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Abstract: For a ®xed graph H, the Ramsey number r (H ) is de®ned to be
the least integer N such that in any 2-coloring of the edges of the complete
graph KN, some monochromatic copy of H is always formed. Let H(n, �)
denote the class of graphs H having n vertices and maximum degree at
most �. It was shown by ChvataÂ l, RoÈdl, SzemereÂdi, and Trotter that for
each � there exists c (�) such that r (H )< c (�)n for all H 2 H(n, �). That is,
the Ramsey numbers grow linearly with the size of H. However, their proof
relied on the well-known regularity lemma of SzemereÂdi and only gave an
upper bound for c(�) which grew like an exponential tower of 20s of height
�. This was remedied substantially in a recent paper of Eaton, who showed
that one could take c ��� < 22c�

for some ®xed c. Eaton, however, also
used a variant of the regularity lemma in her proof. In this paper, we avoid
the use of the regularity lemma altogether, and show that one can in fact
take, for some ®xed c, c��� < 2c� (log �)2

in the general case, and even
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c��� < 2c� log � if H is bipartite. In particular, we improve an old upper
bound on the Ramsey number of the n-cube due to Beck. We also show
that for a ®xed c 0 > 0, and for all n and �, there are graphs H 0 2 H (n, �)
with r (H 0)> 2c0�n, which is not so far from our upper bound. In addition, we
indicate how the upper bound result can be extended to the larger class of
so-called p-arrangeable graphs, introduced by Chen and Schelp. ß 2000 John

Wiley & Sons, Inc. J Graph Theory 35: 176±192, 2000
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1. INTRODUCTION

For any graph H, we will denote by r�H� the least integer N such that in any 2-
coloring of the edges of KN , the complete graph on N vertices, some
monochromatic copy of H must always be formed. The existence of r�H� is
guaranteed by the classic theorem of Ramsey, and indeed, we will refer to r�H� as
the Ramsey number of H. For dense graphs H; r�H� tends to grow exponentially
in the size of H. For example, the extreme case of H � Kn has r�Kn� lying
roughly between 2n=2 and 4n (see [9] for more precise bounds).

However, for relatively sparse graphs, r�H� grows much more modestly. A
particular class which has been investigated from this perspective is H�n;��, the
class of graphs H having n vertices and maximum degree at most �. It was shown
by ChvataÂl, R�odl, SzemereÂdi, and Trotter [6] that for each � there exists a
constant c��� so that for all H 2 H�n;��, we have

r�H� � c���n:
That is, the Ramsey numbers for these H grow linearly in the size of H.
Unfortunately, their estimate for c��� was very weak, since the proof used the
powerful regularity lemma of SzemereÂdi [17] (it grew like an exponential tower
of 2's of height �). In fact, a beautiful recent result of Gowers [8] shows that the
best bounds in general that are possible using the original SzemereÂdi lemma have
this form, i.e., there are graphs whose decompositions require such gigantic
numbers. Very recently, Eaton [7] improved the upper bound for c��� to a
function of the form 22c�

by using a more effective variant of the regularity
lemma. For bipartite graphs H a similar, doubly exponential bound follows from a
weakening of the regularity lemma due to KomloÂs (cf. Corollary 7.6 in [13]).

In this note we dispense with the regularity lemma altogether, and obtain a
bound of the form c��� < 2c��log��2 for a suitable constant c > 0. We also show
(cf. Section 5) that for all n and � there are graphs H0 2 H�n;�� such that

r�H0� > 2c0�n

for a ®xed constant c0 > 0. Moreover, we can make H0 bipartite. Thus, the upper
and lower bounds are becoming reasonably close.
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In fact, in the case of a bipartite graph H 2 H�n;��, we can further narrow the
gap by dropping one logarithmic factor in the exponent (cf. Section 3). In
particular, we improve an old upper bound on the Ramsey number of the n-cube
due to Beck [2].

Part of the motivation for this work arose from an attempt to attack the
following conjecture of Burr and Erd}os [3]: For all � there exists a constant c���
such that for all graphs H on n vertices in which every subgraph has minimum
degree at most �, we have

r�H� � c���n:

Burr and Erd}os offered $25 for settling this conjecture, but they also wrote
`̀ However, it seems to be quite dif®cult, and probably further work must continue to
be in the direction of partial results.'' While this conjecture still remains unresolved,
Chen and Schelp [5] have introduced the class of so-called `̀ p-arrangeable'' graphs,
and showed that they also have linearly growing Ramsey numbers. In Section 4, we
indicate how our methods apply to this larger class as well.

Throughout this paper we will be using the notation NS�v� for the set of
neighbors of a vertex v which belong to a set S, and NS�T� �

S
v2T NS�v�, where

T is another set of vertices.

