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On Gridless Sparse Methods for Line Spectral
Estimation From Complete and Incomplete Data

Zai Yang, Member, IEEE, and Lihua Xie, Fellow, IEEE

Abstract—This paper is concerned about sparse, continuous
frequency estimation in line spectral estimation, and focused
on developing gridless sparse methods which overcome grid
mismatches and correspond to limiting scenarios of existing
grid-based approaches, e.g., `1 optimization and SPICE, with
an infinitely dense grid. We generalize AST (atomic-norm soft
thresholding) to the case of nonconsecutively sampled data (in-
complete data) inspired by recent atomic norm based techniques.
We present a gridless version of SPICE (gridless SPICE, or
GLS), which is applicable to both complete and incomplete
data without the knowledge of noise level. We further prove
the equivalence between GLS and atomic norm-based techniques
under different assumptions of noise. Moreover, we extend GLS
to a systematic framework consisting of model order selection and
robust frequency estimation, and present feasible algorithms for
AST and GLS. Numerical simulations are provided to validate
our theoretical analysis and demonstrate performance of our
methods compared to existing ones.

Index Terms—Line spectral estimation, atomic norm, gridless
SPICE (GLS), model order selection, frequency splitting.

I. INTRODUCTION

Spectral analysis of signals [1] is a major problem in statisti-
cal signal processing. In this paper we are concerned about the
line spectral estimation problem which has wide applications
in communications, radar, sonar, seismology, astronomy and
so on. In particular, suppose that we observe a noisy sinusoidal
signal (indexed by j)

yj =
K∑
k=1

ske
i2π(j−1)fk + ej (1)

on the index set [M ] , {1, · · · ,M} or a subset Ω ⊂ [M ],
where yj denotes the jth entry of y ∈ CM (similarly for
fk, sk and ej), i =

√
−1, fk ∈ [0, 1) and sk ∈ C denote

the normalized frequency and (complex) amplitude of the
kth sinusoidal component respectively, and ej ∈ C is the
measurement noise. The sinusoid number K < M , usually
referred to as the model order, is typically unknown in practice.
Following from [2], the case when the signal is observed on
[M ] is referred to as the complete data case while the other
case when only samples on Ω ⊂ [M ] are available is called
the incomplete data case (or missing data case), in which the
samples on the complementary set of Ω, Ω , [M ] \Ω, are
called missing data. The missing data case is important since
missing samples are common in practice that can be caused
by sensor failure, outliers, weather condition or other physical
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constraints [2], [3]. Frequency estimation and model order
selection are two important topics in line spectral estimation.
Given fk’s and K, sk’s can be obtained by a simple least-
squares method according to (1). This paper is mainly focused
on frequency estimation but we also incorporate existing
model order selection tools in our methods.

Many methods have been proposed for frequency esti-
mation. Common classical methods include periodogram (or
beamforming), nonlinear least squares (NLS) and MUSIC but
often have limitations (see the review in [1]). For example,
the periodogram suffers from leakage problems and have
difficulties in resolving closely separated frequencies [1]. It is
worth noting that the recent iterative adaptive approach (IAA)
[4], [5] reduces the leakage of periodogram. The NLS involves
nonconvex optimization and, as well as MUSIC, requires to
know the model order K. Both the problems are not easy
to deal with. Model order selection is usually a prerequisite
for (or interleaved with) frequency estimation in, for example,
NLS and MUSIC. Existing approaches are usually based
on information-theoretic criteria or data covariance matrix
such as the second order statistic of eigenvalues (SORTE)
and predicted eigen-threshold approach [6]–[9]. It is recently
shown in [10] that SORTE outperforms other methods in a
related problem.

With the development of sparse signal representation (SSR)
and later the compressed sensing (CS) concept [11], sparse
methods for frequency estimation have been popular in the past
decade. In this kind of methods, the continuous frequency do-
main [0, 1) is discretized/gridded into a finite set of grid points.
By assuming that the true frequencies are on (practically, close
to) some grid points, the observation model is approximately
written into a linear system of equations. Then frequency
estimation is accomplished by sparse signal recovery followed
by support detection. Two prominent sparse methods are `1
optimization and sparse iterative covariance-based estimation
(SPICE) [12]–[15]. SPICE is usually more practical since it
estimates the noise variance, which is unavailable in advance,
jointly with frequency estimation.

Since CS so far has been focused on signals that can be
sparsely represented under a finite dictionary (or a finite set
of atoms), discretization/gridding of the frequency domain is
inevitable in early sparse methods. According to the wisdom
of CS the sampling grid should not be too dense, otherwise
almost complete correlations between adjacent atoms (or steer-
ing vectors) may degrade the sparse recovery performance.
However, it is intuitively reasonable and in fact has been
verified by many algorithms that a dense grid leads to a more
accurate frequency estimate since both grid mismatches (be-
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tween grid points and the true frequencies) and approximation
errors (of the observation model) can be reduced with a dense
grid. Therefore, one naturally wonders whether the existing
sparse methods can be practically implemented with an in-
finitely dense grid or equivalently, directly on the continuous
interval [0, 1) without gridding and, if implementable, what
performances the gridless sparse methods can obtain. This
paper will answer these questions.

Before proceeding to gridless sparse methods, it is worth
noting that grid-based methods have been proposed to al-
leviate the drawbacks of the finite discretization with af-
fordable computational workloads. Many of them start with
a coarse grid and gradually modify the frequency estimate
out of or during the algorithms. Examples include iterative
grid refinement [12] and joint sparse signal and parameter
estimation [16]–[23], where [16], [17], [22] are sparse versions
of the space-alternating generalized expectation-maximization
(SAGE) algorithm [24], [25]. Since the observed samples
are nonlinear functions of the frequencies by (1), the joint
estimation methods typically need to carry out nonconvex
optimization and cannot guarantee global optimality. Other
methods such as [26], [27] start with a fixed, highly dense
grid and iteratively optimize sparse solutions supported on
sufficiently separate grid points.

The first gridless sparse method for frequency estimation is
introduced in [28] motivated by the concept of atomic norm
(or total variation norm) for continuous-time signals [29], [30],
which generalizes the `1 norm for the discrete counterpart.
Therefore, the atomic norm-based methods in [28] and later
papers [31]–[33] correspond to gridless versions (or limiting
scenarios with an infinitely dense grid) of the `1-based meth-
ods. In particular, the noiseless complete data case is studied
in [28], where it is shown that the frequencies can be exactly
recovered provided that they are appropriately separated. The
bounded-energy-noise case is then studied in [31]. An atomic
norm soft thresholding (AST) method is presented in [32] in
the presence of stochastic noise, a common assumption in the
literature. In the presence of missing data, the noiseless case
is studied in [33] via atomic norm minimization with exact
recovery proven under some technical assumptions. Since
computation of the atomic norm can be formulated as convex
programming [28], [32], the gridless sparse methods above can
be solved in a polynomial time. Other related papers include
[34] for complete data and [35] based on matrix completion
for incomplete data. After submission of this paper, atomic
norm methods have also been proposed in the case of multiple
measurement vectors encountered in array processing and for
further enhancing resolution [36]–[38].

In this paper, we develop new gridless sparse methods for
line spectral estimation and demonstrate their relations to the
existing grid-based methods. Note that 1) atomic norm-based
methods are still absent for noisy incomplete data, and 2) the
existing atomic norm-based methods require the practically
unknown noise variance/energy. An estimate can be possibly
obtained as in [32] in the complete data case, however, it is not
clear how to do this with incomplete data. The contributions
of this paper are summarized as follows:

1) We generalize AST and its theoretical results in [32] to

the missing data case.
2) We develop the gridless version of SPICE, named as

gridless SPICE or GLS for short. GLS is obtained
based on our recent work [39] where the focus is on
the spatial spectral analysis (a.k.a. array processing) as
opposed to the temporal spectral analysis considered
here. Moreover, we extend it to a systematic framework
for line spectral estimation consisting of model order
selection and improved frequency estimation.

3) We explore connections between GLS and atomic norm-
based methods and prove their equivalence under differ-
ent assumptions of noise. The result holds in both the
complete and missing data cases.

