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ON GRAPH PRODUCTS OF AUTOMATIC MONOIDS

A. Veloso da Costa
∗,1

Abstract. The graph product is an operator mixing direct and free
products. It is already known that free products and direct products
of automatic monoids are automatic. The main aim of this paper is
to prove that graph products of automatic monoids of finite geometric
type are still automatic. A similar result for prefix-automatic monoids
is established.
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1. Introduction

Automatic semigroups were introduced in [1] as an extension of the (automata-
theoretic) notion of automatic group. Automatic groups admit two different char-
acterizations: in terms of automata and rational languages or in terms of the
geometry of the Cayley graph. A geometric characterization for automatic semi-
groups (or monoids) has not yet been found. In [7], prefix-automatic monoids
are introduced, an apparently stronger definition of automatic monoid. Both def-
initions coincide for groups but the question is still open for monoids. It is also
obtained a geometric characterization of prefix-automatic monoids of finite geo-
metric type (FGT).

Graph products were introduced in [3]. Free products and direct products of
monoids are particular cases of graph products. In [1], it is proved that free prod-
ucts and direct products of automatic monoids are automatic and corresponding
results for prefix-automatic monoids are proved in [8]. In [5], it is proved that the
graph product of automatic groups is automatic. We prove, in Theorem 6.4, that
the graph product of automatic monoids of finite geometric type is automatic.
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The corresponding result for prefix-automatic monoids is established in Theo-
rem 6.5. We also prove that the graph product of FGT monoids is FGT.

2. Graph products of monoids

For more details on this section the reader is referred to [9]. Let X be a non-
empty set. As usual, the free monoid on X is denoted by X∗. If R is a relation
on X∗, the congruence on M generated by R is denoted by R] [6] and the formal
expression 〈X ;R〉 is said to be a presentation. The quotient X∗/R] is said to be
the monoid defined by the presentation 〈X ;R〉. Given a monoid M , we say that
〈X ;R〉 is a presentation of M if X∗/R] is isomorphic to M .

The graph product is an operator mixing direct and free products. Whether
the product between two monoids is free or direct is determined by a simplicial
graph, that is, a (non directed) graph with no loops. Considering a monoid at-
tached to each vertex of the graph, the associated graph product is the monoid
generated by each of the vertex monoids with the added relations that elements
of adjacent vertex monoids commute. Formally, given a finite family of monoids
M1,M2, . . . ,Mn with presentations 〈X1;R1〉, 〈X2;R2〉, . . . , 〈Xn;Rn〉 (we assume
that the sets X1, X2, . . . , Xn are disjoint) and Γ a simplicial graph with vertices
labeled 1, 2, . . . , n, the associated graph product is a monoid Γ(M1,M2, . . . ,Mn)
with presentation 〈X ;R〉, where

X =
n⋃
i=1

Xi , R =
n⋃
i=1

Ri ∪RΓ

and

RΓ = {(ab, ba) : a ∈ Xi, b ∈ Xj and i, j are adjacent vertices of Γ}·

Two elements a and b in X are said to Γ-commute (a ∼ b) if they arise from
adjacent monoids. The same notation is used for monoids (Mi ∼ Mj) and in-
dices (i ∼ j).

Given a word u in X∗, we represent the n-th letter of u by u(n) and the length
of u by |u|. We say that v ∈ X∗ is a subword of u if v = u(i1)u(i2) · · ·u(ik), where
1 ≤ i1 < i2 < · · · < ik ≤ |u|. Let u ∈ X∗ and i ∈ {1, 2, · · · , n}. An i-component of
u (or a component of type i) is a maximal subword of u, v = v1v2 · · · vk such that,
for every j ∈ {1, 2, · · · , k}, vj ∈ Xi and (for j 6= k) every symbol occurring in u
between vj and vj+1 Γ-commutes with i. The first element of a component of u is
said to be the head element of the component. We define S(u) as the product of the
components of u ordered by their head elements. Let S(X∗) = {S(u) : u ∈ X∗}.
Notice that, given a word u in X∗, S(u) and u are congruent in M . For words
in S(X∗) we usually write the components between square brackets to emphasize
them. We define the type of a word in S(X∗) as the sequence of types of its
components.
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Let u, v ∈ S(X∗). We say that:

u is N-equivalent to v ( u⇔N v ): if u and v have the same type and the
components in the same position are congruent in the respective monoid.

v results from u by a Γ-transition ( u↔Γ v ): if v results from u by swap-
ping two consecutive components that Γ-commute.

u is Γ-equivalent to v ( u⇔Γ v ): if v results from u by a finite number of
Γ-transitions.

u is ΓN-equivalent to v ( u⇔ΓN v ): if there is w in S(X∗) such that u⇔Γ

w and w ⇔N v.

