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   1. Introduction. Let A(x, D) be an elliptic operator of order m 
defined in a domain 9 of Rn, and B~(x, D), j=1, ... , m/2, be operators 
of order m~ <m defined on SQ. We assume 

   (i) the system (A(x, D), {B(x, ~D)}7!, 9) as well as its adjoint sys-
tem (A'(x, D), {B'; (x, D)} L , 9) formally constructed are both regular 
systems in the sense of S. Amon [1] ; 

   (ii) there is an angle 6o e (0, rr/2) such that (e2BDm-A(x, Dr), 
{B(x, ~Dx)}~!1f 9 x(- oo <t< cc)) is an elliptic boundary value problem 
satisfying the coerciveness condition for any 0 e [0, 27r - 00] (cf. S. Agmon 
[1]). 
   Let A be the operator defined by 
      D(A)={u E Hm(Q): B~(x, D)u=0 on 59, j=1, . . . , m/2} 
and (Au)(x) =A(x, D)u(x) for u e D(A). It is known that the operator 
defined analogously by the adjoint system (A'(x, D), {B(x, '~D)}, 9) coin-
cides with the adjoint of A (F.E. Browder [5], [6]). 

   In this paper we describe a method of establishing global estimates 
for the Green's function of the resolvent of A as well as the semigroup 
exp (-tA) generated by -A. Under the present assumptions the 
resolvent (A - A)-1 exists for A in the set defined by A ={A: 00 < arg A - 2ir 
-00, I A!> C0} for some C0> 0 ([1]) and -A generates a semigroup which 
is analytic in the sector ={t: arg t <r/2 r- 0}.

   Theorem 1. Let K2(x, y) be the kernel of (A-A)-1. 
exist constants C and 5>0 such that 

    (a) IK2(x, YI)I Ce-$(2hhIrn x-yt IA I"1 i f m>n, 
    (b) I K2(x, y) I~ Ce-012111m, x-y' I x- y im-n i f m< n, 

   (c) IK2(x, y)I<Ce-8~1'1/rn'x-y~{1+log+ (IAI-l/m (x-y -1)} f 
for x, y e 9 and A e A. 
   Theorem 2. Let G(x, y, t) be the kernel o f exp (-tA)- 
there exist positive constants C and c such that        

I G(x,y, t) ~citl-n/m exp (-cI x-ylml(m-1)/Itill~m-f)edltl 
for x,yeQ and teE. 

9 
                      The

Then there

i m=n

Then

                                is required in the assumption    Remark 1. The boundedness of 

                              same results remain valid if 9 is (i) ;however, it is not essential. 

an unbounded domain uniformly regular of class Cm and locally regular
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of class C2m in the sense of F.E. Browder [5],[6] and the system (A(x,D), 

{B(x, ~D)}) as well as its adjoint satisfies the assumptions stated above 
uniformly in S~. 

   Remark 2. If the coefficients of A(x, D) are Holder continuous it 
would be possible to derive the Theorems with the aid of the result of 
R. Arima [3]. 

   Remark 3.. With the aid of Theorem 2 we may establish a result 
similar to that of K. Masuda [8] and H.B. Stewart [9] which asserts 
that -A generates an analytic semigroup in the space of bounded and 
continuous functions vanishing at aQ and at infinity if the boundary 
conditions are of Dirichlet type. 

   Remark 4. Using Theorem 1 it is possible to derive some global 
version of L. Hormander's results ([7]) on the Riesz means of the 
spectral function of A if A is self-adjoint. 

   2. Outline of the proof of the theorems. 
   Lemma 1. For u e Hm(Q) and A e A we have 

    I2I Iu +Iulim 
                                           m/2 m/2 

         ~ C (A (x, D) - A) u + , (m-mi)/m g~ I I + I g j Im-m~ 
                                                      j=1 i-i 

where g~ is an arbitrary function in Hm_mj(Q) satisfying B~(x, D)u=g~ 
on aQ. The analogue holds for the ad joint system. 

   Proof. The Lemma is a slight modification of Theorem 2.1 of [1]. 
   For , e Rn let A, be the operator defined by the system (A(x, D+i~), 

{B3(x,D +i)}, Q). Applying Lemma 1 to a function u e D(A,) we get 
   Lemma 2. There exist positive constants C and 5 such that                   

I I (A0 - ")-' I IL2.L2 < C /I A , 
                   I(A~-AY IL2~Hm<C, 

                    ((An _A)1)* L2 gm<C 
for A e A and 7)I« All/m. 

   If K~(x, y) is the kernel of (A, _A)_1, then K~(x, y)=e<x-y~>K2(x, y). 
Hence (a) of Theorem 1 is a simple consequence of Lemma 2 and 
Theorem 3.1 of S. Agmon [2]. 

   In what follows we assume Co = 0 adding some positive constant to 
A if necessary (recall the definition of A). 

   Lemma 3 (R. Beals [4]). 1 f S and T are bounded operators from 
L2(Q) to itself such that the ranges o f S and T * are contained in L°°(Q). 
Then the operator ST has a bounded kernel k(x, y) satisfying                  

I k(x, y) IS S IIL2- L~ II T * I L2+L~. 
   Next we assume m > n /2. For t e ~' we have 

      exp (- 2tA) _ (exp (- tA))2 

(1) = 1 f f e-tee-tu(A-A)-1(A- )-ldAd . 
                   (22ri)Z r r
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   In view of Lemma 2 and Sobolev's inequality we have if  
I< o min (~ 1/m, I 1/m) 

                       (A,7-2)-1 L2- L~~c )n/2m-1, 
                       ((A, -~l)-1)* L2-L~ C C n/2m-1 

Hence by Lemma 3 we see that the kernel K(x, y) of (A,7 -2)1(A,7 _/1)_1 
satisfies 
(2) I K~,(x, ~) I < c In/2m-1 n/2m-1 
If y) is the kernel of (A-A)-1(A-p)-1, it is readily seen that 

     y) = e<x-u >K(x, y). Hence in view of (2) we get 
     K(x, y) 

          ~c AIn/2m-1In12m-1 exp {-v min ( A 11m, I 1/m) Ix_y } 
               C I AI n/2m-1 I pI n/2m-1{e-al21 '' 1 x-yl +e-b.lPil/ml x-Y } 

Comparing the kernels of the members of (1) and then deforming P to 

            {A: A=re+1B°, r>_a} U {A: A=aei~, Bo<~b<2ir-6o} 
where a=s(I x-yJ /I t )m/(m-1) we get without difficulty 
     G(x, y, 2t) J 

             CI t I -n/m exp {_(os1/'Th-4s) x -y m/(m-1) / t I1/(m-1)}. 
Taking sufficiently small we get Theorem 2 for the case m > n / 2 • The 
case m < n/2 can be dealt with following the method of R. Beals [4]. 
The assertions (b) and (c) of Theorem 1 can be established by Theorem 
2 and 

                  (A -A)-1 e2r exp (- tA)dt 

where we integrate along the ray {t=ItJ e t 2B°} according as Im AO.
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