2. UPPER BOUND

We ®rst settle on some notation. If G is a graph with vertex set V , and U � V ,
then G�U� will denote the induced subgraph of G in U, and e�U� will denote its
number of edges. The edge density d�U� of U is de®ned by

d�U� � e�U�
jUj
2

� �
The maximum degree of G is denoted by ��G�. If X and Y are two disjoint
subsets of V then G�X;Y � denotes the induced (bipartite) subgraph of G on
X [ Y ; e�X;Y� stands for its number of edges and the density of the pair �X;Y� is
de®ned by

d�X;Y� � e�X;Y�
jXjjY j

We will say that G is ��; d�-dense if for all U � V with jUj � �jVj, we have
d�U� � d. Similarly, we will say that G is bi-��; d�-dense if for all X � V; Y � V

with X \ Y � ;; jXj � �jV j; jYj � �jVj, we have d�X;Y� � d. It follows by a
simple averaging argument that if G is not ��; d�-dense, then there is a set U of
order jUj � b�jV jc with d�U� < d. Similarly, if G is not bi-��; d�-dense, then
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there are disjoint sets X � V ; Y � V of order jXj � jY j � b�jV jc, with
d�X; Y� < d.

We assume that H has no isolated vertices. Thus, for � � 1;H is matching,
and it is an easy exercise to show that r�H� � 3n=2ÿ 1 (it also follows as a
special case of Theorem 9 in [4]).

Theorem 1. For some positive constant c, and for all integers � � 2, and all
n � �� 1, if H 2 H�n;�� then

r�H� < 2c��log��2n:

Before going into details, a rough sketch of the proof is as follows. For a large
N, let E�KN� � GR [ GB be any 2-coloring of the edges of KN . If the graph GR on
the set of Red edges is not ��; d�-dense for appropriate � and d, then GR must
have a large subset U with maximum degree at most jUj=�2�� which, in turn,
will imply (by an easy graph packing resultÐsee Lemma [3] below) that H and
GR can be packed edge disjointly in KN , i.e., KN has a Blue copy of H.

On the other hand, if GR is ��; d�-dense then we will show that it contains a
large subgraph BR which is bi-��0; d0�-dense (again, for suitable �0 and d0). From
this, it will follow that BR must contain a copy of H, which of course, gives us a
Red copy of H.

To carry out the proof of the second part, we will need two lemmas. Lemma 1,
in a sense, replaces the SzemereÂdi regularity lemma. A similar technique was
used in [12].

Lemma 1. For all numbers s; �; �; d such that 0 < �; �; d < 1; s � log2�4=d�
and �1ÿ ��2s � 2=3, the following holds. If G is a ��2��s�sÿ1; d�-dense graph on
N vertices, then there exists U � V with jUj � �sÿ1�sÿ2N such that G�U� is bi-

��; d=2�-dense.

Proof. What we will actually show is that if for all U with jUj �
�sÿ1�sÿ2N;G�U� is not bi-��; d=2�-dense, then G is not ��2��s�sÿ1; d�-dense.
Speci®cally, assume that

(*) For all U � V with jUj � �sÿ1�sÿ2N, there are disjoint X; Y � U with
jXj � �jUj; jY j � �jUj such that d�X; Y� < d0 � d=2.

Our ultimate goal is to prove that condition ��� implies the existence of a set
Z � V with jZj � �2��s�sÿ1N and d�Z� < d.

We will prove by induction that for all 1 � t � s there are disjoint sets
Wi; 1 � i � 2t, with jWij � xt satisfying

X
i< j

e�Wi;Wj� <
d0x2

t

2t

2

� �
�1ÿ ��2tÿ2

; �1�

where xt � �t�tÿ1N. Then we will take Z � S2 t

i�1 Wi.
First, let us take U � V itself. Thus, jUj � N � �sÿ1�sÿ2N, so by ��� there are

W1;W2 � U; jW1j � �N; jW2j � �N with d�W1;W2� < d0. By averaging, we can
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assume jW1j � jW2j � x1 � �N. Thus, we have e�W1;W2� < d0x2
1, which is

inequality (1) for t � 1.
Next, consider W1. Since jW1j � x1 � �N � �sÿ1�sÿ2N, we can apply ���. This

means we can ®nd A1;B1 � W1 with jA1j � �x1; jB1j � �x1 so that d�A1;B1� <
d0. Again, by averaging we can get much smaller sets A01 � A1;B

0
1 � B1, with

jA01j � jB01j � ��x1 � x2 such that d�A01;B01� < d0, i.e., e�A01;B01� < d0���x1�2.
Now, remove A01 and B01 from W1 to form W

�1�
1 . Then jW �1�1 j � x1ÿ

2��x1 � x1�1ÿ 2��� � ��1ÿ 2���N � ��N � ����sÿ1
N, where the ®rst inequ-

ality follows from our assumption, which, in particular implies that � � 1=3.

