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ABSTRACT
Greedy geographic routing is attractive in wireless sensor
networks due to its efficiency and scalability. However, greedy
geographic routing may incur long routing paths or even
fail due to routing voids on random network topologies.
We study greedy geographic routing in an important class
of wireless sensor networks that provide sensing coverage
over a geographic area (e.g., surveillance or object track-
ing systems). Our geometric analysis and simulation results
demonstrate that existing greedy geographic routing algo-
rithms can successfully find short routing paths based on
local states in sensing-covered networks. In particular, we
derive theoretical upper bounds on the network dilation of
sensing-covered networks under greedy geographic routing
algorithms. Furthermore, we propose a new greedy geo-
graphic routing algorithm called Bounded Voronoi Greedy
Forwarding (BVGF) that allows sensing-covered networks to
achieve an asymptotic network dilation lower than 4.62 as
long as the communication range is at least twice the sensing
range. Our results show that simple greedy geographic rout-
ing is an effective routing scheme in many sensing-covered
networks.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-

ity]: Nonnumerical Algorithms and Problems—Geometri-
cal problems and computations, routing and layout ; C.2.2
[Computer-Communication Networks]: Network Pro-
tocols—Routing Protocols

General Terms
Algorithms, Performance, Theory
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1. INTRODUCTION
Wireless sensor networks represent a new type of ad hoc

networks that integrate sensing, processing, and wireless
communication in a distributed system. While sensor net-
works have many similarities with traditional ad hoc net-
works such as those comprised of laptops, they also face
new requirements introduced by their distributed sensing
applications. In particular, many critical applications (e.g.,
distributed detection [31], distributed tracking and classi-
fication [19]) of sensor networks introduce the fundamental
requirement of sensing coverage that does not exist in tradi-
tional ad hoc networks. In a sensing-covered network, every
point in a geographic area of interest must be within the
sensing range of at least one sensor.

The problem of providing sensing coverage has received
significant attention. Several algorithms [6, 8, 23] were pre-
sented to achieve sensing coverage when a sensor network is
deployed. Other projects [30,32,34,35] developed online en-
ergy conservation protocols that dynamically maintain sens-
ing coverage using only a subset of nodes.

Complimentary to existing research on coverage provision-
ing and geographic routing on random network topologies,
we study the impacts of sensing coverage on the performance
of greedy geographic routing in wireless sensor networks.

Geographic routing is a suitable routing scheme in sen-
sor networks. Unlike IP networks, communication on sensor
networks often directly use physical locations as addresses.
For example, instead of querying a sensor with a particular
ID, a user often queries a geographic region. The identities
of sensors that happen to be located in that region are not
important. Any node in that region that receives the query
may participate in data aggregation and reports the result
back to the user. Due to this location-centric communica-
tion paradigm of sensor networks, geographic routing can
be performed without incurring the overhead of location di-
rectory services [20]. Furthermore, geographic routing algo-
rithms make efficient routing decisions based on local states
(e.g., locations of one-hop neighbors). This localized nature
enables geographic routing to scale well in large distributed
micro-sensing applications.

As the simplest form of geographic routing, greedy geo-
graphic routing is particularly attractive in sensor networks.
In this paper, greedy geographic routing refers to a simple
routing scheme in which a routing node always forwards a
packet to the neighbor that has the shortest distance1 to the

1Different definitions of distance (e.g., Euclidean distance
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destination. Due to their low processing and memory cost,
greedy geographic routing algorithms can be easily imple-
mented on resource constrained sensor network platforms.
However, earlier research has shown that greedy geographic
routing can incur long routing paths or even fail due to rout-
ing voids on random network topologies. In this paper, we
present new geometric analysis and simulation results that
demonstrate greedy geographic routing is a viable and ef-
fective routing scheme in sensing-covered networks. Specif-
ically, the key results in this paper include the following:

• First, we establish a constant upper bound on the net-
work dilation of sensing-covered networks based on De-
launay Triangulation in Section 4.

• We then derive a new upper bound on network di-
lation for sensing-covered networks under two exist-
ing greedy geographic routing algorithms in Section 5.
This bound monotonically decreases as the network’s
range ratio (the communication range divided by the
sensing range) increases.

• We also propose a new greedy geographic routing al-
gorithm called Bounded Voronoi Greedy Forwarding
(BVGF) that achieves a lower network dilation than
two existing greedy geographic routing algorithms (see
Section 6).

• Finally, our analytic results and simulations (see Sec-
tion 8) demonstrated that both BVGF and existing
greedy geographic routing algorithms can successfully
find short routing paths in sensing-covered networks
with high range ratios.

2. RELATED WORK
Routing in ad hoc wireless (sensor) networks has been

studied extensively in the past decade. The most relevant
work includes various geographic routing algorithms [4,5,17,
22,25,28,29]. Existing geographic routing algorithms switch
between greedy mode and recovery mode depending on the
network topology. In greedy mode, GPSR (Greedy Perime-
ter Stateless Routing) [17] and Cartesian routing [13] choose
the neighbor closest to the destination as the next hop while
MFR (Most Forward within Radius) [29] prefers the neigh-
bor with the shortest projected distance (on the straight line
joining the current node and the destination) to the desti-
nation. In this paper, we refer to these two greedy routing
schemes as greedy forwarding (GF). Although GF is very ef-
ficient, it may fail if a node encounters local minima, which
occurs when it cannot find a “better” neighbor than itself.
Previous studies found that such routing voids are preva-
lent in ad hoc networks To recover from the local minima,
GPSR [17] and GOAFR [18] route a packet around the faces
of a planar subgraph extracted from the original network,
while limited flooding is used in [28] to circumvent the rout-
ing void. Unfortunately, the recovery mode inevitably in-
troduces additional overhead and complexity to geographic
routing algorithms.

The network and Euclidean stretch factors of specific ge-
ometric topologies have been studied in the context of wire-
less networks. The recovery algorithm in GPSR [17] routes

or projected distance on the straight line toward the desti-
nation) may be adopted by different algorithms.

packets around the faces of one of two planar subgraphs,
namely Relative Neighborhood Graph (RNG) and Gabriel
Graph (GG), to escape from routing voids. However GG
and RNG are not good spanners of the original graph [12],
i.e., two nodes that are few hops away in the original net-
work might be very far apart in GG and RNG.

