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ON GRAPHS ASSOCIATED WITH MODULES OVER

COMMUTATIVE RINGS

Shariefuddin Pirzada and Rameez Raja

Abstract. Let M be an R-module, where R is a commutative ring with
identity 1 and let G(V, E) be a graph. In this paper, we study the graphs
associated with modules over commutative rings. We associate three sim-
ple graphs ann

f
(Γ(MR)), anns(Γ(MR)) and annt(Γ(MR)) to M called

full annihilating, semi-annihilating and star-annihilating graph. When
M is finite over R, we investigate metric dimensions in ann

f
(Γ(MR)),

anns(Γ(MR)) and annt(Γ(MR)). We show that M over R is finite
if and only if the metric dimension of the graph ann

f
(Γ(MR)) is fi-

nite. We further show that the graphs ann
f
(Γ(MR)), anns(Γ(MR))

and annt(Γ(MR)) are empty if and only if M is a prime-multiplication-
like R-module. We investigate the case when M is a free R-module,
where R is an integral domain and show that the graphs ann

f
(Γ(MR)),

anns(Γ(MR)) and annt(Γ(MR)) are empty if and only if M ∼= R. Finally,
we characterize all the non-simple weakly virtually divisible modules M

for which Ann(M) is a prime ideal and Soc(M) = 0.

1. Introduction

The subject of associating a graph to an algebraic structure has become an
exciting research topic and has attracted considerable attention over the last
two decades, see for instance [1, 3, 4, 11, 21, 22, 27, 28]. Associating a graph to
a commutative ring R was introduced by Beck in [10] and was further studied
by D. D. Anderson and Naseer in [3]. A different approach of associating a
graph Γ(R) to R with vertices as Z∗(R) = Z(R)\{0}, where Z(R) is the set of
all zero-divisors of R was given by D. F. Anderson and Livingston in [5]. Two
vertices x, y ∈ Z∗(R) of Γ(R) are adjacent if and only if xy = 0. Redmond in
[28] extended the zero-divisor graph of a commutative ring to an ideal-based
zero-divisor graph of a commutative ring. For a given ideal I of R, he defined
an undirected graph ΓI(R) with vertex set {x ∈ R − I |xy ∈ I for some y ∈
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R− I}, where distinct vertices x and y are adjacent if and only if xy ∈ I. The
concept of zero-divisor graphs has been also extended to modules over rings.
Ghalandarzadeh and Malakooti Rad in [16] extended the notion of zero-divisor
graph to the torsion graph associated with a module M over a ring R, whose
vertices are the nonzero torsion elements of M such that two distinct vertices a
and b are adjacent if and only if (a : M)(b : M)M = 0. Recent generalizations
of zero-divisor graphs to module theory can be found in [9, 29].

On the other hand, the problem of metric dimension in graphs was first
introduced in 1975 by Harary and Melter [18]. However, the metric dimension
problem for hypercube was studied much earlier in 1963 by Erdos and Renyi
[14]. The metric dimension in graphs has been extensively studied by various
authors for many particular classes of graphs such as trees, cycles, complete
graphs, grids, wheels, fans, unicyclic graphs, honeycombs and circulant graphs.
Bailey and Cameron [7] established a relationship between the base size of
automorphism group of a graph and its metric dimension. The relationship in
[7] then motivated authors in [6, 8, 15] to study metric dimensions of distance
regular graphs, such as Grassman graphs, Johnson and Kneser graphs and also
bilinear form graphs. Recently in [25, 26], the concept of metric dimension in
terms of locating number was introduced in zero-divisor graphs associated with
commutative rings. The authors in [25, 26] have discussed various properties of
locating numbers (metric dimensions) which includes the characterization of all
finite rings, examination of two equivalence relations on the vertices of Γ(R),
relationship between the locating set (resolving set) and cut vertices of Γ(R),
investigation of metric dimension in Γ(R) when R is a finite product of integral
domains and so on. It is shown in [12, 19, 20] that determining the metric
dimension of an arbitrary graph is an NP-complete problem. The problem is
still NP-complete even if we consider some specific families of graphs, such as
planar graphs [12] or Gabriel unit disk graphs [19].

Throughout, R is a commutative ring (with 1) and all modules are unitary
unless otherwise stated. The symbols ⊆ and ⊂, has usual set theoretic meaning
as containment and proper containment of sets. We will denote the ring of
integers by Z, the ring of integers modulo n by Zn and a finite field on q
elements by Fq respectively. For basic definitions from graph theory we refer
to [13, 23, 30], and for module theory we refer to [2, 31].

2. Definitions and preliminaries

A simple graph G(V,E) consists of a finite nonempty set V (G) of objects
called vertices together with a (possibly empty) set E(G) of unordered pairs of
distinct vertices of G called edges. A graph G is connected if there is a path
between every two distinct vertices of G. The distance from a vertex v to u
denoted by d(v, u) is the length of the shortest path from v to u (d(v, v) = 0
and d(v, u) = ∞, if there is no such path). The diameter of G is diam(G) =
sup{d(v, u) | v, u ∈ V (G)}. A graph G is said to be complete if there is an
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edge between every pair of distinct vertices. A complete graph with n vertices
is denoted by Kn. A graph G is said to be bipartite if its vertex set can be
partitioned into two sets V1(G) and V2(G) such that every edge of G has one
end in V1(G) and another in V2(G). A complete bipartite graph is one in which
each vertex of one partite set is joined to every vertex of another partite set.
We denote complete bipartite graph with partite sets of order m and n by
Km,n. A complete bipartite graph of the from K1,n is called a star graph. A
graph G is Hamiltonian if it has a cycle which contains every vertex of the
graph. Moreover, N(v) denotes the set all vertices of G adjacent to the vertex
v and N [v] = N(v) ∪ {v}.