If u⇔ΓN v, since Γ-transitions do not commute components of the same type, we
have that, for all n and i the n-th i-components of u and v are congruent in Mi.
So, if u⇔ΓN v we have a natural notion of corresponding components in u and v.
Notice that ⇔N ⊆ ⇔ΓN and ⇔Γ ⊆ ⇔ΓN . Since both relations are also contained
in R] the relation ⇔ΓN is contained in R] too. The relations ⇔N , ⇔Γ and ⇔ΓN

are equivalence relations on S(X∗).
Let u be a word in S(X∗) and [t] one of its components. We say that [t] is

initial (terminal) for u if [t] Γ-commutes with all the components of u on the left
(right) of [t]. Any word u ∈ S(X∗) such that its components are of different types
and all Γ-commute will be called a block . Notice that given u ∈ S(X∗) any two
initial (terminal) components for u Γ-commute. Moreover, we can rewrite u, by
Γ-transitions, in such a way that all the initial (terminal) components are in the
beginning (end) of the word, forming a block.

Given u ∈ S(X∗), when we suppress a trivial component , that is, a component
that is congruent to the empty word in the corresponding monoid, we get a new
word that is congruent to u in M . After this we want to write the resulting word
as a product of its components again. We will call that process a reduction of u.
Any word that admits no reductions will be called an irreducible word. Given a
word u in S(X∗), we will call irreducible form of u any irreducible word obtained
from u by a (finite) sequence of reductions. Now we list some results obtained
in [9].

Lemma 2.1 ([9], Lem. 4.1). Let u, v ∈ S(X∗) be ΓN -equivalent. If [t] is a compo-
nent of u and [s] is the corresponding component of v, then [t] is initial (terminal)
for u if and only if [s] is initial (terminal) for v.

Proposition 2.2 ([9], Prop. 4.2). Let u, v ∈ S(X∗) be ΓN -equivalent (resp. Γ-
equivalent, N -equivalent). If [t] is an initial or terminal component of u and [s] is
the corresponding component of v then cutting [t] in u and [s] in v we get words
in S(X∗) that are ΓN -equivalent (resp. Γ-equivalent, N -equivalent).

Theorem 2.3 ([9], Th. 6.1). Let u, v ∈ X∗. The following conditions are equiva-
lent:

1. u and v are congruent in M ;
2. any irreducible forms of S(u) and S(v) are ΓN -equivalent;
3. there are irreducible forms of S(u) and S(v) that are ΓN -equivalent.
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3. Rational languages and automata

Let A be a finite alphabet. As usual, A+ denotes the set of all non-empty
words over A and A∗ denotes the set of all words over A, including the empty
word represented by 1. A language over the alphabet A is a subset of A∗. For
every word u over an alphabet A, let |u| denote the length of u and for every
integer k such that 0 ≤ k ≤ |u|, let u(k) denote the prefix of u with length k.
Given L ⊆ A∗, we denote by Pref(L) the set of all prefixes of words in L.

A finite automaton is a 5-tuple A = (Q,A, µ, q0, F ) where Q and A are finite
sets (called the states and input alphabet , respectively), µ is a partial function
from Q× A to Q, q0 ∈ Q is the initial state and F ⊆ Q is the set of final states.
The interpretation of (q, a)µ = q′ is that A in state q with input symbol a moves
to state q′. We extend µ to Q×A∗ as follows:

1) for every q ∈ Q, (q, 1)µ = q;
2) for every u ∈ A∗ and a ∈ A, we define (q, ua)µ = ((q, u)µ, a)µ if (q, u)µ and

((q, u)µ, a)µ are defined.
A word u ∈ A∗ is said to be accepted or recognized by A if (q0, u)µ is defined and
(q0, u)µ ∈ F . The set of words in A∗ that are accepted by A is said to be the
language accepted or recognized by A. A language over A is said to be rational if
it is recognized by a finite automaton over A. We will now list some well-known
properties of rational languages (see [4]).

Lemma 3.1. Assume that A and B are finite sets. Then:
(i) ∅, A+ and A∗ are rational;

(ii) any finite subset of A∗ is rational;
(iii) if K,L ⊆ A∗ are rational then KL, K∪L, K∩L, K−L and K∗ are rational;
(iv) If K ⊆ A∗ is rational and Φ : A∗ → B∗ is a monoid homomorphism, then

KΦ is rational;
(v) If K ⊆ B∗ is rational and Φ : A∗ → B∗ is a monoid homomorphism, then

KΦ−1 is rational.

We will now introduce a generalization of the notion of finite automaton.
A generalized sequential machine (GSM) is a 6-tuple M = (Q,A,B, µ, q0, F )

where Q, A and B are finite sets (called the states , input alphabet and output
alphabet , respectively), µ is a function from Q × A to finite subsets of Q × B∗,
q0 ∈ Q is the initial state and F ⊆ Q is the set of final states. The interpretation
of (q′, w) ∈ (q, a)µ is that M in state q with input symbol a may, as one possible
choice of move, enter state q′ and emit string w. We extend µ to Q×A∗ as follows:

1) for every q ∈ Q, (q, 1)µ = {(q, 1)};
2) for every u ∈ A∗ and a ∈ A, (q, ua)µ =

{(q2, w)µ : w = w1w2 and for some q1, (q1, w1) ∈ (q, u)µ and (q2, w2) ∈ (q1, a)µ}·

For every u ∈ A∗ let M(u) = {w : (q′, w) ∈ (q0, u)µ, for some q′ ∈ F} and for
every L ⊆ A∗ let M(L) = {w : w ∈ M(u) for some u ∈ L}. We can see M as
a map from the set of all languages over A to the set of all languages over B.
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Moreover, if L is a rational language over A thenM(L) is a rational language over
B ([4], Th. 11.1).

