

On Graph Partitioning, Spectral Analysis, and Digital Mesh Processing

Craig Gotsman
Center for Graphics and Geometric Computing

Department of Computer Science, Technion-Israel Institute of Technology
gotsman@cs.technion.ac.il

Abstract

Partitioning is a fundamental operation on graphs. In this
paper we briefly review the basic concepts of graph par-
titioning and its relationship to digital mesh processing.
We also elaborate on the connection between graph par-
titioning and spectral graph theory. Applications in com-
puter graphics are described.

1. Introduction

Partitioning is a fundamental operation on graphs. In
its purest form, given a graph G = <V,E>, it is the prob-
lem of classifying the graph vertices into two disjoint
sets satisfying the following two conditions: The vertex
sets are balanced, meaning that neither of them is too
small, and the interaction between the two vertex sets is
limited, namely, the number of edges connecting vertices
from both sets is small. This set of edges is called an
edge cut, or just cut. The graph partitioning problem
arises in a large number of applications, e.g. in parallel
processing and numerical computation. See [24] for a
complete survey. Many variants of the basic problem
also exist. For example, the partition can be to more than
two vertex sets, and/or the interaction between the vertex
sets can be measured in a different way. Another variant
on the problem is to partition the vertex set to three sets
V = U∪S∪W, such that U and W are balanced and S is
small. Removing S along with all edges incident on it
separates the graph into two connected components.
Hence S is called a separator. The triple <U,S,V> is
called a (β,g(n))-separator of a graph G containing n
vertices if V(G) = U∪S∪W , |S|<g(n) and min(|U|,|V|) >
βn. β is a real number in the interval [0,1].

In general, graph partitioning is NP-Hard (Problem

8.5.6. in [21]) except for a number of singular cases. The
most famous is probably the family of planar graphs, for
which the celebrated planar separator theorem states
[17]: Every planar graph contains a (1/3,O(√n))-
separator, and this separator may be computed in O(n)
time. This means that relatively small separators may
exist even when the graph is quite large. However, find-
ing a minimal (β,g(n))-separator is NP-Hard even for
planar graphs.

Since graph partitioning is difficult in general, there
is a need for approximation algorithms. These provide
good, but not optimal, solutions to the problem, while
performing quite efficiently in time and space. A popular
algorithm in this respect is MeTiS [15], which has a
good implementation available in the public domain.

The connection of graph partitioning to computer

graphics is due to the basic fact that the vertices and
edges of a 3D mesh have the structure of a graph. Many
mesh operations may be described in terms of graph op-
erations. Fig. 1 shows cuts of the connectivity structure
of two 3D data sets. Note that the cut sizes are on the
order of magnitude of √n, where n is the number of ver-
tices in the graph. Note also that the cut does not neces-
sarily partition the mesh into two meshes of equal vol-
ume in 3D, although the effect might be close to this,
depending on the densities of the vertices on the mesh
surface.

This paper provides a basic introduction to the world

of graph partitioning and its relationship with digital
mesh processing in computer graphics. There are inter-
esting connections between graph partitioning and spec-
tral graph theory which are also described in detail.
Many of these issues arose in various works by the au-
thors and his colleagues over the past few years.

(a) (b)
Figure 1: Some graph partitions (light and dark gray
portions): (a) The horse model (2,048 vertices) and a
balanced (996 + 1,052 vertices) small edge cut (63
edges). Note that the cut is vertical rather than horizon-
tal, achieving a smaller value. (b) The eagle model
(16,542 vertices) and a balanced (8,399 + 8,143 vertices)
small edge cut (148 edges).

2. Graphs and Edge Cuts

Graph theorists have found graphs with small cuts to
be particular interesting. This means that the graph can
be separated into two balanced pieces by removing only
a small number of edges. The extreme case, of course, is
when the graph consists of two balanced connected
components. Then the cut is the smallest possible –
empty. If we think of the graph edges as pipes, then the
existence of small cuts in a graph implies the existence
of a bottleneck in the flow between the two vertex sets.

There are a number of ways to quantify the existence
of small cuts in a graph. The standard way is the value of
the Cheeger constant or isoperimetric number hG of a
graph [6]: For a vertex subset S ⊆ V(G), define

),min(
|),(|)(

SS
SSEShG = and then)(min Shh GSG =

G is connected if and only if hG > 0. The smaller this
value – the more "disconnected" G is, in the sense that it
contains small edge cuts. The planar separator theorem
implies that any planar graph G satisfies hG = O(1/√n),
and the graph partitioning problem attempts to achieve
this.