A set of vertices S ⊆ V (G) resolves a graph G, and S is a resolving set of G,
if every vertex is uniquely determined by its vector of distances to the vertices
of S. More generally, for an ordered subset S = {v1, v2, . . . , vk} of vertices in a
connected graph G and a vertex v ∈ V (G) \ S of G, the metric representation
of v with respect to S is the k-vector D(v|S) = (d(v, v1), d(v, v2), . . . , d(v, vk)).
The set S is resolving set for G if D(v|S) = D(u|S) implies that u = v for
all pair of vertices in V (G) \ S. Equivalently, S is a resolving set for G if
D(v|S) 6= D(u|S) for all pair of distinct vertices u, v ∈ V (G) \ S. A resolving
set S of minimum cardinality is the metric basis for G, and the number of
elements in the resolving set of minimum cardinality is the metric dimension of
G. The metric dimension of a graph G is denoted by dim(G). Note here that
by Definition 2.1 of [25] the metric dimension of an empty graph is not defined.

The resolving set is also called the locating set, metric representation of a
vertex is also called the locating code of a vertex and the metric dimension of
a graph is also called the locating number of a graph.

The concept of resolving set, metric representation and metric dimension in
terms of locating set, locating code and locating number in zero-divisor graphs
associated with commutative rings was introduced in [25] and has been further
studied in [24, 26]. The authors in [24, 25, 26] have discussed various properties
of metric dimensions which includes the characterization of all finite rings,
examination of two equivalence relations on the vertices of Γ(R), relationship
between the resolving set and cut vertices of Γ(R), investigation of metric
dimension in Γ(R) when R is a finite product of integral domains, when R
is the finite product R1 × R2 × · · · × Rn, where R1, R2, . . . , Rn are n finite
commutative rings with none of them being isomorphic to the Boolean ring
∏n

i=1 Z2, provided a combinatorial formula for computing the metric dimension
of a zero-divisor graph Γ(R× Fq) and so on.

Let F1 and F2 be two finite fields. Then the zero-divisor graph Γ(F1 × F2)
associated with F1 × F2 is either a star graph or a complete bipartite graph.
Therefore, from Corollary 2.1 of [25], the metric dimension of Γ(F1 × F2) is
|F1| + |F2| − 4. However, for F1 = F2 = Z2 the metric dimension is 1 because
Γ(Z2 × Z2) is a path and the metric dimension of all finite paths by Lemma
2.1 of [25] is 1. For the rings Z2 × Z7, F4 × Z5, Z2 × Z5 and Z3 × F4, it
can be easily seen that the zero-divisor graphs associated with these rings
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are complete bipartite graphs K1,6, K3,4, K1,4 and K2,3. Therefore, from
Corollary 2.1 of [25], the metric dimensions of these graphs are 5 and 3. Further,
for the rings Z2[x, y, z]/(x, y, z)

2, Z4[x, y]/(x
2, y2, xy, 2x, 2y), F8[x]/(x

2) and
Z4[x]/(x

3 + x + 1), the associated zero-divisor graph is a complete graph K7.
Therefore, from Lemma 2.2 of [25], the metric dimension is 6. For the rings
Zp2 and Zp2 [x]/(x2), (p ≥ 2 is a prime number), the associated zero-divisor
graph is a complete graph on p − 1 number of vertices. Therefore the metric
dimension of the associated graph is p− 2.

If I = (0) × Z3 is an ideal of ring R = Z9 × Z3, then the ideal based zero-
divisor graph ΓI(R) defined in [28] with vertex set V (ΓI(R)) = {(3, 0), (3, 1),
(3, 2), (6, 0), (6, 1), (6, 2)} is a complete graph K6 on six vertices. Therefore
metric dimension of ΓI(R) is 5. If I is a prime ideal of a ringR, then dim(ΓI(R))
is undefined. However, if I = P1 ∩ P2, where P1 and P2 are prime ideals of a
ring R, then dim(ΓI(R)) is finite which is in fact equal to |V (ΓI(R))| − 2.

For more on the metric dimension of zero-divisor graphs, graphs determined
by the equivalence classes of zero-divisors and ideal based zero-divisor graphs
associated with commutative rings see [24, 25, 26]. In the remaining paper, we
discuss the nature of graphs associated with modules and also determine the
metric dimensions of these graphs, when M is finite over R. First we have the
following definition.

Definition 2.1. Let M be an R-module. For an element x ∈ M , we define
a set [x : MR] = {r ∈ R : rM ⊆ Rx}, which clearly is an annihilator of the
factor module M/Rx. The annihilator of a module M is defined as Ann(M) =
{s ∈ R| sm = 0 for all m ∈ M}. Clearly, for each x ∈ M , Ann(M) ⊆ [x : MR].
Further, Rx = M if and only if [x : MR] = R. Since Ann(M) ⊆ [x : MR],
based on the above definition we now classify the elements of M into three
categories. An element x ∈ M is a

(i) full-annihilator, if either x = 0 or [x : MR][y : MR]M = 0 for some
nonzero y ∈ M with [y : MR] 6= R.

(ii) semi-annihilator, if either x = 0 or [x : MR] 6= 0 and [x : MR][y :
MR]M = 0 for some nonzero y ∈ M with 0 6= [y : MR] 6= R.

(iii) star-annihilator, if either x = 0 or Ann(M) ⊂ [x : MR] and [x : MR][y :
MR]M = 0 for some nonzero y ∈ M with Ann(M) ⊂ [y : MR] 6= R.

