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A B S T R A C T

We compute exactly the frequency of Lense±Thirring precession for point masses in the Kerr

metric, for arbitrary black hole mass and speci®c angular momentum. We show that this

frequency, for point masses at or close to the innermost stable orbit, and for holes with

moderate to extreme rotation, is less than, but comparable to, the rotation frequency. Thus, if

the quasi-periodic oscillations (QPOs) observed in the modulation of the X-ray ¯ux from some

black hole candidates (BHCs) are caused by Lense±Thirring precession of orbiting material,

we predict that a separate, distinct QPO ought to be observed in each object.

Key words: accretion, accretion discs ± black hole physics ± relativity.

1 I N T R O D U C T I O N

The large effective area, very high time resolution and excellent

telemetry of the Rossi X-ray Timing Explorer (RXTE) have made

possible the discovery of quasi-periodic oscillations (QPOs) in the

range ,100±1200 Hz from a variety of accreting collapsed objects,

weakly magnetic neutron stars (see van der Klis 1998 for a review)

and, more surprisingly, in black hole candidates (BHCs: see

Morgan, Remillard & Greiner 1997; Remillard et al. 1997). It has

been recently suggested (Cui, Zhang and Chen 1998) that these

QPOs in BHCs arise through Lense±Thirring (1918, hereafter LT)

precession of matter from the accretion discs.

As the motion of a point mass in a Kerr metric allows an exact

treatment, and a detailed comparison of Keplerian and LT frequencies

has not been explicitly carried out in the literature up to now, it seems

worthwhile to derive these quantities for an arbitrary black hole mass

and speci®c angular momentum. This allows us to clarify the meaning

of the precession frequency, about which some confusion seems to be

present in the literature. This is the aim of this paper. In the last section

we shall also discuss the problems that are raised by this computation,

regarding the interpretation of Cui, Zhang & Chen (1998).

2 B O U N D O R B I T S I N T H E K E R R M E T R I C

In what follows we will consider a test particle of unit mass in

motion inside a Kerr space±time. The metric, in Boyer±Lindquist

coordinates (Boyer & Lindquist 1967) and in units G � c � 1 is

ds2
� ÿ 1 ÿ

2Mr

r2

� �
dt2

ÿ
4aMr sin2 v

r2
dtdf �

r2

D
dr2

� r2dv2
�

L sin2 v

r2
df2; �1�

where

r2
� r2

� a2 cos2 v;

D � r2
� a2

ÿ 2Mr;

L � ÿDa2 sin2 v � �r2
� a2

�
2:

M and a are, respectively, the mass and the speci®c angular

momentum of the black hole.

As Carter (1968) ®rst demonstrated, the equation of motion can

be separated, and the resulting equations become

r2Çr � 6
���������
R�r�

p
; �2�

r2 Çv � 6
����������
Q�v�

p
; �3�

r2 Çf � �L sinÿ2 v ÿ aE� � aDÿ1P; �4�

r2Çt � a�L ÿ aE sin2 v� � �r2
� a2

�Dÿ1P; �5�

with

Q � Q ÿ cos2 v�a2
�1 ÿ E2

� � L2 sinÿ2 v�;

P � E�r2
� a2

� ÿ La;

R � P2
ÿ D�r2

� Q � �L ÿ aE�2�:

The dot denotes differentiation with respect to the proper time t;

signs in (2) and (3) can be chosen independently. E, L and Q are the

three constants of the particle motion: E and L are, respectively, the

energy and the angular momentum in the azimuthal direction as

seen by an observer at rest at in®nity; Q is related to Carter's

constant of motion (see e.g. Chandrasekhar 1983 and de Felice

1980) and characterizes the v motion.

As Wilkins (1972) showed, bound motion is possible only if

E2 < 1 and Q $ 0; moreover, for given Q and L and jEj < 1, there

may be at most one region of binding. Analysis of the v effective

potential shows that every orbit either remains in the equatorial

plane (Q � 0) or crosses it repeatedly (Q > 0). For every bound
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motion, introducing the angle-action variables, we can de®ne the

three fundamental proper frequencies

1=tf;p � nf;p; 1=tv;p � nv;p; 1=tr;p � nr;p;

where tf;p, tv;p and tr;p are the proper time periods for f, v and r

motions respectively. Unlike the Newtonian case of particle motion

around a spherically symmetric central object, where all orbits close

and the three fundamental frequencies are equal, in the Kerr ®eld

(a Þ 0) there is no degeneracy, i.e.

nf;p Þ nv;p Þ nr;p:

The same is also true for coordinate frequencies nf, nv and nr.