4) We develop feasible algorithms for AST and GLS based
on duality and the alternating direction method of mul-
tipliers (ADMM) [40].

5) We demonstrate that existing grid-based SPICE and `1
optimization are approximate versions of GLS analyti-
cally and via numerical simulations.

Notations used in this paper are as follows. R and C denote
the sets of real and complex numbers respectively. Boldface
letters are reserved for vectors and matrices. For an integer
N , [N ] , {1, · · · , N}. |·| denotes the amplitude of a scalar
or cardinality of a set. ‖·‖1, ‖·‖2 and ‖·‖F denote the `1, `2
and Frobenius norms respectively. AT and AH are the matrix
transpose and conjugate transpose of A respectively. xj is
the jth entry of a vector x. Unless otherwise stated, xΩ and
AΩ respectively reserve the entries of x and the rows of A
in the index set Ω. For a vector x, diag (x) is a diagonal
matrix with x being its diagonal. x � 0 means xj ≥ 0 for
all j. tr (A) denotes the trace of a matrix A. For positive
semidefinite matrices A and B, A ≥ B means that A −B
is positive semidefinite. E [·] denotes expectation and f̂ is an
estimator of f . For notational simplicity, a random variable
and its numerical value will not be distinguished.

The rest of the paper is organized as follows. Section II
introduces some preliminary results. Section III extends AST
to the missing data case. Section IV presents GLS and Section
V extends it to a systematic framework for line spectral
estimation. Section VI proves the equivalence between GLS
and atomic norm-based methods. Section VII presents feasible
algorithms for AST and GLS. Section VIII provides numerical
simulations and Section IX concludes this paper.

II. PRELIMINARIES

A. `1 Norm Denoising

Consider the problem of recovering a signal z ∈ CM from
its noisy measurement y ∈ CM , with the prior knowledge
that z has a sparse representation under a discrete dictionary
A ∈ CM×N , i.e., there exists a sparse vector s ∈ CN such
that z = As. The `1 norm has been widely used for this signal
denoising problem. In particular, z is recovered by solving s
from the following optimization problem:

min
s
µ ‖s‖1 + g (y −As) , (2)

where function g (·) plays data fitting and the regularization
parameter µ > 0 balances the fidelity of the measurement
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y and the sparsity of s. Collectively, we call (2) `1 norm
denoising (L1ND). Three common choices of g (·) are ‖·‖22,
‖·‖2 and ‖·‖1, with which (2) is referred to as Lasso, square
root- (SR-) Lasso and least absolute deviation- (LAD-) Lasso,
respectively [41]–[43]. From a statistical perspective, Lasso
suits for Gaussian noise and LAD-Lasso is robust to outliers.
Compared to Lasso, SR-Lasso requires loose assumptions of
the noise distribution with an easy choice of µ [42].

B. Atomic Norm
The concept of atomic norm is introduced in [30], which

generalizes many common sparse norms such as the `1 norm
and the nuclear norm of matrices. Let A be a collection of
atoms satisfying that its convex hull, conv (A), is compact,
centrally symmetric, and contains the origin as an interior
point. Then the gauge function of conv (A) defines a norm
which is called the atomic norm and denoted by ‖·‖A:

‖y‖A , inf {t > 0 : y ∈ tconv (A)}

= inf

{∑
k

ck : y =
∑
k

ckak, ck ≥ 0,ak ∈ A

}
.

(3)

The dual norm of the atomic norm is given by

‖z‖∗A = sup {〈z,a〉R : ‖a‖A ≤ 1} , (4)

where 〈z,a〉R = < 〈z,a〉 = <
{
aHz

}
and < takes the real

part of a complex number. Moreover, it can be shown that
conv (A) = {a : ‖a‖A ≤ 1} and thus A contains all extreme
points of {a : ‖a‖A ≤ 1}. It follows that

‖z‖∗A = sup
a∈A
〈z,a〉R . (5)

C. AST for Line Spectral Estimation From Complete Data
The observation model in (1) can be written more compactly

as follows:

y =

K∑
k=1

a (fk) sk + e = A (f) s+ e, (6)

where a (fk) =
[
1, ei2πfk , · · · , ei2π(M−1)fk

]T ∈ CM ,
A (f) = [a (f1) , . . . ,a (fK)] ∈ CM×K , y ∈ CM is a
vector by stacking all yj , and s ∈ CK , e ∈ CM are
similarly defined. Denote a (f, φ) = a (f)φ, where φ ∈ S1 ,
{φ ∈ C : |φ| = 1}. The set of atoms A in this application is
defined as

A ,
{
a (f, φ) : f ∈ [0, 1) , φ ∈ S1

}
. (7)

The induced atomic norm ‖·‖A can be computed via semidef-
inite programming (SDP) [32]:

‖y‖A = min
x,u

1

2
(x+ u1) , subject to

[
x yH

y T (u)

]
≥ 0, (8)

where u ∈ CM and T (u) ∈ CM×M denotes a (Hermitian)
Toeplitz matrix with

T (u) =


u1 u2 · · · uM
uH2 u1 · · · uM−1

...
...

. . .
...

uHM uHM−1 · · · u1

 , (9)

where uj denotes the jth entry of u.
In the presence of independently and identically distributed

(i.i.d.) zero-mean Gaussian noise with noise variance σ0, [32]
proposes the following atomic soft thresholding (AST) method
for estimating the noiseless sinusoidal signal z , A (f) s:

min
z
µ ‖z‖A +

1

2
‖y − z‖22 , (10)

where µ ≈
√
M lnMσ

1
2
0 when M is sufficiently large. (10)

can be formulated as the following SDP by (8):

min
x,u,z

µ

2
(x+ u1)+

1

2
‖y − z‖22 , subject to

[
x zH

z T (u)

]
≥ 0.

(11)
Given the optimal solution (x∗,u∗, z∗) of (11), the fre-
quency and amplitude estimates f̂ and ŝ can be obtained
from the Vandermonde decomposition of T (u∗) (see Lemma
7 in Appendix A). In particular, it holds that T (u∗) =

A
(
f̂
)

diag (|ŝ|)AH
(
f̂
)

and z∗ = A
(
f̂
)
ŝ, where |·|

operates elementwise for a vector (the two ŝ in the two
equations above are identical following from the proof of
Proposition II.1 in [33]). We provide a computational method
of the Vandermonde decomposition in Appendix A which will
be revisited later.

III. AST FOR INCOMPLETE DATA

A. Atomic Norm for Incomplete Data

Suppose that the observed samples are on a subset Ω ⊂
[M ], where Ω is assumed to be sorted ascendingly. Denote
the sample size L = |Ω| ≤M and the range of the sampling
period M = ΩL−Ω1+1 ≤M . Note that M is more practical-
ly relevant than M since we can always re-index the observed
samples by the set Ω− Ω1 + 1 , {Ωl − Ω1 + 1 : l ∈ [L]} ={

1,Ω2 − Ω1 + 1, . . . ,M
}

. We define the set of atoms in this
missing data case as follows:

A (Ω) , {aΩ : a ∈ A}
=
{
aΩ (f, φ) : f ∈ [0, 1) , φ ∈ S1

}
,

(12)

where aΩ (f, φ) = aΩ (f)φ and aΩ (f) is a subvector of
a (f) indexed by Ω. The convex hull conv (A (Ω)) can be
shown to satisfy the conditions specified in Subsection II-B.
It follows that the gauge function of conv (A (Ω)) defines a
norm that is denoted by ‖·‖A(Ω).

Lemma 1: For the atomic norm ‖·‖A(Ω) it holds that

‖yΩ‖A(Ω) = min
yΩ

‖y‖A

= min
x,u,yΩ

1

2
(x+ u1) , subject to

[
x yH

y T (u)

]
≥ 0.

(13)
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Proof: By definition the following equalities hold:

min
yΩ

‖y‖A

= min
yΩ

inf

{∑
k

ck : y =
∑
k

ckak, ck ≥ 0,ak ∈ A

}

= inf

{∑
k

ck : yΩ =
∑
k

ck (ak)Ω , ck ≥ 0,ak ∈ A

}

= inf

{∑
k

ck : yΩ =
∑
k

ckbk, ck ≥ 0, bk ∈ A (Ω)

}
= ‖yΩ‖A(Ω) .