Thus, we can apply ��� again to get A02;B
0
2 � W

�1�
1 with jA02j � jB02j � ��x1 � x2

and d�A02;B02� < d0, i.e., e�A02;B02� < d0x2
2. Now form W

�2�
1 by removing A02 and B02

from W
�1�
1 , and continue. We will continue as long as what is left, say W

�lÿ1�
1 , has

size jW �lÿ1�
1 j � �x1. Each time we remove a set of size 2x2 from W

�jÿ1�
1 to form

W
�j�
1 . Thus, when we ®nally get stuck, we will have l � x1�1ÿ��

2x2
and the ®nal

remainder W
�l�
1 will have size at most �x1 � ��N.

We also carry out the same process for W2, ending with C01;D
0
1; . . . ;C0l;D

0
l.

Here, for all i � 1; . . . ; l,

jA0ij � jB0ij � jC0ij � jD0ij � x2; e�A0i;B0i� < d0x2
2; and e�C0i;D0i� < d0x2

2

We would like to ®nd a pair Xi � A0i [ B0i; Yj � C0j [ D0j so that e�Xi;Yj� is small.

First, throw out W
�l�
1 and W

�l�
2 , leaving W1 � W1nW �l�1 ;W2 � W2nW�l�2 , so that

jW1j � 2lx2 � jW2j.
Consider the sum

P
i; j e�Xi;Yj� � e�W1;W2� < d0x2

1. Since the sum has l2

terms then for some choice of i and j we have

e�Xi; Yj� < d0x2
1

l2
� 4d0x2

2

�1ÿ ��2 :

Thus, setting T1 � A0i;T2 � B0i;T3 � C0j; T4 � D0j we obtainX
1�i< j�4

e�Ti;Tj� < 2d0x2
2 �

4d0x2
2

�1ÿ ��2 <
4

2

� �
d0x2

2

�1ÿ ��2 :

Now we consider the general case. Suppose that for k < s we have de®ned
W1;W2; . . . ;W2k with jWij � xk � �k�kÿ1N so that

X
i<j

e�Wi;Wj� <
d0x2

k

2k

2

� �
�1ÿ ��2kÿ2

: �2�

We will focus on Wi, and apply ��� repeatedly. As before, this will give us
pairs A0j�i�, B0j�i�, 1 � j � l, with jA0j�i�j � jB0j�i�j � xk�1 � ��xk, and with the
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remainder set W
�l�
i having jW �l�i j < �xk. We also have e�A0j�i�;B0j�i�� < d0x2

k�1. We
do this for all the Wi, 1 � i � 2k. The previous argument now shows that

l � xk�1ÿ��
2xk�1

.

Consider the sum

S �
X

i1;...;i2k

e�Zi1�1�;Zi2�2�; . . . ;Zi
2k
�2k��

where Zij� j� � A0ij� j� [ B0ij� j�; 1 � ij � l; 1 � j � 2k, and e�Z�1�; Z�2�; . . . ;
Z�2k�� denotes the total number of edges spanned by the 2k-partite graph with
vertex sets Z�1�; . . . ;Z�2k�. Now, each edge in E�Zir�r�;Zis�s�� is counted l2

k ÿ 2
times in the sum. Thus, by �2�, we infer that

S <

d0x2
k

2k

2

� �
l2kÿ2

�1ÿ ��2kÿ2
:

Since the sum S has l2
k

terms then for some choice of i1; i2; . . . ; i2k ,

e�Zi1�1�;Zi2�2�; . . . ; Zi
2k
�2k�� <

d0x2
k

2k

2

� �
l2kÿ2

�1ÿ ��2kÿ2
l2

k
�

d0x2
k

2k

2

� �
l2�1ÿ ��2kÿ2

:

But for each of the 2k pairs A0i1� j� [ B0i1� j� � Zi1� j�, we have e�A0i1� j�;
B0i2� j�� < d0x2

k�1. Thus, the total number T of edges between the 2k�1 sets

A0i1� j1�;B0i1� j1�;A0i2� j2�;B0i2� j2�; . . . ;A0i
2k
� j2k�;B0i

2k
� j2k�

is bounded above by

T �
d0x2

k

2k

2

� �
l2�1ÿ ��2kÿ2

� 2kd0x2
k�1:

Since l � xk�1ÿ��
2xk�1

then we ®nd that

T � d0
x2

k � 4x2
k�1

2k

2

� �
x2

k�1ÿ ��2k
� 2kx2

k�1

0BBB@
1CCCA

� d0x2
k�1

1

�1ÿ ��2k
4

2k

2

� �
� 2k

� �
� d0x2

k�1

1

�1ÿ ��2k

2k�1

2

� �
verifying (1) for t � k � 1.
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We continue now until we reach t � s. Thus, we have W1;W2; . . . ;W2s with at

most d
2
� 2s

2
� x2

s

�1ÿ��2sÿ2 `̀ crossing'' edges (between any two W 0s). On the other hand,

within the Wi there are at most 2s�xs

2
� edges altogether so that the total number of

edges spanned by Z � Si Wi is at most

d

2

2s

2

� �
x2

s

�1ÿ ��2sÿ2
� 2s xs

2

� �
< d

2sxs

2

� �
;

since s � log2�4=d� and �1ÿ ��2s � 2=3. However, jZj � 2sxs � 2s�s�sÿ1N and
so the claim is proved. This proves Lemma 1. &

We say that a graph H can be embedded into graph G if there is an injection
f : V�H� ! V�G�, called an embedding, such that for every edge xy 2 E�H�, we
have f �x�f �y� 2 E�G�. Lemma 2 is a standard embedding result.