We denote by the sets Af (M), As(M) and At(M) respectively the full-

annihilators, semi-annihilators and star-annihilators for any moduleM over R.
The name given to these sets is because of the containment At(M) ⊆ As(M) ⊆
Af (M). If M = R, then for each x ∈ R, [x : RR] = Ann(R/Rx) = Rx. So
[x : RR][y : RR] = 0 if and only if xy = 0. Therefore, x is a zero-divisor in R if
and only if [x : RR][y : RR]R = 0 for some y 6= 0 ∈ R. Thus, we have the usual
zero-divisors for R. So, for M = R the full-annihilators, semi-annihilators and
star-annihilators of M coincides with the zero-divisors of R.

Moreover, we let Âf (M) = Af (M)\{0}, Âs(M) = As(M)\{0} and Ât(M) =
At(M)\{0} and associate three simple graphs annf (Γ(MR)), anns(Γ(MR))
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and annt(Γ(MR)) to M over R called as full-annihilating, semi-annihilating
and star-annihilating graphs of M over R and the vertices x and y are adja-
cent if and only if [x : MR][y : MR]M = 0. It is clear that annt(Γ(MR)) ⊆
anns(Γ(MR)) ⊆ annf (Γ(MR)) as induced subgraphs. We will call all these
graphs as annihilating graphs of M over R. It can be easily seen that for
M = R, all the annihilating graphs are the zero-divisor graph of a commuta-
tive ring introduced by Anderson and Livingston in [5].

If M is finite over R, then annf (Γ(MR)) = anns(Γ(MR)), whereas the
graph annt(Γ(MR)) can be different from annf(Γ(MR)) and anns(Γ(MR)).
In the following example, we show that for a finite module Z2 ⊕ Z4 over Z,
annf (Γ(MR)) = anns(Γ(MR)) = K7 and annt(Γ(MR)) = K5.

Example 2.2. Let R = Z and M = Z2 ⊕ Z4. Then, M over Z consists
of eight elements as {(0, 0), (1, 0), (0, 1), (0, 2), (0, 3), (1, 1), (1, 2), (1, 3)}. Let
m1 = (1, 0), m2 = (0, 1), m3 = (0, 2), m4 = (0, 3), m5 = (1, 1), m6 = (1, 2),
and m7 = (1, 3) be nonzero elements of M . It can be easily verified that
[m2 : MR] = [m3 : MR] = [m4 : MR] = [m5 : MR] = [m7 : MR] = 2Z

and [m1 : MR] = [m6 : MR] = 4Z = Ann(M). Thus, Âf (M) = Âs(M) =

{m1,m2,m3,m4,m5,m6,m7} and Ât(M) = {m2,m3,m4,m5,m7}. Since [mi :
MR][mj : MR]M = 0, for all 1 ≤ i, j ≤ 7, it follows that annf(Γ(MR)) and
anns(Γ(MR)) are complete graphs with seven vertices but annt(Γ(MR)) is a
complete graph with five vertices.

The above examples lead to a natural question: what is the nature of graphs
annf (Γ(MR)) and anns(Γ(MR)) when M is infinite over R.

The following example illustrates that the graphs annf (Γ(MR)) and
anns(Γ(MR)) are different when M is infinite over R.

Example 2.3. Let M = ⊕n
i=1Z and R = Z. Then, for all non-zero x, y ∈ M ,

[x : MR][y : MR]M = 0 with [y : MR] 6= R. So, the graph annf (Γ(MR))

is complete with vertices as ̂M and by definition it follows that the graph
anns(Γ(MR)) is empty. Thus in general for infinite modules over commutative
rings the graphs annf(Γ(MR)) and anns(Γ(MR)) are different.

3. Graphs associated with multiplication-like modules over R

In this section, we characterize all the finite modules over commutative rings.
Moreover, we characterize all the graphs associated with multiplication-like
modules, prime multiplication modules and indecomposable modules.

The following observation shows that the graph annf (Γ(MR)) is connected
and has exceedingly small diameter which is analogous to the case for graphs
Γ(R) and ΓI(R) found in [[5], [28], Theorem 2.3 and Theorem 2.4].

Lemma 3.1. Let M be an R-module. Then annf(Γ(MR)) is a connected graph

and diam(annf (Γ(MR))) ≤ 3.
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Proof. Let x, y ∈ Âf (M) with x 6= y. We have the following cases.
Case 1. [x : MR][y : MR]M = 0. Then, x− y is a path.
Case 2. [x : MR][y : MR]M 6= 0. If [x : MR]

2M = 0 and [y : MR]
2M = 0

then, x− z − y is a path of length 2, for each 0 6= z ∈ Rx ∩Ry, [x : MR] ⊆ [x :
MR] ∩ [y : MR].

Case 3. [x : MR][y : MR]M 6= 0, [y : MR]
2M 6= 0 and [x : MR]

2M = 0.

Then, there exists b ∈ Âf (M)\{x, y} such that [b : MR][y : MR]M = 0. If
[b : MR][x : MR]M = 0, then x − b − y is a path of length 2. If [b : MR][x :
MR]M 6= 0, then for each 0 6= c ∈ Rb ∩ Rx, [c : MR] ⊆ [b : MR] ∩ [x : MR],
x− c− y is a path of length 2.

Case 4. [x : MR][y : MR]M 6= 0, [x : MR]
2M 6= 0 and [y : MR]

2M = 0.
The proof follows from Case 3.

Case 5. [x : MR][y : MR]M 6= 0, [x : MR] 6= 0 and [y : MR] 6= 0.