Assume now that $ is a symbol not in A. We define

A(2, $) = (A ∪ {$})× (A ∪ {$})− {($, $)}

and we define a mapping δ : A∗ × A∗ → A(2, $)∗ as follows. Given u = a1 · · ·an
and v = a′1 · · · a′m, with ai, a

′
j ∈ A, let

(u, v)δ =



1 if n = m = 0

(a1, a
′
1) · · · (an, a′n) if n = m > 0

(a1, a
′
1) · · · (an, a′n)($, a′n+1) · · · ($, a′m) if 0 ≤ n < m

(a1, a
′
1) · · · (am, a′m)(am+1, $) · · · (an, $) if n > m ≥ 0.

The diagonal homomorphism ∆ : A∗ → A(2, $)∗ is defined by a∆ = (a, a), for
a ∈ A. Let π1 and π2 be the natural projections from ((A∪{$})× (A∪{$}))∗ into
(A∪{$})∗ defined by (a1, a2)π1 = a1 and (a1, a2)π2 = a2 for every a1, a2 ∈ A∪{$}.
For every u ∈ (A ∪ {$})∗ let #$(u) be the number of occurrences of $ in u. For
every u ∈ A(2, $)∗ let σ(u) = |#$(uπ1)−#$(uπ2)| and let Σ(u) = Max{σ(u(k)) :
1 ≤ k ≤ |u|}. For a language L ⊆ A(2, $)∗ we define Σ(L) = Sup{Σ(u) : u ∈ L}.

Consider now the homomorphism α : (A ∪ {$})∗ → A∗ defined by aα = a, if
a ∈ A, and $α = 1. Let ζ : A(2, $)∗ → (A∗ ×A∗)δ defined by uζ = (uπ1α, uπ2α)δ.

Lemma 3.2. If L ⊆ A(2, $)∗ is a rational language and Σ(L) is finite then Lζ is
rational.

Proof. This is a technical lemma. For readers familiarized with GSMs, the proof
is straightforward. We include here a detailed proof.

If Σ(L) = 0 then Lζ = L and the result holds. Assume then that Σ(L) > 0.
We will construct a GSM M such that M(L) = Lζ.

We take A(2, $) for both input and output alphabets. Let Q1 be the set of all
words in (A× {$})+ with length less or equal to Σ(L) and let Q2 be the set of all
words in ({$} ×A)+ with length less or equal to Σ(L). Let Q = Q1 ∪Q2 ∪ {q0, t}
where q0 is the initial state and t is the single final state. Since alphabet A
is finite, Q is also finite. Now we will explain how to construct the function
µ : Q×A(2, $)→ Q×A(2, $)∗.

Let a1, a2, b1 ∈ A. When at initial state q0, if we input (a1, $), since (a1, $) is
not in A × A, we move to state (a1, $) and generate 1 as output. We have now
three cases to consider: if Σ(L) > 1 and we input (a2, $) then we move to state
(a1, $)(a2, $) and output 1; if the input is of the form ($, b1) then we move to initial
state q0 and generate (a1, b1) as output; if we input (a2, b1) then we move to state
(a2, $) and output (a1, b1).

As we read input we generate pairs in A×A and the “remaining” part of input
read is stored in the current state. When input ends we must output the word
stored at the current state. This can be done proceeding as for automata: when at
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state q1 input u ∈ A(2, $) allows a move to state q2 producing output v we allow
an alternative move from q1, with the same input u, to the final state t generating
as output vq2, where here q2 is understood as a word. Hence, we formally define
µ as follows:

For all a, b ∈ A,

(q0, (a, b))µ = {(q0, (a, b)), (t, (a, b))};
(q0, (a, $))µ = {((a, $), 1), (t, (a, $))};
(q0, ($, b))µ = {(($, b), 1), (t, ($, b))} ·

Let q = (a1, $)(a2, $) · · · (am, $) ∈ Q1. If 0 < m < Σ(L), we define for all a, b ∈ A,

(q, (a, b))µ = {((a2, $) · · · (am, $)(a, $), (a1, b)), (t, (a1, b)(a2, $) · · · (am, $)(a, $))};

(q, (a, $))µ = {((a1, $)(a2, $) · · · (am, $)(a, $), 1), (t, (a1, $)(a2, $) · · · (am, $)(a, $))};

(q, ($, b))µ = {((a2, $) · · · (am, $), (a1, b)), (t, (a1, b)(a2, $) · · · (am, $))} ·

If m = Σ(L), for all a, b ∈ A, we define (q, (a, b))µ and (q, ($, b))µ in the same way
and we define

(q, (a, $))µ = ∅.

