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a b s t r a c t

The eternal vertex cover problem is a variant of the classical vertex cover problem
defined in terms of an infinite attacker–defender game played on a graph. In each round
of the game, the defender reconfigures guards from one vertex cover to another in
response to a move by the attacker. The minimum number of guards required in any
winning strategy of the defender when this game is played on a graph G is the eternal
vertex cover number of G, denoted by evc(G). It is known that given a graph G and an
integer k, checking whether evc(G) ≤ k is NP-hard. Further, it is known that for any
graph G, mvc(G) ≤ evc(G) ≤ 2mvc(G), where mvc(G) is the vertex cover number of G.

Though a characterization is known for graphs for which evc(G) = 2mvc(G),
a characterization of graphs for which evc(G) = mvc(G) remained as an open problem,
since 2009. We achieve such a characterization for a class of graphs that includes chordal
graphs and internally triangulated planar graphs. For biconnected chordal graphs, our
characterization leads to a polynomial time algorithm for precisely determining evc(G)
and an algorithm for determining a safe strategy for guard movement in each round of
the game using only evc(G) guards.

Though the eternal vertex cover problem is only known to be in PSPACE in general,
it follows from our new characterization that the problem is in NP for locally connected
graphs, a graph class which includes all biconnected internally triangulated planar
graphs. We also provide reductions establishing NP-completeness of the problem for
biconnected internally triangulated planar graphs. As far as we know, this is the first
NP-completeness result known for the problem for any graph class.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

A vertex cover of a graph G(V , E) is a set S ⊆ V such that for every edge in E, at least one of its endpoints is in S.
A minimum vertex cover of G is a vertex cover of G of minimum cardinality and its cardinality is the vertex cover number
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of G, denoted by mvc(G). Equivalently, if we imagine that a guard placed on a vertex v can monitor all edges incident
t v, then mvc(G) is the minimum number of guards required to ensure that all edges of G are monitored.
The notion of ‘‘eternal vertex cover’’, first introduced by Klostermeyer and Mynhardt [11], is an extension of the above

ormulation in the context of a two-player multi-round game, where a ‘‘defender’’ uses mobile guards placed on some
ertices of G in order to protect the edges of G from an ‘‘attacker’’. We focus on a well studied variant of the game in which
t most one guard is allowed to be present at a vertex at any point of time. The game begins with the defender placing
uards on some vertices, with at most one guard per vertex. The total number of guards remains the same throughout
he game. In each round of the game, the attacker chooses an edge to attack. In response, the defender moves the guards
n such a way that each guard either stays at its current location or moves to an adjacent vertex. If a guard crosses the
ttacked edge during this move, then the attack is considered to have been successfully defended. The movement of all
uards in a round is assumed to happen in parallel. Note that it is possible for the two guards on the two endpoints of an
dge to exchange their positions; in fact, only such a move is enough when an edge that has guards on both endpoints
s attacked. The game then proceeds to the next round of attack–defense. The defender wins if any sequence of attacks
an be defended. If an attack cannot be defended in some round, the attacker wins.
Clearly, if the vertices occupied by the guards do not form a vertex cover at the beginning of some round, there is

n attack that cannot be defended, namely an attack on an edge that has no guards on its endpoints. If C is a family of
ertex covers of G of the same cardinality, such that the defender can choose any vertex cover from C as the starting

configuration and successfully keep on defending attacks forever by moving among configurations in C itself, then C is
an eternal vertex cover class of G and each vertex cover in C is an eternal vertex cover of G. If S is an eternal vertex cover
belonging to an eternal vertex cover class C, we say that S is a configuration in C. The eternal vertex cover number of G,
denoted by evc(G), is the minimum cardinality of an eternal vertex cover of G. An eternal vertex cover of cardinality evc(G)
is said to be a minimum eternal vertex cover and an eternal vertex cover class that consists of minimum eternal vertex
covers is said to be a minimum eternal vertex cover class. It is easy to see that for any graph G, mvc(G) ≤ evc(G). Also, since
a graph with vertex set V has the family {V } as an eternal vertex cover class, evc(G) is finite and therefore well-defined
for every graph G.

The eternal vertex cover problem is the problem of deciding, given a graph G and an integer k as input, whether
evc(G) ≤ k. Fomin et al. [8] discuss the computational complexity of the eternal vertex cover problem and derive some
algorithmic results for it. They show that given a graph G(V , E) and an integer k, it is NP-hard to decide whether evc(G) ≤ k.
The paper gives two algorithms for the problem: an exact algorithm with 2O(n) time complexity and exponential space
complexity and an FPT algorithm with eternal vertex cover number as the parameter. They also describe a simple
polynomial time 2-factor approximation algorithm for the eternal vertex cover problem using maximum matchings. It
is of interest to note here that although Fomin et al. use a variant of the eternal vertex cover problem in which more than
one guard can be placed on a single vertex, their results can be carried forward (with minor modifications in proofs) to
the original model which allows at most one guard per vertex. It is not yet known whether the problem is in NP, though
Fomin et al. [8] had shown that it is in PSPACE. It is also unknown whether the eternal vertex cover problem for bipartite
graphs is NP-hard. Some related graph parameters based on multi-round attacker–defender games and their relationship
with the eternal vertex cover number were investigated by Anderson et al. [1] and Klostermeyer and Mynhardt [12].