2.1 Connectivity shapes

The class of manifold 3D triangle meshes with genus
0 is equivalent to the class of 3-connected planar graphs.
The planar separator theorem implies that such meshes
will necessarily have edge cuts of size O(√n) , but in
practice, it turns out that they usually have even smaller
cuts. These small cuts correspond to narrow pieces of the
model, tessellations of the model's real geometry, which
typically has some non-trivial elongated form.

The fact that there are many small cuts in the connec-
tivity graph of typical 3D models can be seen quite
clearly when embedding the connectivity graph on a
simple symmetric geometric object, such as the unit
sphere. The embedding should be such that the mesh
triangles form a valid spherical triangulation of the
sphere, namely, that no two spherical triangle induced by
the connectivity graph overlap, and that the triangles are
well shaped (i.e. not long and skinny). Should the graph
have small cuts – these result in visible clusters in the
embedding. The reason the clusters form is that the small
cut represents a region on the sphere enclosed by a small
number of edges, hence with small area, yet containing a
large number of vertices. Fig. 2 shows such an embed-
ding of the triceratops model, where the clusters formed
by the legs, head and other extremities are quite visible.

Figure 2: The triceratops model and its embedding on a
sphere.

The presence of small cuts in the mesh connectivity

graph conveys non-trivial information on the geometric
structure of the 3D model itself. 3D models are usually
tessellated from the geometric surfaces they are modeled
with in the form of uniformly distributed, i.e. equilateral
triangles. Assuming this, perform the following experi-
ment: take the connectivity graph of the model, and us-
ing only this, try and reconstruct the geometry of the
model. This means to find the 3D coordinates of each of
the mesh vertices such that the mesh triangles form as
equilateral triangles as possible in space. Quite surpris-
ingly, the geometric shape that results from this process
exhibits a close resemblance to the original 3D model,
even though it was born from connectivity data only ! It
is obvious that the protruding forms of the legs of the
animal resulted from the small cuts in the connectivity,
which "pushed" the geometry out. These shapes are
called connectivity shapes. See Fig. 3 for an example and
[12] for a detailed exposition on this topic.

Figure 3: The cow model and its connectivity shape.

2.2 The bisection tree

Partitioning a graph into two equal halves with
minimal edge cut is sometimes called bisection. A fun-
damental data structure that arises by recursive applica-
tion of bisection is the bisection tree. These partitions the
edge set of a graph among the nodes of a binary tree.
Each node represents a bisection. The leaves of the bi-
nary tree are a partition of the graph vertex set. See Fig.
4.

(a) (b)
Figure 4: Recursive bisection of graph of 16 vertices.
(a) Cuts of first two levels. (b) Corresponding bisection
tree.

The bisection tree may also be viewed as a multiscale

representation of the graph. If U and V are separated by a
small cut, these can be viewed as two clusters in the
graph. All vertices in each of the two sets may be col-
lapsed into one meta-vertex in a smaller graph.

3. Connection to Spectral Analysis

The information present in a graph may be repre-
sented as the so-called adjacency matrix, a binary matrix
A(G) such that Aij = 1 if and only if (i,j) ∈ E(G). A re-
lated matrix is the graph Laplacian: L = D-A, where D is
a diagonal matrix such that Dii = di, the degree (or va-
lence) of the i'th vertex.

3.1 The second eigenvalue

There is an intimate relationship between the combi-

natorial characteristics of a graph and the algebraic prop-
erties of its Laplacian. This is the essence of spectral
graph theory [4,6]. In particular, there is a direct connec-
tion between the spectrum of the Laplacian and the iso-
perimetric number of the graph: Denote by {λ0=0, λ1, λ2
,.., λn-1} the eigenvalues of L in increasing order. λ0 is
zero since L is singular due to all its rows summing to
zero. For the same reason the eigenvector corresponding
to λ0 is a vector of constant values. L is connected if and
only if λ1>0. In general the co-rank of L will equal to the
number of connected components of G. Moreover, λ1
will be close to zero if G is almost unconnected, namely
contains a small cut. More precisely, the following rela-
tionship between λ1 and the isoperimetric number of the
graph holds [6]:

