160. On Green's Functions of Elliptic and Parabolic Boundary Value Problems

By Hiroki TANABE

Department of Mathematics, Osaka University

(Comm. by Kôsaku Yosida, M. J. A., Dec. 12, 1972)

1. Introduction. Let A(x, D) be an elliptic operator of order m defined in a domain Ω of \mathbb{R}^n , and $B_j(x, D)$, $j=1, \dots, m/2$, be operators of order $m_j < m$ defined on $\partial \Omega$. We assume

(i) the system $(A(x, D), \{B_j(x, D)\}_{j=1}^{m/2}, \Omega)$ as well as its adjoint system $(A'(x, D), \{B'_j(x, D)\}_{j=1}^{m/2}, \Omega)$ formally constructed are both regular systems in the sense of S. Amon [1];

(ii) there is an angle $\theta_0 \in (0, \pi/2)$ such that $(e^{i\theta}D_t^m - A(x, D_x), \{B_j(x, D_x)\}_{j=1}^{m/2}, \ \Omega \times (-\infty < t < \infty))$ is an elliptic boundary value problem satisfying the coerciveness condition for any $\theta \in [\theta_0, 2\pi - \theta_0]$ (cf. S. Agmon [1]).

Let *A* be the operator defined by

 $D(A) = \{u \in H_m(\Omega) : B_j(x, D)u = 0 \text{ on } \partial\Omega, j = 1, \dots, m/2\}$ and (Au)(x) = A(x, D)u(x) for $u \in D(A)$. It is known that the operator defined analogously by the adjoint system $(A'(x, D), \{B'_j(x, D)\}, \Omega)$ coincides with the adjoint of A (F.E. Browder [5], [6]).

In this paper we describe a method of establishing global estimates for the Green's function of the resolvent of A as well as the semigroup exp (-tA) generated by -A. Under the present assumptions the resolvent $(A - \lambda)^{-1}$ exists for λ in the set defined by $A = \{\lambda : \theta_0 \leq \arg \lambda \leq 2\pi - \theta_0, |\lambda| > C_0\}$ for some $C_0 > 0$ ([1]) and -A generates a semigroup which is analytic in the sector $\Sigma = \{t : |\arg t| < \pi/2 - \theta_0\}$.

Theorem 1. Let $K_{\lambda}(x, y)$ be the kernel of $(A - \lambda)^{-1}$. Then there exist constants C and $\delta > 0$ such that

(a) $|K_{\lambda}(x,y)| \leq C e^{-\delta |\lambda|^{1/m} |x-y|} |\lambda|^{n/m-1}$ if m > n,

(b) $|K_{\lambda}(x,y)| \leq Ce^{-\delta|\lambda|^{1/m}|x-y|} |x-y|^{m-n}$ if m < n,

(c) $|K_{\lambda}(x,y)| \leq Ce^{-\delta|\lambda|^{1/m}|x-y|} \{1 + \log^+ (|\lambda|^{-1/m} |x-y|^{-1})\}$ if m = nfor $x, y \in \Omega$ and $\lambda \in \Lambda$.

Theorem 2. Let G(x, y, t) be the kernel of $\exp(-tA)$. Then there exist positive constants C and c such that

 $|G(x, y, t)| \leq C |t|^{-n/m} \exp(-c |x-y|^{m/(m-1)}/|t|^{1/(m-1)})e^{C|t|}$ for $x, y \in \Omega$ and $t \in \Sigma$.

Remark 1. The boundedness of Ω is required in the assumption (i); however, it is not essential. The same results remain valid if Ω is an unbounded domain uniformly regular of class C^m and locally regular

H. TANABE

of class C^{2m} in the sense of F.E. Browder [5],[6] and the system $(A(x,D), \{B_j(x,D)\})$ as well as its adjoint satisfies the assumptions stated above uniformly in $\overline{\Omega}$.