Klostermeyer and Mynhardt [11] showed that for any graph G, mvc(G) ≤ evc(G) ≤ 2mvc(G). If G is a cycle, then
mvc(G) = evc(G) and if G is a path on an odd number of vertices, then evc(G) = 2mvc(G). Thus, even for the
class of bipartite graphs, both the lower bound and the upper bound mentioned above are tight. Klostermeyer and
Mynhardt [11] gave a characterization of graphs whose eternal vertex cover number is twice their vertex cover number.
The characterization follows a nontrivial constructive method starting from any tree T which requires 2mvc(T ) guards
to protect it. They also give a few examples of graphs for which the eternal vertex cover number and the vertex cover
number coincide; such as the complete graph on n vertices (Kn), the Petersen graph, Km □Kn, Cm □ Cn (where □ represents
he box product) and the n×m grid, where either n or m is even. However, they mention that an elegant characterization
f graphs for which evc(G) = mvc(G) seems to be difficult. Here, we achieve such a characterization that works for all
hordal graphs, internally triangulated planar graphs and locally connected graphs.1
Without loss of generality, we only consider connected graphs for this characterization. The characterization (see

Theorem 1) has the following implications:

• For chordal graphs, deciding whether evc(G) = mvc(G) can be done in polynomial time. If the parameters are equal,
then a safe strategy of guard movement in each round of the game, with evc(G) guards, can be determined in
polynomial time.

• For biconnected chordal graphs, evc(G) can be computed in polynomial time. Further, a safe strategy of guard
movement in each round of the game, with evc(G) guards, can be determined in polynomial time.

• For biconnected internally triangulated graphs, there is a PTAS for computing evc(G). Further, for internally triangu-
lated planar graphs, deciding whether evc(G) = mvc(G) is in PNP .

• Deciding whether evc(G) ≤ k is in NP for locally connected graphs, a graph class that includes the class of biconnected
internally triangulated planar graphs.

1 A graph is locally connected, if the open neighborhood of each vertex induces a connected subgraph.
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Fig. 1. Complexity of deciding whether evc(G) ≤ k.

Other results included in this paper are the following:

• Deciding whether evc(G) ≤ k is NP-complete for locally connected graphs and biconnected internally triangulated
planar graphs. To the best of our knowledge, these are the first NP-completeness results known for the problem for
any graph class. Various NP-hardness and approximation hardness results obtained are summarized in Fig. 1.

• Klostermeyer and Mynhardt [11] had posed a question whether it is necessary for every edge e of G to be present in
some maximum matching, to satisfy evc(G) = mvc(G). We present an example which answers this question in the
negative.

2. A basic necessary condition for evc(G) = mvc(G)

In this section, we derive some basic necessary conditions for a graph G to have evc(G) = mvc(G).
We first introduce some basic definitions. Given a graph G(V , E) and a set U ⊆ V , we denote by G[U] the subgraph

induced in G by U , and we denote by G \ U the subgraph induced in G by V \ U .

Definition 1. For any subset U of vertices of a graph G, we define evcU (G) as the minimum integer k such that G has an
eternal vertex cover class C in which every configuration is a vertex cover of cardinality k that contains all the vertices
in U . We define mvcU (G) as the minimum cardinality of a vertex cover of G that contains all the vertices of U .

Note that when U = ∅, mvcU (G) = mvc(G) and evcU (G) = evc(G). Also, since for a graph G(V , E), the family {V } is an
eternal vertex cover class, we have that evcU (G) is finite for any U ⊆ V . Clearly, for any U ⊆ V , we have mvc(G) ≤ mvcU (G),
evc(G) ≤ evcU (G) and mvcU (G) ≤ evcU (G).

The following is an easy observation.

Observation 1. Let G(V , E) be a graph with no isolated vertices. If evc(G) = mvc(G), then for every vertex v ∈ V , there is
some minimum vertex cover of G containing v.

Proof. Suppose that evc(G) = mvc(G) and that C is a minimum eternal vertex cover class of G. Let C ∈ C. If v ∈ C , then
C is a minimum vertex cover of G containing v and we are done. So let us assume that v /∈ C . Let u be a neighbor of v.
As C is a vertex cover, u ∈ C . By the definition of an eternal vertex cover class, the defender can choose C to be the
starting configuration and there is a configuration C ′

∈ C to which the guards can be moved if the edge uv is attacked in
the first round. Clearly, the guard on u has to move to v in order to successfully defend such an attack. Therefore, v ∈ C ′.
Then C ′ is a minimum vertex cover of G containing v. □

It is easy to see that the simple necessary condition stated above is not sufficient for many graphs. For example, for
a path Pn on n vertices, where n > 2 is an even number, each vertex belongs to some minimum vertex cover; but
still n

2 = mvc(G) < evc(G) = n − 1. In fact, among graphs which are not biconnected, it is easy to find several such
examples. Therefore, we generalize Observation 1 to get a stronger necessary condition for a graph G with cut vertices.
3
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The following is an easy generalization of Observation 1 and it can be proven by a straightforward generalization of the
proof of Observation 1.

Observation 2. Let G(V , E) be a graph with no isolated vertices and U ⊆ V . If evcU (G) = mvcU (G), then for every vertex
∈ V \ U, mvcU∪{v}

(G) = mvcU (G).

The next lemma shows that if the vertex cover number and the eternal vertex cover number of a graph G coincide,
hen these parameters also coincide with evcX (G), where X is the set of cut vertices of G. In particular, we show that for
graph G for which these two parameters coincide, every minimum eternal vertex cover of G contains all the vertices

n X .

emma 1. Let G(V , E) be any graph. Let X ⊆ V be the set of cut vertices of G. If evc(G) = mvc(G), then any minimum eternal
vertex cover of G contains all the vertices of X. Consequently, if evc(G) = mvc(G), then evcX (G) = mvcX (G) = evc(G) = mvc(G).

Proof. Suppose that evc(G) = mvc(G) = k. If X = ∅, the result holds trivially. If X ̸= ∅, we will show that all the vertices
of X are contained in any minimum eternal vertex cover of G.