The Delaunay Triangulation (DT) has been shown to be
a good spanner with a constant stretch factor [7, 10, 16]. [2]
analyzed the probabilistic bound on the Euclidean length of
DT paths constructed with respect to a Poisson point pro-
cess. However, the DT of a random network topology may
contain arbitrarily long edges which exceed limited wireless
transmission range. To enable the local routing algorithms
to leverage on the good spanning property of DT, [14, 21]
proposed two distributed algorithms for constructing local
approximations of the DT. Interestingly, these local approx-
imations to DT are also good spanners with the same con-
stant stretch factor as DT. However, finding the routing
paths with bounded length in DT requires global topol-
ogy information [10]. Parallel Voronoi Routing(PVR) [3]
algorithm deals with this problem by exploring the parallel
routes which may have bounded lengths. Unlike the exist-
ing works that assume arbitrary node distribution, our work
focuses on the greedy geographic routing on sensing-covered
topologies.

3. PRELIMINARIES
In this section, we introduce a set of assumptions and

definitions used throughout the rest of this paper.

3.1 Assumptions
We assume every node integrates sensors, processing units,

and a wireless interface. All nodes are located in a two di-
mensional space. Every node has the same sensing range
Rs. For a node located at point p, we use circle C(p,Rs)
that is centered at point p and has a radius Rs to represent
the sensing circle of the node. A node can cover any point
inside its sensing circle. We assume that a node does not
cover the points on its sensing circle. While this assumption
has little impact on the performance of a sensor network in
practice, it simplifies our theoretical analysis. A network
deployed in a convex region A is covered if any point in A is
covered by at least one node. Any two nodes u and v can di-
rectly communicate with each other if and only if |uv| ≤ Rc,
where |uv| is the Euclidean distance between u and v, and
Rc is the communication range of the wireless network. The
graph G(V, E) is the communication graph of a set of nodes
V , where each node is represented by a vertex in V , and
edge (u, v) ∈ E if and only if |uv| ≤ Rc. For simplicity,
we also use G(V, E) to represent the sensor network whose
communication graph is G(V, E).

Recent empirical study [36] has found that the communi-
cation range of wireless networks is highly dependent on the
environment and can be irregular. In such a case, Rc can
be set to the minimum distance between any node and the
boundary of its irregular communication region. We note
that conservative estimation of Rc does not affect the valid-
ity of the theoretical results on the dilation upper bounds
derived in this paper, although the bounds may become less
tight.
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Platforms Berkeley Mote Berkeley Mote Sensoria SGate 802.11b
(Mica 1) (Mica 2) (SonicWall)

Rc (ft) 100 1000 1640 1200 ∼ 2320

Table 1: The Communication Ranges of Wireless Network Platforms

3.2 Double Range Property
The ratio between the communication range, Rc, and the

sensing range, Rs, has a significant impact on the routing
quality of a sensing-covered network. In this paper, we call
Rc/Rs the range ratio. Intuitively, a sensing-covered net-
work with a larger range ratio has a denser communication
graph and hence better routing quality.

In practice, both communication and sensing ranges are
highly dependent on the system platform, the application,
and the environment. The communication range of a wire-
less network interface depends on the property of radio (e.g.,
transmission power, baseband/wide-band, and antenna) and
the environment (e.g., indoor or outdoor) [36]. The outdoor
communication ranges of several wireless (sensor) network
interfaces are listed in Table 1. This data was obtained from
the product specifications from their vendors [9, 26, 27]2 .

The sensing range of a sensor network depends on the sen-
sor modality, sensor design, and the requirements of specific
sensing applications. The sensing range has a significant
impact on the performance of a sensing application and is
usually determined empirically to satisfy the Signal-to-Noise
Ratio (SNR) required by the application. For example, the
empirical results in [11] showed that the performance of tar-
get classification degrades quickly with the distance between
a sensor and a target. In their real-world experiments on
sGate [26], a sensor platform from Sensoria Corp., different
types of military vehicles drove through the sensor deploy-
ment region and the types of the vehicles were identified
based on the acoustic measurements. The experimental re-
sults showed that the probability of correct vehicle classifica-
tion decreases quickly with the sensor-target distance, and
drops below 50% when the sensor-target distance exceeds
100m. Hence the effective sensing range is much shorter
than 100m. The experiments for a similar application [15]
showed that the sensing range of seismic sensors is about
50m.

Clearly, the range ratio can vary across a wide range for
different sensor networks due to the heterogeneity of such
systems. As a starting point for the analysis, in this paper
we focus on those networks with the double range property,
i.e., Rc/Rs ≥ 2. This assumption is motivated by the geo-
metric analysis in [32], which showed that a sensing-covered
network is always connected if it has the double range prop-
erty. Since network connectivity is necessary for any routing
algorithm to find a routing path, it is reasonable to assume
the double-range property as a starting point.

Empirical experiences have shown that the double range
property is applicable to a number of representative sensing
applications. For example, the aforementioned sGate-based
network used for target classification [11] has a sensing range
Rs < 100m, and communication range Rc = 1640ft (547m)
(as shown in Table 1), which corresponds to a range ratio

2The empirical study in [36] shows that the effective commu-
nication range of Mica1 varies with different environments
and usually is shorter than 30m.

Rc/Rs > 5.47. The double range property will also hold if
the seismic sensors used in [15] are combined with a wireless
network interface that has a communication range Rc ≥
100m.

All results and analyses in the rest of this paper assume
that a sensor network has the double property unless other-
wise stated.

3.3 Metrics
The performance of a routing algorithm can be character-

ized by the network length (i.e., hop count) and Euclidean
length (i.e., the sum of the Euclidean distance of each hop)
of the routing paths it finds. Note that the path with the
shortest network length may be different from the path with
the shortest Euclidean length. In this paper, we focus more
on the network length. Network length has a significant
impact on the delay and the throughput of multi-hop ad
hoc networks. A routing algorithm that can find paths with
short Euclidean length may potentially reduce the network
energy consumption by controlling the transmission power
of the wireless nodes [24, 33].

The performance of a routing algorithm is inherently af-
fected by the path quality of the underlying networks. Stretch
factor [12] is an important metric for comparing the path
quality between two graphs. Let τG(u, v) and dG(u, v) rep-
resent the shortest network and Euclidean length between
nodes u and v in graph G(V, E), respectively. A subgraph
H(V, E′), where E′ ⊆ E, is a network t-spanner of graph
G(V, E) if

∀ u, v ∈ V, τH(u, v) ≤ t · τG(u, v)

Similarly, H(V,E′) is an Euclidean t-spanner of graph G(V, E)
if

∀ u, v ∈ V, dH(u, v) ≤ t · dG(u, v)

where t is called the network (Euclidean) stretch factor of
the spanner H(V,E′).