Then, there exists a ∈ Âf (M)\{x, y} with [a : MR][x : MR]M = 0 and b ∈
Âf (M)\{x, y} such that [b : MR][y : MR]M = 0.

Subcase 1. [a : MR] = [b : MR]. Then, x− a− y is a path of length 2.
Subcase 2. [a : MR] 6= [b : MR] and [a : MR][b : MR]M = 0, then x−a−b−y

is a path of length 3 and hence d(x, y) ≤ 3. If [a : MR][b : MR]M 6= 0, then
there exists 0 6= d ∈ Ra ∩Rb such that x− d− y is a path of length 2.

Thus annf(Γ(MR)) is connected and diam(annf(Γ(MR))) ≤ 3. �

Let M be a nonzero R-module. Then M is a prime module if whenever N
is a nonzero submodule of M and A is an ideal of R such that NA = 0, then
MA = 0. That is, Ann(M) = Ann(N) for all nonzero submodules N of M .
Also, an R-module M is called a multiplication module if each submodule of
M is of the form IM , where I is an ideal of R. A multiplication module M is
multiplication-like module if for each nonzero submodule N of M , Ann(M) ⊂
Ann(M/N). It is clear that for each nonzero submodule N of a multiplication
module M , N = Ann(M/N)M and Ann(M) ⊂ Ann(M/N). Thus, it follows
that every multiplication module is a multiplication-like module.

We have the following observation.

Lemma 3.2. Let M be an R-module. Then M is multiplication-like if and

only if Ann(M) ⊂ [m : MR] for each 0 6= m ∈ M .

Proof. Suppose M is a multiplication-like module. Then

Ann(M) ⊂ Ann(M/N)

for each submodule N of M . Now using Definition 2.1, it follows Ann(M) ⊂
[m : MR] because for m ∈ M , we have [m : MR] = Ann(M/Rm) and clearly
Rm is a submodule of M by taking the action of R on Rm.

Conversely, suppose that for each 0 6= m ∈ M , we have Ann(M) ⊂ [m : MR].
Let N be a submodule of M . We show that M is a multiplication module. For
each 0 6= x ∈ N , there exists an ideal [x : NR] of R such that [x : NR]M ⊆ Rx.
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Let I =
∑

06=x∈N [x : NR]. Then, 0 6= IM = N . Thus, it follows that M is a
multiplication module and hence a multiplication-like module. �

Now, we characterize all the finite modules over commutative rings. We
show that M is finite over R if and only if metric dimension of the graph
annf (Γ(MR)) is finite. In fact the following result is the generalization of
Theorem 3.1 of [25].

Theorem 3.3. dim(annf (Γ(MR))) is finite if and only if M is finite over R.

Proof. Suppose M is finite over R. Then, clearly the set Af (M) is finite. It
follows that the graph annf (Γ(MR)) is finite, which implies that the number
dim(annf (Γ(MR))) is finite.

Conversely, suppose annf(Γ(MR)) is finite. Then, dim(annf (Γ(MR))) is
finite. If there exists 0 6= x ∈ M such that [x : MR] = Ann(M), then [x :

MR][y : MR]M = 0 for all 0 6= y ∈ M , that is, Âf (M) = ̂M , where ̂M is a set
of nonzero elements of M . Therefore, M is finite. If [x : MR] 6= Ann(M) for
any 0 6= x ∈ M , then by Lemma 3.2, M is a multiplication-like module.

Suppose M is infinite. Since M is a multiplication-like module, for each
nonzero submodule N of M , Ann(M/N) 6= 0, that is, [x : MR] 6= 0 for all

x ∈ M . Since annf (Γ(MR)) is finite and nonempty, there exists some x, y ∈ ̂M
such that [x : MR][y : MR]M = 0. It follows that there is a path x − y in
annf (Γ(MR)). Let r ∈ R and assume ry 6= 0. It is clear that [ry : MR] ⊆ [y :
MR]. So, [x : MR][ry : MR]M ⊆ [x : MR][y : MR]M = 0. Thus x− ry is a path
in annf (Γ(MR)) and therefore Rx ⊆ Af (M) is finite, since 0 6= [x : MR] ⊆ Rx,
[x : MR] is also finite. Let z ∈ [x : MR] such that 0 6= zM . Then, zM is
finite and there exists an ideal A of R such that 0 6= AM ⊆ zM . If M is not
finite, then there is an element m1 ∈ M such that T = {m ∈ M : zm1 = zm}
is infinite. Clearly, N = {m ∈ M : zm = 0} is a nonzero submodule and
is infinite. Since M is multiplication, there exists an ideal B of R such that
0 6= BM ⊆ N . Let jm∗ ∈ JM = { ∑

finite

jimi : ji ∈ J,mi ∈ M}. Then,

[jm∗ : MR] ⊆ Rjm∗ ⊆ JM . So, for each 0 6= m ∈ N, [m : MR][jm
∗ : MR]M ⊆

[m : MR]JM ⊆ [m : MR]zM ⊆ z[m : MR]M ⊆ zN (because N is a submodule

of a multiplication module). Therefore, N ⊆ Âf (M), a contradiction. Thus M
must be finite. �

Remark 3.4. For a finite module M over R, we have

annf(Γ(MR)) = anns(Γ(MR)).