(14)

The second equality in (13) follows from (8).
Note that the SDP formulation in (13) has been studied in

[33] for exact frequency recovery in the noiseless missing data
case. Lemma 1 shows that this technique is exactly computing
the atomic norm of the incomplete data.

For the dual atomic norm we have similarly to (5) that

‖zΩ‖∗A(Ω) = sup
f,φ∈S1

〈zΩ,aΩ (f, φ)〉R = sup
f
|〈zΩ,aΩ (f)〉| ,

(15)
which will be useful in later analysis.

B. AST for Incomplete Data

Suppose that the observed samples are contaminated with
i.i.d. noise. As suggested by [32] we estimate the noiseless
signal, denoted by z (or zΩ on Ω), by solving the following
AST problem:

min
zΩ

µ ‖zΩ‖A(Ω) +
1

2
‖yΩ − zΩ‖22 , (16)

where µ > 0 is to be specified. Following from (13), (16) can
be written into the following SDP:

min
x,u,z

µ

2
(x+ u1) +

1

2
‖yΩ − zΩ‖22 ,

subject to
[
x zH

z T (u)

]
≥ 0.

(17)

Theorem 1: Suppose the signal y given by (1) or (6) is
observed on the subset Ω ⊂ [M ]. Denote the original noiseless
signal by zo = A (f) s. The estimate ẑ of zo given by the
solution of AST in (16) or (17) with µ ≥ E ‖eΩ‖∗A(Ω) has
the expected (per-element) mean squared error (MSE)

1

L
E ‖ẑΩ − zoΩ‖

2
2 ≤

µ

L

K∑
k=1

|sk| . (18)

Moreover, assume that eΩ denotes i.i.d. zero-mean Gaussian
noise with noise variance σ0. Then the expected dual norm is
upper bounded as follows:

E ‖eΩ‖∗A(Ω) ≤ µ
∗ , min

p>1

p

p− 1

√
L
(
lnM + ln (πp) + 1

)
σ

1
2
0 ,

(19)
where the optimizer p∗ satisfies that 2 lnM < p∗ < 5 lnM as
M ≥ 100.

Proof: The first part of the theorem is a direct result of
[32, Theorem 1]. The upper bound of the expected dual norm
in the case of i.i.d. Gaussian noise is derived in Appendix B.

It is interesting to note that Theorem 1 generalizes the
result in the complete data case stated in [32, Theorem 2],
where Ω = [M ] and L = M = M . The upper bound
µ∗ ≈

√
L lnMσ

1
2
0 holds when M is sufficiently large, which

depends on the range M of Ω besides the sample size L.
By Theorem 1 AST with µ = µ∗ guarantees to produce a
consistent signal estimate (on Ω) if K = o

(√
L

lnM

)
. In

the limiting noiseless case where µ∗ ∝ σ
1
2
0 → 0, AST in

(16) is equivalent to computing ‖yΩ‖A(Ω), which has been
shown in [33] to result in exact frequency recovery when
the frequencies are sufficiently separate. Consequently it is
expected that accurate frequency estimation can be obtained
based on (16), which can be extracted from the Vandermonde
decomposition of T (u∗) as in the complete data case. Note,
however, that it is not easy to determine the regularization
parameter µ∗ in practical scenarios where the noise variance
σ is unavailable and difficult to estimate from the incomplete
data set. Motivated by this observation, we will turn to SPICE
in Section IV.

C. Extension: Gridless Atomic Norm vs. Grid-based `1 Norm

In this subsection we show rigorously that the gridless
atomic norm is the limiting scenario of the grid-based `1 norm
as the grid gets infinitely dense. In particular, suppose that a
uniform grid of N points f̃ ,

{
0, 1

N , · · · , 1−
1
N

}
is used

to sample the continuous domain [0, 1), or equivalently, the
frequency variables are constrained on f̃ . Denote the resulting
discrete set of atoms AN (Ω) =

{
aΩ (f, φ) , f ∈ f̃ , φ ∈ S1

}
and its induced atomic norm by ‖·‖AN (Ω). Moreover, define

AΩ =
[
aΩ

(
f̃1

)
,aΩ

(
f̃2

)
, . . . ,aΩ

(
f̃N

)]
. We obtain by

the definition of the atomic norm that

‖yΩ‖AN (Ω)

= min
cj≥0,φj∈S1

N∑
j=1

cj , subject to yΩ =

N∑
j=1

cjaΩ

(
f̃j , φj

)
= min

s
‖s‖1 subject to AΩs = yΩ,

(20)

where sj = cjφj . Note that the grid-based atomic norm
‖·‖AN (Ω) is linked to the `1 norm by (20). Correspondingly,
in the missing data case the L1ND formulation in (2) can be
equivalently written into

min
zΩ

µ ‖zΩ‖AN (Ω) + g (yΩ − zΩ) , (21)

where zΩ , AΩs. Intuitively, as N → +∞ the discrete
atomic set AN (Ω) becomes the continuous atomic set A (Ω).
Therefore, ‖zΩ‖AN (Ω) → ‖zΩ‖A(Ω). Formally, we have the
following result:(

1− πM

N

)
‖zΩ‖AN (Ω) ≤ ‖zΩ‖A(Ω) ≤ ‖zΩ‖AN (Ω) (22)
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which generalizes the result in the complete data case in [32]
and is proven in Appendix C. Two implications of (22) are
as follows: 1) the atomic norm is the limiting scenario of the
`1 norm when the grid becomes infinitely dense, and 2) the
grid-based `1 optimization methods are good approximations
of corresponding gridless atomic norm methods when the grid
size N = O (M).

IV. GRIDLESS SPICE (GLS)

A. Introduction to SPICE

SPICE [13]–[15] is a grid-based sparse method for line
spectral estimation based on weighted covariance fitting
(WCF). It is advantageous to Lasso in practice in the sense that
it automatically estimates the noise variance which is typically
unavailable in advance. To develop SPICE, it is assumed that
the phases of sk in (6) or (1), k ∈ [K], are independently
and uniformly distributed, which is a common assumption in
covariance-based methods, e.g., MUSIC, and also in [33]. It
follows that E

[
ssH

]
= diag

(
|sk|2

)
, diag (p), where p is

called the power parameter. Further assume that the noise e
is independent from s and satisfies that E

[
eeH

]
= diag (σ),

where σ denotes the noise variance parameter whose elements
can be different from each other. Then the covariance matrix
of y has the following expression:

R = E
[
yyH

]
= A (f) diag (p)AH (f) + diag (σ) . (23)

SPICE attempts to minimize a WCF criterion as follows:

h (f ,p,σ) =
∥∥∥R− 1

2
(
yyH −R

)∥∥∥2
F

= tr (R) + ‖y‖22 y
HR−1y − 2 ‖y‖22 .

(24)

According to [13], [14] and references therein, (24) is a subop-
timal criterion, a new understanding of which will be provided
in Subsection VI-C2. Note that the resulting optimization
problem

min
f ,p�0,σ�0

tr (R) + ‖y‖22 y
HR−1y (25)

is nonconvex since the data covariance R is nonlinear with
respect to f by (23). Like other existing sparse methods,
discretization is applied to the continuous frequency domain to
eliminate the dependence ofR on f . An alternating algorithm,
named as SPICE, is then developed to solve the grid-based
version of (25). It is shown in [44], [45] that SPICE is
connected to `1 optimization methods, which will be revisited
later.

B. GLS in the Complete Data Case

We now introduce the gridless version of SPICE, namely,
GLS, in the complete data case. In particular, GLS adopts
the WCF criterion of SPICE in (24) but exactly solves (25).
Rather than the discretization which linearizes the covariance
matrix R, a critical technique of GLS is to reparameterize R
by introducing a positive semidefinite Toeplitz matrix T (u) =
A (f) diag (p)AH (f). It follows from (23) that

R = T (u) + diag (σ) (26)

with T (u) ≥ 0 and σ � 0. GLS is based on the following
result.

Lemma 2: The two representations of R in (23) and (26)
are equivalent in the sense that, if R can be represented by
one, then it can be represented by the other.