For states in Q2, µ is defined in a similar way and, for state t, we define, for all
a, b ∈ A,

(t, (a, b))µ = (t, (a, $))µ = (t, ($, b))µ = ∅.
Since t is the single final state of M, for every u ∈ L, M(u) = {w : (t, w) ∈
(q0, u)µ}. At every state q 6= t any input in A(2, $) is accepted (with exception of
the states with length Σ(L)) and we always have two optional moves where one of
them is a move to the final state t. On the other hand, since at state t no move is
allowed for any input, the option for a move to state t should be taken only in the
final move. Let u ∈ L. Since no prefix v of u satisfies σ(v) > Σ(L) we conclude
that there is exactly one path from q0 to t labeled by u and thusM(u) has a single
element. Assume that M(u) = {w}. To see that w = uζ we just have to note the
following:
• with the exception of the final move, every output generated is in A×A and

thus w ∈ (A∗ ×A∗)δ;
• input symbols of uπ1α are outputed by the same order and no other symbol

of A occurs in wπ1α. Hence uπ1α = wπ1α;
• input symbols of uπ2α are outputed by the same order and no other symbol

of A occurs in wπ2α. Hence uπ2α = wπ2α.
Hence we must have

w = (wπ1α,wπ2α) = (uπ1α, uπ2α)δ = uζ.

Thus, M(L) = Lζ and therefore Lζ is rational. �
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4. Automatic monoids

Let M be a monoid and let φ : A+ → M be a surjective semigroup homo-
morphism. We say that L ⊆ A∗ is a rational section for φ if L is rational and
φ|L : L → M is surjective (where we extend φ to A∗ in the usual manner). If,
in addition, φ|L is injective, L is called a rational cross-section for φ. Given a
rational section L for φ and w ∈ A∗, we define

Lw = {(u, v)δ : u, v ∈ L and vφ = (uw)φ};
L′= = {(u, v)δ : u ∈ L, v ∈ Pref(L) and uφ = vφ} ·

The language L1 will also be denoted L=.
A rational section L is said to be an automatic structure for φ if, [1]

(i) La is rational for every a ∈ A;
(ii) L= is rational.

If, in addition,

(iii) L′= is rational,

then L is said to be a prefix-automatic or p-automatic structure for φ [7]. If L
is a rational cross-section then condition (ii) is redundant and we say that L is a
(p-)automatic structure with uniqueness for φ.

A monoid M is said to be (p-)automatic if there is a finite alphabet A and a
surjective homomorphism φ : A+ →M with an (p-)automatic structure. It would
be more natural to define (p-)automatic monoids using monoid homomorphisms
φ : A∗ → M . Both definitions are equivalent but with the definition used here
automaticity is independent from the generating set considered [2].

5. Monoids of finite geometric type

A monoid M is said to be of finite geometric type (FGT) if it is finitely generated
and, for every p ∈ M , there is an integer m such that the equation xp = q has
at most m solutions for every q ∈ M . The choice of terminology is more evident
when we consider the following alternative characterization of FGT monoids:

Proposition 5.1 ([7], Prop. 2.1). Given a finitely generated monoid M , the fol-
lowing conditions are equivalent:

i) M is FGT;
ii) Given a finite set A and a surjective semigroup homomorphism φ : A+ →M ,

there is an integer m such that there are at most m coterminal edges with
the same label in the Cayley graph with respect to A.

Groups and right cancellative monoids are FGT. On the other hand, monoids with
zero are examples of non-FGT monoids. To prove that the graph product of FGT
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automatic monoids is automatic we will need the following:

Lemma 5.2. Let M be an automatic monoid of finite geometric type. Let A be
a finite set, φ : A+ → M a surjective semigroup homomorphism and L ⊆ A∗ an
automatic structure with uniqueness for φ. Then, for every a ∈ A, Σ(La) is finite.

Proof. Let a ∈ A. Since La is rational, then La is recognized by a finite automaton
A. Assume that A has ka states and let u, v ∈ L be such that vφ = (ua)φ. We
will use a variant of the Pumping Lemma for rational languages ([4], Lem. 3.1).

If |u| < |v| then |v| − |u| ≤ ka otherwise there would be a cycle in A labeled by
(1, v′)δ, for some non-empty factor v′ of v. Then, assuming that v = v1v

′v2, for
every integer n we would have (u, v1(v′)nv2)δ ∈ La. Hence, for every n, we would
have v1(v′)nv2 ∈ L and (v1(v′)nv2)φ = vφ, contradicting L being an automatic
structure with uniqueness.

If |u| > |v| then |u| − |v| ≤ ka otherwise there would be a cycle in A labeled
by (u′, 1)δ, for some non-empty factor u′ of u. Then, assuming that u = u1u

′u2,
for every integer n we would have (u1(u′)nu2, v)δ ∈ La. Hence, for every n, we
would have u1(u′)nu2 ∈ L and (u1(u′)nu2)φ(aφ) = vφ, a contradiction since M is
of finite geometric type and L is an automatic structure with uniqueness.

Hence, Σ((u, v)δ) = ||u| − |v|| ≤ ka and therefore Σ(La) is finite. �

6. Graph products of automatic monoids

Free products and direct products of monoids are particular cases of graph prod-
ucts of monoids. In fact, if the graph Γ is totally disconnected then Γ(M1,M2, . . . ,
Mn) = M1 ∗M2 ∗ · · · ∗Mn and if Γ is a complete graph then Γ(M1,M2, . . . ,Mn)
is isomorphic to M1×M2×· · ·×Mn (note that is not the case for semigroups). It
is already known that automaticity for monoids is preserved by free products ([1],
Th. 6.2) and direct products ([1], Th. 6.4). These proofs cannot be immediately
generalized for graph products. We will see that graph products preserve auto-
maticity if monoids Mi are of finite geometric type.