G
G hh 2
2 1

2

≤< λ

3.2 Spectral partitioning

Just as the second eigenvalue of L(G) contains in-

formation on the presence of small cuts in the graph G,
the eigenvectors of L(G) play an important role in the
following algorithm for partitioning G [10,2]. Denote by
{ξ0, ξ1, ξ2, ..., ξn-1} the eigenvectors of L corresponding

to the eigenvalues {λ0, λ1, λ2 ,.., λn-1}. Embed G in Rd
using the eigenvectors {ξ1, ξ2, ..., ξd} as coordinate vec-
tors, namely the vertex vi is positioned at point (ξ1(i)
ξ2(i), ..., ξd(i))∈Rd. Now find the direction s of the larg-
est spread of the vertices in Rd, and the (d-1)-
dimensional hyperplane in Rd normal to s which parti-
tions Rd into two halfspaces such that approximately half
the vertices of V are in each halfspace. The graph edges
that straddle the hyperplane are a small cut of G. In this
way it is possible to reduce the combinatorial graph par-
titioning problem to a geometric space-partitioning prob-
lem. The intuition behind this algorithm can be seen by
the following argument for the case d=1: First note that:
(1) ∑

∈

−=
Eji

ji
T xxLxx

),(

2)(

and

(2)
xx

Lxx
T

T

x)1,..,1(1 min
⊥

=λ

where the minimum of (2) is obtained for x = ξ1. Eq. (2)
is the well known Rayleigh quotient. The condition x ⊥
(1,..,1) is equivalent to x having zero mean, so approxi-
mately half its entries are negative and half positive.
Since ξ1 minimizes (2), (1) implies that embedding the
graph vertices on the real line according to their values
in ξ1 minimizes the resulting sum of squared edge
lengths. Hence partitioning the graph at any point along
the real line will give a small edge cut, and the most bal-
anced will probably be when the cut is performed at the
origin. In practice using d=1 or d=2 is sufficient to pro-
duce reasonably good partitions. The case d=1 is particu-
larly simple: Compute the eigenvector ξ1 (also known as
the Fiedler vector of G [8]) and partition the vertices
according to the sign of the corresponding entry in the
eigenvector. Fig. 5 shows the two dimensional (d=2)
spectral embedding of the graph of Fig. 4a and the re-
sulting partition. Note that while the 2D embedding of
the graph is not planar (there are edge-crossings), hence
not as visually pleasing as it could be, the embedding is
reasonable, and in fact, embedding using the Laplacian
eigenvectors is one approach to drawing graphs [16].
Note, however, the difference between this graph draw-
ing approach and the connectivity shapes of Section 2.1.

Figure 5: Graph (left) and spectral embedding (right)
using first two eigenvectors of Laplacian matrix as coor-
dinate vectors. Dashed line is resulting partition.

4. Locality-Preserving Orderings

The concept of locality in a graph is similar to the
concept of locality in metric spaces. Two vertices are
close if a small number of edges form a path between
them. Two vertices are far apart if all paths between
them are long, certainly if they are in different connected
components (so that no path between them exists).

4.1 Minimal linear arrangements

A particularly interesting graph-theoretic problem is
Minimal Linear Arrangement (MLA). This involves
finding an ordering of the graph vertices such that verti-
ces close to each other in the graph are not too far from
each other in the ordering. More precisely, the problem
is to find a one-to-one mapping π:V→{1,..,n} such that

)()(minarg

),(
ji

Eji
πππ

π
−= ∑

∈

This is a locality-preserving ordering, meaning that
when the graph is traversed in the order prescribed by π,
there are not too many jumps within the graph. MLA is
an example of a geometric embedding problem, where
the domain is the one-dimensional grid. MLA is NP-
Hard [9], but a variety of approximation algorithms ex-
ist. One very effective heuristic method to approximate
MLA is to build a bisection tree for the graph, and then
order the vertices as they appear in the tree leaves from
left to right. The reason that this works is that if the
graph contains a small cut, a good MLA ordering should
first traverse the first half of the graph completely, and
only then the second half. Applying this reasoning recur-
sively (albeit greedily) leads to a good locality-
preserving ordering, in analogy to the recursive construc-
tions of the celebrated Hilbert space-filling curves on
grids [20].