Proof: It is a direct result of the Vandermonde decompo-
sition lemma (see Lemma 7 in Appendix A).

By Lemma 2, the optimization problem in (25) of GLS is
equivalent to the following SDP:

min
u,σ�0

tr (R) + ‖y‖22 y
HR−1y, subject to T (u) ≥ 0

= min
x,u,σ�0

tr (R) + ‖y‖22 x,

subject to
[
x yH

y R

]
≥ 0 and T (u) ≥ 0,

(27)

where R is given in (26). After (27) is solved, the remaining
task is to retrieve from its solution (u∗,σ∗) the parameter
estimate

(
f̂ , p̂, σ̂

)
of interest or solution of (25). In particular,

if T (u∗) is rank-deficient, then f̂ and p̂ can be uniquely
determined by its Vandermonde decomposition using Lemma
7 in Appendix A, and σ̂ = σ∗. However, if T (u∗) has
full rank, then f̂ and p̂ cannot be uniquely determined. That
means, (25) has multiple optimal solutions. Among these
solutions, we choose the one such that f̂ and p̂ have the
minimum length since it is always of interest to simplify the
model. In particular, let δ = λmin (T (u∗)) be the minimum
eigenvalue of T (u∗). Then f̂ and p̂, which satisfy that∣∣∣f̂ ∣∣∣ = |p̂| ≤M−1, are uniquely obtained by the Vandermonde
decomposition of T (u∗) − δI , and σ̂ = σ∗ + δ1, where I
and 1 are respectively an identity matrix and a vector of ones.

Remark 1: Under the assumption of homoscedastic noise,
the data covariance matrix R itself is Toeplitz and thus can
be represented as R = T (ũ), where ũ ∈ CM and T (ũ) ≥ 0.
Then the SDP of GLS in (27) can be simplified accordingly (by
simply setting σ = 0). After the SDP is solved, the parameter
estimate

(
f̂ , p̂, σ̂

)
can be given in the same manner.

C. GLS in the Missing Data Case

In the missing data case, only samples on Ω ⊂ [M ] are
observed. The same WCF criterion is adopted but applied only
to the available data yΩ. Under the same assumptions as in
SPICE, the covariance matrix of yΩ, denoted by RΩ, is

RΩ = E
[
yΩy

H
Ω

]
= AΩ (f) diag (p)AH

Ω (f) + diag (σΩ) .
(28)

Note that AΩ (f) = ΓΩA (f), where ΓΩ ∈ {0, 1}L×M and
its elements equal 1 only at (j,Ωj), j ∈ [L]. Consequently,
RΩ can be equivalently reparameterized as

RΩ = ΓΩT (u) ΓTΩ + diag (σΩ) (29)

under the constraints T (u) ≥ 0 and σΩ � 0, where T (u) can
be interpreted as the covariance of the “clean” complete data
as before. So GLS solves the following convex optimization
problem:

min
u,σΩ�0

tr (RΩ) + ‖yΩ‖
2
2 y

H
ΩR

−1
Ω yΩ, subject to T (u) ≥ 0,

(30)
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where RΩ is given in (29). Given the solution (u∗,σ∗Ω)

of (30), the parameter estimate
(
f̂ , p̂, σ̂Ω

)
can be obtained

as well from the Vandermonde decomposition of T (u∗) or
T (u∗)− λmin (T (u∗)) I .

To sum up, GLS is a gridless version of SPICE and can
be applied to both the complete and missing data cases
in the presence of either homoscedastic or heteroscedastic
noise where the noise variance(s) is/are unknown. GLS carries
out convex optimization in a reparameterized domain (u,σ)
similarly to AST while the reparameterization process of GLS
is done in a more explicit manner. The sparsity-promoting
property of GLS is not so obvious as AST in which the atomic
norm explicitly promotes sparsity. But it can be seen from
(30) [and (27)] that the trace norm promotes sparsity while
the second term plays data fitting. Since GLS requires neither
the model order nor the noise variance, it might have some
limitations in practice such as model order determination,
which will be studied in the ensuing section. Motivated by
that the GLS formulation in (27) and the atomic norm in (8)
are seemingly related, we will explore connections between
GLS and atomic norm-based methods in Section VI.

V. EXTENSION OF GLS: A SYSTEMATIC FRAMEWORK FOR
LINE SPECTRAL ESTIMATION

A. Two Limitations of GLS: Inaccurate Model Order and
Frequency Splitting

GLS may suffer from two limitations because it requires
neither the model order nor the noise variance (and maybe
more reasons). One is its inaccurate model order estimate, a
common problem for sparse methods. GLS generally produces
a frequency estimate of length much larger than the true model
order. To see this, we consider the complete data case with
homoscedastic noise as an example. According to Remark 1,
the data covariance R ≥ 0 can be expressed as a Toeplitz
matrix itself. By (27) y lies in the range space of R. Then
the solution R∗ of R has full rank with probability one, since
otherwise y ∈ CM with random noise can be decomposed
as superposition of M − 1 sinusoids. Therefore, the number
of estimated sinusoidal components of GLS, which equals
the rank of R∗ − λmin (R∗) I , is almost sure to be M − 1
(with probability zero the minimum eigenvalue is a multiple
eigenvalue).

The other limitation is frequency splitting. An example is
presented in Fig. 1, where we attempt to estimate K = 3
sinusoidal components using GLS from L = 50 noisy samples
that are randomly selected among M = 100 measurements and
corrupted by i.i.d. Gaussian noise with σ ≈ 0.4. To rule out
the possibility of numerical reasons, we solve GLS using a
highly accurate SDP solver SDPT3 [46] which is set to obtain
the best precision. It is shown that the second component is
split into two that are nearly located, which brings challenges
to frequency estimation as well as model order selection.

Remark 2: Note that the frequency splitting phenomenon
reported in this paper is different from that encountered in
grid-based methods (i.e., one sinusoidal component is split
into a few supported on nearby grid points, see e.g., [18],
[20], [32]). In particular, the latter is caused by the grid and
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Fig. 1. Illustration of frequency splitting of GLS and its correction within the
proposed framework. The three black circles indicate ground truth of the three
sinusoidal components. Blue stars are produced by GLS using SDPT3, and
the red curve of GLS-SORTE-MUSIC is given by GLS followed by SORTE
for model order selection and MUSIC for spectral estimation. The area around
the first two frequencies are zoomed in for better illustration.

the convergence issue of certain algorithms [20]. In contrast,
the frequency splitting shown in Fig. 1 is caused in part due
to the absence of the noise level (note that AST rarely suffers
from frequency splitting).

Remark 3: Since SPICE and `1 optimization are approxi-
mate versions of GLS (more details will be shown in Section
VI), they have the same frequency splitting problem (not due
to the grid) without surprise, which has been confirmed in our
simulations but we omit the details. This phenomenon has not
been observed and reported in previous publications because
of two reasons: 1) a rough grid leads to a worse frequency
resolving resolution which can only detect frequency splitting
caused by the grid, and 2) a highly dense grid means almost
complete correlations between adjacent atoms and might result
in numerical issues which bring challenges to the detection.

B. A Framework for Line Spectral Estimation

To overcome the two limitations of GLS mentioned above,
we propose the following framework for line spectral estima-
tion which consists of three steps:

1) Covariance estimation using GLS;
2) Model order selection based on the covariance estimate;
3) Frequency estimation based on the covariance and model

order estimates.
That is, we consider GLS as a covariance estimation scheme
in this framework and then carry out line spectral estimation
based on its solution. While these steps seem to be standard
in covariance-based methods, the main contribution of this
framework is the way that the covariance estimate is obtained.
For example, it is generally not clear how to estimate the
data covariance in the presence of missing data, while GLS
provides a solution via covariance fitting and exploiting its
Toeplitz structure. A data covariance estimate can be given
in the complete data case by appropriately choosing a time
window (see, e.g., [1]), however, the time window shortens
the data length and potentially degrades the resolution limit
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[28]. In this paper, we choose the SORTE algorithm [8] for
model order selection in Step 2 and MUSIC for the ensuing
frequency estimation in Step 3. It would be interesting to study
in the future what choices of these methods result in the best
performance.