Let us ®rst consider a circular geodesic in the equatorial plane

(v � p=2). We have, for the coordinate angular velocities measured

by an observer static at in®nity (Bardeen, Press & Teulkoski 1972)

Qr � Qv � 0;

Qf �
2p

tf

�
df

dt
�

6
����������
M=r3

p
1 6 a

����������
M=r3

p ; �6�

the angular velocity Qf deviates from its Keplerian value at small

radii. The upper sign refers to prograde orbits and the lower one to

retrograde ones. If we slightly perturb a circular orbit, introducing

velocity components in the r and v directions, we can compute the

coordinate frequencies of the small-amplitude oscillations within

the plane (the epicyclic frequency Qr) and in the perpendicular

direction (the vertical frequency Qv) (Okazaki, Kato & Fukue 1987;

Kato 1990; de Felice & Usseglio-Tomasset 1996; Perez et al. 1997):

Q2
v � Q2

f

�
1 7 4

aM1=2

r3=2
� 3

a2

r2

�
; �7�

Q2
r �

M�r2
ÿ 6Mr 6 8aM1=2r1=2

ÿ 3a2
�

r2�r3=2 6 aM1=2�2
: �8�

In the case of the Schwarzschild metric (a � 0), there is a partial

degeneracy, as the vertical frequency coincides with the azimuthal

one. The epicyclic frequency, instead, is always lower than the other

two, reaching a maximum for r � 8M and going to zero at r � 6M

(Okazaki et al. 1987). This qualitative behaviour of the epyciclic

frequency is preserved in the Kerr ®eld (a Þ 0), and is a key feature

for the existence of trapped discoseismic g modes (Perez et al 1997).

3 S P H E R I C A L O R B I T S A N D F R A M E

D R AG G I N G

We now con®ne ourselves to the study of those orbits with constant

r, which are arbitrarily (not in®nitesimally) lifted over the equator-

ial plane, i.e. with a ®nite value of Q.

The conditions for the stability of a spherical orbit with radius

r � r0 are (see equation 2)

R�r0� � 0; �9�

¶R

¶r

����
r�r0

� 0; �10�

¶2R

¶r2

����
r�r0

< 0: �11�

Conditions (9) and (10) introduce two relations between r and the

constants of motion E, L and Q, reducing the free parameters that

characterize the orbit to two; thus, given a speci®c Kerr black hole

(i.e. given the values of M and a), a spherical orbit is completely

determined, for example, by specifying its radius and the value of Q,

which ®xes the amplitude of motion in the v direction (Wilkins 1972).

Orbits do not close, since the two fundamental frequencies nf and

nv (proper or coordinate) are incommensurate; the Fourier spectra

of every function of the position of the test particle will then contain

a superposition of the two fundamental frequencies and all their

harmonics, and will be of the kindX�¥

l�ÿ¥

X�¥

m�ÿ¥
Clmei�lnf�mnv�t�b;

where b is an arbitrary phase.

Therefore, the most natural signals to look for in such a system

are the two fundamental coordinate frequencies themselves and the

difference between them, which, as we will show, coincide with the

unique correct de®nition of precession frequency of the nodes of a

spherical orbit.

In fact we can compute exactly the coordinate period of the v

motion: if we call the two roots of the equation Q�v� � 0 v6 (with

vÿ < v�), we see from (3) that the particle oscillates on the

coordinate sphere between the angles vÿ and p=2 � vÿ. Dividing

(5) by (3) and integrating, we obtain

tv � 4

�
�K�k� ÿ E�k��

�
z�
b

�1=2

Ea

�
K�k�

a
��������
bz�

p �
aL �

P�r2
� a2

�

D
ÿ Ea2

��
; �12�

where b � 1 ÿ E2, k2
� zÿ=z� (with z6 � cos2 v6) and K�k� and

E�k� are the elliptic integrals of the ®rst and second kind, respec-

tively.

The change of azimuth during one quarter oscillation of latitude

is given by

Df �
1

a
��������
bz�

p �
LP�ÿzÿ; k� �

�
a

D
�2MrE ÿ aL�K�k�

��
�13�

where P�k� is the elliptic integral of the third kind.