Remark 2. If the coefficients of A(x, D) are Hölder continuous it would be possible to derive the Theorems with the aid of the result of R. Arima [3].

Remark 3. With the aid of Theorem 2 we may establish a result similar to that of K. Masuda [8] and H.B. Stewart [9] which asserts that -A generates an analytic semigroup in the space of bounded and continuous functions vanishing at $\partial \Omega$ and at infinity if the boundary conditions are of Dirichlet type.

Remark 4. Using Theorem 1 it is possible to derive some global version of L. Hörmander's results ([7]) on the Riesz means of the spectral function of A if A is self-adjoint.

2. Outline of the proof of the theorems.

Lemma 1. For $u \in H_m(\Omega)$ and $\lambda \in \Lambda$ we have $\|\lambda\| \|u\| + \|u\|_m$

$$\leq C \left\{ \| (A(x, D) - \lambda) u \| + \sum_{j=1}^{m/2} |\lambda|^{(m-m_j)/m} \| g_j \| + \sum_{j=1}^{m/2} \| g_j \|_{m-m_j} \right\}$$

where g_j is an arbitrary function in $H_{m-m_j}(\Omega)$ satisfying $B_j(x, D)u = g_j$ on $\partial \Omega$. The analogue holds for the adjoint system.

Proof. The Lemma is a slight modification of Theorem 2.1 of [1]. For $\eta \in \mathbb{R}^n$ let A_η be the operator defined by the system $(A(x, D+i\eta), \{B_j(x, D+i\eta)\}, \Omega)$. Applying Lemma 1 to a function $u \in D(A_\eta)$ we get

Lemma 2. There exist positive constants C and δ such that

$$\begin{split} &\|(A_{\eta}-\lambda)^{-1}\|_{L^{2}\rightarrow L^{2}} \leq C/|\lambda|, \\ &\|(A_{\eta}-\lambda)^{-1}\|_{L^{2}\rightarrow H_{m}} \leq C, \\ &\|((A_{\eta}-\lambda)^{-1})^{*}\|_{L^{2}\rightarrow H_{m}} \leq C \end{split}$$

for $\lambda \in \Lambda$ and $|\eta| \leq \delta |\lambda|^{1/m}$.

(

If $K_{\lambda}^{\eta}(x, y)$ is the kernel of $(A_{\eta} - \lambda)^{-1}$, then $K_{\lambda}^{\eta}(x, y) = e^{\langle x-y, \eta \rangle} K_{\lambda}(x, y)$. Hence (a) of Theorem 1 is a simple consequence of Lemma 2 and Theorem 3.1 of S. Agmon [2].

In what follows we assume $C_0 = 0$ adding some positive constant to A if necessary (recall the definition of A).

Lemma 3 (R. Beals [4]). If S and T are bounded operators from $L^2(\Omega)$ to itself such that the ranges of S and T^* are contained in $L^{\infty}(\Omega)$. Then the operator ST has a bounded kernel k(x, y) satisfying

$$|k(x, y)| \leq ||S||_{L^{2} \to L^{\infty}} ||T^{*}||_{L^{2} \to L^{\infty}}.$$

Next we assume m > n/2. For $t \in \Sigma$ we have

$$\exp(-2tA) = (\exp(-tA))^{2} \\ = \frac{1}{(2\pi i)^{2}} \int_{\Gamma} \int_{\Gamma} e^{-t\lambda} e^{-t\mu} (A-\lambda)^{-1} (A-\mu)^{-1} d\lambda d\mu.$$

710

In view of Lemma 2 and Sobolev's inequality we have if $|\eta| \leq \delta \min(|\lambda|^{1/m}, |\mu|^{1/m})$

 $\| (A_{\eta} - \lambda)^{-1} \|_{L^{2} \to L^{\infty}} \leq C |\lambda|^{n/2m-1},$ $\| ((A_{\eta} - \mu)^{-1})^{*} \|_{L^{2} \to L^{\infty}} \leq C |\mu|^{n/2m-1}.$