In the framework, we estimate the model order from the
covariance estimate ΓΩT (u∗) ΓTΩ of the “clean” observed
samples (to avoid effects of heteroscedastic noise). SORTE
divides the eigenvalues of ΓΩT (u∗) ΓTΩ into two clusters: one
with larger eigenvalues corresponds to the signal subspace and
the other the noise subspace. The estimated model order equals
the size of the former cluster. After that, frequency estimation
is carried out using MUSIC. It is shown in Fig. 1 that the
frequency splitting can be corrected within this framework,
where the model order is correctly estimated.

Remark 4: The proposed framework starts with covariance
estimation and is applicable beyond GLS to grid-based meth-
ods such as SPICE and IAA. So, as a byproduct of the
framework we also provide an off-grid frequency estimation
approach to existing grid-based methods in the sense that
the final frequency estimates are not constrained on the grid.
Its effectiveness will be shown via numerical simulations.
Moreover, it can also be applied to AST and `1 optimization
methods by connections of GLS and atomic norm based
methods shown in the next section.

Remark 5: The proposed model order selection method is
very different from conventional information-theoretic meth-
ods such as the minimum description length (MDL) principle,
Akaike information criterion (AIC) and Bayesian information
criterion (BIC) [6], [7]. For the aforementioned methods, one
needs to solve a series of maximum likelihood estimation, or
equivalently, NLS problems with respect to a set of candidate
values of K, and then choose the best K. It is challenging
to solve the NLS problems which require very accurate
initialization since the objective functions have a complicated
multimodal shape with a very sharp global maximum [1]. To
date, there is no available method which is guaranteed to glob-
ally solve the NLS. The performance of existing initialization
methods degrades in the presence of missing data. In contrast,
the proposed method carries out convex optimization at the
first step without the need of careful initialization.

VI. CONNECTIONS OF GLS AND ATOMIC NORM
DENOISING (AND)

A. Basic Lemmas

If the `1 norm in L1ND [see (2)] is replaced by the atomic
norm ‖·‖A (or ‖·‖A(Ω)), we call the resulting optimization
problem

min
z
µ ‖z‖A + g (y − z) (31)

atomic norm denoising (AND). Correspondingly, (31) with
the three common choices of function g (·), including ‖·‖22,
‖·‖2 and ‖·‖1, is called gridless (GL-) Lasso, SR-Lasso and
LAD-Lasso, respectively (GL-Lasso is exactly AST). To show
connections of GLS and AND, we begin with some basic
lemmas.

We use the following identity whenever R ≥ 0:

yHR−1y = min
x
x, subject to

[
x yH

y R

]
≥ 0. (32)

It follows that yHR−1y is finite if and only if y is in the
range space of R. In fact, (32) is equivalent to defining
yHR−1y , limσ→0+ y

H (R+ σI)
−1
y when R loses rank.

The following result follows from (8) and (32).
Lemma 3: It holds that

‖y‖A = min
u

1

2
u1 +

1

2
yH [T (u)]

−1
y, subject to T (u) ≥ 0.

(33)

Lemma 4: Given R = AAH ≥ 0, it holds that
yHR−1y = min ‖x‖22 , subject to Ax = y.

Proof: We need only to show that for any x satisfying
Ax = y it holds that yHR−1y ≤ ‖x‖22, or equivalent-

ly,
[
‖x‖22 yH

y R

]
≥ 0. The conclusion follows from that[

‖x‖22 yH

y R

]
=

[
‖x‖22 xHAH

Ax AAH

]
=

[
xH

A

] [
xH

A

]H
≥ 0.

Lemma 5: Given R ≥ 0 and σ � 0, it holds that

yH [R+ diag (σ)]
−1
y

= min
z
zHR−1z + (y − z)

H diag−1 (σ) (y − z) .
(34)

Proof: Since R ≥ 0 there exists a matrix A satis-
fying that R = AAH . It follows that R + diag (σ) =[
A diag

1
2 (σ)

] [
A diag

1
2 (σ)

]H
. The following equalities

hold by Lemma 4:

min
z
zHR−1z + (y − z)

H diag−1 (σ) (y − z)

= min
x,Ax=z

‖x‖22 + (y − z)
H diag−1 (σ) (y − z) ,

= min
x
‖x‖22 + (y −Ax)

H diag−1 (σ) (y −Ax)

= min
x,d
‖x‖22 + ‖d‖22 ,

subject to diag−
1
2 (σ) (y −Ax) = d

= min
x,d

∥∥∥∥[xd
]∥∥∥∥2

2

, subject to
[
A diag

1
2 (σ)

] [x
d

]
= y

=yH [R+ diag (σ)]
−1
y.

(35)

Lemma 6: Given R ≥ 0, minyΩ
yHR−1y = yHΩR

−1
Ω yΩ.

Proof: Suppose R = AAH . It follows that RΩ =
AΩA

H
Ω . By Lemma 4 it holds that

min
yΩ

yHR−1y = min
yΩ

min
x,Ax=y

‖x‖22

= min
x,AΩx=yΩ

‖x‖22 = yHΩR
−1
Ω yΩ.

(36)

B. Equivalence Between GLS and AND

We consider only the missing data case since the complete
data case is a special case with Ω = [M ]. The result in the
latter can be easily obtained by the substitutions Ω → [M ],
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L→M , A (Ω)→ A, yΩ → y and zΩ → z. Since frequency
estimation is of most importance which is determined by the
solution of u in both GLS and AND (formulated as SDPs),
we use the following definition hereafter.

Definition 1: We say that two optimization problems are
equivalent if they produce the same solution u∗ up to a positive
scale, i.e., they produce the same p̂ or |ŝ| up to a positive scale
and exactly the same frequency estimate f̂ .

Theorem 2: The GLS optimization problem in (30) is e-
quivalent to one of the following AND problems:

1) under the assumption of heteroscedastic noise,

min
zΩ

√
L ‖zΩ‖A(Ω) + ‖yΩ − zΩ‖1 ; (37)

2) under homoscedastic noise,

min
zΩ

‖zΩ‖A(Ω) + ‖yΩ − zΩ‖2 ; (38)

3) under homoscedastic noise with known variance σ0,

min
zΩ

√
L

‖yΩ‖2
σ0 ‖zΩ‖A(Ω) +

1

2
‖yΩ − zΩ‖22 . (39)

Moreover, the GLS optimization problems under different
assumptions have the optimal solution ‖yΩ‖2√

L
u∗ given the

solution u∗ of corresponding AND problems mentioned above
(formulated as SDPs following from (13)).

Proof: According to Lemma 6, (30) is equivalent to the
following problem:

min
u,σΩ�0,yΩ

tr (RΩ)+‖yΩ‖
2
2 y

HR−1y, subject to T (u) ≥ 0,

(40)
where R and RΩ are given in (23) and (29) respectively.

In Case 1, the following equalities hold by consecutively
applying Lemma 5, Lemma 3 and Lemma 1 (the positive
semidefinite constraint is omitted for brevity):

(40)
= min
u,σΩ�0,yΩ,z

Lu1 + 1TσΩ + ‖yΩ‖
2
2 z

H [T (u)]
−1
z

+ ‖yΩ‖
2
2 (y − z)

H diag−1 (σ) (y − z) (41)

= min
u,σΩ�0,z

2L

[
1

2
u1 +

1

2
·
‖yΩ‖2√

L
zH [T (u)]

−1 ‖yΩ‖2√
L
z

]
+ ‖yΩ‖

2
2 (yΩ − zΩ)

H diag−1 (σΩ) (yΩ − zΩ)

+1TσΩ (42)

= min
z

2L

∥∥∥∥‖yΩ‖2√
L
z

∥∥∥∥
A

+ 2 ‖yΩ‖2 ‖yΩ − zΩ‖1 (43)

= 2 ‖yΩ‖2

{
min
zΩ

√
L ‖zΩ‖A(Ω) + ‖yΩ − zΩ‖1

}
. (44)

So the equivalence holds.
In Case 2, the equalities (41) and (42) still hold. It then

follows from 1TσΩ = Lσ1 and diag (σΩ) = σ1I that

(40)

= min
z

2L

∥∥∥∥‖yΩ‖2√
L
z

∥∥∥∥
A

+ 2
√
L ‖yΩ‖2 ‖yΩ − zΩ‖2

= 2
√
L ‖yΩ‖2

{
min
zΩ

‖zΩ‖A(Ω) + ‖yΩ − zΩ‖2

}
.