Lemma 2. For all integers � � 1 and n � �� 1, and for all positive numbers
a; ", and  such that

��ÿr ÿ r"�a � 1 for r � 0; . . . ;� �3�

the following holds. If graphs H and G satisfy

(i) H 2 H�n;��,
(ii) jV�G�j � a��� 1�n, and

(iii) G is bi-�"=��� 1�; �-dense,

then H can be embedded into G.

When applying this lemma in the proof of Theorem 1, we will choose
a � �16���; " � 1=�16���, and  � 1=�16��. Then condition (3) will be
satis®ed with room to spare.

Proof. The proof is adopted from ChvataÂl et al. [6]. Partition V�G� into
V�G� � A1 [ � � � [ A��1, where jAij � an. Note that H can be partitioned into
�� 1 independent sets. Let V�H� � X1 [ � � � [ X��1 be one such partition.
We shall construct an embedding f such that f �Xk� � Ak for every
k � 1; 2; . . . ;�� 1. Write V�H� � fx1; x2; . . . ; xng and Li � fx1; x2; . . . ; xig;
i � 1; 2; . . . ; n; L0 � ;. We will apply induction on i � 1; . . . ; n.

Assume we have already embedded the set Li, so that for each
k � 1; 2; . . . ;�� 1; f �Li \ Xk� � Ak. For each y 2 XknLi, let Ci

y be the set of
the vertices of Ak adjacent to the images of all already embedded neighbors of y,
i.e., the vertices of G adjacent to every vertex in the set f �NLi

�y��. (In particular,
we have C0

y � Ak.) In other words, Ci
y is the set of possible candidates for the

image of y, if y were to be embedded in the �i� 1�st step. This set may shrink
each time one of at most � neighbors of y is being embedded. Our goal is to show
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that its unused portion, i.e., Ci
yn f �Li�, survives as nonempty by the time y is to be

embedded. But to achieve this goal for all vertices y of H, we will have to keep
the sets Ci

y suf®ciently large. Namely, we will maintain the following condition at
all times. For every i � 0; 1; . . . ; n and every y 2 XknLi; jCi

yj � v�i;y�an, where
v�i; y� � jNLi

�y�j.
For i � 0, there is nothing to prove. Next, suppose that for some i � 1, the set

Li of the ®rst i points x1; . . . ; xi have been successfully embedded. We must now
embed x � xi�1 into an appropriate v 2 Ci

x. Let Y � fy1; . . . ; yrg be the set of not
yet embedded neighbors of x, If Y � ;, then we may take any v 2 Ci

xnf �Li� as the
image of x. Thus, assume that 1 � r � �. We claim that there is a vertex
v 2 Ci

xi
nf �Li� such that for all y 2 Y , we have jNCi

y
�v�j � jCi

yj. This will
complete the proof, since, setting f �x� � v, we have Ci�1

y � Ci
y if y is not adjacent

to x and Ci�1
y � NCi

y
�v� otherwise.

To verify the claim, note that the set Ci
x is disjoint from all sets Ci

y; y 2 Y . By
the induction assumption,

jCi
xj � v�i;x�an � �ÿran

and, for each y 2 Y ,

jCi
yj � �ÿ1an > "an;

where the last inequality follows from condition (3). Let Wy be the set of all
vertices in Ci

x with fewer than jCi
yj neighbors in Ci

y. Then we have jWyj < "an,
since otherwise there would be a contradiction with the fact that G is bi-
�"=��� 1�; �-dense. Thus,

Ci
xn
[
y2Y

Wy

�����
����� � �ÿranÿ r"an > n

by condition (3). Hence, the set �Ci
xn
S

y2Y Wy�n f �Li� is nonempty, yielding the
existence of the required vertex v. &

Before we turn to the proof of Theorem 1 we still need one simple lemma.
Given two graphs G and H, with jV�G�j � jV�H�j, we say that there is a packing
of G and H if there is an embedding of H into the complement G of G.

Lemma 3. Let H be an n-vertex graph with max H0�H��H0� � � and let G be a

graph with jV�G�j � 2n and ��G� � jV�G�j=�2��. Then there exists a packing of
H and G.