Suppose for the sake of contradiction that there exist a cut vertex x of G and a minimum eternal vertex cover C of G
such that x /∈ C . Let H be a connected component of G \ {x} that is not a connected component of G, H1 = G[V (H) ∪ {x}]
and H2 = G[V \ V (H)]. Note that H1 and H2 are edge-disjoint subgraphs of G with x being their only common vertex and
also that x has non-zero degree in both of them. Let k1 = mvc(H1) and k2 = mvc(H2). Clearly, k ≤ k1 + k2. It is easy to see
that if S is any vertex cover of G, then S ∩ V (H1) and S ∩ V (H2) are vertex covers of H1 and H2 respectively. This implies
that |C ∩ V (H1)| ≥ k1, and |C ∩ V (H2)| ≥ k2. As x /∈ C and |C | = k, we now have that k = k1 + k2, |C ∩ V (H1)| = k1, and
C ∩ V (H2)| = k2. If both H1 and H2 have minimum vertex covers that contain x, then mvc(G) = k would have been at
ost k1 + k2 − 1. Therefore, we can assume without loss of generality that no minimum vertex cover of H1 contains x. As
is an eternal vertex cover, an attack on an edge ux of H1 while the guards are placed according to the configuration C

an be defended by moving the guards to another configuration, say C ′. Noting that during this move the guard on u has
o be shifted to x, it can be seen that in C ′, there are at most k1 vertices of V (H1) with guards on them. Then the vertices
n C ′

∩ V (H1) form a minimum vertex cover of H1 containing x, which is a contradiction. □

By combining Observation 2 and Lemma 1, we can derive the following basic necessary condition for a graph to have
ts vertex cover number and eternal vertex cover number coincide.

emma 2 (Necessary Condition). Let G(V , E) be any graph with no isolated vertices. Let X ⊆ V be the set of cut vertices of G.
f evc(G) = mvc(G), then for every vertex v ∈ V \ X, there is a minimum vertex cover Sv of G such that X ∪ {v} ⊆ Sv .

roof. Suppose evc(G) = mvc(G). Then, by Lemma 1, we have evcX (G) = mvcX (G). Hence, by Observation 2, for every
vertex v ∈ V \ X , mvcX∪{v}

(G) = mvcX (G). Since we also have mvcX (G) = mvc(G) by Lemma 1, this implies that for every
ertex v ∈ V \ X , mvcX∪{v}

(G) = mvc(G). □

From Lemma 2, it is evident that if evc(G) = mvc(G), then G must have a minimum vertex cover containing all its cut
ertices. The following is another interesting corollary of Lemma 2.

orollary 1. For any connected graph G with at least three vertices and minimum degree 1, evc(G) ̸= mvc(G).

The corollary holds because a degree one vertex and its neighbor (which is a cut vertex, if the graph itself is not just
an edge) cannot be simultaneously present in a minimum vertex cover of G.

3. Main characterization

In this section, we prove the main structure theorem of this paper. We show that the necessary condition mentioned
in Lemma 2 is also sufficient for a large class of graphs including all chordal graphs, internally triangulated planar graphs
and locally connected graphs, to have evc(G) = mvc(G).

The following lemma specifies a sufficient condition under which the converse of Observation 2 holds. The proof of
this lemma involves repeated applications of Hall’s marriage theorem [5] and forms the most nontrivial ingredient in the
proof of Theorem 1, our main characterization theorem.

Lemma 3. Let G(V , E) be a graph with at least two vertices. Let U ⊆ V and suppose that every vertex cover S of G that contains
U
and has cardinality mvcU (G) is connected. If for every vertex v ∈ V \ U, mvcU∪{v}

(G) = mvcU (G), then evcU (G) = mvcU (G).

Proof. Let k = mvcU (G). Suppose that every vertex cover S of G with U ⊆ S and |S| = k is connected. Further suppose

that for every vertex v ∈ V \ U , mvcU∪{v}

(G) = k.

4
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We define C to be the set of all vertex covers S of G with U ⊆ S and |S| = k. We shall show that C is an eternal vertex
cover class of G, thereby proving the lemma. To show that C is an eternal vertex cover class of G, we show that if an attack
on some edge occurs when the guards occupy the vertices in S ∈ C, the attack can be defended by moving the guards
such that they occupy the vertices in some S ′

∈ C.
Consider an attack on the edge uv such that u ∈ S and v /∈ S. Let Γ = {Q ∈ C : v ∈ Q }. We know that Γ ̸= ∅. Let S ′

be a set in Γ such that there is no set S ′′
∈ Γ with S ′

∩ S ⊂ S ′′
∩ S. For example, a set in Γ , the size of whose symmetric

difference with S is as small as possible, is one possible choice for S ′. We show that it is possible to safely defend the
attack on uv by moving from S to S ′.

Let T = S ∩ S ′ and let A, B be such that S = T ⊎ A and S ′
= T ⊎ B. As S and S ′ are vertex covers, V \ S and V \ S ′ are

independent sets, implying that A and B are independent sets. Hence, H = G[A ⊎ B] is a bipartite graph. Further, since
|S| = |S ′

|, we have |A| = |B|, and as v ∈ S ′
\ S, we also have |A| = |B| ≥ 1.

Claim 1. H has a perfect matching.

Proof of Claim 1. Note that U ⊆ T . Consider any B′
⊆ B. Since V \ S is an independent set, we have NG(B′) ⊆ S = T ⊎ A.