Let M1,M2, . . . ,Mn be automatic monoids and let M = Γ(M1,M2, . . . ,Mn)
be the graph product of such monoids associated to a graph Γ. Then, adapting ([1],
Cor. 5.6, Prop. 5.7 and Prop. 5.3) for the monoid case, we may assume that there
are automatic structures with uniqueness Li for φi : A+

i →Mi such that 1 ∈ Li, for
every i. Furthermore, we may assume that the generating sets Ai are disjoint. Let
A be the union of the sets Ai and let φ : A+ →M be the semigroup homomorphism
defined by aφ = aφiθi, if a ∈ Ai, where θi is the natural embedding of Mi into
M . Since M is generated by the submonoids Miθi, φ is surjective. We want to
construct a rational cross-section for φ. For that we will have to introduce more
notation.

For every i, let Li = Li − {1}. Given a subset {i1, i2, · · · , ik} of {1, 2, · · · , n}
we say that {i1, i2, · · · , ik} is independent if the subgraph of Γ induced by ver-
tices i1, i2, · · · , ik is complete. Let I be the set of all independent subsets of
{1, 2, · · · , n}. A non-empty sequence (i1, i2, · · · , ik) such that 1 ≤ i1 < i2 <
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· · · < ik ≤ n and {i1, i2, · · · , ik} is independent is said to be an independent
sequence. For every j ∈ {1, 2, · · · , n} we say that an independent sequence
(i1, i2, · · · , ik) Γ-commutes with j ((i1, i2, · · · , ik) ∼ j) if j /∈ {i1, i2, · · · , ik} and
{i1, i2, · · · , ik} ∪ {j} ∈ I. For every independent sequence (i1, i2, · · · , ik) let

Bi1,i2,··· ,ik = Li1 Li2 · · ·Lik .

We say that Bi1,i2,··· ,ik is a block language of type (i1, i2, · · · , ik). Any terminology
introduced for independent sequences or block languages will be used for both
concepts. A finite product of block languages is said to be admissible if for any
two consecutive block languages Bi1,i2,··· ,ik and Bj1,j2,··· ,jl we have

(i) {i1, i2, · · · , ik} ∩ {j1, j2, · · · , jl} = ∅;
(ii) for every p ∈ {j1, j2, · · · , jl} there is q ∈ {i1, i2, · · · , ik} such that p � q.

Let L be the union of all admissible (finite) products of block languages together
with the empty word. This construction of L is inspired on the work developed
in [9] and we will use that work to prove that L is a rational cross-section for φ.

Proposition 6.1. L is a cross-section for φ.

Proof. Let x ∈ M and let u ∈ A+ be such that uφ = x. Now consider any irre-
ducible form of u and, for every i, replace the i-components by the corresponding
words of Li. Then, write the initial components, ordered by their types, at the
beginning of the word and proceed in the same way for the remaining part of the
word. The word obtained by this process is in L and is congruent to u. Hence
φ|L : L→M is surjective (where we extend φ to A∗ in the usual manner).

Assume now that u, v ∈ L are such that uφ = vφ. Then u and v are irreducible
words and, by Theorem 2.3, they are ΓN -equivalent. Let [ui] and [vi] be corre-
sponding i-components of u and v, respectively. Then [ui] and [vi] are congruent
in Mi and since Li is a cross-section for φi, they are equal. Hence u and v are
Γ-equivalent. Then, by construction of L and using successively Lemma 2.1 and
Proposition 2.2, we conclude that u = v. �

Proposition 6.2. L is rational.

Proof. Since, for every i, the languages Li are rational then, by Lemma 3.1, the
languages Li are rational. Hence, again by Lemma 3.1, any block language is
rational. A language over an alphabet A is rational if it is accepted by a finite
automaton over A. Moreover, if we have a rational language and we substitute any
symbol of A by a rational language the resulting language is still rational (see [4],
Th. 3.4). Hence we can prove that L is rational constructing a finite automaton
where the alphabet is the set of block languages and the language accepted by the
automaton is the set of admissible products of block languages together with the
empty word.

Let B be the set of all block languages. Notice that, since Γ is finite, B is also
finite. Let Q = B ∪ {q0} be the set of states of the automaton where q0 is the
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initial state. Take B for alphabet and define µ as follows:
• for the initial state q0 any input b ∈ B is accepted and (q0, b)µ = b;
• for any other state b input b′ is accepted if bb′ is an admissible product and

then (b, b′)µ = b′.
Taking Q for set of final states, the language accepted by this automaton is L and
thus L is rational. �

Since L is a rational cross-section for φ then L= = L∆ and thus, by Lemma 3.1,
L= is rational.

Let a ∈ Ai for some i ∈ {1, 2, · · · , n}. We want to prove that La is a rational
language. If aφi = 1 then for every u ∈ L, (ua)φ = uφ and thus La = L∆ is
rational. From now on we will assume that aφi 6= 1.

For every independent sequence (i1, i2, · · · , ik) let Xi1,i2,··· ,ik be the union of all
admissible products P of block languages such that PBi1,i2,··· ,ik is still admissible,
together with the empty word 1. Let Ti1,i2,··· ,ik = Xi1,i2,··· ,ikBi1,i2,··· ,ik .