So, if annf(Γ(MR)) is finite, then clearly dim(anns(Γ(MR))) is finite. Now, if
dim(anns(Γ(MR))) is finite, then by Lemma 3.1, the diameter of anns(Γ(MR))
is not more than 3. Therefore, by [25, Theorem 2.2] the number of vertices of
anns(Γ(MR)) is finite, which implies that the graph anns(Γ(MR)) is also finite.
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Remark 3.5. (i) By [25, Lemma 2.1],

dim(annf (Γ(MR))) = dim(anns(Γ(MR))) = dim(annt(Γ(MR))) = 1

if and only if the graphs annf(Γ(MR)), anns(Γ(MR)) and annt(Γ(MR)) are

paths on |Âf (M)|, |Âs(M)| and |Ât(M)| number of vertices.

(ii) If annf (Γ(MR)), anns(Γ(MR)) and annt(Γ(MR)) are cycles on |Âf (M)|,
|Âs(M)| and |Ât(M)| number of vertices, then, by [25, Lemma 2.3],

dim(annf(Γ(MR))) = dim(anns(Γ(MR))) = dim(annt(Γ(MR))) = 2.

(iii) By [25, Lemma 2.2],

dim(annf (Γ(MR))) = |Âf (M)| − 1, dim(anns(Γ(MR))) = |Âs(M)| − 1 and

dim(annt(Γ(MR))) = |Ât(M)| − 1 if and only if the graphs annf(Γ(MR)),

anns(Γ(MR)) and annt(Γ(MR)) are complete on |Âf (M)|, |Âs(M)| and |Ât(M)|
number of vertices.

(iv) If annf (Γ(MR)), anns(Γ(MR)) and annt(Γ(MR)) are complete bipartite
graphs or star graphs (other than K1,1), then by [25, Corollary 2.1]

dim(annf (Γ(MR))) = |Âf (M)| − 2, dim(anns(Γ(MR))) = |Âs(M)| − 2 and

dim(annt(Γ(MR))) = |Ât(M)| − 2.

Example 3.6. Let R = Z and M = Z6. Then, [2 : MR] = 2Z, [3 : MR] = 3Z

and [4 : MR] = 4Z with Ann(M) = 6Z. Thus, Âf (M) = Âs(M) = Â(M) =
{2, 3, 4}. Clearly [2 : MR][3 : MR]M = 0 and [3 : MR][4 : MR]M = 0. There-
fore, we have annf (Γ(MR)), anns(Γ(MR)) and annt(Γ(MR)) as paths on three
vertices. Thus we conclude that dim(annf (Γ(MR))) = dim(anns(Γ(MR))) =
dim(annt(Γ(MR))) = 1.

Remark 3.7. Let M be an R-module and M = M1 ⊕ M2, where M1 and
M2 are non-isomorphic simple submodules of M . Then, for M1 = M2 = Z2,
annf (Γ(MR)) is a path. In all other cases, annf (Γ(MR)) is a complete bipartite

graph. Therefore, by [25, Corollary 2.1], dim(annf(Γ(MR))) = |Âf (M)| − 2.

Remark 3.8. Let p ≥ 3 be a prime number. Clearly, annf (Γ(Zp ⊕ Zp)) is
a complete graph on p2 − 1 vertices. It follows that annf(Γ(Zp ⊕ Zp)) is
isomorphic toKp2−1. Therefore, from [25, Lemma 2.2], it follows that the graph
annf (Γ(Zp⊕Zp)) is Hamiltonian if and only if dim(annf (Γ(Zp⊕Zp))) = p2−2.

From Example 2.2, we have annf (Γ(MR)) and anns(Γ(MR)) as complete
graphs on seven vertices, where as annt(Γ(MR)) is a complete graph on five
vertices. Therefore, by Lemma 2.2 of [25],

dim(annf(Γ(MR))) = dim(anns(Γ(MR))) = 6 6= 4 = dim(annt(Γ(MR))).

If M is a multiplication-like module over R, then all the annihilating graphs
associated with M have same metric dimension, as can be seen below.
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Theorem 3.9. Let M be a multiplication-like R-module. Then

annf(Γ(MR)) = anns(Γ(MR)) = annt(Γ(MR)).

Proof. Suppose M is a multiplication-like module. If annf (Γ(MR)) = φ, then
clearly anns(Γ(MR)) = annt(Γ(MR)) = φ. Assume that annf (Γ(MR)) 6= φ
and fix a vertex x in annf (Γ(MR)). Then, there exists 0 6= y ∈ M such that
[x : MR][y : MR]M = 0, (that is the vertices x and y are connected by a path
x − y in annf(Γ(MR))). Since for each 0 6= m ∈ M , Ann(M) ⊂ [m : MR], so
x ∈ annt(Γ(MR)). It follows that x− y is a path in annt(Γ(MR)). Thus,

annf(Γ(MR)) = anns(Γ(MR)) = annt(Γ(MR)). �

Corollary 3.10. If M is a multiplication R-module, then

annf(Γ(MR)) = anns(Γ(MR)) = annt(Γ(MR)).

Proof. Since every multiplication module is a multiplication-like module, the
result follows from Theorem 3.9. �

Remark 3.11. From Theorem 3.9, for a multiplication-like R-module M , it
follows that all the annihilating graphs coincide. Thus the metric dimensions
of all these graphs are the same, that is,

dim(annf (Γ(MR))) = dim(anns(Γ(MR))) = dim(annt(Γ(MR))).

So is the case for the multiplication R-module.

By [25, Theorem 3.1], it is clear that for a commutative ring R, the metric
dimension of graph Γ(R) is undefined if and only if R is an integral domain.
That is, the graph Γ(R) is empty if and only if R is an integral domain.

In the following result, we see that the graphs annf (Γ(MR)), anns(Γ(MR))
and annt(Γ(MR)) are empty if and only if M is a prime multiplication-like
module.