Proof. Let us order the vertices of H as x1; x2; . . . ; xn so that for each i, vertex
xi has at most � neighbors in the set Li � fx1; . . . ; xig. Assume we have already
packed H�Li�. Since the images of the neighbors of xi�1 in Li have together at
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most ���G� � jV�G�j=2 neighbors in G, there is at least one vertex in G not
adjacent to any of them. This vertex can be taken as the image of xi�1, yielding a
packing of H�Li�1� and G. There is nothing that can stop us from repeating this
procedure until the entire graph H is packed with G. &

Comment. This lemma has a bipartite version as well: if H is an n-vertex bi-
partite graph with max H0�H��H0� � � and V�G� � X [ Y , where jXj � jY j � 2n
and ��G�X; Y�� � jXj=�2�� then there exists a packing of H and G.

Proof of Theorem 1. Set V � �N� and suppose we are given an arbitrary 2-
coloring of the edges of KN , forming the two graphs GR and GB on the vertex set
V of KN , consisting of the Red and Blue edges, respectively.

Case 1. Suppose GR is not ��1; 1=�8���-dense, where �1 will soon be speci®ed.
Thus, there exists U � V with jUj � �1N and d�U� < 1=�8��. At most 1

2
�1N

vertices of U have degree larger than or equal to 2 � �1=�8����1N. Removing
these (and more if necessary), we can ®nd U0 � U so that jU0j � 1

2
�1N and

��GR�U0�� < 1=�4���1N � jU0j=�2��. Thus, by Lemma 3, provided jU0j � 2n,
we can ®nd an edge disjoint packing of GR�U0� and H in (the complete graph on)
U0. In such a packing, all the edges of H must be Blue, i.e., H � GB, and this case
is completed. (If we have used a tight packing lemma of Sauer and Spencer [16],
we would only need jU0j � n. This saving of a factor of 2, however, would not
have any signi®cant impact on our result.)

Case 2. Suppose GR is ��1; 1=�8���-dense. It is now time to specify all the
constants. Let

 � 1=�16��; " � 1=�16���; a � �16���;
s � dlog2�32��e; � � 1=�4s�;
� � 1

��� 1��16��� ; �1 � �2��s�sÿ1;

and

N � a��� 1�n
�sÿ1�sÿ2

� �
: �4�

Then, by Lemma 1, there is W � V with jW j � �sÿ1�sÿ2N such that GR�W � is bi-
��; 1=�16���-dense. Since �sÿ1�sÿ2N � a��� 1�n and � � "=��� 1�, we can
apply Lemma 2 and conclude that H is a subgraph of GR�W �, i.e., there is a Red
copy of H.

The required constraints on the variables are satis®ed, i.e., s � log2�32�� and
�1ÿ ��2s � 2=3, the latter following from the inequality �1ÿ 1=�4x��x � 2=3,
which is valid for x � 1. Note that with this choice of N and �1, we also have the
condition jU0j � 2n from Case 1 ful®lled.
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Plugging everything into (4), we see that N satis®es the inequality

N � ��� 1��16����4dlog2�32��e��� 1��16����dlog2�32��e
n:

Consequently, there is a positive constant c such that r�H� � 2c��log��2n
whenever H 2 H�n;��;� � 2. This proves Theorem 1. &

Comment. Our method of proof cannot give a better upper bound on r�H� than
the one obtained. Indeed, the packing lemma (Lemma 3) forces  to be of the
order 1=�. Consequently, condition (3) of Lemma 2 requires that " be of the
order �ÿ�. This is also true of �, which, by Lemma 1, appears in the denominator
of N raised to the power s. The constant s, however, must be of the order log�,
and is solely responsible for the second logarithmic term in the exponent of our
bound.

3. BIPARTITE GRAPHS

It turns out that in the case when H is bipartite, we may avoid Lemma 1
altogether. This way the quantity s disappears, and we obtain a better bound than
that of Theorem 1. This improvement relies on using the bipartite version of
Lemma 3 given above. For more details see [18].

Theorem 2. For some positive constant c, and for all integers � � 2 and all

n � �� 1, if H is a bipartite graph with n vertices and maximum degree at most
�, then

r�H� < 2c�log�n:

Proof. Let E�KN� � GR [ GB be an arbitrary 2-coloring of the edges of
KN where, this time, N � a��� 1�n and a � 4�8���. If GR is bi-��; 1=�8���-
dense, where � � �8��ÿ�=��� 1�, then, by Lemma 2, we can embed H into
GR, ®nding a Red copy of H. Otherwise, there is a pair of disjoint sets X and Y

such that jXj � �N; jY j � �N and dGR
�X;Y� < 1=�8��. As before we can peel

these sets off and ®nd subsets X0 � X and Y 0 � Y such that jX0j �
jY 0j � 1

2
�N � 2n and ��GR�X0;Y 0�� < 1=�4���N � jX0j=�2��. By the bipartite

version of Lemma 3, we can ®nd an edge disjoint packing of GR�X0; Y 0� and H in
the complete bipartite graph induced by X0 and Y 0. This packing yields a Blue

copy of H. &

Let Qn be the n-cube. Then we have jV�Qn�j � 2n and � � n.