For every independent sequence (i1, i2, · · · , ik) and for every i ∈ {1, 2, · · · , n}
such that (i1, i2, · · · , ik) ∼ i let Y ii1,i2,··· ,ik be the union of all admissible prod-
ucts P of block languages such that Bi1,i2,··· ,ikP is still admissible and each
block language in P Γ-commutes with i, together with the empty word 1. Let
Iii1,i2,··· ,ik = Bi1,i2,··· ,ikY

i
i1,i2,··· ,ik .

Proposition 6.3. Let (i1, i2, · · · , ik) be an independent sequence. Then
(i) Xi1,i2,··· ,ik is rational;
(ii) if i ∈ {1, 2, · · · , n} is such that (i1, i2, · · · , ik) ∼ i then Y ii1,i2,··· ,ik is rational.

Proof. Let A be the automaton considered in the proof of Proposition 6.2. Now
take for new set of final states all states that accept a move to Bi1,i2,··· ,ik . The
language accepted by the new automaton is Xi1,i2,··· ,ik .

If there is i ∈ {1, 2, · · · , n} such that (i1, i2, · · · , ik) ∼ i, let A′ = (Q′, B, µ′, q′0,
F ′) be an automaton over B, the set of all block languages, where: Q′ = {q ∈
Q− {q0} : q ∼ i}, µ′ = µ|Q′×B, q′0 = Bi1,i2,··· ,ik and F ′ = Q′. Then the language
accepted by A′ is Y ii1,i2,··· ,ik . �

Let u be a word in L. We want to find the element v ∈ L such that vφ = (ua)φ.
We know that if u 6= 1, u belongs to some admissible product of block languages
B1B2 · · ·Bm and then we may assume that u = u1u2 · · ·um where uj ∈ Bj , for
every j ∈ {1, 2, · · · ,m}. If Bm ∼ i then swapping a and um we obtain a new
word that represents the same element in M . Proceeding in the same way for the
following words um−1, um−2, · · · , we will reach (if it exists) a word uj ∈ Bj such
that Bj � i. This procedure induces a unique factorization in u and B1B2 · · ·Bm.
Then given u ∈ L and i ∈ {1, 2, · · · , n}, one and only one of the following situations
occurs:
(A) there are sequences (i1, i2, · · · , ik) and (j1, j2, · · · , jl) such that Bi1,i2,··· ,ik

Bj1,j2,··· ,jl is an admissible product, Bi1,i2,··· ,ik � i, Bj1,j2,··· ,jl ∼ i and
u ∈ Ti1,i2,··· ,ikIij1,j2,··· ,jl ;

(B) there is a sequence (i1, i2, · · · , ik) such thatBi1,i2,··· ,ik � i and u ∈ Ti1,i2,··· ,ik ;
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(C) there is a sequence (i1, i2, · · · , ik) such that Bi1,i2,··· ,ik ∼ i and u ∈ Iii1,i2,··· ,ik ;
(D) u = 1.

Hence L− {1} is the union of finitely many rational languages of type Ti1,i2,··· ,ik ,
Iii1,i2,··· ,ik or Ti1,i2,··· ,ikI

i
j1,j2,··· ,jl , for appropriate choices of (i1, i2, · · · , ik) and

(j1, j2, · · · , jl).
We will prove that, if each monoid Mi is FGT, then La is a finite union of

rational languages and thus La is rational.

Case (A)
Assume that u ∈ Ti1,i2,··· ,ikIij1,j2,··· ,jl , for appropriate choices of (i1, i2, · · · , ik)

and (j1, j2, · · · , jl). Assume also that u = u1u2u3u4, where
• u1 ∈ Xi1,i2,··· ,ik ;
• u2 = u2i1u2i2 · · ·u2ik , where u2im ∈ Lim , for every m ∈ {1, 2, · · · , k};
• u3 = u3j1u3j2 · · ·u3jl , where u3jm ∈ Ljm , for every m ∈ {1, 2, · · · , l};
• u4 ∈ Y ij1,j2,··· ,jl .

Subcase (A1): i 6∈ {i1, i2, · · · , ik}.
Assume, without loss of generality, that 1 ≤ j1 < · · · < jm < i < jm+1 <

· · · < jl and let a′ ∈ Li be such that a′φi = aφi. Since (i1, i2, · · · , ik) � i
and (j1, j2, · · · , jl) ∼ i then Ti1,i2,··· ,ikBj1,j2,··· ,jm,i,jm+1,··· ,jlY

i
j1,j2,··· ,jl is still an

admissible product and we have
• v = u1u2(u3j1 · · ·u3jma

′u3jm+1 · · ·u3jl)u4 ∈ L;
• vφ = (ua)φ;
• (u, v)δ ∈ [(Ti1,i2,··· ,ikLj1 · · ·Ljm)∆ (1, a′)δ (Ljm+1 · · ·LjlY ij1,j2,··· ,jl)∆]ζ.

On the other hand, if w ∈ [(Ti1,i2,··· ,ikLj1 · · ·Ljm)∆ (1, a′)δ (Ljm+1 · · ·Ljl
Y ij1,j2,··· ,jl)∆]ζ then

• wπ1α ∈ Ti1,i2,··· ,ikIij1,j2,··· ,jl ⊆ L;
• wπ2α ∈ Ti1,i2,··· ,ikBj1,j2,··· ,jm,i,jm+1,··· ,jlY

i
j1,j2,··· ,jl ⊆ L;

• (wπ2α)φ = ((wπ1α)a)φ;
• w = (wπ1α,wπ2α)δ ∈ La.