Theorem 3.12. Let M be an R-module. Then M is a prime multiplication-like

module if and only if the graphs annf (Γ(MR)), anns(Γ(MR)) and annt(Γ(MR))
are empty.

Proof. Suppose M is a prime multiplication-like module. Then for every 0 6=
x ∈ M , we have Ann(M) ⊂ [x : MR]. It follows that [x : MR][y : MR]M 6= 0
for each 0 6= x, y ∈ M . So,

annf(Γ(MR)) = anns(Γ(MR)) = annt(Γ(MR)) = φ.

Conversely, suppose that graphs

annf (Γ(MR)), anns(Γ(MR)) and annt(Γ(MR))

are empty. Then, by Theorem 3.9, M is a multiplication-like module. Assume
that M is not prime. Then, by [17, Corollary 1.6], Ann(M) is not a prime
ideal. Therefore, ABM = 0, for some ideals A and B with Ann(M) ⊂ A,B.
Since AM 6= 0 and BM 6= 0, there exist 0 6= x ∈ AM and 0 6= y ∈ BM such
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that [x : MR] ⊆ Rx ⊆ AM and [y : MR] ⊆ Ry ⊆ BM . Then, [x : MR][y :
MR]M ⊆ ABM = 0. Therefore, annf (Γ(MR)) 6= φ, a contradiction. Thus M
is a prime multiplication-like module. �

Remark 3.13. From Theorem 3.12, it follows that metric dimension of all the
annihilating graphs associated with M over R are undefined if and only if M
over R is a prime multiplication-like module.

The following is an immediate consequence of Theorem 3.12.

Corollary 3.14. Let M be an R-module. Then M is a prime multiplication

module if and only if M is a multiplication-like module for which Ann(M) is

a prime ideal.

A nonzero R-module M is called an indecomposable if M cannot be written
as a direct sum of nonzero submodules.

We have the following observation regarding decomposable modules.

Lemma 3.15. Let M = M1 ⊕ M2 be decomposable R-module, where M1

and M2 are nonzero R-modules. If annf (Γ(M1R)) is a complete graph, then

annf (Γ(MR)) is also a complete graph.

Proof. Let 0 6= x ∈ Âf (M1). Then there exists 0 6= y ∈ M1 such that [x :
M1R][y : M1R]M1 = 0, where [x : M1R] = Ann(M1/Rx) and [y : M1R] =
Ann(M1/Ry). Clearly,

(1) [(x, 0) : MR] = Ann(
M1 ⊕M2

R(x, 0)
) = Ann(

M1

Rx
⊕M2),

(2) [(y, 0) : MR] = Ann(
M1 ⊕M2

R(y, 0)
) = Ann(

M1

Ry
⊕M2).

Moreover,

(3) [x : MR] = Ann(
M1 ⊕M2

Rx⊕ (0)
) = Ann(

M1

Rx
⊕M2),

(4) [y : MR] = Ann(
M1 ⊕M2

(0)⊕Ry
) = Ann(M1 ⊕

M2

Ry
).

It follows that [x : MR] ⊆ Ann(M2) and [y : MR] ⊆ Ann(M1). Thus,
[x : MR][y : MR]M = 0.

Using (1), (2), (3) and (4), we have [(x, 0) : MR] ⊆ [x : MR], [(y, 0) : MR] ⊆
[y : MR] and [(x, 0) : MR]M2 = [(y, 0) : MR]M2 = 0. Therefore, [(x, 0) :

MR][(y, 0) : MR]M = 0, which implies (x, 0) ∈ Âf (M) and the vertices (x, 0),
(y, 0) are adjacent in annf (Γ(MR)), which further implies that if the graph
annf (Γ(M1R)) is complete, then the graph annf (Γ(MR)) is also complete. �

The following result shows that if the graph annf(Γ(MR)) is empty, then
M is always indecomposable.
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Theorem 3.16. Let M be an R-module. If dim(annf (Γ(MR))) is undefined,

then M is indecomposable.

Proof. Suppose dim(annf(Γ(MR))) is undefined. Then annf (Γ(MR)) = φ.
Therefore, by Theorem 3.12, M is a prime multiplication-like module. If M =
M1 ⊕ M2, where M1 and M2 are nonzero R-modules, then by Lemma 3.15,
annf (Γ(MR)) 6= φ, a contradiction. �

The following is a consequence of Theorem 3.16.

Corollary 3.17. Every prime multiplication-like R-module is an indecompos-

able R-module.

Let M be an R-module. If for some ideal I of R, am = 0 for all a ∈ I,
m ∈ M , then we say M is annihilated by I. In this situation we can make M
into an R/I-module by defining an action of the quotient ring R/I on M .

In the following result, we show that the graph annt(Γ(MR))) coincides
with the graph annt(Γ(MR/I)) while the graph annf(Γ(MR)) coincides with
annf (Γ(MR/I)).

Proposition 3.18. Let M be an R-module with I = Ann(M). Then

annt(Γ(MR))) = annt(Γ(MR/I)),

and

annf(Γ(MR))) = annf (Γ(MR/I)).

Proof. To prove the result, it is enough to show that the graphs annt(Γ(MR))
and annt(Γ(MR/I)) coincide. That is, we show that the vertices x and y are
adjacent in annt(Γ(MR)) if and only if they are adjacent in annt(Γ(MR/I)).