In this paper, we use dilation to represent the stretch fac-
tor of the wireless network G(V, E) relative to an ideal wire-
less network in which there exists a path with network length
⌈

|uv|
Rc

⌉

and a path with Euclidean length |uv| for any two

nodes u and v. The network and Euclidean dilations3 (de-
noted by Dn and De, respectively) of the network G(V, E)
are defined as follows:

Dn = max
u,v∈V

τG(u, v)
⌈

|uv|
Rc

⌉ (1)

De = max
u,v∈V

dG(u, v)

|uv| (2)

Clearly, the network (Euclidean) dilation of a wireless net-
work is an upper bound of the network (Euclidean) stretch

3Euclidean dilation has been widely used in graph theory to
characterize the quality of a graph [12].
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factor relative to any possible wireless network composed of
the same set of nodes.

Asymptotic network dilation (denoted by D̃n) is the value
that the network dilation converges to when the network
length approaches infinity. Asymptotic network dilation is
useful in characterizing the path quality of a large-scale wire-
less network.

We say Dn(R) is the network dilation of the wireless net-
work G(V, E) under routing algorithm R, (or network dila-
tion of R for abbreviation), if τG(u, v) in (1) represents the
network length of the routing path between nodes u and v
chosen by R. The network dilation of a routing algorithm
characterizes the performance of the algorithm relative to
the ideal case in which the path between any two nodes

u and v has
⌈

|uv|
Rc

⌉

hops. The Euclidean dilation of R is

defined similarly.

4. DILATION ANALYSIS BASED ON DT
In this section we study the dilation property of sensing-

covered networks based on Delaunay Triangulation (DT).
We first show that the DT of a sensing-covered network is
a subgraph of the communication graph, when the double-
range property holds. We then quantify the Euclidean and
network dilations of sensing-covered networks.

4.1 Voronoi Diagram and Delaunay
Triangulation

Voronoi diagram is one of the most fundamental struc-
tures in computational geometry and has found applications
in a variety of fields [1]. For a set of n nodes V in 2D space,
the Voronoi diagram of V is the partition of the plane into
n Voronoi regions, one for each node in V . The Voronoi
region of node i (i ∈ V ) is denoted by Vor(i). Fig. 1 shows
a Voronoi diagram of a set of nodes. A point in the plane
lies in Vor(i) if and only if i is the closest node to the point.
The boundary between two contiguous Voronoi regions is
called a Voronoi edge. A Voronoi edge is on the perpendic-
ular bisector of the segment connecting two adjacent nodes.
A Voronoi vertex is the intersection of Voronoi edges. As
shown in Fig. 1, point p is a Voronoi vertex of three con-
tiguous Voronoi regions: Vor(u), Vor(v) and Vor(w). We
assume that all nodes are in general positions (i.e., no four
nodes are co-circular).

In the dual graph of Voronoi diagram, Delaunay Triangu-
lation (denoted by DT (V )), there is an edge between nodes
u and v in DT (V ) if and only if the Voronoi regions of nodes
u and v share a boundary. DT (V ) consists of Delaunay tri-
angles. Fig. 1 shows a Delaunay triangle uvw. DT (V ) is
planar, i.e., no two edges cross. It has been shown in [10]
that the Delaunay Triangulation of a set of nodes is a good
Euclidean spanner of the complete Euclidean graph com-
posed of the same set of nodes. The upper bound of the

Euclidean stretch factor is 1+
√

5
2

π [10]. A tighter bound on

the stretch factor, 4
√

3
9

π ≈ 2.42, is proved in [16].

4.2 Dilation Property
In this section, we investigate the Euclidean and network

dilations of sensing-covered networks. We first study the
properties of Voronoi diagrams and DT of sensing-covered
networks. These results lead to bounded dilations of such
networks.

In a sensing-covered network deployed in a convex region
A, the Voronoi region of a node located at the vicinity of
A’s boundary may exceed the boundary of A or even be
unbounded. In the rest of this paper, we only consider the
partial Voronoi diagram that is bounded by the deployment
region A and the corresponding dual graph. As illustrated in
Fig. 1, the Voronoi region of any node in this partial Voronoi
diagram is contained in the region A. Consequently, the dual
graph of this partial Voronoi diagram is a partial DT that
does not contain the edges between any two nodes whose
Voronoi regions (of the original Voronoi diagram) joins out-
side A.

In a sensing-covered convex region, any point is covered
by the node closest to it. This simple observation results in
the following Lemma.

Lemma 1 (Coverage Lemma). A convex region A is
covered by a set of nodes V if and only if each node can
cover its Voronoi region (including the boundary).

Proof. The nodes partition the convex region A into a
number of Voronoi regions in the Voronoi diagram. Clearly,
if each Voronoi region (including the boundary) is covered
by the node within it, region A is covered.

On the other hand, if region A is covered, any point in
region A must be covered by the closest node(s) to it. In
the Voronoi diagram, all the points in a Voronoi region share
the same closest node. Thus every node can cover all the
points in its Voronoi region. Any point on the boundary of
two Voronoi regions Vor(i) and Vor(j) has the same distance
from i and j and is covered by both of them.

According to Lemma 1, every Voronoi region Vor(u) in a
sensing-covered network is contained in the sensing circle of
u. This property results in the following Lemma.

Lemma 2. In a sensing-covered network G(V, E), the De-
launay Triangulation of the nodes is a subgraph of the com-
munication graph, i.e., DT (V ) ⊆ G(V, E). Furthermore,
any DT edge is shorter than 2Rs.

p

u

v

w

Figure 1: The Voronoi Diagram of a Sensing-covered

Network

Proof. It is clear that the two graphs DT (V ) and G(V, E)
share the same set of vertices. We now show that any DT
edge between u and v is also an edge in G(V, E). As il-
lustrated in Fig. 1, the Voronoi vertex p is the intersec-
tion of three contiguous Voronoi regions, Vor(u), Vor(v) and
Vor(w). From Lemma 1, p is covered by u, v and w. Hence
|pu|, |pv| and |pw| are all less than Rs. Thus according to
the triangle inequality,

|uv| ≤ |up| + |pv| < 2Rs
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From the double range property, we have |uv| < Rc. There-
fore uv is an edge of the communication graph G(V, E).