If |NH (B′)| < |B′
|, then T ⊎ (B \ B′)⊎NH (B′) is a vertex cover containing U and of size smaller than k, violating the fact that

mvcU (G) = k. Therefore, ∀B′
⊆ B, |NH (B′)| ≥ |B′

| and by Hall’s theorem [5], H has a perfect matching. □

Claim 2. ∀x ∈ A, the bipartite graph H \ {x, v} has a perfect matching.

Proof of Claim 2. If H \{x, v} has no vertices, then the claim holds trivially. Consider any non-empty subset B′
⊆ (B\{v}).

By Claim 1, |NH (B′)| ≥ |B′
|. If |NH (B′)| = |B′

|, then Q = T ⊎ (B \ B′) ⊎ NH (B′) is a vertex cover of G with |Q | = k and
(U ∪{v}) ⊆ Q . This contradicts the choice of S ′, since S ′

∩ S ⊂ Q ∩ S. Therefore, |NH (B′)| ≥ |B′
|+1 and |NH (B′) \ {x}| ≥ |B′

|.
Hence, for all subsets B′

⊆ (B \ {v}), |NH (B′) \ {x}| ≥ |B′
| and by Hall’s theorem, H \ {x, v} has a perfect matching. □

With the help of Claims 1 and 2, we can now complete the proof of Lemma 3. We will describe how to move the
guards from configuration S to configuration S ′, in order to defend the attack on the edge uv, in such a way that each
guard either stays at its previous location or moves to a neighboring vertex, no two guards are on the same vertex at any
given time, and the guard at u moves to v.

• Case 1. u ∈ A:
By Claim 2, there exists a perfect matching M in H \ {u, v}. In order to defend the attack, move the guard on u to v

and also all the guards on A \ {u} to B \ {v} along the edges of the matching M .
• Case 2. u ∈ T :

Recall that |A| = |B| ≥ 1. By our assumption, the vertex cover S = T ⊎ A is connected. Let P be a shortest path from
A to u in G[S]. By the minimality of P , it has exactly one vertex x from A and there exists a perfect matching M in
H \ {x, v}. In order to defend the attack, move the guard on u to v, x to z1 and zi to zi+1, ∀i ∈ [t − 1]. In addition,
move all the guards on A \ {x} to B \ {v} along the edges of the matching M .

It is clear that in both cases, the attack can be defended by moving the guards as mentioned and the new configuration
is S ′. □

A vertex cover S of a graph G is called a connected vertex cover if G[S] is connected. The connected vertex cover number
of G is the size of a minimum cardinality connected vertex cover of G. Klostermeyer and Mynhardt [11] observed that
evc(G) is at most one more than the size of a connected vertex cover of G. Combining this result with Lemma 3, the
following observation is immediate.

Observation 3. Let G(V , E) be a graph with no isolated vertices for which every minimum vertex cover is connected. If
for every vertex v ∈ V , there exists a minimum vertex cover Sv of G such that v ∈ Sv , then evc(G) = mvc(G). Otherwise,
evc(G) = mvc(G) + 1.

The following theorem is the main structure theorem in this paper. The theorem gives a necessary and sufficient
condition for a graph G to satisfy evc(G) = mvc(G), if every minimum vertex cover of G that contains all cut vertices
is connected. As mentioned before, Lemma 3 supplies the non-trivial direction of the characterization, while the more
obvious direction is supplied by Lemma 2.

Theorem 1 (Main Characterization Theorem). Let G(V , E) be a connected graph with at least two vertices and X be the set of
cut vertices of G. If every minimum vertex cover S of G with X ⊆ S is connected, then the following characterization holds:
evc(G) = mvc(G) if and only if for every vertex v ∈ V \X, there exists a minimum vertex cover Sv of G such that (X ∪{v}) ⊆ Sv .

Proof. If for every vertex v ∈ V \X there exists a minimum vertex cover Sv of G such that (X ∪{v}) ⊆ Sv , then it is easy to
see that mvc (G) = mvc(G). Hence, by our assumption, it follows that every vertex cover of G of cardinality mvc (G) that
X X

5
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contains X is connected. Therefore, by Lemma 3, we have evcX (G) = mvcX (G) = mvc(G). Since mvc(G) ≤ evc(G) ≤ evcX (G),
t follows that evc(G) = mvc(G).

Conversely, if evc(G) = mvc(G), by Lemma 2, for every vertex v ∈ V \ X , there exists a minimum vertex cover Sv of G
uch that (X ∪ {v}) ⊆ Sv . □

ote. By going through the proofs presented, it can be verified that Theorem 1 is valid also for the variant of the game
here more than one guard is allowed on a vertex simultaneously.
Chordal graphs and internally triangulated planar graphs satisfy the property that if the graph is connected, then

very vertex cover of the graph that contains all its cut vertices forms a connected vertex cover of the graph. Hence, our
haracterization theorem is directly applicable to these graph classes, as stated below.

bservation 4. Let G be a chordal graph or an internally triangulated planar graph. Suppose G is connected and has at least
wo vertices. Then evc(G) = mvc(G) if and only if for every non-cut vertex v of G, there exists a minimum vertex cover Sv of
such that v and all cut vertices of G are contained in Sv .

In Section 6, we show that a similar observation (Observation 5) holds for a larger class of graphs. In the next three
ections, we present some of the algorithmic and complexity theoretic results derived using Theorem 1.