Corollary 1. There is a constant c > 0 such that for all n, r�Qn� < 2cn log n.

This improves an old result of Beck [2], who proved that r�Qn� < 2cn2

.
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4. p-ARRANGEABLE GRAPHS

Given an ordering of the vertices of a graph, x1; . . . ; xn, let us set Li � fx1; . . . ; xig
and Ri � fxi�1; . . . ; xng. A graph of order n is called p-arrangeable if its vertices
can be ordered as x1; . . . ; xn in such a way that for each i � 1; . . . ; nÿ 1,

jNLi
�NRi
�xi��j � p:

In other words, a graph is p-arrangeable if, in some ordering of the vertices, for
any vertex x, its neighbors to the right have together at most p neighbors to the
left of x (including x). Clearly, such graphs are � p� 1�-colorable, so they can be
partitioned into p� 1 independent sets X1; . . . ;Xp�1. For a vertex x � xi 2 Xp�1,
denote by Yk; k � 1; . . . ; p, the set of its neighbors to the right which belong to Xk,
i.e., Yk � NRi

�x� \ Xk. Then, because jNLi
�Yk�nfxgj � pÿ 1, there exists a subset

Zk � Yk of size jZkj � 2pÿ1 such that for every vertex y 2 Yk, there is a vertex
z 2 Zk with NLi

�y� � NLi
�z�. Consequently, referring to the notation from the

proof of Lemma 2, Ci
y � Ci

z. This crucial observation, made by Chen and Schelp,
allows us basically to repeat the proof of Lemma 2 for a p-arrangeable graph H.
This time, however, setting Z � Sp

k�1 Zk, we have

Ci
xn
[
z2Z

Wy

�����
����� �  panÿ p2pÿ1"an

and so our condition (3) in Lemma 2 should be changed to

�p ÿ p2pÿ1"�a � 1:

Lemma 3, with � � p, applies to p-arrangeable graphs H. Of course, Lemma 1 is
not affected by the structure of H. Altogether, setting

 � 1=�16p�; " � p=� p2p�; a � 2ÿp; � � "=�p� 1�;

while s and � remain as in the proof of Theorem 1, we obtain the following result:

Theorem 3. For some positive constant c and all integers p � 2 and all

n � p� 1, if H is a p-arrangeable graph with n vertices then

r�H� < 2cp�log p�2n:

This is a two-level improvement over the triple exponential bound in [7] (cf.
Theorem 2.3.1 and Proposition 2.1. there).

Planar graphs are p-arrangeable with 8 � p � 10, cf. [11]. Also, since every
graph with no Kp-subdivision is p8-arrangeable [15], then every graph of bounded
genus is p-arrangeable with p being a function of the genus. Several classes of p-
arrangeable graphs were found in [5]. In particular every graph with at most
p� pÿ 1� � 1 vertices of degree exceeding p, or where every pair of such vertices
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is at distance at least 3, is � p� pÿ 1� � 1�-arrangeable. However, already in [3],
the graphs in the last class were shown to have Ramsey numbers at most 18n.

For any given p, there are graphs with density as low as at most 4 that are not
p-arrangeable. The example Chen and Schelp gave was obtained from an
arbitrary graph of minimum degree at least 2p by subdividing each edge with
exactly one point. However, for these graphs Alon [1] proved that r�H� � 12n,
where n is the number of vertices in the resulting graph (equal to the sum of the
number of vertices and edges in the original graph). Again, the special case where
the initial graph is complete was already proved in [3]. (In fact, both results in [1]
and [3] had treated a broader family of graphs, where every edge is subdivided
with at least one vertex.) Very recently, it has been shown [14] that certain classes
of bipartite graphs which naturally generalize the subdivision of the complete
graph with exactly one vertex on each edge also have linearly growing Ramsey
numbers.

5. LOWER BOUND

The main goal of this section is to prove the following lower bound result.

Theorem 4. There exists a constant c > 1 such that for all � � 1 and all
n � �� 1 (except for � � 1 and n � 2; 3; 5), there exists a graph H 2 H�n;��
which satis®es r�H� > c�n.

In the three exceptional cases, for all graphs H 2 H�n; 1� we have r�H� � n,
and clearly, the conclusion of Theorem 4 could not be true.

In this section, c; c0; c1; . . . will denote suitable absolute constants which we
usually will not specify. Also, various expressions which do not look like integers
should (usually) be rounded to the nearest corresponding integer.

The proof rests on two lemmas, both proved by the probabilistic method with a
random graph as a probability space. The random graph G�n;M� is drawn
uniformly from all graphs on n labeled vertices and with M edges. The random
graph G�n; 1=2� is a result of �n

2
� independent tosses of a fair coin, so its number

of edges is a random variable with the binomial distribution Bi�n; 1=2�. In this
section partitions are allowed to have empty classes. Recall, ®nally, that
e�X; Y� � eG�X; Y� is the number of edges of G with one end in X and the other
in Y .