Since the communication graph of a sensing-covered net-
work contains the DT of the nodes, the dilation property of
a sensing-covered network is at least as good as DT.

Theorem 1. A sensing-covered network G(V, E) has a

Euclidean dilation 4
√

3
9

π. i.e., ∀ u, v ∈ V, dG(u, v) ≤ 4
√

3
9

π|uv|.

Proof. As proved in [16], the upper bound on the stretch

factor of DT is 4
√

3
9

π. From Lemma 2, DT (V ) ⊆ G(V, E),

thus ∀ u, v ∈ V, dG(u, v) ≤ dDT (u, v) ≤ 4
√

3
9

π|uv|

In addition to the competitive Euclidean dilation shown
by Theorem 1, we next show that a sensing-covered network
also has a good network dilation.

Theorem 2. In a sensing-covered network G(V, E), the
network length of the shortest path between node u and v
satisfies:

τG(u, v) ≤
⌊

8π
√

3

9
· |uv|

Rc

⌋

+ 1 (3)

| SiSi+2 | > Rc

Si

Si+1

Si+2

Figure 2: Three Consecutive Nodes on Path Π

Proof. Clearly the theorem holds if the nodes u and v
are adjacent in G(V, E). Now we consider the case where
the network length between u and v is at least 2. Let Π rep-
resent the path in G(V, E) that has the shortest Euclidean
length among all paths between nodes u and v. Let N be the
network length of path Π. Consider three consecutive nodes
si, si+1 and si+2 on Π, as illustrated in Fig. 2. Clearly, there
is no edge between si and si+2 in G(V, E) because, other-
wise, choosing node si+2 as the next hop of node si results
in a path with shorter Euclidean length than Π, which con-
tradicts the assumption that Π is the path with the shortest
Euclidean length between u and v. Hence the Euclidean
distance between nodes si and si+2 is longer than Rc. From
the triangle inequality, we have

|sisi+1| + |si+1si+2| ≥ |sisi+2| > Rc

Summing the above inequality over consecutive hops on the
path, we have:

Rc

⌊

N

2

⌋

< dG(u, v) (4)

From Theorem 1, we have

dG(u, v) ≤ 4
√

3πRc

9

|uv|
Rc

(5)

From (4) and (5), the shortest network length between nodes

i and j satisfies: τG(u, v) ≤ N ≤
⌊

8π
√

3
9

· |uv|
Rc

⌋

+ 1.

Using (3), the asymptotic bound on the network dilation
of sensing-covered networks can be obtained after ignoring
rounding and constant terms.

Corollary 1. The asymptotic network dilation of sensing-

covered networks is 8
√

3π

9
.

Theorem 1 and Corollary 1 show that sensing-covered net-
works have good Euclidean and network dilation properties.

We note that the analysis in this section only considers the
DT subgraph of the communication graph and ignores any
communication edge that is not a DT edge. When Rc/Rs is
large, a DT edge in a sensing-covered network can be signif-
icantly shorter than Rc, and the dilation bounds based DT
can be very conservative. In the following sections we will
show that significantly tighter dilation bounds on sensing-
covered networks are achieved by greedy routing algorithms
such as GF when Rc/Rs becomes large.

5. GREEDY FORWARDING
Greedy forwarding (GF) is an efficient, localized ad hoc

routing scheme employed in many existing geographic rout-
ing algorithms [13, 17, 29]. Under GF a node makes routing
decisions only based on the locations of its (one-hop) neigh-
bors, thereby avoiding the overhead of maintaining global
topology information. In each step a node forwards a packet
to the neighbor with the shortest Euclidean distance to the
destination [13,17]. An alternative greedy forwarding scheme
[29] chooses the neighbor with the shortest projected dis-
tance to the destination on the straight line joining the cur-
rent node and the destination.

However, a routing node might encounter a routing void if
it cannot find a neighbor that is closer (in term of Euclidean
or projected distance) to the destination than itself. In such
a case, the routing node must drop the packet or enter a
more complex recovery mode [17,18,28] to route the packet
around the routing void. In this section we prove GF always
succeeds in sensing-covered networks when the double-range
property is satisfied. We further derive the upper bound on
the network dilation of sensing-covered networks under GF.

Theorem 3. In a sensing-covered network, GF can al-
ways find a routing path between any two nodes. Further-
more, in each step (other than the last step arriving at the
destination), a node can always find a next hop that is more
than Rc − 2Rs closer (in terms of both Euclidean and pro-
jected distance) to the destination than itself.

Proof. Let sn be the destination, and si be either the
source or an intermediate node on the GF routing path, as
shown in Fig. 3. If |sisn| ≤ Rc, the destination is reached
in one hop. If |sisn| > Rc, we find point a on sisn such that
|sia| = Rc − Rs. Since Rc ≥ 2Rs, point a must be outside
of the sensing circle of si. Since a is covered, there must be
at least one node, say w, inside the circle C(a, Rs).
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Rc-2Rs

Rc

Rs

si snab

w

w'

Figure 3: GF Always Finds a Next-hop Node

We now prove that the progress toward destination sn

(in terms of both Euclidean and projected distance) is more
than Rc − 2Rs by choosing w as the next hop of si. Let
point b be the intersection between sisn and C(a, Rs) that
is closest to si. Since circle C(a, Rs) is internally tangent
to the communication circle of node si, |sib| = Rc − 2Rs.
Clearly, the maximal distance between sn and any point on
or inside circle C(a, Rs) is |snb|. Suppose w′ is the projection
of node w on line segment sisn. We have:

|snsi| − |snw′| > |snsi| − |snw| > |sib| = Rc − 2Rs ≥ 0

From the above relation, we can see that GF can always
find a next hop that is more than Rc − 2Rs closer (in terms
of both Euclidean and projected distance) to the destina-
tion. That is, there is a GF routing path between any two
nodes.

Theorem 3 establishes that the progress toward the des-
tination in each step of a GF routing path is lower-bounded
by Rc −2Rs. Therefore, the network length of a GF routing
path between a source and a destination is upper-bounded.

Theorem 4. In a sensing-covered network, GF can al-
ways find a routing path between source u and destination v

that is no longer than
⌊

|uv|
Rc−2Rs

⌋

+ 1 hops.