Let x ∈ Ât(M). Then, there exists 0 6= y ∈ M such that Ann(M) ⊂ [x : MR]
and [x : MR][y : MR]M = 0 with Ann(M) ⊂ [y : MR] ⊂ R. It is clear here that
I = Ann(M) ⊆ [x : MR] ∩ [y : MR]. Thus, ([x : MR]/I)([y : MR]/I)M = 0
(because Ann(M/Rx) over R/I is [x : MR]/I and Ann(M/Ry) over R/I is

[y : MR]/I). It follows that x ∈ Ât(M) if and only if x ∈ ̂A(Mt(R/I)) and the
vertices x and y are adjacent in annt(Γ(MR)) if and only if they are adjacent in
annt(Γ(MR/I)). Thus, annt(Γ(MR)) and annt(Γ(MR/I)) are equal. Similarly
it can be proved that annf (Γ(MR))) = annf(Γ(MR/I)). �

4. Graphs associated with divisible and free modules over R

We start this section with the following observation on the action of R on
M .

Lemma 4.1. Let M be an R-module. Then the following hold.

(i) If the action of R on M is faithful, then

annt(Γ(MR)) = anns(Γ(MR)).
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(ii) If the action of R on M is not faithful, then

annf(Γ(MR)) = anns(Γ(MR)).

Proof. (i) Since the action of R on M is faithful, so the annihilator ideal is a

nonzero ideal. That is, Ann(M) 6= (0). Let x ∈ Ât(M). Then, [x : MR] 6= 0
and there exists 0 6= y ∈ M such that Ann(M) ⊂ [x : MR], [x : MR][y :

MR]M = 0 with Ann(M) ⊂ [y : MR] ⊂ R. It follows that x ∈ Âs(M) and the
vertices x and y are adjacent in annt(Γ(MR)) if and only if they are adjacent
in anns(Γ(MR)). Therefore, annt(Γ(MR)) = anns(Γ(MR)).

(ii) Similar to part (i). �

In the following result, we consider the graphs associated with free mod-
ules over an integral domain R. We show that the graphs annf(Γ(MR)),
anns(Γ(MR)) and annt(Γ(MR)) are empty if and only if R ∼= M . More-
over, we show graphs annt(Γ(MR)), anns(Γ(MR)) are empty and the graph
annt(Γ(MR)) is complete if and only if M 6∼= R.

Proposition 4.2. Let M be a free R-module, where R is an integral domain.

Then the following hold.

(i) annf(Γ(MR)), anns(Γ(MR)) and annt(Γ(MR)) are empty graphs if

and only if R ∼= M .

(ii) annt(Γ(MR)) and anns(Γ(MR)) are empty graphs and the graph

annf(Γ(MR)) is complete if and only if M 6∼= R.

Proof. (i) Suppose the graphs annf(Γ(MR)), anns(Γ(MR)) and annt(Γ(MR))
are empty. Then

annf(Γ(MR)) = anns(Γ(MR)) = annt(Γ(MR)).

Therefore, by Theorem 3.12, M is a prime multiplication-like module. Further,
by Theorem 3.16, M is an indecomposable module and so M ∼= R.

Conversely, if M and R are isomorphic, it is clear that all the annihilating
graphs are empty.

(ii) Suppose that annt(Γ(MR)) = anns(Γ(MR)) = φ and annf(Γ(MR)) is a

complete graph. Then Âf (M) 6= φ. Therefore, M 6∼= R.
For the converse, let M = ⊕λ∈ΩR, where Ω is an index set with |Ω| ≥ 2.

Let 0 6= x = (xλ)λ∈Ω ∈ M , where xλ ∈ R, for each λ ∈ Ω. Then, xµ 6= 0,
for some λ 6= µ ∈ Ω and also [x : MR]M = ⊕λ∈Ω[x : MR] ⊆ Rx = R(xλ)λ∈Ω.
If [x : MR] 6= 0 and 0 6= z ∈ [x : MR], then we put yµ = 0 and yλ = z, for
each µ 6= λ. Therefore, (yλ)λ∈Ω ⊕λ∈Ω [x : MR], and so there exist l ∈ R such
that (yλ)λ∈Ω = l(xλ)λ∈Ω. It follows that 0 = yµ = txµ and z = txλ, for each
µ 6= λ. Since R is an integral domain and xµ 6= 0, t = 0 which implies that
z = 0, a contradiction. Thus, [x : MR] = 0 for each x ∈ M . Hence the graph
annf (Γ(MR)) is complete and since M is faithful R-module, by Lemma 4.1,
annt(Γ(MR)) = anns(Γ(MR)) = φ. �
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Let M be an R-module. Then we say M is divisible if rM = M for all
0 6= r ∈ R. If R is a principal integral domain, then M is injective if and only if
it is divisible. Over R, the divisible modules are exactly the injective modules.
However, over other domains divisible modules need not to be injective. Fur-
ther, we say that M is a virtually divisible module if Ann(M/N) = Ann(M)
for each proper submodule N of M . Also, M is a weakly virtually divisible

module if Ann(M/Rn) = Ann(M) for each proper cyclic submodule Rn of M
(that is, [x : MR] = Ann(M) for each 0 6= x ∈ M with Rx 6= M).

In the following result, we give the nature of all the annihilating graphs
associated with weakly virtually divisible R-modules.

Theorem 4.3. Let M be weakly virtually divisible R-module such that M is

not cyclic. Then the following hold.

(i) annt(Γ(MR)) is an empty graph and annf (Γ(MR)) is a complete graph.

(ii) If the action of R on M is faithful, then anns(Γ(MR)) is an empty

graph.

(iii) If the action of R on M is not faithful, then anns(Γ(MR)) is a complete

graph.

Proof. (i) Since M is not cyclic and M is weakly virtually divisible module,
[x : MR] = Ann(M), which implies that the graph annt(Γ(MR)) is empty and
the graph annf (Γ(MR))) is complete.

