160. On Green's Functions of Elliptic and Parabolic Boundary Value Problems

By Hiroki Tanabe
Department of Mathematics, Osaka University
(Comm. by Kôsaku Yosida, m. J. A., Dec. 12, 1972)

1. Introduction. Let $A(x, D)$ be an elliptic operator of order m defined in a domain Ω of R^{n}, and $B_{j}(x, D), j=1, \cdots, m / 2$, be operators of order $m_{j}<m$ defined on $\partial \Omega$. We assume
(i) the system $\left(A(x, D),\left\{B_{j}(x, D)\right\}_{j=1}^{m / 2}, \Omega\right)$ as well as its adjoint system $\left(A^{\prime}(x, D),\left\{B_{j}^{\prime}(x, D)\right\}_{j=1}^{m / 2}, \Omega\right)$ formally constructed are both regular systems in the sense of S . Amon [1];
(ii) there is an angle $\theta_{0} \in(0, \pi / 2)$ such that ($e^{i \theta} D_{t}^{m}-A\left(x, D_{x}\right)$, $\left.\left\{B_{j}\left(x, D_{x}\right)\right\}_{j=1}^{m / 2}, \Omega \times(-\infty<t<\infty)\right)$ is an elliptic boundary value problem satisfying the coerciveness condition for any $\theta \in\left[\theta_{0}, 2 \pi-\theta_{0}\right]$ (cf. S. Agmon [1]).

Let A be the operator defined by

$$
D(A)=\left\{u \in H_{m}(\Omega): B_{j}(x, D) u=0 \text { on } \partial \Omega, j=1, \cdots, m / 2\right\}
$$

and $(A u)(x)=A(x, D) u(x)$ for $u \in D(A)$. It is known that the operator defined analogously by the adjoint system $\left(A^{\prime}(x, D),\left\{B_{j}^{\prime}(x, D)\right\}, \Omega\right)$ coincides with the adjoint of A (F.E. Browder [5], [6]).

In this paper we describe a method of establishing global estimates for the Green's function of the resolvent of A as well as the semigroup $\exp (-t A)$ generated by $-A$. Under the present assumptions the resolvent $(A-\lambda)^{-1}$ exists for λ in the set defined by $\Lambda=\left\{\lambda: \theta_{0} \leqq \arg \lambda \leqq 2 \pi\right.$ $\left.-\theta_{0},|\lambda|>C_{0}\right\}$ for some $C_{0}>0$ ([1]) and $-A$ generates a semigroup which is analytic in the sector $\Sigma=\left\{t:|\arg t|<\pi / 2-\theta_{0}\right\}$.

Theorem 1. Let $K_{\lambda}(x, y)$ be the kernel of $(A-\lambda)^{-1}$. Then there exist constants C and $\delta>0$ such that
(a) $\left|K_{\lambda}(x, y)\right| \leqq C e^{-\delta|\lambda| 1 / m|x-y|}|\lambda|^{n / m-1} \quad$ if $m>n$,
(b) $\left|K_{\lambda}(x, y)\right| \leqq C e^{-\delta|\lambda| 1 / m|x-y|}|x-y|^{m-n} \quad$ if $m<n$,
(c) $\quad\left|K_{\lambda}(x, y)\right| \leqq C e^{-\delta|\lambda| 1 / m|x-y|}\left\{1+\log ^{+}\left(|\lambda|^{-1 / m}|x-y|^{-1}\right)\right\} \quad$ if $m=n$ for $x, y \in \Omega$ and $\lambda \in \Lambda$.

Theorem 2. Let $G(x, y, t)$ be the kernel of $\exp (-t A)$. Then there exist positive constants C and c such that

$$
|G(x, y, t)| \leqq C|t|^{-n / m} \exp \left(-c|x-y|^{m /(m-1)} /|t|^{1 /(m-1)}\right) e^{C|t|}
$$

for $x, y \in \Omega$ and $t \in \Sigma$.
Remark 1. The boundedness of Ω is required in the assumption (i) ; however, it is not essential. The same results remain valid if Ω is an unbounded domain uniformly regular of class C^{m} and locally regular
of class $C^{2 m}$ in the sense of F.E. Browder [5],[6] and the system $(A(x, D)$, $\left.\left\{B_{j}(x, D)\right\}\right)$ as well as its adjoint satisfies the assumptions stated above uniformly in $\bar{\Omega}$.