Proof. Let N be the network length of the GF rout-
ing path between u and v. The nodes on the path are
s0(u),s1 · · · sn−1,sn(v). From Theorem 3, we have

|s0sn| − |s1sn| > Rc − 2Rs

|s1sn| − |s2sn| > Rc − 2Rs

...

|sn−2sn| − |sn−1sn| > Rc − 2Rs

Summing all the equations above, we have:

|s0sn| − |sn−1sn| > (N − 1)(Rc − 2Rs)

Given |s0sn| = |uv|, we have:

N <
|uv| − |sn−1sn|

Rc − 2Rs

+ 1 (6)

<
|uv|

Rc − 2Rs

+ 1

Hence N ≤
⌊

|uv|
Rc−2Rs

⌋

+ 1

From Theorem 4 and (1), the network dilation of a sensing-
covered network G(V, E) under GF satisfies:

Dn(GF ) ≤ max
u,v∈V





⌊

|uv|
Rc−2Rs

⌋

+ 1
⌈

|uv|
Rc

⌉



 (7)

The asymptotic network dilation bound of sensing-covered
networks under GF can be computed by ignoring the round-
ing and the constant term 1 in (7).

Corollary 2. The asymptotic bound on the network di-
lation of sensing-covered networks under GF satisfies

D̃n(GF ) ≤ Rc

Rc − 2Rs

(8)

From (8), the dilation upper bound monotonically de-
creases when Rc/Rs increases. It becomes lower than 2
when Rc/Rs > 4, and approaches 1 when Rc/Rs becomes
very large. This result confirms our intuition that a sensing-
covered network approaches an ideal network in terms of net-
work length when the communication range is significantly
longer than the sensing range.

However, the GF dilation bound in (8) increases quickly to
infinity when Rc/Rs approaches 2. In the proof of Theorem
3, when Rc approaches 2Rs, a forwarding node si may be
infinitely close to the intersection point between C(a,Rs)
and sisn. Consequently, si may choose a neighbor inside
C(a, Rs) that makes an infinitely small progress toward the
destination and hence result in a long routing path. Similar
to the proof of Theorem 5.1 in [14], it can be shown that the
network length of a GF routing path between source u and

destination v is bounded by O(( |uv|
Rc

)2). From (1), we can
see that this result cannot lead to a constant upper bound
on the network dilation for a given range ratio. Whether
GF has a tighter analytical network dilation bound when
Rc/Rs is close to two is an open research question left for
future work.

6. BOUNDED VORONOI GREEDY
FORWARDING (BVGF)

From Sections 5, we note that although GF has a satis-
factory network dilation bound on sensing-covered networks
when Rc/Rs � 2, the bound becomes very large when
Rc/Rs is close to two. In contrast, the analysis based on
Voronoi diagram in Section 4 leads to a satisfactory bound
when Rc/Rs is close to two, but this bound becomes con-
servative when Rc/Rs � 2. These results motivate us to
develop a new routing algorithm, Bounded Voronoi Greedy
Forwarding (BVGF), that has a satisfactory analytical di-
lation bound for any Rc/Rs > 2, by combining GF and
Voronoi diagram.

6.1 The BVGF Algorithm
Similar to GF, BVGF is a localized algorithm that makes

greedy routing decisions based on one-hop neighbor loca-
tions. When node i needs to forward a packet, a neighbor
j is eligible as the next hop only if the line segment joining
the source and the destination intersects Vor(j) or coincides
with one of the boundaries of Vor(j). BVGF chooses as the
next hop the neighbor that has the shortest Euclidean dis-
tance to the destination among all eligible neighbors. When
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there are multiple eligible neighbors that are equally closest
to the destination, the routing node randomly chooses one
among them as the next hop. Fig. 4 illustrates four con-
secutive nodes (si ∼ si+3) on the BVGF routing path from
source u to destination v. The communication circle of each
node is also shown in the figure. We can see that a node’s
next hop on a routing path might not be adjacent to it in
the Voronoi diagram (e.g., node si does not share a Voronoi
edge with node si+1). When Rc � Rs, this greedy forward-
ing scheme allows BVGF to achieve a tighter dilation bound
than the DT bound that only considers DT edges, and does
not vary with the range ratio.

The key difference between GF and BVGF is that BVGF
only considers the neighbors whose Voronoi regions are inter-
sected by the line joining the source and the destination. As
we will show later in this section, this feature allows BVGF
to achieve a tighter upper-bound on the network dilation in
sensing-covered networks.

Si+1 Si+2

Si+3

vu Si

Figure 4: A Routing Path of BVGF

In BVGF, each node maintains a neighborhood table. For
each one-hop neighbor j, the neighborhood table includes
j′s location and the locations of the vertices of Vor(j). For
example, as illustrated in Fig. 4, for one-hop neighbor si,
node si+1 includes in its neighborhood table the locations
of si and the vertices of Vor(si) (denoted by crosses in the
figure). To maintain the neighborhood table, each node pe-
riodically broadcasts a beacon message that includes the lo-
cations of itself and the vertices of its Voronoi region. Note
that each node can compute its own Voronoi vertices based
on its neighbor locations because all Voronoi neighbors are
within its communication range (as proved in Lemma 2).

Assume that the number of neighbors within a node’s
communication range is bounded by O(n). The complex-
ity incured by a node to compute the Voronoi diagram of
all its one-hop neighbors is O(n log n) [1]. Since the number
of vertices of the Voronoi region of a node is bounded by
O(n) [1], the total storage complexity of a node’s neighbor-
hood table is O(n2).

6.2 Network Dilation of BVGF
In this section, we analyze the network dilation of BVGF.

We first prove that BVGF can always find a routing path be-
tween any two nodes in a sensing-covered network (Theorem
5). We next show that a BVGF routing path always lies in a
Voronoi forwarding rectangle. We then derive lower bounds
on the projected progress in every step of a BVGF routing
path (Lemma 4). Since this lower bound is not tight when
Rc/Rs is close to two, we derive the tighter lower bounds
on the projected progress in two and four consecutive steps

on a BVGF routing path (Lemmas 7 and 8). Finally we
establish the asymptotic bounds of the network dilation of
sensing-covered networks under BVGF in Theorem 7.

In the rest of this section, to simplify our discussion on
the routing path from source u to destination v, we assume
node u is the origin and the straight line joining u and v
is the x-axis. The Voronoi forwarding rectangle of nodes u
and v refers to the rectangle defined by the points (0, Rs),
(0,−Rs), (|uv|,−Rs) and (|uv|, Rs). Let x(a) and y(a) de-
note the x-coordinate and y-coordinate of a point a, respec-
tively. The projected progress between two nodes is defined
as the difference between their x-coordinates.