(45)

In Case 3 where the noise variance is fixed,

(40)

= min
z

2L

∥∥∥∥‖yΩ‖2√
L
z

∥∥∥∥
A

+
‖yΩ‖

2
2

σ0
‖yΩ − zΩ‖22 + Lσ0

=
2 ‖yΩ‖

2
2

σ0

{
min
zΩ

√
L

‖yΩ‖2
σ0 ‖zΩ‖A(Ω) +

1

2
‖yΩ − zΩ‖22

}
+ Lσ0.

(46)

The problems in (37), (38) and (39) are convex and can
be formulated as SDPs following from (13). The relation
between their optimal solutions of u and the corresponding
GLS formulations can be easily identified from (42).

Remark 6:
1) Under homoscedastic noise, the SDP of GLS can be

simplified according to Remark 1. With this simplified
representation, the GLS optimization problem is equiv-
alent to computing ‖yΩ‖A(Ω).

2) In the limiting noiseless case, GLS is identical to the
atomic norm method except that a postprocessing pro-
cedure is adopted in GLS for ensuring unique parameter
estimate in the case where T (u∗) has full rank.

Theorem 2 shows that GLS can be interpreted as three
different AND methods under different assumptions of noise.
Under heteroscedastic noise, GLS is in the form of GL-LAD-
Lasso which tends to suppress significant noise entries and
be robust to outliers by the use of the `1 norm in data
fitting. Under homoscedastic noise, GLS is in the form of
GL-SR-Lasso in which all the noise entries are considered in
whole and only the noise energy is reflected. Finally, under
homoscedastic noise with fixed variance, GLS is in the form
of GL-Lasso or AST and the noise variance is reflected in the
regularization parameter. Moreover, it is worth noting that,
since SPICE and L1ND are grid-based versions of GLS and
AND, similar equivalence exists between them. Part of the
result has been shown in [44], [45].

Remark 7: We can now formally show that GLS is equiva-
lent to and provides a practical implementation of the limiting
scenario of SPICE. Denote by SPICE∗N and GLS∗ the optimal
objective function values of SPICE (with a uniform grid of
size N ) and GLS, respectively. By inserting (22) into the
optimization problems in Theorem 2 we obtain that(

1− πM

N

)
SPICE∗N ≤ GLS∗ ≤ SPICE∗N . (47)

It therefore holds that limN→+∞ SPICE∗N = GLS∗.

C. Implications of the Equivalence

1) Overfitting under homoscedastic noise: Under ho-
moscedastic noise, the GLS optimization problem is equivalent
to computing ‖yΩ‖A(Ω) by Remark 6. That is, GLS carries
out the optimization as in the noiseless case and results in
overfitting, indicating necessity of model order selection and
modified frequency estimation discussed in Section V. Note
that the parameter estimation process of GLS given in Section
IV slightly alleviates the overfitting problem.
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2) Suboptimal power estimation: By comparing the fre-
quency retrieval processes of GLS and its equivalent AND
formulations in Theorem 2 (see Sections IV-B and II-C re-
spectively), one may find that the power estimate p̂ of GLS is
inherently the amplitude |ŝ| (scaled by ‖yΩ‖2√

L
) rather than its

square, the power. Similarly, σ̂Ω of GLS estimates standard
deviation of the noise (scaled by ‖yΩ‖2) by derivations of (43)
and (45) instead of the variance. Similar arguments have been
made in [13], [14]. These claims are verified by numerical
simulations in Section VIII.

Remark 8: Utilizing the aforementioned interpretation of σ̂
(when σ is estimated from the data), the regularization constant√

L
‖yΩ‖2

σ0 in (39) will be modified into
√
L

‖yΩ‖2
× ‖yΩ‖2 σ

1
2
0 =

√
Lσ

1
2
0 . It is interesting to note that this constant, without any

distribution assumed for the noise, is close to the optimized
value ≈

√
L lnMσ

1
2
0 given in Theorem 1 for Gaussian noise.

VII. COMPUTATIONALLY FEASIBLE SOLUTIONS

A. Exact Solutions via Duality

We solve GLS in the elegant AND forms in Theorem 2.
Using the standard SDP solver SDPT3 [46], we empirically
find that faster speed can be achieved by solving their dual
problems. Meanwhile, the solutions of the primal problems are
given for free. Consider GL-LAD-Lasso in (37) as an example.
By Lemma 1 it can be written into the following SDP:

min
x,u,z

τ (x+ u1)+‖yΩ − zΩ‖1 , subject to
[
x zH

z T (u)

]
≥ 0,

(48)
where τ =

√
L
2 . Its dual problem is given by the following

SDP following a standard Lagrangian analysis [47]:

min
v,W

2<
{
yHΩvΩ

}
, subject to



[
τ vH

v W

]
≥ 0,

vΩ = 0,
‖vΩ‖∞ ≤

1
2 ,

T ∗ (W ) = τe1,

(49)

where T ∗ (·) denotes the adjoint operator of T (·) and e1 =
[1, 0, . . . , 0]

T ∈ RM .

B. Exact Solutions via ADMM

SDPT3 implements the interior point method and does not
scale well with the problem dimension. In this subsection we
present a first-order algorithm for the SDPs involved in this
paper based on ADMM which is a well-established method
for large scale problems [40]. We provide only the algorithm
for GL-LAD-Lasso in (48) for brevity while those for AND
and GL-SR-Lasso can be derived similarly. (48) can be written
into the following form:

min
x,u,z,Q≥0

τ (x+ u1) + ‖yΩ − zΩ‖1 ,

subject to Q =

[
x zH

z T (u)

]
.

(50)

We introduce Λ as the Lagrangian multiplier. Then the aug-
mented Lagrange function of (50) is

LA (x,u, z,Q,Λ)

=τ (x+ u1) + ‖yΩ − zΩ‖1 + tr
[(
Q−

[
x zH

z T (u)

])
Λ

]
+
β

2

∥∥∥∥Q− [x zH

z T (u)

]∥∥∥∥2
F
,

(51)

where β > 0 is a penalty parameter set according to [40].
Following the routine of ADMM, the variables (x,u, z,Q)
and Λ can be iteratively updated in close forms. We omit the
details due to the page limit. The resulting algorithm converges
to the optimal solution of (48) by [40].

C. Approximate Solutions via Frequency Discretization

The ADMM algorithm is more scalable with the problem
dimension compared to SDPT3, however, it still needs to carry
out one eigen-decomposition of a matrix of order M + 1
at each iteration which is computationally expensive when
M is large. Since we have shown previously that the grid-
based `1 techniques (including SPICE) are good approxima-
tions of AST and GLS if the grid size N = O (M), they
are reasonable substitutions for which many computationally
efficient algorithms have been developed such as SPGL1 and
ONE-L1 [48], [49]. But we note that the `1 techniques might
suffer from some shortcomings for line spectral estimation
with a highly dense grid: 1) almost complete correlations
between adjacent atoms typically cause computational issues
such as slow convergence and even computational instability,
and 2) basis mismatches cause frequency splitting, resulting
in underestimation of the power and less accurate frequency
estimate.

VIII. NUMERICAL SIMULATIONS

A. Equivalence Between GLS and AND

We first verify the equivalence between GLS and AND.
Suppose that we observe L = 30 randomly located samples
of M = 50 consecutive measurements of a sinusoidal signal
composed of K = 3 sinusoids with true parameters f =
[0.1, 0.12, 0.5]

T and p = [9, 4, 1]
T . The measurements are

contaminated with i.i.d. Gaussian noise with σ = 0.1. The first
two frequencies are separated by 1

M = 0.02. We carry out line
spectral estimation using both GLS and its equivalent AND
forms in Theorem 2 under the assumption of heteroscedastic
or homoscedastic noise. We plot in Fig. 2 power estimates
of GLS scaled by

√
L

‖yΩ‖2
and amplitude estimates of AND

versus their frequency estimates, respectively. As concluded
in Theorem 2, we see that under both the assumptions they
obtain identical results. The results under the two assumptions
differ slightly from each other. Motivated by this observation,
we consider only the assumption of heteroscedastic noise in
the rest simulations for clearer presentation.
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Fig. 2. Equivalence between GLS and AND under the assumption of (left)
heteroscedastic or (right) homoscedastic noise. The amplitude estimates of
GLS are scaled by

√
L

‖yΩ‖2
for better illustration.