. Eternal vertex cover number of chordal graphs

A graph is chordal if it contains no induced cycle of length four or more. In this section, we discuss the algorithmic
onsequences of Theorem 1, in the context of chordal graphs. To the best of our knowledge, prior to this work, polynomial
ime algorithms for computing eternal vertex cover number were only known for simple graph classes like trees, cycles
nd grids. We derive a polynomial time algorithm for computing eternal vertex cover number of biconnected chordal
raphs. Further, we show that deciding whether the eternal vertex cover number of a chordal graph coincides with its
ertex cover number or not, can be done in polynomial time. At the end of this section, we also provide a generalization
f these results to a superclass of chordal graphs.
It is well-known that the computation of the vertex cover number of a chordal graph can be done in polynomial

ime [9]. This fact, together with Theorem 1, gives us the following result for chordal graphs.

heorem 2. For any chordal graph G,

1. deciding whether evc(G) = mvc(G) can be done in polynomial time,
2. if evc(G) = mvc(G), then there is a polynomial time (per-round) strategy for guard movements using evc(G) guards, and
3. if G is a biconnected, then evc(G) can be computed in polynomial time and there is a polynomial time (per-round) strategy

for guard movements using evc(G) guards.

Proof. Without loss of generality, we may assume that G is connected and has at least two vertices. We can compute the
vertex cover number of any induced subgraph of G in polynomial time [9]. This implies that for any Y ⊆ V , we can decide
n polynomial time whether G has a minimum vertex cover containing Y , since this is equivalent to checking whether
vc(G) = mvc(G′) + |Y | where G′

= G \ Y . There are well-known polynomial time algorithms, like the one using depth
irst search, for computing the set of cut vertices of a graph. It is also well known that, for any connected chordal graph
, every vertex cover of G that contains all its cut vertices forms a connected vertex cover of G. Let X be the set of cut
ertices of G.

1. By Theorem 1, to decide whether mvc(G) = evc(G), it is enough to check for every vertex v ∈ V \ X whether G has
a minimum vertex cover containing X ∪ {v}. As observed above, this can be done in polynomial time.

2. Suppose evc(G) = mvc(G) = k. Then, by Lemma 1, evcX (G) = mvcX (G) = k. Therefore, by Observation 2, for every
vertex v ∈ V \X , mvcX∪{v}

(G) = k. We construct a polynomial time algorithm that, given any minimum vertex cover
S of G with X ⊆ S and an edge uv, computes another minimum vertex cover S ′ of G with X ⊆ S ′. The set S ′ is
such that an attack on the edge uv, while the guards are in configuration S, can be defended by moving them to
configuration S ′. We construct the algorithm by extending the basic ideas used in the proof of Lemma 3. Assume
without loss of generality that u ∈ S and v /∈ S (if both u, v ∈ S, then the current configuration of guards does not
need to be changed). Starting with setting Y = X ∪ {v}, we keep extending Y by adding vertices from S \ Y to it, as
long as there is a minimum vertex cover of G containing Y . We stop when adding any vertex from S \ Y to Y will
result in a set that is not contained in any minimum vertex cover of G. Compute some minimum vertex cover S ′

that contains this Y . Note that the set S ′ now has the property that there is no set S ′′ that contains X ∪{v} such that
S ′

∩ S ⊂ S ′′
∩ S. The construction of Y can be done in polynomial time as any vertex in S \ Y that cannot be added

to Y at one point will never become suitable for addition to Y later. We now move the guards from configuration
S to configuration S ′ as explained in the proof of Lemma 3. The basic computational steps involved in this process
are computing minimum vertex covers of some induced subgraphs of G, and finding a maximum matching in a
bipartite graph. All these computations can be performed in polynomial time [10].
6
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Fig. 2. Triangulating an internal face f = u1, u2, . . . , ut , u1 of G with t > 3, by adding new vertices and edges.

3. Let G be a biconnected chordal graph. Since every vertex cover of a biconnected chordal graph forms a connected
vertex cover of the graph, by Observation 3, evc(G) ∈ {mvc(G), mvc(G) + 1}. Therefore, by using Part 1 of this
theorem, evc(G) can be decided exactly, in polynomial time. If evc(G) = mvc(G), using Part 2 of this theorem, we
can complete the proof. If evc(G) = mvc(G) + 1, we will make use of the fact that every minimum vertex cover of
G is connected. We will fix a minimum vertex cover S and initially place guards on all vertices of S and also on one
additional vertex. Using the method given by Klostermeyer and Mynhardt [11] to show that evc(G) is at most one
more than the connected vertex cover number of G, we will be able to keep defending attacks while maintaining
guards on all vertices of S after the end of each round of the game. □

A class of graphs H is called hereditary, if every graph G ∈ H has the property that the deletion of any set of vertices
from G yields another graph in H. Chordal graphs form a well-known hereditary graph class. The proposition below gives
a generalization of Theorem 2 to a class of hereditary graphs. The proof of this proposition can be obtained by an easy
generalization of the proof of Theorem 2.

Proposition 1. Let H be a hereditary graph class such that there is a polynomial time algorithm for computing vertex cover
number of graphs in H. Further, suppose that every connected graph G ∈ H satisfies the property that every minimum vertex
cover S of G that contains all the cut vertices of G forms a connected vertex cover of G. Then, given a graph G that belongs
to H,

1. deciding whether evc(G) = mvc(G) can be done in polynomial time,
2. if evc(G) = mvc(G), then there is a polynomial time (per-round) strategy for guard movements using evc(G) guards, and
3. if G is biconnected, then evc(G) can be computed in polynomial time and there is a polynomial time (per-round) strategy

for guard movements using evc(G) guards.

5. A PTAS for computing eternal vertex cover number of biconnected internally triangulated planar graphs

In general, the problem of computing eternal vertex cover number is NP-hard and is only known to be in
PSPACE [8]. To the best of our knowledge, no NP-completeness results for the eternal vertex cover problem were known

for any graph classes, prior to this work. A graph is an internally triangulated planar graph if it has a planar embedding in
which all internal faces are triangles. In this section, using Theorem 1, we show that the eternal vertex cover problem is
NP-complete for biconnected internally triangulated planar graphs. We also show that there is a PTAS for computing the
eternal vertex cover number of biconnected internally triangulated planar graphs. The section concludes by stating that
the problem is in NP for a superclass of biconnected internally triangulated planar graphs.