Theorem 5. In a sensing-covered network, BVGF can
always find a routing path between any two nodes. Further-
more, the projected progress in each step of a BVGF routing
path is positive.

Si+1 v

w

Pi

u si

Pi+1

a1

a2

p

Figure 5: BVGF Always Finds a Next-hop Node

Proof. As illustrated in Fig. 5, node si is an intermedi-
ate node on the BVGF routing path from source u to desti-
nation v. The x-axis intersects Vor(si) or coincides with one
of the boundaries of Vor(si). Let p be the intersection be-
tween Vor(si) and the x-axis that is closer to v (if the x-axis
coincides with one of the boundaries of Vor(si), we choose
the vertex of Vor(si) that is closest to v as point p). There
must exist a node w such that Vor(si) and Vor(w) share
the Voronoi edge that hosts p and intersects the x-axis. The
straight line (denoted as dotted line in Fig. 5) where the
Voronoi edge lies on defines two half-planes Pi and Pi+1,
and si ∈ Pi, w ∈ Pi+1. From the definition of Voronoi dia-
gram, any point in the half-plane Pi+1 has a shorter distance
to w than to si, since v ∈ Pi+1, |wv| < |siv|. In addition,
since |siw| < 2Rs ≤ Rc (see Lemma 2) and line segment uv
intersects Vor(w) (or coincides with one of the boundaries
of Vor(w)), w is eligible to be the next hop of si. That is, si

can find at least one neighbor (w) closer to the destination.
This holds for every step other than the last step arriving at
the destination and hence BVGF can always find a routing
path between the source and the destination.

We now prove that the projected progress in each step
of a BVGF routing path is positive. We discuss two cases.
1) If si chooses w as the next hop on the BVGF routing
path, from the definition of Voronoi diagram, si and w lie
to the left and the right of the perpendicular bisector of
line segment siw, respectively. Therefore, x(si) < x(p) <
x(w) and hence the projected progress between si and w
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is positive. 2) If si chooses node si+1 (which is different
from w) as the next hop, we can construct a consecutive
path (along the x-axis) consisting of the nodes si, a0(w),
a1 · · · am, si+1 such that any two adjacent nodes on the path
share a Voronoi edge that intersects the x-axis, as illustrated
in Fig. 5. Similar to case 1), we can prove:

x(si) < x(a0) < · · · < x(am) < x(si+1)

Hence the projected progress between the consecutive nodes
si and si+1 on the BVGF routing path is positive.

BVGF always forwards a packet to a node whose Voronoi
region is intersected by the x-axis. From Lemma 1, every
Voronoi region in a sensing-covered network is within a sens-
ing circle. Therefore, the nodes on a BVGF routing path lie
in a bounded region. Specifically, we have the following
Lemma.

Lemma 3. The BVGF routing path from node u to node
v lies in the Voronoi forwarding rectangle of nodes u and v.

si

w
2Rs

u v

u1

u2 v1

v2

Figure 6: Voronoi Forwarding Rectangle

Proof. As illustrated in Fig. 6, si is an intermediate
node on the BVGF routing path between u and v. Let
point w be one of the intersections between the x-axis and
Vor(si) (if x-axis coincides with one of the boundaries of
Vor(si), choose a vertex on the boundary as point w). From
Lemma 1, node si covers point w, and hence |siw| < Rs.
We have |y(si)| ≤ |siw| < Rs. Furthermore, from Theorem
5, 0 < |x(si)| < |uv|. Thus, si lies in the Voronoi forwarding
rectangle of nodes u and v.

In a sensing-covered network, the greedy nature of BVGF
ensures that a node chooses a next hop that has the shortest
distance to the destination among all eligible neighbors. On
the other hand, according to Lemma 3, the next-hop node
must fall in the Voronoi forwarding rectangle. These results
allow us to derive a lower bound on the progress of every
step on a BVGF routing path.

Lemma 4 (One-step Advance Lemma). In a sensing-
covered network, the projected progress of each step of a
BVGF routing path is more than ∆1, where
∆1 = max(0,

√
R2

c − 2RcRs − Rs).

Proof. As illustrated in Fig. 7, si is an intermediate
node on the BVGF routing path between source u and des-
tination v. Let point s′i be the projection of si on the x-axis.
From Lemma 3, sis

′
i < Rs. Let d be a point on the x-axis

such that |sid| = Rc − Rs > Rs and hence si does not
cover d. According to Lemma 1, there must exist a node,
w, which covers point d and d ∈Vor(w). Clearly w lies in

Rc

Rs

u vdc

si

2Rs

w

w'si'

Figure 7: One-step Projected Progress of BVGF

circle C(d, Rs), since d is on the x-axis and d ∈Vor(w), x-
axis intersects Vor(w). Furthermore, since circle C(d, Rs)
is internally tangent with the communication circle of node
si, node w is within the communication range of node si.
Therefore node si can at least choose node w as the next
hop. Let c be the intersection between C(d, Rs) and x-axis
that is closest to u. Let w′ be the projection of w on the
x-axis. The projected progress between si and w is:

|s′iw′| > |s′ic| = |s′id| − Rs

=
√

|sid|2 − |sis′i|2 − Rs

>
√

(Rc − Rs)2 − R2
s − Rs

=
√

R2
c − 2RcRs − Rs

|s′iw′| ≤ 0 when Rc/Rs ≤ 1 +
√

2. From Theorem 5, the
projected progress made by BVGF in each step is positive.
Therefore, the lower bound on the projected progress in each
step is max(0,

√
R2

c − 2RcRs − Rs).

From Lemma 4, we can see that the lower bound on the
projected progress between any two nodes on a BVGF rout-
ing path approaches zero when Rc/Rs ≤ 1 +

√
2. We ask

the question whether there is a tighter lower bound in such
a case. Consider two non-adjacent nodes i and j on a BVGF
routing path. The Euclidean distance between them must
be longer than Rc because otherwise BVGF would have cho-
sen j as the next hop of i which contradicts the assumption
that i and j are non-adjacent on the routing path. We re-
fer to this property of BVGF as the non-adjacent advance
property4 . We have the following Lemma (the proof is simi-
lar to the proof of Theorem 2 and omitted due to the space
limitation).

Lemma 5 (Non-adjacent Advance Property). In a
sensing-covered network, the Euclidean distance between any
two non-adjacent nodes on a BVGF routing path is longer
than Rc.