Hence by Lemma 3 we see that the kernel $K^{\eta}_{\lambda,\mu}(x,y)$ of $(A_{\eta}-\lambda)^{-1}(A_{\eta}-\mu)^{-1}$ satisfies

(2) $|K_{\lambda,u}^{\eta}(x,y)| \leq C |\lambda|^{n/2m-1} |\mu|^{n/2m-1}.$

If $K_{\lambda,\mu}(x,y)$ is the kernel of $(A-\lambda)^{-1}(A-\mu)^{-1}$, it is readily seen that $K^{\eta}_{\lambda,\mu}(x,y) = e^{\langle x-y,\eta \rangle} K_{\lambda,\mu}(x,y)$. Hence in view of (2) we get

 $|K_{\lambda,\mu}(x,y)|$

$$\leq C |\lambda|^{n/2m-1} |\mu|^{n/2m-1} \exp \{-\delta \min (|\lambda|^{1/m}, |\mu|^{1/m}) |x-y|\}$$

$$\leq C |\lambda|^{n/2m-1} |\mu|^{n/2m-1} \{e^{-\delta |\lambda|^{1/m} |x-y|} + e^{-\delta |\mu|^{1/m} |x-y|}\}.$$

Comparing the kernels of the members of (1) and then deforming Γ to $\int 2 \cdot 2 - \alpha e^{\pm i\theta_0} x > \alpha \int |f| > 2 - \alpha e^{i\phi} \theta \le \phi \le 2\pi - \theta$

$$\{\lambda: \lambda = re^{-\alpha_0}, r \ge a\} \cup \{\lambda: \lambda \ge ae^{-\alpha_0}, \sigma_0 \ge \phi \ge 2\pi - \sigma_0\}$$

where $a = \varepsilon(|x-y|/|t|)^{m/(m-1)}$ we get without difficulty |G(x, y, 2t)|

 $\leq C |t|^{-n/m} \exp \{-(\delta \varepsilon^{1/m} - 4\varepsilon) |x - y|^{m/(m-1)} / |t|^{1/(m-1)} \}.$

Taking ε sufficiently small we get Theorem 2 for the case m > n/2. The case $m \le n/2$ can be dealt with following the method of R. Beals [4]. The assertions (b) and (c) of Theorem 1 can be established by Theorem 2 and

$$(A-\lambda)^{-1} = \int e^{\lambda t} \exp(-tA) dt$$

where we integrate along the ray $\{t = |t| e^{\pm i\theta_0}\}$ according as $\operatorname{Im} \lambda \ge 0$.

References

- S. Agmon: On the eigenfunctions and on the eigenvalues of general elliptic boundary value problems. Comm. Pure Appl. Math., 15, 119-147 (1962).
- [2] ——: On kernels, eigenvalues, and eigenfunctions of operators related to elliptic problems. Comm. Pure Appl. Math., 18, 627–663 (1965).
- [3] R. Arima: On general boundary value problems for parabolic equations.
 J. Math. Kyoto Univ., 4, 207-243 (1964).
- [4] R. Beals: Asymptotic behavior of the Green's function and spectral function of an elliptic operator. J. Func. Anal., 5, 484-503 (1970).
- [5] F. E. Browder: On the spectral theory of elliptic differential operators. I. Math. Ann., 142, 22-130 (1961).
- [6] —: A continuity property for adjoints of closed operators in Banach spaces, and its application to elliptic boundary value problems. Duke Math. J., 28, 157–182 (1961).
- [7] L. Hörmander: On the Riesz Means of Spectral Functions and Eigenfunction Expansions for Elliptic Differential Operators. Lecture at the Belfer Graduate School. Yeshiva University (1966).
- [8] K. Masuda: Manuscript for Seminar at Kyoto University (1970).
- [9] H. B. Stewart: Generation of analytic semigroups by strongly elliptic operators (to appear).