4.2 Approximating spectral basis functions

Given a 3D mesh consisting of a connectivity struc-
ture and geometry associated with the vertices, it is quite
obvious that the connectivity structure captures some of
the correlation between the vertex geometries, in the
sense that vertices closer to each other in the connec-
tivity graph are more correlated than others. This is par-
ticularly true for smooth meshes. Hence the connectivity
structure can be used to extract the correlation from the
geometric data, or, in other words, code it efficiently.
One way to do this, inspired by traditional transform
coding in signal processing, is to express the geometry
vectors x, y and z as a linear combination of a small
number of basis vectors. A good choice of basis vectors
turn out to be the eigenvectors of the graph Laplacian
{ξ0, ξ1, ξ2, ..., ξn-1}, who form an orthonormal basis of Rn
[13]. The reason that these basis vectors are so suitable is
that the spectra of x, y and z, i.e. the vector of projections
onto the basis function, decay rapidly, hence may be

truncated and/or aggressively quantized to encode the
geometry vectors in a small number of bits. The eigen-
value corresponding to the eigenvector is the analog of
the frequency of a harmonic basis function. Thus most of
the energy in the geometric mesh signal is concentrated
in the low frequencies, i.e. the eigenvectors correspond-
ing to small eigenvalues. See Fig. 6(c).

Unfortunately, this spectral coding method is not

practical, especially for large meshes, since the computa-
tion of the d first eigenvectors requires O(dn2), which is
prohibitive for large n. However, the following method,
based on mesh partitioning, reversing the logic of Sec-
tion 3.2 allows us to build an orthonormal basis which is
a good approximation to the optimal Laplacian basis:
Assume the number of graph vertices is a power of two.
Build an (approximate) bisection tree for the graph with
log2n levels. At level k=0 generate the constant unit basis
vector. At level k>0, take the 2k-1 basis vectors generated
at the previous level and generate another 2k-1 basis vec-
tors by multiplying the first set by the pattern of 2k alter-
nating sequences of 1's and -1's and normalizing to unit
norm. The latter operator doubles the frequency of the
second set of basis vectors. The frequency of a vector is
defined as the number of zero crossings (sign changes)
in it. It is easy to prove by induction on k that the result-
ing set of 2k vectors is orthonormal. It is also easy to see
that if the MLA construction from the bisection tree,
described in Section 4.1, is used, the resulting basis is
just the 1D Hadamard basis [23] on the vertices ordered

(a) (b)

0 50 100 150 200
0

0.05

0.1

0.15

0.2

No. Basis Functions

S
pe

ct
ra

l E
ne

rg
y

R
es

id
ua

l

Laplacian
Hadamard

(c)

Figure 6: Two binary Hadamard basis functions for the
horse model. Dark regions indicate vertices with value -
1, and light regions have value +1. (a) low frequency.
(b) high frequency. (c) Residual energy (accumulated
energy in the rest of the basis vectors) of horse model on
Laplacian and Hadamard bases.

by that MLA. The rationale behind this construction is
that if the first Laplacian eigenvector partitions the graph
well based on the signs of its entries, then a binary sign
vector constructed from a min-cut partition of the graph
should be a reasonable approximation to the Laplacian
eigenvector. This argument may be applied recursively.
Fig. 6 shows some basis vectors constructed this way
and a comparison of the decay of the coefficients of the
geometry vectors when using this basis as compared to
the optimal Laplacian eigenbasis. Both decay quite rap-
idly, which is an indicator of the suitability of the basis
for coding purposes.

4.3 Rendering Sequences

Modern graphics hardware allows the use of a vertex
buffer to cache vertex computations, such as projection
and lighting, during rendering. To exploit this mecha-
nism as much as possible, the mesh triangles should be
rendered in an order such that as many vertices as possi-
ble are present in the finite size cache when they are
needed. This means that the mesh triangles should be
rendered in an order that preserves their locality as much
as possible, avoiding long jumps between far mesh tri-
angles. This ordering of the mesh triangles is called a
rendering sequence for the mesh [11], and it is an exten-
sion of the traditional triangle stripping techniques [7].
The so-called average cache-miss ratio (ACMR), the
average number of vertex cache misses incurred per ren-
dered triangle, is used to measure the performance of a
rendering sequence. This number can be anywhere be-
tween 0.5 and 3, so a good rendering sequence can result
in frame rates which are up to six times faster than those
obtained without any special rendering sequence (i.e.
when the mesh triangles are rendered in an essentially
random order). See [3] for some theoretical bounds on
the expected speedups when using a cache of size k to
render a mesh of size n.

