−j, yt−j, xt−j|vt−j−1) by definition of �h.

Since the factors f�h
(zt−j), j = 1, . . . , h, do not depend on ut−1, they cancel in the ra-

tio (B.5). Using (F2), we can also replace them by f�(zt−j|xt−j, yt−j, ut−j, vt−j−1) =
f�(zt−j|zt−j−1, xt−j). Following the same steps backwards, we obtain that (B.5) is
equal to

f�(yt, wt−1|wt−h−1)
f�(wt−1|wt−h−1)

= f�(yt|wt−1),

which shows that dQh(yt|wt−1) = dP (yt|wt−1). Similarly, it can be shown that
dQh(yt−j, xt−j|wt−j−1) = dP (yt−j, xt−j|wt−j−1) for 1 ≤ j ≤ h, which yields the

desired expression for the expectation �
Zt−1,W t−h−1

�h
Yt. �

Proof of Corollary 4.7. As a is not an ancestor of b, any an(b)–pointing path between
a and an(b) must contain nodes v, w ∈ an(b), v, w 	= a, in the constellation v� w,
because otherwise it cannot be an(b)–pointing. Hence there is always the m–non–
collider v on any such path so that it must be blocked by V \{a}. With Theorem 4.6
this implies that Xb(t+h)⊥⊥Xa(t)|XV \{a}(t) and we can prove the claim in exactly
the same way as Corollary 2.5. �

Proof of Theorem 4.8. We start by constructing the minimal set S described in part
(ii); note that by definition it has to contain {a, b}. Furthermore, S has to contain
the graph parents of a because otherwise the back–door path a ←− v1 −→ a is
m–connecting and an(b)–pointing (as a ∈ an(b)). Any path starting a ←− v1 · · ·
is blocked by the parents of a as v1 ∈pa(a) is a non–collider. Thus, we now only
need to consider back–door paths that start with a� v2 · · · . If v2 ∈ an(b) it has
to be contained in S otherwise a� v2� · · · b is m–connecting. If v2 /∈ an(b) then
any an(b)–pointing path a� v2� · · · or a� v2� · · · is m–blocked if v2 /∈ S;
and every an(b)–pointing path starting a� v2� · · · must contain a constellation
� v3 � or � v3 � with v3 /∈ an(b), so is m–blocked as v3 /∈ S. The same
reasoning can be applied iteratively to show that any v ∈ D has to be in S. It is
clear from this reasoning that whenever one node of pa(a) or of D is not contained
in S an m–connecting back–door path to an(b) is created, so the set S is minimal.

Now we show part (i), assuming that S has been chosen according to (ii). Define
the set F as the vertices v in S such that v = a or there exists an undirected path
v� · · ·� a with all intermediate vertices lying in S. From the construction of S
it follows that S = {b} ∪ F ∪ pa(F ) and as S contains all parents of F (see (4.1))

(B.6) XF (t)⊥⊥XV \S(t− 1) |XS(t− 1).

(The above, as well as all following conditional independencies that do not explic-
itly mention σa(t) all hold under both values of the indicator.) Furthermore, it also
follows that pa(F ) ∩ sp(F ) ⊆ F , which implies that XF and Xpa(F )\F are contem-
poraneously independent wrt. XV (see (4.2)). If b is a spouse of a vertex in F then
b ∈ F , and we obtain from (B.6) and the contemporaneous independence, using
(C4),

XF (t)⊥⊥(XV \S(t− 1), Xpa(F )\F (t)) |XS(t− 1)
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and further, since in this case S = F ∪ pa(F ),

(B.7) Xa(t)⊥⊥XV \S(t− 1) |XS(t− 1), XS\{a}(t).

If b /∈ sp(F ) then XF and X{b}∪pa(F )\F are contemporaneously independent, which
together with (B.6) yields again (B.7).

Next, we note that from (2.2) we have XV \S(t−1)⊥⊥σa(t)|(XS\{a}(t), XS(t−1)).
By (B.7) and (C4), this can be extended to

(B.8) XV \S(t− 1)⊥⊥σa(t) |XS(t),

that is, when additionally conditioning on Xa(t).
From the definition of F and the global Markov properties, it also follows that

(B.9) Xa(t)⊥⊥XV \(S∪sp(F ))(t) |XS\{a}(t), XV (t− 1).

Due to (I4), the intervention distribution of Xa(t) only depends on XC(t− 1) with
C ⊆ S, the relation holds under both the observational and the experimental regime.
From (I1) it also follows using (C3) that

(B.10) XV \(S∪sp(F ))(t)⊥⊥σa(t) |XS\{a}(t), XV (t− 1).

Properties (B.9) and (B.10) together imply with (C4) and (C3) that

(B.11) XV \(S∪sp(F ))(t)⊥⊥σa(t) |XS(t), XV \S(t− 1).

Now (B.8) and (B.11) together imply with (C4) that

(B.12) XV \(S∪sp(F ))(t), XV \S(t− 1)⊥⊥σa(t) |XS(t).

Further it follows from assumption (2.3) that Xb(t + h)⊥⊥σa(t) |XV (t) and from
(4.3) that Xb(t + h)⊥⊥XV \an(b)(t) | (Xan(b)(t), σa(t)), which together imply

(B.13) Xb(t + h)⊥⊥σa(t), XV \an(b)(t) |Xan(b)(t).

We note that an(b)\S ⊆ V \(S ∪ sp(F )): every vertex in F ∪ sp(F ) is m-connected
to a given S and thus by definition of S must be in S if it is an ancestor of b.
Consequently, (B.13) can be rearranged (with (C2) and (C3)) to give

Xb(t + h)⊥⊥σa(t) |XS(t), XV \S(t− 1), XV \(S∪sp(F ))(t).

Together with (B.12) the latter implies

Xb(t + h)⊥⊥σa(t) |XS(t),

which means that Theorem 3.1 holds for the minimal choice of S. If S is not minimal
then the proof gets more complicated but follows essentially the same lines. Finally,
to see that Theorem 3.2 also holds we simply note that all relations up to (B.12)
concern only the distribution of XV (t) and thus are not affected by interventions at
later time points. Similarly, assumptions (I1) to (I4) on interventions imply that

Xb(t + h)⊥⊥σa(t) |XV (t), σ>t = s,

from which the final result can be obtained similarly as above. �
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Proof of Theorem 4.12. Conditions (G2) and (G3) imply that XV \(C∪{a}) is Granger–
noncausal for, and contemporaneously independent of, XC with respect to XV . With
(C4) this immediately implies (F2), noting that U ∪ {b} = V \(C ∪ {a}).

For condition (F1), we note that XC(t − 1), . . . , XC(t − k + 1) and XV (t − k)
are independent under the measure �k−1. Thus the dependencies of the process
over the period from t − k to t can be described by the graph G̃ obtained from
the original graph by omitting all directed edges with an arrowhead at C and all
undirected edges with one endpoint in C. Then assumption (G1) implies that there
is no directed path from a to b in G̃. It follows that

Xb(t)⊥⊥Xa(t− k) |XV \{a}(t− k) [�k−1].

Furthermore, it follows from assumptions (I1) to (I3) (and under either of � or
�k−1) that

Xb(t)⊥⊥σa(t− k) |XV (t− k).

Combining the two relations by (C4) we obtain (F1). �
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