An orbit is called corevolving (or prograde) if Df > 0, and

counter-revolving (or retrograde) if Df < 0. If the v and f frequen-

cies were the same, Df would equal p=2; this means that we can

de®ne

nf

nv

� jDfj=
p

2
: �14�

The angle by which the nodes of a spherical orbit are dragged during

each nodal period is therefore

DQ � 2pj
nf

nv

ÿ 1j �15�

and, consequently, the coordinate precession frequency of the nodes

(or frame-dragging frequency) is

nFD �
DQ

tv

� jnf ÿ nvj: �16�

We stress here that this de®nition is different from the one given in

equation (2) of Cui, Zhang & Chen (1998) (nFD � nfDQ=2p), with

which it coincides only far from the source, where nf . nv. In this

case, however, it would be suf®cient to consider the weak-®eld

limit, the well-known LT equation (Lense & Thirring 1918), and

this point clearly frustrates the aim of their work. In fact, approach-

ing the horizon (to which the innermost stable orbit tends in the limit

aAA!1) their de®nition leads to a divergence of the frame-drag-

ging frequency, while it can be shown that

lim
r!rhor

2pnFD � QBH

where QBH is the angular velocity of the black hole (Christodolou &

Ruf®ni 1971; Misner, Thorne & Wheeler 1973), i.e. the angular
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velocity of the zero angular momentum observers on the horizon.

This is a relevant difference between this present work and that of

Cui et al. (1998).

We chose to set, in our calculations, M � 7M(, in order to

compare our results with the 300-Hz QPO observed from GRO

J1655ÿ40 (Remillard et al. 1997), the BHC for which the mass is

most accurately measured (Orosz & Bailyn 1997). We considered

only direct (i.e. prograde) orbits. In Fig. 1 we plot the three

frequencies calculated at selected radii as functions of a for

Q � 1. The radii are ri, the radius of the innermost stable circular

orbit, which has been calculated solving the quartic equation

¶2R�r�

¶r2

����
r�ri

� 0;

rpeak � ri=h (with h slowly varying from 0:62 to 0:76 as a goes from

ÿ1 to 1), the radius of maximum surface emissivity of the disc

(Page & Thorne 1974), 2ri and 2rpeak. The value of Q � 1 (which

corresponds to an `opening angle' of the orbit over the equatorial

plane which varies from about 38 for a � 0:5 to about 58 for

a � 0:99) was chosen for simplicity, because, exploring the

whole range Q � 0:01±10, we found relative changes in the

frequencies ranging from ,2 per cent (a � 0:5) to a maximum of

only ,5 per cent (a � 0:99). It is immediately seen that for

decreasing radii and increasing values of a the splitting of nf and

nv increases dramatically. Correspondingly the frame-dragging

frequency increases, reaching values that are comparable to nv for

r � 2rpeak and 2ri or even larger than nv for r � rpeak and ri.

Fig. 2 shows the three frequencies nf, nv and nFD versus nf for

selected values of the angular momentum of the black hole (a = 0.5,

0.9, 0.95 and 0.998). These graphs represent the frequency changes

that would take place if, for a given black hole, the orbital radius of

the precessing matter changed (see Section 4).

These results, obtained in a fully general relativistic framework,

admit a simple interpretation in terms of a Newtonian analogy. In

the classical gravitational potential resulting from a spherical star,

~1=r, the frequencies of motion for a bound orbit in the azimuthal

(f), radial and latitudinal (v) directions are all equal; this well-

known property assures that all orbits close in this potential.

Whenever a small perturbation is introduced, such as that resulting

from the oblateness of a star, this property is lost and the v-

frequency nv becomes different from the f-frequency nf. Then

the spectrum emitted by a source on this orbit will contain all

harmonics of type nnf � mnv, with n;m integers; of these, the line

with, most likely, the largest amplitude is that at frequency nv ÿ nf.

This, in particular, is the classical precession frequency caused by a

Newtonian star not being perfectly spherical. As, in classical

mechanics, departures from spherical symmetry are always

modest, we always ®nd nf ÿ nv p nv; nf. In the gravitational ®eld

around a fast-rotating black hole, however, such departures are

much more signi®cant, implying that this inequality is no longer

satis®ed. In other words, as departures from a Newtonian potential

increase, either because we are moving to a strong±®eld limit or

because the black hole is rotating faster, we expect to move toward a

situation where nf ÿ nv < nv < nf. This is exactly what we see

happening in Figs 1 and 2.