The non-adjacent advance property, combined with the
fact that a BVGF routing path always lies in the Voronoi for-
warding rectangle, leads to the intuition that the projected
progress toward the destination made by BVGF in two con-
secutive steps is lower-bounded. Specifically, we have the

4Similarly, GF also can be shown to have this property.
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following Lemma that establishes a tighter bound on the
projected progress of BVGF than Lemma 4 when Rc/Rs is
small.

Lemma 6. The projected progress between any two non-
adjacent nodes i and j on a BVGF routing path in a sensing-
covered network is more than:

√

R2
c − R2

s if i, j on the same side of the x-axis
√

R2
c − 4R2

s if i, j on different sides of the x-axis

Proof. Let s0(u), s1 · · · sn−1, sn(v) be the consecutive
nodes on the BVGF routing path between source u and des-
tination v. From Lemma 5, |sisi+k| > Rc (k > 1). Fig. 8(a)
and (b) illustrate the two cases where si and si+k are on the
same or different sides of the x-axis, respectively. Both si

and si+k lie in the Voronoi forwarding rectangle of nodes u
and v (dotted box in the figure). When si and si+k are on
the same side of the x-axis, we have

|y(si+k) − y(si)| < Rs

The projected progress between si+k and si satisfies:

x(si+k) − x(si) =
√

|sisi+k|2 − (y(si+k) − y(si))2

>
√

R2
c − R2

s

si

si+k

s0 sn
x(si) x(si+k)

|y(si)-y(si+k)| Rs

Rs

si

si+k

s0 sn
x(si)

x(si+k)|y(si)-y(si+k)| Rs

Rs

(a)

(b)

Figure 8: Projected Progress of Two Non-adjacent

Nodes

Similarly, when si and si+k are on different sides of the x-
axis as shown in Fig. 8(b), we can prove that the projected
progress between them is more than

√
R2

c − 4R2
s.

From Lemma 6, we can see that the worst-case projected
progress in two consecutive steps on a BVGF routing path
occurs when the non-adjacent nodes in the two steps are
on the different sides of the x-axis. We have the following
Lemma (proof is omitted due to the space limitation).

Lemma 7 (Two-step Advance Lemma). In a sensing-
covered network, the projected progress in two consecutive
steps on a BVGF routing path is more than ∆2, where ∆2 =√

R2
c − 4R2

s.

Combining the different cases of non-adjacent node lo-
cations, we can derive the lower bound on the projected
progress made by BVGF in four consecutive steps.

Lemma 8 (Four-step Advance Lemma). In a sensing-
covered network, the projected progress of four consecutive
steps on a BVGF routing path is more than ∆4, where

∆4 =

{√
R2

c − R2
s (2 ≤ Rc/Rs ≤

√
5)√

4R2
c − 16R2

s (Rc/Rs >
√

5)

Proof. Let s0(u), s1 · · · sn−1, sn(v) be the consecutive
nodes on the BVGF routing path between source u and des-
tination v. si, si+2 and si+4 are three non-adjacent nodes on
the path. Without loss of generality, let si lie above the x-
axis. Fig. 9 shows all possible configurations of si, si+2 and
si+4 (the dotted boxes denote the Voronoi forwarding rect-
angles). We now derive the lower bound on the projected
progress between si and si+4.

1).When si and si+4 lie on different sides of the x-axis,
as illustrated in Fig. 9(a) and (b), the projected progress
δab between si and si+4 is the sum of the projected progress
between si and si+2 and the projected progress between si+2

and si+4. From Lemmas 6 :

δab =
√

R2
c − R2

s +
√

R2
c − 4R2

s

2).When si and si+4 lie on the same side of the x-axis, as
shown in Fig. 9(c) and (d), from Lemma 6, the projected
progress between them is more than δcd =

√
R2

c − R2
s. On

the other hand, the projected progress can be computed as
the sum of the projected progress between si and si+2 and
the projected progress between si+2 and si+4, i.e., δc =
2
√

R2
c − 4R2

s as shown in Fig. 9(c) or δd = 2
√

R2
c − R2

s as
shown in Fig. 9(d). Since δd > δc, max{δcd, δc} is the lower
bound on the projected progress between si and si+4 when
they lie on the same side of the x-axis.

Summarizing the cases 1) and 2), the lower bound on
the projected progress in four consecutive steps on a BVGF
routing path is

∆4 = min{δab, max{δcd, δc}}
From the relation between δab, δcd and δc, ∆4 can be

transformed to the result of the theorem.

When Rc/Rs is small, the network is relatively sparse.
Although the one-step projected progress approaches zero
as shown in Lemma 4 in such a case, Lemmas 7 and 8 show
that the projected progress toward the destination made by
BVGF in two or four consecutive steps is lower-bounded.
On the other hand, when Rc � Rs, the sensing coverage of
the network can result in a high density of nodes in the com-
munication range of a routing node and hence the projected
progress of BVGF in each step approaches Rc. In such a
case the lower bound established in Lemma 4 is tighter than
the lower bounds established in Lemmas 7-8.

Based on the one-step, two-step and four-step minimum
projected progress derived in Lemmas 4, 7 and 8, respec-
tively, we can derive the upper bounds on the network length
of a BVGF routing path. Summarizing these upper bounds,
we have the following theorem (the proof is omitted due to
the space limitation).

Theorem 6. In a sensing-covered network, The BVGF
routing path between any two nodes u and v is no longer than

∆ hops, where ∆ = min
{⌈

|uv|
∆1

⌉

, 2
⌊

|uv|
∆2

⌋

+ 1, 4
⌊

|uv|
∆4

⌋

+ 3
}

.
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Figure 9: Projected Progress in Four Consecutive

Steps

From Theorem 6 and (1),the network dilation of a sensing-
covered network G(V, E) under BVGF satisfies:

Dn(BV GF ) ≤ max
u,v∈V

∆
⌈

|uv|
Rc

⌉ (9)

where ∆ is defined in Theorem 6. The asymptotic bound
on the network dilation of sensing-covered networks under
BVGF can be computed by ignoring the rounding and the
constant terms in (9).