B. Spectra Comparison of Gridless and Grid-based Methods

We compare spectra of the gridless methods presented in
this paper and the grid-based `1 and SPICE methods. In
our simulation, we set M = 100, L = 50, K = 3, the
true frequencies f = [0.103, 0.115, 0.5]

T and corresponding
powers p = [4, 4, 1]

T , and variance of i.i.d. Gaussian noise
σ = 1. AST and GLS are implemented using both SDPT3
and ADMM introduced in Section VII. We consider two
implementations of SPICE: one as in [13] and the other by
solving its equivalent L1ND version implemented by SPGL1
[48]. SPICE in [13] is considered converged if the objective
function value decreases relatively by less than 10−6 between
two consecutive iterations, or the maximum number of iter-
ations, set to 2000, is reached. The Matlab code of SPGL1
is downloaded at http://www.cs.ubc.ca/∼mpf/spgl1, and we
use all default parameter settings but decTol = 10−6 and
maximum number of iterations 10000. Moreover, we consider
two discretization levels for SPICE with N = 5M and
N = 10M . Note that the amplitude estimate of the SPICE
algorithm in [13] suffers from a constant-factor ambiguity.
The first two frequencies are located off the grid in SPICE
with N = 5M and on the grid with N = 10M while the last
frequency lies on the grid in both the cases.

Fig. 3 presents our simulation results over 5 Monte Carlo
runs, where the spectra of AST and GLS solved by SDPT3 are
omitted since they are visually identical to those by ADMM.
All of GLS and its grid-based versions correctly detect the
three components with some small spurious ones, while AST
removes almost all of the spurious components with the oracle
noise variance. By taking into account the constant-factor
ambiguity of SPICE, the results of SPICE and SPGL1 differ
slightly from each other. By comparing (b), (d) and (f), we
see that SPICE tends to underestimate the power due to basis
mismatches and slow convergence of SPGL1, which becomes
more significant in the presence of off-grid frequencies and/or
a denser grid. In computational time, AST and GLS with
SDPT3 take 5.19s and 4.92s on average. The presented six
methods (a)-(f) take 0.97s, 2.21s, 0.11s, 2.29s, 0.23s and 3.99s,
respectively. We see that SPICE is the fastest in this example.
The ADMM-based gridless methods introduced in this paper
are faster than SPGL1 which converges slowly due to almost

complete correlations between adjacent atoms.

C. Model Order Selection and Frequency Estimation

We examine performance of GLS, compared to its grid-
based versions, in model order selection and frequency esti-
mation in this subsection. In our simulation, we set M = 100,
L = 50, K = 3 and p = [4, 4, 1]

T as before but generate the
K frequencies uniformly at random in intervals (0.102, 0.104),
(0.114, 0.116) and (0.499, 0.501), respectively. Moreover, we
define the signal-to-noise ratio SNR = −10 log10 σ (i.e., with
respect to the smallest component), and consider values of
SNR from −20 to 20dB at a step of 2dB. A number of 100
Monte Carlo runs are carried out at each value. We quantify
the accuracy of frequency estimation of GLS, SPGL1 and
SPICE in terms of MSE without and within the framework
proposed in Section V, respectively. In the former case, the
frequency estimate of SPICE (and SPGL1) is given by the
highest K peaks to calculate the MSE while it corresponds
to the largest K components for GLS (outliers can be caused
to GLS due to frequency splitting as illustrated in Fig. 1). In
the latter case, we use the Matlab routine rootmusic for
frequency estimation. To quantify the performances of model
order selection and frequency estimation independently, we
use the exact model order K in rootmusic rather than the
one given by SORTE. More rationales behind this setting will
be clarified later.

Our estimation results of the model order (using SORTE)
and the K frequencies are presented in Fig. 4. Model order
selection is considered successful if the estimated model order
equals the true value. Fig. 4(a) shows that the performance
of GLS is very convincing in model order selection as the
SNR is 0dB or above. In fact, only 2 failures occur out of
all the 1100 trials when SNR ≥ 0dB (a careful study shows
that both the failures overestimate the order by 1). SPICE and
SPGL1 have similar performances when N = 10M . When
N = 5M , however, the model order selection becomes less
accurate in the high SNR regime, where the approximation
errors of grid-based methods become non-negligible compared
to noise. A careful recheck shows that SPICE and SPGL1 tend
to overestimate the model order by 1.

The MSEs of frequency estimates, which are calculated
using the true model order, are presented in Figs. 4(b) and
4(c). Each MSE curve (except GLS) is divided into two parts
at some critical SNR value, above which all the frequencies
are accurately estimated. For SPICE and SPGL1, the MSEs
without the framework are lower bounded by 1

12N2 (the
horizontal black dashed lines) in expectation since the best
frequency estimate is the nearest grid point [19]. In contrast,
GLS can outperform the lower bound but can be subject to 1
or 2 outliers (out of 100 runs) caused by frequency splitting as
discussed in Section V-A (see the points of discontinuity in the
GLS MSE curve in Fig. 4(b)). Within the proposed framework,
GLS can stably estimate all the frequencies. Moreover, SPICE
and SPGL1 can also outperform the aforementioned lower
bound within the framework. Remarkably, their MSE curves
coincide with that of GLS for N = 5M . The results are similar
for N = 10M , however, convergence issues arise with this
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(a) AST by ADMM
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(b) GLS by ADMM
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(c) SPICE [13], N = 5M
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(d) SPICE by SPGL1, N = 5M
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(e) SPICE [13], N = 10M
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(f) SPICE by SPGL1, N = 10M

Fig. 3. Power spectra of six methods/algorithms for line spectral estimation over 5 random Monte Carlo runs. Black circles indicate the ground truth with
frequencies f = [0.103, 0.115, 0.5]T and powers p = [4, 4, 1]T . The area around the first two frequency components is zoomed in in each subfigure. Other
settings include M = 100, L = 50, and variance of i.i.d. Gaussian noise σ = 1.

dense grid which, as shown in Fig. 4(c), cause an outlier to
SPICE at SNR = 0dB and worse performance to SPGL1-
MUSIC in the high SNR regime.

We have used the exact model order K in frequency estima-
tion. In fact, it is shown in Fig. 4(a) that the model order can
be accurately estimated within the framework in the presence
of modest or light noise (e.g., when SNR ≥ 0dB). Otherwise,
in the presence of heavy noise (e.g., when SNR < −2dB), it
is shown in Figs. 4(b) and 4(c) that the frequencies cannot be
reliably estimated even with the oracle K.

We study scalability of GLS in the following simulation.
Besides GLS, SPICE and SPGL1, we consider another popular
grid-based method named IAA. Differently from the sparse
methods, IAA is based on a weighted least squares criterion.
Since IAA does not explicitly optimize an objective function,
a rigorous convergence analysis of IAA has not been available.
In our setup, we proportionally increase the problem dimen-
sion. In particular, we let M = 50κ, L = 30κ and K = 2κ,
and consider κ = 1, . . . , 10. Moreover, we randomly generate
the frequencies with the minimum separation ∆f ≥ 1

M and
each power parameter as 1 +w2, where w is standard normal
distributed. We fix the variance of i.i.d. Gaussian noise σ = 1.
We set the grid size N = 10M for SPICE, SPGL1 and IAA.
40 problems are generated and solved for each value of κ.
The averaged computational times of the four methods are
presented in Fig. 5(a). Indeed, GLS is most time-consuming
when the problem dimension increases due to the eigen-

decomposition at each iteration. As a first-order method, the
computational time of SPGL1 increases most slowly with the
dimension. The performances in model order selection and
frequency estimation are presented in Figs. 5(b) and 5(c). It is
shown that GLS and its grid-based versions SPICE and SPGL1
can accurately estimate the model order with only a few
failures, and also perform well in frequency estimation within
the proposed framework. In contrast, more failures of model
order selection happen for IAA. Note that the seemingly bad
performance of IAA-MUSIC in frequency estimation when
M ≥ 250 is caused by very few outliers (similarly for SPICE
and SPGL1 at some values of M ).