The NP-hardness of the eternal vertex cover problem for biconnected internally triangulated planar graphs is shown
using a sequence of simple reductions. First, we will show that the classical vertex cover problem is NP-hard for
biconnected internally triangulated planar graphs. Then, we will show that an additive one approximation to vertex cover
is also NP-hard for the same class and use it to derive the required conclusion.

Proposition 2. Given a biconnected internally triangulated planar graph G and an integer k as input, it is NP-complete to
decide if mvc(G) ≤ k.

Proof. The vertex cover problem on biconnected planar graphs is known to be NP-hard [13]. We show a reduction from
the vertex cover problem on biconnected planar graphs to the vertex cover problem on biconnected internally triangulated
planar graphs. Suppose we are given a biconnected planar graph G and an integer k. We construct G′ such that G is an

′
induced subgraph of G . First, compute a planar embedding of G in polynomial time [14]. We know that in any planar

7
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Fig. 3. NP-hardness reduction for additive one approximation of vertex cover number of biconnected internally triangulated planar graphs.

mbedding, each face of a biconnected planar graph is bounded by a cycle [5]. To construct G′, each internal face of G with
ore than three vertices on its boundary is triangulated by adding four new vertices and some edges (see Fig. 2). Let f =

1, u2, . . . , ut , u1 be a cycle bounding an internal face of G, with t > 3. Let i and j be two distinct indices from [2, t]. Add
three vertices vf 1, vf 2 and vf 3 inside f . Now, add edges vf 1u1, vf 1u2, . . . , vf 1ui, vf 2ui, vf 2ui+1, . . . , vf 2uj, vf 3uj, vf 3uj+1, . . .,
f 3ut and vf 3u1. Furthermore, add the edges vf 1vf 2, vf 2vf 3 and vf 3vf 1. Note that the graph remains planar after the addition
f these vertices and edges. Add a new vertex vf 4 inside the triangle formed by vf 1, vf 2 and vf 3 and make it adjacent to
f 1, vf 2 and vf 3. Repeat this construction procedure for all internal faces of G bounded by more than 3 vertices. As per
he construction, it is clear that the resultant graph G′ is biconnected, internally triangulated and planar. It can be seen
asily that the biconnected planar graph G has a vertex cover of size at most k if and only if the biconnected internally
riangulated planar graph G′ has a vertex cover of size at most k′

= k + 3f ′ where f ′ is the number of internal faces of G
ounded by more than 3 vertices. □

To show the NP-hardness of the eternal vertex cover problem of biconnected internally triangulated planar graphs, we
ill show that if the vertex cover number of biconnected internally triangulated planar graphs can be approximated to
ithin an additive one error, then it can be used to precisely compute the vertex cover number of graphs of the same
lass.

roposition 3. Getting an additive 1-approximation for computing the vertex cover number of biconnected internally
riangulated planar graphs is NP-hard.

roof. Let G(V , E) be the given biconnected internally triangulated planar graph. Consider a fixed planar internally
riangulated embedding of G. The reduction algorithm constructs a new graph G′ as follows. Make two copies of G namely,
1 and G2. For each vertex v ∈ V , let v1 and v2 denote its corresponding vertices in G1 and G2 respectively. Choose any
rbitrary edge e = uv on the outer face of G. Add new edges u1v2 and v1u2 maintaining the planarity. Now, the new graph
s biconnected and planar; but the face with boundary u1v1u2v2 needs to be triangulated. For this, we follow the same
rocedure we used in the proof of Proposition 2 which adds four new vertices p, q, r, s and some new edges inside this
ace (see Fig. 3). The resultant graph G′ is biconnected, internally triangulated and planar.

Consider a minimum vertex cover S of G such that mvc(G) = |S| = k. It is clear that either u or v is in S. It is easy to
ee that S ′

= {x1 : x ∈ S} ∪ {x2 : x ∈ S} ∪ {p, q, r} is a vertex cover of G′ with size 2k+ 3. Similarly, at least k vertices from
1 and G2 and at least 3 vertices among {p, q, r , s} has to be chosen for a minimum vertex cover of G′. This shows that
vc(G′) = 2k + 3.
Suppose there exists a polynomial time additive 1-approximation algorithm for computing the vertex cover number of

iconnected internally triangulated planar graphs. Let k′ be the approximate value of the vertex cover number of G′ that
s computed by this algorithm. Then, k′

∈ {mvc(G′),mvc(G′)+1}. This implies that mvc(G) =

⌊
(k′−3)

2

⌋
, giving a polynomial

ime algorithm to compute mvc(G). Hence, by Proposition 2, getting an additive 1-approximation for computing the vertex
over number of biconnected internally triangulated planar graphs is NP-hard. □

Now, we are ready to prove the NP-completeness of the eternal vertex cover problem for biconnected internally
riangulated planar graphs.

heorem 3. Given a biconnected internally triangulated planar graph G and an integer k as input, it is NP-complete to decide
f evc(G) ≤ k. Further, there exists a polynomial time approximation scheme for computing the eternal vertex cover number of
iconnected internally triangulated planar graphs.