Lemma 4. There are ®xed constants c0 > c1 > 1 and �0 such that for each
� � �0 and n � k2, where k � c�

0 , there exists a graph H 2 H�n;�� with the

following property. For all partitions V�H� � V1 [ � � � [ Vk with jVij � N=k; i �
1; . . . ; k, and N � c�

1 n, we have

X
i<j:eH�Vi;Vj�>0

jVijjVjj > 0:55
n

2

� �
: �5�
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Proof. Take 1 < c0 < �10=7�1=202
and any c1 such that 1 < c2

1 < c0. Then

choose �0 so that �c2
1=c0��0 < 0:1 and ��0:7�1=202

c0��0 < 0:25.

Let � � �0 and d � �=202. Consider the random graph G�m; dm� (with m

vertices and dm edges), where m � 1:01n. Clearly, the number of vertices of
degree larger than � in any graph with m vertices and dm edges is at most

2dm

�� 1
<

m

101
:

Thus, whatever we prove about G�m; dm�, we will form the graph H by deleting
from G�m; dm� the n=100 largest degree vertices so that jV�H�j � n and
��H� � �.

Keeping this in mind, we claim that, with positive probability, G�m; dm�
satis®es the following property: for every partition �m� � V1 [ � � � [ Vk [ D,
k � c�

0 , with jVij � c�
1 n=k for all i, and with jDj � n=100, the inequality (5)

holds for G � G�m; dm�, that isX
i<j:eG�Vi;Vj�>0

jVijjVjj > 0:55
n

2

� �
: �6�

Indeed, if a partition �m� � V1 [ � � � [ Vk [ D violates (6), then because the
total number of pairs within the sets Vi is at mostX

i

jVij
2

� �
� �c2

1=c0��0 n

2

� �
< 0:1

n

2

� �
;

the partition must satisfy the inequalityX
i<j:eG�Vi;Vj��0

jVijjVjj � 0:35
n

2

� �
� 0:3

m

2

� �
: �7�

However, the expected number of partitions �V1; . . . ;Vk;D� of the vertex set of
the random graph G�m; dm� satisfying (7) is smaller than

�k � 1�m2�
k
2
�

0:7�m
2
�

dm

� �
�m

2
�

dm

� � < 2�
k
2
��2k�0:7�d�m < 4m �0:7�1=202

c0

� ��0m

< 1: �8�

Above, the term �k � 1�m bounds the number of partitions, 2�
k
2
� bounds the

number of choices of the pairs �Vi;Vj� to have eG�Vi;Vj� � 0, while the fraction
is an upper bound on the probability of no edge of G�m; dm� falling between these
pairs.
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Hence, there exists a graph G 2 G�m; dm� with every partition satisfying (6).
Setting D for the set of the n=100 largest degree vertices in G, the graph
H � Gÿ D ful®ls the hypothesis of Lemma 4. &

The next lemma follows from a weighted version of the well-known fact that
with high probability every suf®ciently large subset of vertices of a random graph
G�k; 1=2� spans about the expected number of edges.

Lemma 5. For every k � 4 there exists a graph R on the vertex set

�k� � f1; 2; . . . ; kg such that for all functions w : �k� ! �0; 1� withPk
i�1 w�i� � x > �107 � 2�log k, we have

W �
X
ij2R

w�i�w� j� < 0:51
x

2

� �
and W �

X
ij=2R

w�i�w�j� < 0:51
x

2

� �
:

Proof. First observe that for any graph R and any ®xed x the quantity W is
maximized by an assignment such that the set K � fi : 0 < w�i� < 1g is a clique

in R or K � ;. For suppose there exists ij =2R with 0 < w�i�;w�j� < 1. Without
loss of generality we may assume that the sum of weights assigned to the
neighbors of i is not smaller than the sum of weights assigned to the neighbors
of j. Then by changing w0�i� � w�i� � " and w0�j� � w�j� ÿ ", where
" � minf1ÿ w�i�;w�j�g, we can maintain W 0 � W , and end up with at least
one fewer vertex in K. Continuing this argument shows that we can assume K is a
clique or empty. Similarly, if the quantity W is maximal then K is an independent
set in R or empty.

Now we need two basic facts from the theory of random graphs:
(i) The probability of the existence of a clique of order s � 2 log2k � 1 � 5 in

G�k; 1=2� is smaller than

k

s

� �
2ÿ�

s
2
� <

e

s

� �s

<
1

4
:

Since the same is true for independent sets of order s, with probability strictly
greater than 1=2, the largest cliques and largest independent sets in G�k; 1=2�
have size at most 2log2k;

(ii) By Chernoff' inequality (cf. [10]), the probability that there is a set S � �k�
with s � jSj � 107log2k, for which

G�k; 1=2� \ �S�2�� �� > 0:501
s

2

� �
or G�k; 1=2� \ �S�2�� �� < 0:499

s

2

� �
is smaller than

2
Xk

s�107log2k

k

s

� �
exp ÿ10ÿ6 s

2

� ��
3

� �
< 2

X
s

ek

s
eÿ10ÿ7s

� �s

� 2
X

s

�e=s�s < 1

2
:
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Thus, there exists a graph R on �k� such that

(a) the largest clique has size at most 2log2k,
(b) for every set S � �k� with s � jSj � 107log2k, we have jR \ �S�2j <

0:501�s
2
�,

(c) properties (a) and (b) hold for R, the complement of R.