Then [(Ti1,i2,··· ,ikLj1 · · ·Ljm)∆ (1, a′)δ (Ljm+1 · · ·LjlY ij1,j2,··· ,jl)∆]ζ ⊆ La and by
Lemma 3.2 and Proposition 6.3, [(Ti1,i2,··· ,ikLj1 · · ·Ljm)∆ (1, a′)δ (Ljm+1 · · ·Ljl
Y ij1,j2,··· ,jl)∆]ζ is rational.

Subcase (A2): i = im ∈ {i1, i2, · · · , ik}.
If (u2ia)φi 6= 1, let u′2i ∈ Li be such that u′2iφi = (u2ia)φi. Then we have

v = u1(u2i1 · · ·u2im−1u
′
2iu2im+1 · · ·u2ik)u3u4 ∈ L and vφ = (ua)φ.

If (u2ia)φi = 1, since (j1, j2, · · · , jl) ∼ i, the sequence (i1, i2, · · · , im−1,
im+1, · · · , ik) is non-empty, Xi1,i2,··· ,ikBi1,i2,··· ,im−1,im+1,··· ,ikI

i
j1,j2,··· ,jl is still an

admissible product and v = u1(u2i1 · · ·u2im−1u2im+1 · · ·u2ik)u3u4 ∈ L. Hence, in
both cases we have:
• vφ = (ua)φ;
• (u, v)δ ∈ [(Xi1,i2,··· ,ikLi1 · · ·Lim−1)∆(Li)a (Lim+1 · · ·LikIij1,j2,··· ,jl)∆]ζ.
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On the other hand, if w ∈ [(Xi1,i2,··· ,ikLi1 · · ·Lim−1)∆(Li)a (Lim+1 · · ·LikIij1,j2,··· ,jl)
∆]ζ then
• wπ1α,wπ2α ∈ (Ti1,i2,··· ,ikI

i
j1,j2,··· ,jl ∪ Xi1,i2,··· ,ikBi1,i2,··· ,im−1,im+1,··· ,ik

Iij1,j2,··· ,jl) ⊆ L;
• (wπ2α)φ = ((wπ1α)a)φ;
• w = (wπ1α,wπ2α)δ ∈ La.

Hence we have, [(Xi1,i2,··· ,ikLi1 · · ·Lim−1)∆(Li)a (Lim+1 · · ·LikIij1,j2,··· ,jl)∆]ζ ⊆
La. Now, sinceMi is FGT, by Lemma 5.2, Σ((Li)a) is finite and then, by Lemma 3.2
and Proposition 6.3, the language [(Xi1,i2,··· ,ikLi1 · · ·Lim−1)∆(Li)a (Lim+1 · · ·Lik
Iij1,j2,··· ,jl)∆]ζ is rational.

Case (B)
Assume that u ∈ Ti1,i2,··· ,ik and (i1, i2, · · · , ik) � i.
If i ∈ {i1, i2, · · · , ik}, this case corresponds to Subcase (A2), with language

Iij1,j2,··· ,jl replaced by the empty word.
If i /∈ {i1, i2, · · · , ik}, let a′ ∈ Li be such that a′φi = aφi. Then v = ua′ ∈ L,

vφ = (ua)φ and (u, v)δ ∈ (Ti1,i2,··· ,ik)∆(1, a′)δ. On the other hand (Ti1,i2,··· ,ik)
∆(1, a′)δ is a rational language contained in La.

Case (C)
This case is Subcase (A1) with the language Ti1,i2,··· ,ik replaced by the empty

word.

Case (D)
If u = 1 then v = a′ is the single word of L such that vφ = (ua)φ = aφ. Hence

(1, a′)δ is a rational language contained in La.
Hence, La is a finite union of rational languages and thus La is rational. We have
then proved the following result:

Theorem 6.4. Let M = Γ(M1,M2, · · · ,Mn) be a graph product of monoids as-
sociated to a graph Γ. If, for every i, Mi is an FGT automatic monoid then M is
automatic.

We will now establish a similar result for FGT p-automatic monoids:

Theorem 6.5. Let M = Γ(M1,M2, · · · ,Mn) be a graph product of monoids as-
sociated to a graph Γ. If, for every i, Mi is an FGT p-automatic monoid then M
is p-automatic.

Proof. By ([7], Cor. 5.4, Prop. 5.5 and Prop. 5.3) we may assume that there are
p-automatic structures with uniqueness Li for φi : A+

i →Mi such that 1 ∈ Li, for
every i. Furthermore, we may assume that the generating sets Ai are disjoint. Let
A, φ and L defined as in the proof of Theorem 6.4. Then we already know that
L is an automatic structure with uniqueness for φ and thus we have to prove that
L′= = {(u, v)δ : u ∈ L, v ∈ Pref(L) and uφ = vφ} is rational.

Given v ∈ Pref(L), one and only one of the following situations occurs:
(E) v ∈ L;
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(F) there is an independent sequence (i1, i2, · · · , ik) and m ∈ {1, 2, · · · , k} such
that v ∈ Xi1,i2,··· ,ikLi1 Li2 · · ·Lim−1 (Pref(Lim)− {1}).