roof. First, we show that the problem of deciding whether evc(G) ≤ k, given a biconnected internally triangulated
lanar graph G and an integer k as input, is in NP. For this, it is sufficient to show that this problem has a polynomial
ime verifiable certificate. Since every minimum vertex cover of a biconnected internally triangulated planar graph is
onnected, by Observation 3, we can easily derive that evc(G) = min {k : ∀v ∈ V (G), G has a vertex cover of size k
8
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containing v}. Using this, it is easy to obtain a polynomial time verifiable certificate to check if evc(G) ≤ k, as follows.
he certificate can consist of one subset of V (G) corresponding to each vertex v ∈ V (G) such that for a yes instance of the
roblem, the subset corresponding to each v ∈ V (G) is a vertex cover of G that contains v and is of size at most k.
Now, we will prove the NP-hardness of the problem. Since every vertex cover of a biconnected internally triangulated

planar graph G is connected, by Observation 3, mvc(G) ≤ evc(G) ≤ mvc(G) + 1. Therefore, a polynomial time algorithm
to compute evc(G) would give a polynomial time additive 1-approximation for mvc(G). Hence, by Proposition 3, we can
conclude that given a biconnected internally triangulated planar graph G and an integer k, it is NP-hard to decide if
evc(G) ≤ k. This completes the proof of NP-completeness stated in the theorem.

As mentioned earlier, for a biconnected internally triangulated planar graph, evc(G) = min {k : ∀v ∈ V (G), G has a
vertex cover of size k containing v}. We also know that there is a PTAS designed by Baker et al. [3] for computing the
vertex cover number of planar graphs. Combining these two facts, it is easy to derive a polynomial time approximation
scheme for computing the eternal vertex cover number of biconnected internally triangulated planar graphs. □

The following proposition shows that the eternal vertex cover problem is in NP not only for biconnected internally
triangulated planar graphs, but also for a superclass of it. The proof of this result is similar to the first part of the proof
of Theorem 3.

Proposition 4. Given a graph G for which every minimum vertex cover is connected and an integer k as input, deciding
whether evc(G) ≤ k is in NP.

6. Complexity results of the eternal vertex cover problem for locally connected graphs

A graph G is locally connected if for every vertex v of G having degree at least 2, its open neighborhood NG(v) induces
a connected subgraph in G. In this section, we discuss the implications of Theorem 1 to the complexity of the problem
of computing eternal vertex cover problem for locally connected graphs. We show that given a locally connected graph
G and an integer k as input, deciding whether evc(G) ≤ k is NP-complete and the corresponding optimization problem is
APX-hard. We also derive some related results in the context of locally connected graphs, obtained using Theorem 1.

A connected locally connected graph is always biconnected unless it is an edge or a single vertex. Biconnected chordal
graphs and biconnected internally triangulated graphs are well known examples of locally connected graphs. Erdös, Palmer
and Robinson [7] showed that when the probability p(n) of adding an edge is

√
3 log n
2n or higher, almost all graphs in G(n, p)

re locally connected. Some other sufficient conditions for a graph to be locally connected were given by Chartrand and
ippert [4] and Vanderjagt [15].
A block in a connected graph G is either a maximal biconnected subgraph or a bridge of G. If each block of a graph is

locally connected, we call it a blockwise locally connected graph. The following observation enables us to apply Theorem 1
to connected graphs which are blockwise locally connected.

Proposition 5. Let G(V , E) be a connected graph. If G is blockwise locally connected, then every vertex cover of G that contains
all cut vertices of G is a connected vertex cover of G.

Proof. For contradiction, suppose that S is a vertex cover of G containing all the cut vertices of G such that G[S] is not
connected. Then, since V \ S is an independent set and G is connected, there exist a vertex v ∈ V \ S and two distinct
components C1 and C2 of G[S] such that v is adjacent to vertices v1 ∈ V (C1) and v2 ∈ V (C2). As V \S is an independent set,
we have NG(v) ⊆ S. Note that in a blockwise locally connected graph, the neighborhood of every vertex that is not a cut
vertex induces a connected subgraph. Since v is not a cut vertex, we then have that NG(v) induces a connected subgraph
in G and therefore, v1 and v2 must belong to the same component of G[S], which is a contradiction. □

From Proposition 5, it follows that Theorem 1 is applicable to all connected graphs which are blockwise locally
connected. Combining this with Observation 3, we get the following result, which is a generalization of Observation 4.

Observation 5. For a connected graph G that is blockwise locally connected and has at least two vertices, evc(G) = mvc(G) if
and only if for every vertex v of G, there is a minimum vertex cover of G that contains v and all the cut-vertices of G. Further,
for any connected graph G that is locally connected, evc(G) ∈ {mvc(G),mvc(G) + 1}.

The next theorem proves the NP-completeness and the hardness of approximation of the eternal vertex cover number
problem of locally connected graphs.

Theorem 4. Given a locally connected graph G and an integer k as input, it is NP-complete to decide if evc(G) ≤ k.
Moreover, the eternal vertex cover number of locally connected graphs cannot be approximated to within any factor smaller
than 10

√
5 − 21 in polynomial time, unless P=NP.
9
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Proof. Let G be a locally connected graph. Without loss of generality, we may assume that G is biconnected. By
roposition 5, every vertex cover of G is connected and hence, by Proposition 4, we can see that deciding whether
vc(G) ≤ k is in NP. Since biconnected internally triangulated graphs form a subclass of locally connected graphs for
hich the problem is NP-hard (Theorem 3), the NP-completeness of the problem for locally connected graphs follows
asily.
By Observation 5, it follows that evc(G) ∈ {mvc(G),mvc(G) + 1}. Hence, for proving approximation hardness of the

ternal vertex cover problem, it is enough to prove the approximation hardness of computing vertex cover number of
ocally connected graphs. We prove this below, using the approximation hardness of the vertex cover problem.