Theorem 7. The asymptotic network dilation of sensing-
covered networks under BVGF satisfies

D̃n(BV GF )≤



































4Rc√
R2

c
−R2

s

(2 ≤ Rc/Rs ≤
√

5)

2Rc√
R2

c
−4R2

s

(
√

5 < Rc/Rs ≤ 3.8)

Rc√
R2

c
−2RcRs−Rs

(Rc/Rs > 3.8)

7. SUMMARY OF ANALYSIS OF
NETWORK DILATIONS

In this section we summarize the network dilation bounds
derived in the previous sections. Fig. 10 shows the DT-
based dilation bound and the asymptotic dilation bounds of
GF and BVGF under different range ratios, as well as the
simulation results that will be discussed in Section 8. We can
see that the asymptotic bound of BVGF is competitive for
all range ratios no smaller than two. The bound approaches

the worst-case value 8
√

3
3

≈ 4.62 when Rc/Rs = 2. That
is, in a sensing-covered network that has the double range
property, BVGF can always find a routing path between any

two nodes u and v within 4.62
⌈

|uv|
Rc

⌉

hops.

The asymptotic network dilation bound of GF increases
quickly with the range ratio and approaches infinity when
Rc/Rs is close to two. Whether there is a tighter bound for
GF in such a case is an important open research question.

When Rc/Rs >∼ 3.5, the asymptotic network dilations of
GF and BVGF are very similar because the network topol-
ogy is dense and both algorithms can find very short routing
paths. We can see that the network dilation bound based
on DT is significantly higher than the bounds of BVGF and
GF when Rc/Rs becomes larger than ∼ 2.5, because the
analysis based on DT only considers DT edges (which have
been shown to be shorter than 2Rs in Lemma 2) and be-
comes conservative when the communication range is much
larger than the sensing range.

We should note that the network dilation of a sensing-
covered network is upper-bounded by the minimum of the
DT bound, the GF bound and the BVGF bound, because
the network dilation is defined based on the shortest paths.

8. SIMULATION RESULTS
In this section we present our simulation results. The

purpose of the simulations is twofold. First, we compare the
network dilations of GF and BVGF routing algorithms un-
der different range ratios. Second, we investigate the tight-
ness of the theoretical bounds we established in previous
sections.

The simulation is written in C++. There is no packet
loss due to transmission collisions in our simulation environ-
ments. 1000 nodes are randomly distributed in a 500m ×
500m region. All simulations in this section are performed
in sensing-covered network topologies produced by the Cov-
erage Configuration Protocol (CCP) [32]. CCP maintains
a set of active nodes to provide the sensing coverage to the
deployment region and redundant nodes are turned off for
energy conservation. All nodes have the same sensing range
of 20m. We vary Rc to measure the network and Euclidean
dilations of GF and BVGF under different range ratios. As
discussed in Section 5, GF refers to two routing schemes,
i.e., a node chooses a neighbor that has the shortest Eu-
clidean or projected distance to the destination as the next
hop. Since the simulation results of the two schemes are very
similar, only Euclidean distance based results are presented
in this section.

The results presented in this section are averages of five
runs on different network topologies produced by CCP. In
each round, a packet is sent from each node to every other
node in the network. As expected, all packets are delivered
by both algorithms. The network and Euclidean lengths are
logged for each communication. The network and Euclidean
dilations are then computed using (1) and (2), respectively.
To distinguish the dilations computed from the simulations
from the dilation bounds we derived in previous sections, we
refer to the former as measured dilations. We should note
that the measured dilations characterize the average-case
performance of the routing algorithms in the particular net-
work topologies used in our experiments, which may differ
from the worst-case bounds for any possible sensing-covered
network topologies we derived in previous sections.

From Fig. 10, we can see that the measured dilations of
GF and BVGF remain close to each other. Both GF and
BVGF have very low dilations (smaller than two) in all range
ratios no smaller than two. This result shows that both GF
and BVGF can find short routing paths in sensing-covered
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Figure 10: Network Dilations

networks. When Rc/Rs increases, the measured dilations of
both algorithms approach their asymptotic bounds. When
Rc/Rs is close to 2, however, the difference between the
asymptotic bounds and the corresponding measurement be-
comes wider. This is because the measured dilations are
obtained from the average-case network topologies and the
worst-case scenarios from which the upper bounds on net-
work dilations are derived are rare when the network is less
dense.

Due to the rounding errors in deriving the asymptotic
dilation bounds (Corollary 2 and Theorem 7), the measured
network dilations are slightly higher than the asymptotic
bounds for both algorithms when Rc/Rs > 6, as shown in
Fig. 10. This is because when Rc becomes large, the routing
paths chosen by both the algorithms become short and the
effect of rounding in the calculation of network dilations
becomes significant.

The result also indicates that the measured network dila-
tion of GF is significantly lower than the asymptotic bound
presented in this paper. Whether GF has a tighter network
dilation bound is an open question that requires future work.
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Fig. 11 shows the Euclidean dilations of GF and BVGF.
BVGF outperforms GF for all range ratios. This is due to

the fact that BVGF always forwards a packet along a path
inside the Voronoi forwarding rectangle. As mentioned in
Section 3, the low Euclidean dilation may lead to potential
energy savings in wireless communication.

In summary, the simulation results have shown that the
proposed BVGF algorithm performs similarly with GF in
average cases and has lower Euclidean dilation. In addition,
the upper bounds on the network dilations of BVGF and
GF established in previous sections are tight when Rc/Rs is
large.

9. CONCLUSION
Our results lead to several important insights into the

design of sensor networks. First, our analysis and simula-
tion show that simple greedy geographic routing algorithms
may be highly efficient in sensing-covered networks. Both
the asymptotic bound and measured network dilations of
BVGF and GF drop below 2.5 when the network’s range ra-
tio reaches 3.5. Moreover, the asymptotic network dilation
bound of BVGF remains below 4.62 for any range ratio no
smaller than 2. Our results also indicate that the redundant
nodes can be turned off without significant increase in net-
work length as long as the remaining active nodes maintain
sensing coverage. Therefore, our analysis justifies coverage
maintenance protocols [30, 32, 34, 35] that conserve energy
by scheduling nodes to sleep. Finally, our dilation bounds
enable a source node to efficiently compute an upper-bound
on the network length of its routing path based on the lo-
cation of the destination. This capability can be useful to
real-time communication protocols that require knowledge
about the bounds on hop counts of routing paths to achieve
predictable end-to-end communication delays.

In the future, we will generalize our analysis to sensing-
covered networks without the double range property. Fur-
ther analysis is also needed on the network dilations of GF
when the range ratio approaches 2. Another important re-
search area is to extend our analysis to handle probabilistic
sensing and communication models.
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