Let T � fi : w�i� � 1g. Then, by (a), x � t � jT j � xÿ 2log2k. Thus,
t > 107log2k, and by (b),

W �
X

ij2R\�T �2
1� �2 log2 k�x < 0:501

t

2

� �
� �2 log2 k�x < 0:51

x

2

� �
:

A similar argument establishes the second part of the claim in the lemma (for
W). This completes the proof of Lemma 5. &

Now, to complete the proof of Theorem 4, we proceed as follows. Let c0; c1;
and �0 be as in the proof of Lemma 4 but with the additional requirement that
�c0=c1��0 > �107 � 2��0log2c0. Choose also c2 > 1 such that c�0

2 < 1:1, and set
c3 �

���
2
p

=c2
0. We will show that Theorem 4 holds with c � minfc1; c2; c3g.

If 1 � � < �0 and n is even, simply take as H a matching. Then

r�H� � 3

2
nÿ 1 > 1:1n > c�0

2 n > c�n for n > 2:

In the same case but with odd n, take as H a matching plus one isolated vertex
obtaining

r�H� � 3nÿ 5

2
> 1:1n > c�0

2 n > c�n for n > 6:

When � � 2 and n � 3 or n � 5, take as H the triangle K3, or K3 plus two
isolated vertices, respectively. Then r�H� � 6 > 1:1n > c�n.

If 2 � �� 1 � n < c2�
0 , take as H the complete graph K��1 plus nÿ�� 1

isolated vertices. Then

r�H� � r�K��1� > 2�=2 � c�
2 c2�

0 � c�n:

Finally, let us consider the main case when � � �0 and n � c2�
0 . Choose H as

in Lemma 4 and R as in Lemma 5, and use R to 2-color the edges of
KN ;N � c�

1 n, as follows. Partition �N� � V�KN� � U1 [ � � � [ Uk; jUij � N=k;
k � c�

0 . Then for all e 2 �N�2, assign the color

��e� �
Red; if e 2 �Ui;Uj�; ij 2 R; i 6� j

Blue; if e 2 �Ui;Uj�; ij =2R; i 6� j

arbitrary; otherwise:

8<:
We claim this coloring does not have a monochromatic copy of H. For suppose

there is a Red copy H0 of H formed. Setting Vi � V�H0� \ Ui, we have by
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Lemma 4 that X
ij2R

jVikVjj �
X

i<j:eH0
�Vi;Vj�>0

jVikVjj > 0:55
n

2

� �
: �9�

On the other hand, expressing

jVij � w�i� � N=k; i � 1; 2; . . . ; k;

we have 0 � w�i� � 1, and

n �
X

i

jVij � N=k
X

i

w�i�;

so that

x �
X

i

w�i� � kn=N � �c0=c1�� > �107 � 2�log k

by our choice of c0; c1 and �0, and by the monotonicity of �c0=c1��=� as a
function of �. Hence, by Lemma 5,X

ij2R

jVikVjj � N2

k2

X
ij2R

w�i�w� j� < N2

k2
�0:51� x

2

� �
� 0:51

n

2

� �
:

This is a contradiction with (9), and the proof of Theorem 4 is complete. &

Comment. Answering a question of Alon raised during the workshop in
Princeton in November 1998, let us note that a suitable adjustment of the above
proof leads to a random construction of a bipartite graph H with r�H� > c�n. Not
surprisingly, in Lemma 4 one has to utilize the bipartite random graph
G�m;m;M�, while the relevant change in Lemma 5 is to consider two weight
functions f and g, both de®ned on the vertex set of a random graph G�k; 1=2�, and
such that f � g � 1. In the main proof these two weights will be determined by
the intersections of each of the two vertex classes of a presumably
monochromatic copy of H with the partition sets Ui; i � 1; . . . ; k. More precisely,
if V 0 and V 00 are the vertex classes of a Red copy H0 of H then, setting
V 0i � V 0 \ Ui and V 00i � V 00 \ Ui; i � 1; 2; . . . ; k, we haveX

ij2R

�jV 0ikV 00j j � jV 00i kV 0j j� �
X

i6�j:eH0
�V 0

i
;V 00

j
�>0

jV 0ikV 00j j:

The two weight functions are now de®ned by jV 0i j � f �i� � N=k and
jV 00i j � g�i� � N=k; i � 1; 2; . . . ; k. For details see [18].
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