A famous result by Dinur and Safra [6] states that it is NP-hard to approximate the vertex cover number of connected
raphs within any factor smaller than 10

√
5−21. For a given connected graph G and integer k, we can construct a locally

onnected graph G′ by adding a new vertex to G and making it adjacent to all the existing vertices of G. It can be seen
asily that mvc(G′) = mvc(G) + 1. Therefore, even for locally connected graphs, the vertex cover number is NP-hard to
pproximate to within any factor smaller than 10

√
5 − 21.

As noted above, this implies that the eternal vertex cover number of locally connected graphs cannot be approximated
o within any factor smaller than 10

√
5 − 21 in polynomial time, unless P=NP. □

The following is another implication of Theorem 1.

Theorem 5. Given a blockwise locally connected graph G as input, deciding whether evc(G) = mvc(G) is in PNP . In particular,
given an internally triangulated planar graph G as input, deciding whether evc(G) = mvc(G) is in PNP .

Proof. Since internally triangulated graphs are blockwise locally connected, we need to only prove the first part of the
theorem. Without loss of generality, we may assume that G is a connected graph that is blockwise locally connected.
Using polynomially many queries to an NP oracle that answers whether G has a vertex cover of size at most k or not,
we can compute mvc(G). Let t = mvc(G) and X be the set of cut vertices of G. Computing X can be done in polynomial
time. By Theorem 1, it suffices to check whether for every vertex v ∈ V \ X , there exists a vertex cover Sv of G of size
t such that (X ∪ {v}) ⊆ Sv , which is equivalent to checking whether the graph G \ (X ∪ {v}) has a vertex cover of size
t − |X | − 1. This decision problem is also in NP. Thus, the entire procedure of deciding whether evc(G) = mvc(G) requires
only polynomially many queries to an NP oracle. □

7. Is the necessary condition sufficient?

It is interesting to ask if the necessary condition stated in Lemma 2 is sufficient for every graph to have its eternal
vertex cover number and vertex cover number coincide. Here, we give a biconnected bipartite planar graph of maximum
degree 4 which answers this question in negative. Consider the bipartite graph G(X ∪ Y , E) with X = {x1, x2, x3, x4, x5}
and Y = {y1, y2, y3, y4, y5} shown in Fig. 4. This graph consists of two copies of K2,3 on vertex sets {x1, x2, x3, y4, y5}
and {y1, y2, y3, x4, x5} connected by two edges x1y1 and x5y5. From the figure, it can be easily seen that mvc(G) = 5 and
that for each vertex, there is a minimum vertex cover containing it. Note that, there is only one minimum vertex cover
Sx2 = {x1, x2, x3, x4, x5} that contains x2. Therefore, the attacker can force the guards into configuration Sx2 from any other
configuration by attacking an edge incident on the vertex x2. When the guards are in configuration Sx2 , if there is an
attack on the edge x5y5, the guards have to move to a configuration containing y5. The only minimum vertex covers of
G containing y5 are S1 = {y1, y2, y3, y4, y5}, S2 = {x4, x5, y4, y5, x1} and S3 = {x4, x5, y4, y5, y1}. Since the edge x5y5 does
not belong to any maximum matching of G, a transition from Sx2 to S1 is not legal. Configurations S2 and S3 both contain
x5. Following the attack on x5y5 in configuration Sx2 , when the guard on x5 moves to y5, no other guard can move to x5,
because no neighbor of x5 is occupied in Sx2 . Thus, transitions to S2 and S3 are also not legal. Hence, the attack on x5y5
cannot be handled and therefore evc(G) ̸= mvc(G).

This example shows that the necessary condition is not sufficient for planar graphs or bipartite graphs, even when
they are biconnected.

8. A graph G with an edge not contained in any maximum matching but mvc(G) = evc(G)

Klostermeyer and Mynhardt [11] proved that if a graph G has two disjoint minimum vertex covers and each edge is
contained in a maximum matching then mvc(G) = evc(G). They had asked whether in a graph G having mvc(G) = evc(G),
it is necessary for every edge to belong to some maximum matching. Here, we give a graph G for which the answer is
negative. The graph G shown in Fig. 5 has mvc(G) = 5. Therefore, evc(G) ≥ 5. It can also be easily seen that G has a
maximum matching of size 4 and that the edge (8, 4) is not contained in any maximum matching. It can be verified that
G has an evc class with two configurations, namely S1 = {1, 8, 3, 5, 7} and S2 = {6, 8, 2, 4, 7}, and hence evc(G) = 5. Note

that the graph we constructed is a biconnected internally triangulated planar graph.

10



J. Babu, L.S. Chandran, M. Francis et al. Discrete Applied Mathematics xxx (xxxx) xxx
Fig. 4. (a) A biconnected bipartite planar graph with all vertices in some minimum vertex cover and evc(G) ̸= mvc(G). (b) A planar drawing of the
same graph.

Fig. 5. mvc(G) = evc(G) = 5 and size of maximum matching is 4. Edge (8, 4) is not contained in any maximum matching.

9. Conclusion and open problems

This paper presents an attempt to derive a characterization of graphs for which the eternal vertex cover number
coincides with the vertex cover number. A characterization that works for a graph class that includes chordal graphs
and internally triangulated planar graphs is obtained. The characterization is derived from a simple to state necessary
condition; and has several implications, including a polynomial time algorithm for deciding whether a chordal graph G
has evc(G) = mvc(G) and a polynomial time algorithm for computing the eternal vertex cover number of biconnected
chordal graphs. A characterization of bipartite graphs for which the eternal vertex cover number and vertex cover number
coincide remains open.

The characterization also leads to NP-completeness results for the eternal vertex cover problem on some graph classes
like locally connected graphs and biconnected internally triangulated planar graphs. Even though it was known that the
general problem is NP-hard, to the best of our knowledge, results obtained here are the first NP-completeness results
known for the eternal vertex cover problem.
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