If (E) holds, the single word u ∈ L such that uφ = vφ is v and then (u, v)δ ∈ L∆.
On the other hand, L∆ ⊆ L′= and L∆ is rational.

Assume now that (F) holds. Assume also that v = v′vi1vi2 · · · vim−1vim where
v′ ∈ Xi1,i2,··· ,ik , vim ∈ Pref(Lim)−{1} and vil ∈ Lil for every l ∈ {1, 2, · · · ,m−1}.
Let uim ∈ Lim be such that (uim)φim = (vim )φim and let u = v′vi1vi2 · · · vim−1uim .
Then
• u ∈ Xi1,i2,··· ,ikLi1 Li2 · · ·Lim−1 Lim ⊆ L;
• uφ = vφ;
• (u, v)δ ∈ (Xi1,i2,··· ,ikLi1 Li2 · · ·Lim−1)∆ (Lim)′=.

On the other hand, if w ∈ (Xi1,i2,··· ,ikLi1 Li2 · · ·Lim−1)∆ (Lim)′= then we have

• wπ1α ∈ Xi1,i2,··· ,ikLi1 Li2 · · ·Lim−1Lim ⊆ L;
• wπ2α ∈ Xi1,i2,··· ,ikLi1 Li2 · · ·Lim−1 Pref(Lim) ⊆ Pref(L);
• (wπ1α)φ = (wπ2α)φ;
• w = (wπ1α,wπ2α)δ ∈ L′=.

Hence (Xi1,i2,··· ,ikLi1 Li2 · · ·Lim−1)∆ (Lim)′= ⊆ L′= and by Proposition 6.3 is
rational. Therefore L′= is a finite union of rational languages and thus L′= is
rational. �

7. Graph products of FGT monoids

In this section we will prove that the graph product of FGT monoids is FGT.
For that we will need the following results:

Proposition 7.1 ([9], Prop. 7.1). Let u ∈ S(X∗) be an irreducible word. If v ∈
S(X∗) is an irreducible word such that vu (uv) is congruent to the empty word
then v is Γ-equivalent to a product of left (right) inverses of the components of u,
written by the opposite order.

Lemma 7.2 ([9], Lem. 14.1). Let u, v ∈ S(X∗) be irreducible words. Then we
may write u⇔Γ u3u2u1 and v ⇔Γ v1v2v3 where

1. u1v1 ≡ 1;
2. u2 and v2 are blocks of the same type;
3. u3S(u2v2)v3 is an irreducible word of S(X∗) that is congruent to uv.

This lemma motivates the following definition: given an irreducible word v ∈
S(X∗) we say that v1v2v3 is an L-form for v if v1, v2 and v3 are irreducible words
of S(X∗) such that
• v ⇔Γ v1v2v3;
• v1 is left invertible;
• v2 is a block of components.
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Theorem 7.3. Let M = Γ(M1,M2, · · · ,Mn) be a graph product of monoids as-
sociated to a graph Γ. If, for every i, Mi is FGT then M is FGT.

Proof. Let v be an irreducible word of S(X∗). We want to prove that there is
an integer mv such that, for every irreducible word u, there are at most mv non
congruent irreducible words x such that xv and u are congruent in M . By the
preceding lemma, every irreducible word x, when multiplied by v, induces an L-
form in v. Since there are finitely many L-forms for v we just have to prove that,
for every L-form of v there is an integer k such that, for every irreducible word u,
there are at most k non congruent irreducible words x, inducing that L-form for
v, such that xv and u are congruent in M .

Let v1v2v3 be an L-form for v. Since every monoid Mi is FGT, every component
[t] of v1v2 has an associated integer mt and then let k be the product of such
integers. Let u be an irreducible word of S(X∗) and assume that y and z are
irreducible words of S(X∗), inducing the L-form v1v2v3 for v, such that yv and zv
are congruent to u. Then, by the preceding lemma, we may assume that y = y3y2y1

and z = z3z2z1, where

(i) y1v1 and z1v1 are congruent to 1;
(ii) y2 and z2 are blocks with the same type as v2;
(iii) y3S(y2v2)v3 and z3S(z2v2)v3 are irreducible words of S(X∗) that are con-

gruent to u in M .

From (i) and by Proposition 7.1, we may assume that y1 and z1 are products of
left inverses of the components of v1, written by the opposite order. Then, since
every monoid Mi is FGT, for every component [t] of v1, there are at most mt non
congruent possibilities for the corresponding component of y1 (or z1).

Corresponding components of the blocks S(y2v2) and S(z2v2) are congruent to
some component of u, in the respective monoid, and since every monoid Mi is
FGT, for every component [t] of v2 we have at most mt non congruent possibilities
for the corresponding component of y2 (or z2).

From (iii) and by Theorem 2.3, y3S(y2v2)v3 and z3S(z2v2)v3 are ΓN -equivalent
and thus, by Proposition 2.2, y3 and z3 are ΓN -equivalent.

Therefore, for every irreducible word u, we have at most k non congruent possi-
bilities for the irreducible word y such that y induces the L-form v1v2v3 for v and
yv is congruent to u. �
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