Remark 2. If the coefficients of $A(x, D)$ are Hölder continuous it would be possible to derive the Theorems with the aid of the result of R. Arima [3].

Remark 3. With the aid of Theorem 2 we may establish a result similar to that of K. Masuda [8] and H.B. Stewart [9] which asserts that $-A$ generates an analytic semigroup in the space of bounded and continuous functions vanishing at $\partial \Omega$ and at infinity if the boundary conditions are of Dirichlet type.

Remark 4. Using Theorem 1 it is possible to derive some global version of L. Hörmander's results ([7]) on the Riesz means of the spectral function of A if A is self-adjoint.
2. Outline of the proof of the theorems.

Lemma 1. For $u \in H_{m}(\Omega)$ and $\lambda \in \Lambda$ we have

$$
\begin{aligned}
& |\lambda|\|u\|+\|u\|_{m} \\
& \quad \leqq C\left\{\|(A(x, D)-\lambda) u\|+\sum_{j=1}^{m / 2}|\lambda|^{\left(m-m_{j}\right) / m}\left\|g_{j}\right\|+\sum_{j=1}^{m / 2}\left\|g_{j}\right\|_{m-m_{j}}\right\}
\end{aligned}
$$

where g_{j} is an arbitrary function in $H_{m-m_{j}}(\Omega)$ satisfying $B_{j}(x, D) u=g_{j}$ on $\partial \Omega$. The analogue holds for the adjoint system.

Proof. The Lemma is a slight modification of Theorem 2.1 of [1].
For $\eta \in R^{n}$ let A_{η} be the operator defined by the system $(A(x, D+i \eta)$, $\left.\left\{B_{j}(x, D+i \eta)\right\}, \Omega\right)$. Applying Lemma 1 to a function $u \in D\left(A_{\eta}\right)$ we get

Lemma 2. There exist positive constants C and δ such that

$$
\begin{aligned}
& \left\|\left(A_{\eta}-\lambda\right)^{-1}\right\|_{L^{2} \rightarrow L^{2}} \leqq C /|\lambda|, \\
& \left\|\left(A_{\eta}-\lambda\right)^{-1}\right\|_{L^{2} \rightarrow H_{m}} \leqq C, \\
& \left\|\left(\left(A_{\eta}-\lambda\right)^{-1}\right)^{*}\right\|_{L^{2} \rightarrow H_{m}} \leqq C
\end{aligned}
$$

for $\lambda \in \Lambda$ and $|\eta| \leqq \delta|\lambda|^{1 / m}$.
If $K_{\lambda}^{\eta}(x, y)$ is the kernel of $\left(A_{\eta}-\lambda\right)^{-1}$, then $K_{\lambda}^{\eta}(x, y)=e^{\langle x-y, \eta\rangle} K_{\lambda}(x, y)$. Hence (a) of Theorem 1 is a simple consequence of Lemma 2 and Theorem 3.1 of S. Agmon [2].

In what follows we assume $C_{0}=0$ adding some positive constant to A if necessary (recall the definition of Λ).

Lemma 3 (R. Beals [4]). If S and T are bounded operators from $L^{2}(\Omega)$ to itself such that the ranges of S and T^{*} are contained in $L^{\infty}(\Omega)$. Then the operator ST has a bounded kernel $k(x, y)$ satisfying

$$
|k(x, y)| \leqq\|S\|_{L^{2} \rightarrow L^{\infty}}\left\|T^{*}\right\|_{L^{2} \rightarrow L^{\infty}} .
$$

Next we assume $m>n / 2$. For $t \in \Sigma$ we have

$$
\begin{align*}
\exp (-2 t A) & =(\exp (-t A))^{2} \\
& =\frac{1}{(2 \pi i)^{2}} \int_{\Gamma} \int_{\Gamma} e^{-t \lambda} e^{-t_{\mu}}(A-\lambda)^{-1}(A-\mu)^{-1} d \lambda d \mu \tag{1}
\end{align*}
$$

In view of Lemma 2 and Sobolev's inequality we have if $|\eta| \leqq \delta \min \left(|\lambda|^{1 / m},|\mu|^{1 / m}\right)$

$$
\begin{aligned}
& \left\|\left(A_{\eta}-\lambda\right)^{-1}\right\|_{L^{2} \rightarrow L^{\infty}} \leqq C|\lambda|^{n / 2 m-1}, \\
& \left\|\left(\left(A_{\eta}-\mu\right)^{-1}\right)^{*}\right\|_{L^{2} \rightarrow L^{\infty}} \leqq C|\mu|^{n / 2 m-1} .
\end{aligned}
$$