(ii) If R acts on M such that the action on M is faithful, then by Lemma
4.1, annt(Γ(MR)) = anns(Γ(MR)). So anns(Γ(MR)) is an empty graph.

(iii) If the action ofR onM is not faithful, then by Lemma 4.1, annf (Γ(MR))
= anns(Γ(MR)). By (i), annf (Γ(MR)) is a complete graph. Thus, it follows
that the graph anns(Γ(MR)) is also complete. �

An R-module M is called simple if M 6= (0) and it has no submodules except
(0) and M . An R-module M is a semi-simple module if it is a direct sum of
simple modules. Also, an R-module M is called a homogenous semi-simple R-
module if it is a direct sum of isomorphic simple R-modules, that is, Ann(M)
is a maximal ideal of R.

Remark 4.4. Let R be a field and M a homogeneous semi-simple R-module. If
M is simple, then all the annihilating graphs of M over R are empty. If M is
not simple, then annt(Γ(MR)) is an empty graph and the graphs annf (Γ(MR))
and anns(Γ(MR)) are complete.

Now, we have the following observation regarding divisible and virtually
divisible modules over an integral domain.

Lemma 4.5. A module M over R is virtually divisible if and only if P =
Ann(M) is a prime ideal and M is a divisible R/P -module.

Proof. Suppose P = Ann(M) is a prime ideal of R and M is a divisible R/P -
module. Then, clearly M is virtually divisible.
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Conversely, suppose M is virtually divisible. Let ab ∈ P , where a, b ∈ R.
Let aM 6= 0. Then, clearly aM is a nonzero submodule of M . If aM 6= M ,
then Ann(M/aM) = Ann(M) = P (because M is virtually divisible module).
So a ∈ Ann(M/aM) = Ann(M), a contradiction. Thus, aM = M and so
bM = baM = 0. It follows that b ∈ Ann(M) = P . Therefore P is a prime
ideal.

Further, let 0 6= r ∈ R/P . Then rM 6= 0. If rM 6= M , then by the
same reasoning as above we have a contradiction. Thus rM = M (that is,
(r + P )M = M) and so M is a divisible R/P -module. �

In the next result, we show that if M is virtually divisible R-module and
simple, then all the annihilating graphs associated with M are empty. Further,
we show that if M is a non simple virtually divisible R-module, then the graphs
annf (Γ(MR)), anns(Γ(MR)) are complete, where as annt(Γ(MR)) is an empty
graph.

Theorem 4.6. Let R be an integral domain and let M be an R-module. If M
is virtually divisible R-module, then the following hold.

(i) If M is simple, then all the annihilating graphs associated with M over

R are empty.

(ii) If M is not simple, then annt(Γ(MR)) is empty and the graphs

annf(Γ(MR)), anns(Γ(MR)) are complete.

Proof. Let M be a virtually divisible R-module. By Lemma 4.5, P = Ann(M)
is a prime ideal andM is a divisibleR/P -module. If P = 0, thenM is a divisible
R-module. If P 6= 0, then P is a maximal ideal and so M is a homogeneous
semi-simple module. Now the result follows from Remark 4.4. �

Remark 4.7. Let R be an integral domain and let M be an R-module. If M is a
divisible R-module and simple, then all the annihilating graphs ofM over R are
empty. However, if M is a divisible R-module but not simple, then the graph
annt(Γ(MR)) is empty, where as the graphs annf (Γ(MR)) and anns(Γ(MR))
are complete.

The socle of a module M over ring R is denoted by Soc(M) and is defined
by Soc(M) =

∑{N : N is a simple submodule of M}. The following result
characterizes all non-simple weakly virtually divisible modules.

Theorem 4.8. The graph annf(Γ(MR)) is complete if and only if M is a non-

simple weakly virtually divisible module for which Ann(M) is a prime ideal and

Soc(M) = 0.

Proof. Suppose M is a non-simple weakly virtually divisible R-module. Then,
Ann(M) = [x : MR] for each x ∈ M . It follows that the graph annf (Γ(MR))
is complete.

Conversely, suppose the graph annf (Γ(MR)) is complete. This implies

anns(Γ(MR)) is a complete graph with vertices ̂M . Therefore, for x 6= y ∈ ̂M ,
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[x : MR] and [y : MR] are the two ideals of R such that [x : MR][y : MR]M = 0.
Since, Ann(M) is a prime ideal, either [x : MR]M = 0 or [y : MR]M = 0, that
is, for each 0 6= x, y ∈ M , either [x : MR] = Ann(M) or [y : MR] = Ann(M). If
Ann(M) ⊂ [x0 : MR] for some 0 6= x0 ∈ M , we show that Rx0 = {0, x0}. Let
rx0 6= x0, where r ∈ R. Since [x0 : MR]M ⊆ Rx0 and r[x0 : MR]M ⊆ Rrx0, we
have r[x0 : MR] ⊆ [rx0 : MR] = Ann(M). Therefore, rM = 0 and so rx0 = 0.
Thus, Rx0 = {0, x0} which is a simple submodule of M and Soc(M) 6= 0, a
contradiction. Therefore, [x : MR] = Ann(M) for each x ∈ M , that is, M is a
weakly virtually divisible module. �

We conclude this section with the following open problems.
1. Let M be an R-module. Then annt(Γ(MR)) is a connected graph and

diam(annt(Γ(MR))) ≤ 3.
2. Let M be an R-module. Then dim(annt(Γ(MR))) is a finite number if

and only if the graph annt(Γ(MR)) is finite.
3. The number dim(annt(Γ(MR))) is finite if and only if M is finite over R.
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