4 A P P L I C AT I O N T O B L AC K H O L E

C A N D I DAT E S

By using the black hole mass and angular momentum that have been

measured (or indirectly inferred) for several BHCs, Cui et al. (1998)

®nd a reasonably good agreement of the predicted point-mass

precession frequencies, at the radius where the disc emissivity is

highest, with the observed QPO frequencies. If disc precession is

not con®ned to such a radius and differential precession takes place

at a frequency close to the local frame-dragging frequency, it

remains to be demonstrated that a suf®ciently narrow QPO peak

matching the observations can be generated as a result of the

different precession frequencies that might occur at different

radii. More crucially, it is well known that in viscous accretion
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dimensionless angular moment of an M � 7-M( black hole. ri is the radius of the innermost stable orbit and rpeak is the radius of maximum surface emissivity of

the disc. Q is always set equal to 1.
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discs LT precession of the whole disc is strongly damped (Bardeen

& Petterson 1975; Pringle 1992 and references therein). However,

there appear to be precession modes that are strongly con®ned to the

innermost disc regions and only weakly damped (Markovic &

Lamb 1998); these are currently being investigated in greater

detail. The mechanism responsible for the excitation of these

modes remains an open question. The prospects for some kind of

resonant excitation driven from an azimuthal asymmetry do not

appear promising in consideration of the black hole `no hair

theorem'.

An alternative possibility is that in the innermost disc region

there are individual blobs moving like test particles in the BHC

®eld, also executing LT precession, and modulating the observed X-

ray ¯ux either through occultation or because they are self-lumi-

nous. The existence of discrete blobs is of course not an embarrass-

ment for this argument, because their existence is required in all

scenarios trying to explain QPOs, in particular those involving

weakly magnetic neutron stars in low-mass X-ray binaries

(LMXRBs). This tendency of the disc to form discrete blobs

seems to be independent of the nature of the accreting source; for

instance, Krolik (1998) suggests that it may be the result of local

instabilities of the disc, irrespective of the properties of the accret-

ing source. This tendency might therefore be present in accretion

discs surrounding both neutron stars and black holes. By pushing

further the analogy with neutron star LMXRBs, where high-

frequency QPOs are very often observed and successfully inter-

preted in terms of the Keplerian frequency (note that in LMXRBs

nf . nv, see below), one would conclude that if the precession of

blobs is responsible for the QPOs observed in BHCs, there is no

obvious reason why QPOs re¯ecting the f and v components of the

orbital motion should not be there. Indeed, if, according to the

model of Cui et al. (1998), the ,300-Hz QPOs of GRS J1655ÿ40

originate from the frame-dragging frequency of blobs off the

equatorial plane in the innermost disc regions, then the f and v

frequencies of the orbital motion are nf . 970 and 950 Hz and

nv . 670 and 650 Hz, while a . 0:88 and 0:96, respectively, in the

cases in which frame-dragging QPOs are produced at the innermost

stable orbit or the radius of highest disc emissivity. The difference

between nf and nv is large and two well-separated QPO peaks might

be expected. These signals, however, have not been detected yet.

Similar considerations would apply to the case of the ,67-Hz

QPOs from GRS 1915 � 1051 (Morgan et al. 1997).

The application of beat frequency models (BFMs) to those

neutron star systems that show twin kHz QPO peaks, allows us to

identify the higher frequency kHz QPO (,800±1200 Hz) as arising

directly from the Keplerian motion of blobs at the inner edge of the

disc (moreover the neutron star spin frequency is inferred from the

difference frequency of the twin kHz QPOs). Stella & Vietri (1998)

noticed that the precession frequency of these blobs, as derived

from the neutron star parameters inferred from BFMs, agrees well

with a broad peak around 20±35 Hz that is apparent in the power

spectra of three sources. In this model, therefore, nf ÿ nv , 20±

35 Hz, a separation that is comparable to or smaller than the width

of the higher frequency kHz QPO peak. Therefore it is not surpris-

ing that the signals at nf and nv are dif®cult to disentangle in the case

of neutron star LMXRBs. It should also be noticed that, around

neutron stars with weak magnetic ®elds, a natural mechanism exists

to lift matter off the equatorial plane, through the interaction with a

spinning, tilted magnetic dipole moment (Vietri & Stella 1998).

In the frame-dragging interpretation of BHC QPOs, very speci®c

predictions are also made in relation to the changes in nf and nv that

result from changes in the frame-dragging frequency nf ÿ nv (cf.

Fig. 2). This would provide a sensitive diagnostic with which to
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Figure 2. The three coordinate frequencies (nf, dashed line; nv, dot±dashed line; nFD, solid line) of spherical orbits with Q � 1 for selected values of the angular

momentum of the black hole (a = 0.5, 0.9, 0.95 and 0.998).

1The harmonic content of the three fundamental frequencies in the problem

at hand will depend on the mechanism responsible for the generation of the

signal(s) (e.g. self-luminous versus occulting blobs) and on geometry, and is

beyond the scope of this paper.
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con®rm the interpretation and study the motion of matter close to

the event horizon of a Kerr black hole with unprecedented detail.
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