A good rendering sequence can be obtained by gen-

erating a MLA for the dual mesh – the graph whose ver-
tices correspond to the original (primal) mesh triangles,
and edges to edges [5]. An MLA of the dual mesh is a
traversal of the original mesh triangles. Fig. 7 shows a
3D mesh and a visualization of the rendering perform-
ance when a rendering sequence is and is not used. The
frame rate increases by a factor of 3.7 when the render-
ing sequence is used.

4.4 Progressive meshes

When the mesh vertices are ordered into a vertex se-
quence using MLA, and extra care is taken such that the
jumps along the sequence are not too long, they induce a
natural multiresolution structure on the mesh. This ver-
tex sequence is an (almost Hamiltonian) path traversing
all mesh vertices in a locality-preserving order. The reso-
lution of the mesh may be reduced using the edge col-
lapse operation, which unites two vertices to one. With

this, a natural multiresolution structure may be induced
on the mesh, and even exploited for efficient coding of
the mesh [14] by building layers as follows: Collapse
every second edge in the vertex sequence to transform n
vertices to n/2 vertices. Fig. 8 shows two levels of the
multiresolution horse mesh constructed this way. It can
be shown to be equivalent to the application of a one-
dimensional Haar wavelet to the geometric signal or-
dered by the vertex sequence.

(a) (b)

Figure 7: Visualization of rendering performance of a
locality-preserving rendering sequence. Light vertices
incur no cache misses. Dark vertices incur many cache
misses. (a) Using random ordering, ACMR = 2.65. (b)
Using MLA-induced rendering sequence, ACMR =
0.71.

Figure 8: Two multiresolution levels of the horse model
with vertex sequences (dark black lines). The model on
the right (512 vertices) was generated from the model on
the left (1024 vertices) by collapsing every second edge
in the vertex sequence. This may be continued recur-
sively until only a single vertex is left.

5. Mesh Connectivity Coding

With the advent of the WWW, transmitting 3D model
data over the Internet is an important application, which
requires representing the mesh data (connectivity + ge-
ometry) in the most compact manner. Over the past few
years, a wealth of algorithms have been published for
connectivity coding (e.g. [19,22]). The common de-
nominator of many of these algorithms is that they per-
form a mesh conquest, meaning traversal of the mesh
triangles or vertices, coding them into a bit stream as
they proceed. At any given point in time during the cod-
ing, the mesh consists of two parts: the part that has been
coded, and the part that has not yet been coded. The
same holds for the decoder. The interface between these
two parts is usually called the cut-border (or active list),
and, as its name implies, it is actually a cut or separator

of the graph into two (not necessarily connected) com-
ponents.

The main data structure maintained by the coding algo-
rithms relates to the maintenance of the dynamic cut-
border during the encoding/decoding process. This usu-
ally follows from the fact that once a mesh triangle has
been encoded/decoded, it can be "forgotten", in the sense
that it is no longer needed to deal with the remaining
triangles in the mesh. It order to maintain as small a data
structure as possible, it is desirable that the cut-border be
kept as small (or tight) as possible. This is none other
than a small edge cut. So a good connectivity coding
algorithm should strive to keep the cut-border as short as
possible. Although the coding algorithms can only
minimize the cut in a greedy manner, it turns out that the
valence-coding algorithm of Touma and Gotsman [22]
does a good job in this respect, and this has been opti-
mized further in an improvement due to Alliez and Des-
brun [1]. Fig. 9 illustrates the cut-borders generated in
the valence coding of the hand model.

(a) (b)

Figure 9: Partition generated by the Touma-Gotsman
connectivity coder. Light triangles have already been
coded and dark triangles not yet. (a) Early in the cod-
ing process. (b) Late in the coding process.

6. Discussion and Conclusion

Graph partitioning has proven to be an effective tool

for various mesh processing operations, and is intimately
connected to various locality and spectral properties of
the mesh connectivity structure. In some cases, it also
provides a link between the connectivity and geometry
components of the data set, which are not as unrelated as
might seem at first glance.

The discussion in this paper has revolved around the

partitioning of 3D mesh datasets based only on their
connectivity graphs. In practice, 3D data sets have prop-
erties associated with the vertices, the most basic one
being geometry. These properties may be used to seg-
ment the mesh to reflect its intrinsic properties better.

This is useful for 3D mesh simplification, smoothing and
coding but beyond the scope of this paper.