Hence by Lemma 3 we see that the kernel $K_{\lambda, \mu}^{\eta}(x, y)$ of $\left(A_{\eta}-\lambda\right)^{-1}\left(A_{\eta}-\mu\right)^{-1}$ satisfies

$$
\begin{equation*}
\left|K_{\lambda, \mu}^{\eta}(x, y)\right| \leqq C|\lambda|^{n / 2 m-1}|\mu|^{n / 2 m-1} . \tag{2}
\end{equation*}
$$

If $K_{\lambda, \mu}(x, y)$ is the kernel of $(A-\lambda)^{-1}(A-\mu)^{-1}$, it is readily seen that $K_{\lambda, \mu}^{\eta}(x, y)=e^{\langle x-y, \eta\rangle} K_{\lambda, \mu}(x, y)$. Hence in view of (2) we get

$$
\begin{aligned}
& \left|K_{\lambda, \mu}(x, y)\right| \\
& \quad \leqq C|\lambda|^{n / 2 m-1}|\mu|^{n / 2 m-1} \exp \left\{-\delta \min \left(\left|\lambda \lambda^{1 / m},|\mu|^{1 / m}\right)|x-y|\right\}\right. \\
& \quad \leqq C|\lambda|^{n / 2 m-1}|\mu|^{\mid / 2 m-1}\left\{e^{-\delta|\lambda| 1 / m|x-y|}+e^{-\delta|\mu| 1 / / m|x-y|}\right\} .
\end{aligned}
$$

Comparing the kernels of the members of (1) and then deforming Γ to

$$
\left\{\lambda: \lambda=r e^{ \pm i \theta_{0}}, r \geqq a\right\} \cup\left\{\lambda: \lambda=a e^{i \phi}, \theta_{0} \leqq \phi \leqq 2 \pi-\theta_{0}\right\}
$$

where $a=\varepsilon(|x-y| /|t|)^{m /(m-1)}$ we get without difficulty

$$
\begin{aligned}
& |G(x, y, 2 t)| \\
& \quad \leqq C|t|^{-n / m} \exp \left\{-\left(\delta \varepsilon^{1 / m}-4 \varepsilon\right)|x-y|^{m /(m-1)} /|t|^{1 /(m-1)}\right\} .
\end{aligned}
$$

Taking ε sufficiently small we get Theorem 2 for the case $m>n / 2$. The case $m \leqq n / 2$ can be dealt with following the method of R. Beals [4]. The assertions (b) and (c) of Theorem 1 can be established by Theorem 2 and

$$
(A-\lambda)^{-1}=\int e^{2 t} \exp (-t A) d t
$$

where we integrate along the ray $\left\{t=|t| e^{ \pm i \theta_{0}}\right\}$ according as $\operatorname{Im} \lambda \gtrless 0$.

References

[1] S. Agmon: On the eigenfunctions and on the eigenvalues of general elliptic boundary value problems. Comm. Pure Appl. Math., 15, 119-147 (1962).
[2] --: On kernels, eigenvalues, and eigenfunctions of operators related to elliptic problems. Comm. Pure Appl. Math., 18, 627-663 (1965).
[3] R. Arima: On general boundary value problems for parabolic equations. J. Math. Kyoto Univ., 4, 207-243 (1964).
[4] R. Beals: Asymptotic behavior of the Green's function and spectral function of an elliptic operator. J. Func. Anal., 5, 484-503 (1970).
[5] F. E. Browder: On the spectral theory of elliptic differential operators. I. Math. Ann., 142, 22-130 (1961).
[6] -: A continuity property for adjoints of closed operators in Banach spaces, and its application to elliptic boundary value problems. Duke Math. J., 28, 157-182 (1961).
[7] L. Hörmander: On the Riesz Means of Spectral Functions and Eigenfunction Expansions for Elliptic Differential Operators. Lecture at the Belfer Graduate School. Yeshiva University (1966).
[8] K. Masuda: Manuscript for Seminar at Kyoto University (1970).
[9] H. B. Stewart: Generation of analytic semigroups by strongly elliptic operators (to appear).