While the graph Laplacian is traditionally consid-
ered the correct operator to use for spectral analysis of
graph properties, recent developments in algebraic and
spectral graph theory indicate that a more appropriate set
of operators might be the so-called Colin de Verdiere
matrices [18]. These are a superset of the Laplacian ma-
trices for which it is possible to better characterize the
quality of the embeddings obtained using their eigenvec-
tors.

7. Acknowledgements

Much of the material in this paper surfaced in joint work
of mine with Alex Bogomjakov, Stefan Gumhold, Mar-
tin Isenburg, Zachi Karni and Alla Sheffer.

References

[1] P. Alliez and M. Desbrun. Valence-driven connec-

tivity encoding of 3D meshes. Proceedings of
Eurographics, pp. 480-489, 2001.

[2] C.J. Alpert and S.Z. Yao. Spectral partitioning:
The more eigenvectors, the better. In 32th DAC,
ACM/IEEE, 195-200, 1995.

[3] R. Bar-Yehuda and C. Gotsman. Time/space
tradeoffs for polygon mesh rendering. ACM
Transactions on Graphics 15(2):141-152, 1996.

[4] N. Biggs. Algebraic graph theory (2nd Ed.). Cam-
bridge University Press, 1993.

[5] A. Bogomjakov and C. Gotsman. Universal ren-
dering sequences for transparent vertex caching of
progressive meshes. Computer Graphics Forum
21(2):137-148, 2002.

[6] F.R.K. Chung. Spectral graph theory. CBMS 92,
AMS, 1997.

[7] J. El-Sana, F. Evans, A. Varshney, S. Skiena, and
E. Azanli. Efficient computing and updating trian-
gle strips for real-time rendering. Computer-Aided
Design 32(13):753-772, 2001.

[8] M. Fiedler. A property of eigenvectors of non-
negative symmetric matrices and its application to
graph theory. Czechoslovak Math. Journal,
25:619-633, 1975.

[9] M.R. Garey and D.S. Johnson. Computers and
intractability: A guide to the theory of NP-
completeness, W.H.Freeman, 1979.

[10] K.M. Hall. An r-dimensional quadratic placement
algorithm. Management Science 17:219–229,
1970.

[11] H. Hoppe. Optimization of mesh locality for
transparent vertex caching. Proceedings of ACM
SIGGRAPH, 269-276, 1999.

[12] M. Isenburg, S. Gumhold and C. Gotsman. Con-
nectivity shapes. Proceedings of IEEE Visualiza-
tion, 2001.

[13] Z. Karni and C. Gotsman. Spectral compression
of mesh geometry. Proceedings of ACM SIG-
GRAPH, 279-286, 2000.

[14] Z. Karni, A. Bogomjakov and C. Gotsman. Effi-
cient rendering of multi-resolution meshes from
compressed form. Proceedings of IEEE Visualiza-
tion, 2002.

[15] G. Karypis and V. Kumar. MeTiS - a software
package for partitioning unstructured graphs, par-
titioning meshes, and computing fill-reducing or-
derings of sparse matrices. Version 4, University
of Minnesota, 1998. Available on WWW at URL
http://www-users.cs.umn.edu/~karypis/ metis

[16] Y. Koren On spectral graph drawing. Preprint.
Weizmann Institute of Science, 2003.

[17] R.J. Lipton and R.E. Tarjan. A separator theorem
for planar graphs. SIAM Journal of Applied Math.
36(2):177-189, 1979.

[18] L. Lovasz and A. Schrijver. On the nullspace of a
Colin de Verdiere matrix. Annales de l'Institute
Fourier, 49:1017-1026, 1999.

[19] J. Rossignac. Edgebreaker: Connectivity com-
pression for triangle meshes. IEEE Transactions
on Visualization and Computer Graphics, 5(1),
1999.

[20] H. Sagan. Space-filling curves. Springer Verlag,
New York, 1994.

[21] S. Skiena. The algorithm design manual,
Springer-Telos, 1998.

[22] C. Touma and C. Gotsman. Triangle mesh com-
pression. Proceedings of Graphics Interface '98,
pp. 26-34, 1998.

[23] R. Yarlagadda, K. Rao and J.E. Hershey. Ha-
damard matrix analysis and synthesis with appli-
cations to communications and signal/image proc-
essing. Kluwer, 1997.

[24] http://rtm.science.unitn.it/intertools/graph-
partitioning/links.html