We further compare the proposed model order selection
method with conventional information-theoretic methods and
show that the practical use of the latter is limited by the
difficulty in solving the NLS problems. To do this, we measure
the success rate of solving the NLS at the true value of K.
We adopt the same experimental setup as in the previous
simulation. An efficient algorithm for NLS is the expectation-
majorization (EM) algorithm in [25] in which the complicated
multi-parameter NLS problem is decoupled into K separate
one-dimensional optimization problems at each iteration which
can be efficiently solved by simple line search. The highest K
peaks of the periodogram are used to initialize the algorithm
according to [1]. The NLS is considered to be successfully
solved if

∥∥∥f̂ − f∥∥∥
∞

< 1
2M . Note that the criterion above

is not stringent according to Fig. 5(c). Indeed, it is observed
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(b) Frequency estimation, N = 5M
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(c) Frequency estimation, N = 10M

Fig. 4. Results of model order selection (using SORTE) and frequency estimation with respect to SNR. The black dashed lines in (b) and (c) denote the
lower bound 1

12N2 .
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(c) Frequency estimation

Fig. 5. Computational time, model order selection (using SORTE) and frequency estimation with respect to problem dimension. The black dashed line in
(c) denotes the lower bound 1

12N2 , where N = 10M is used for SPICE, SPGL1 and IAA.

that all failures severely violate the criterion. The success rate
measured over 100 Monte Carlo runs at each M is presented
in Fig. 6. It is shown that the EM algorithm is more likely
to be trapped at a local optimum as the problem dimension
increases. At M = 500 and K = 20 about one third of the
NLS problems cannot be accurately solved. Therefore, we
cannot expect that the MDL/AIC/BIC method gives faithful
model order selection based on the NLS solution. In contrast,
at most a single failure of model order selection out of 40
runs is observed using the proposed method when M ≥ 100
according to Fig. 5(b). The averaged computational time of
the EM algorithm is also reported in Fig. 6. Note that a
series of NLS problems need to be solved for model order
selection, while the computational speed can be accelerated by
implementing the K optimization problems at each iteration
in parallel.

To sum up, the proposed GLS and framework have good
performances in both model order selection and frequency
estimation in the presence of modest or light noise. Its
grid-based versions SPICE and SPGL1 are generally good
approximations with accelerated computations but might over-
estimate the model order with a less dense grid and suffer
from convergence issues with a highly dense grid. Compared
to conventional information-theoretic model order selection
methods, the proposed method is of more practical interest.
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Fig. 6. Success rate and computational time of solving NLS using the EM
algorithm in [25] with the oracle information of K.

D. Resolution

While the frequencies are separated by at least 1
M in

previous simulations, we next study the capability of GLS
in super-resolving two closely spaced frequencies compared
to SPICE with N = 10M . We fix K = 2, M = 100,
L = 50 and SNR = 10dB, and vary the separation between
the two frequencies, denoted by ∆f , from 0.1

M to 1
M . Based

on GLS (or SPICE), we estimate the two frequencies in three
ways. In the first method, we simply select the largest two
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Fig. 7. Success rates of GLS and SPICE in resolving two frequencies
separated by ∆f , with K = 2, M = 100, L = 50 and SNR = 10dB.

components of GLS (or the largest two peaks of SPICE). In
the second, MUSIC is carried out after GLS (or SPICE) with
the K information. That is, the oracle information of K is
utilized in the first two methods. The last practical method
strictly follows the proposed framework in which the model
order used in MUSIC is given by SORTE. The two frequencies
are considered to be successfully resolved if the absolute
estimation error of every frequency is smaller than 1

2∆f . We
measure the success rates of GLS and SPICE at each ∆f over
100 Monte Carlo runs and present the results in Fig. 7. It is
shown that both GLS and SPICE can super-resolve two closely
spaced frequencies. GLS outperforms SPICE with the first
method, especially at small values of ∆f where gridding of
the frequency interval exhibits more obvious drawbacks. Their
performances are almost the same with the latter two methods
since they produce slightly different covariance estimates. The
proposed framework has good performance and its gap to
the first two methods (with the oracle K) diminishes as the
separation increases.

IX. CONCLUSION

The sparse, continuous frequency estimation problem was
studied in this paper under the topic of line spectral estimation.
Two gridless sparse methods were studied including the atomic
norm based AST and weighted covariance fitting based GLS.
Theoretical analysis of AST generalizes the existing result in
the complete data case. GLS requires neither the model order
nor the noise variance but might suffer from some limitations.
A systematic framework consisting of model order selection
and robust frequency estimation was proposed to overcome the
limitations. Both AST and GLS were formulated as convex
atomic norm denoising problems with practical algorithms
proposed. Their performances were demonstrated on simulated
data and compared to existing methods.

The first-order ADMM-based algorithms proposed for the
gridless sparse methods are slow compared to existing grid-
based ones since they converge slowly and need to carry out
an eigen-decomposition at each iteration. A future work is to
develop faster solvers for the SDPs involved in this paper.

Inspired by a recent paper [50] which shows that second-
order solvers can be faster due to their fast convergence speed,
we may turn to second-order algorithms in future studies. On
the other hand, the framework extended from GLS is also
applicable to its grid-based versions including SPICE and
`1 optimization, with satisfactory performances demonstrated
in this paper. So, before emergence of very efficient solvers
of GLS, its grid-based versions can be adopted as faster
alternatives within the framework. Furthermore, it would be
interesting to extend the proposed framework to other sparse
parameter estimation problems in such as source localization
and radar imaging.
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APPENDIX

A. Vandermonde Decomposition and Its Realization

The Vandermonde decomposition is stated in the following
lemma and its proof can be found in [1], [51].

Lemma 7: Any positive semidefinite Toeplitz matrix
T (u) ∈ CM×M can be represented as T (u) =
A (f)PAH (f), where A (f) = [a (f1) , · · · ,a (fK)], P =
diag (p1, · · · , pK), fj ∈ [0, 1), pj > 0 for j ∈ [K], and
K = rank (T (u)). Moreover, the representation is unique if
K ≤M − 1.

Lemma 7 states the existence and uniqueness of the Vander-
monde decomposition of T (u) ∈ CM×M provided that it is
positive semidefinite and rank-deficient. A method for solving
f and p � 0 is given as follows. It is easy to show that[

A (f)
A{2,··· ,M} (f)

]
p =

[
u

u{2,··· ,M}

]
, (52)

where · denotes the complex conjugate and A{2,··· ,M} (f)
takes all but the first rows of A (f). Let bj−1 = uj and
b1−j = uj , j ∈ [M ] (note that u1 ∈ R). Then (52) can be
written exactly as

bm =

K∑
k=1

pkθ
m
k , θk = e−i2πfk , (53)

for 1 −M ≤ m ≤ M − 1. This system of equations can be
solved using Prony’s method for which readers are referred to
[52].

B. Proof of (19)

Our proof is inspired by [32] on the complete data case. By
(15) the dual atomic norm of wΩ ∈ CL in the missing data
case is given by

‖wΩ‖∗A(Ω) =
√
Lσ sup

f∈[0,1)

∣∣W (
ei2πf

)∣∣ , (54)

where

W
(
ei2πf

)
=

1√
Lσ

∑
m∈Ω

wme
−i2π(m−1)f (55)
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is standard Gaussian distributed for any f given that wm is
Gaussian distributed with variance σ. Without loss of generali-
ty, we assume Ω1 = 1 and ΩL = M since the distribution ofw
is invariant due to a constant phase change. For convenience,
denote W = supf∈[0,1)

∣∣W (
ei2πf

)∣∣ and similarly define W ′,
where W ′ denotes the derivative of W . Similarly to [32], our
proof is based on the following two results.

Lemma 8 ( [53]): Let q(z) be any polynomial of degree n
on complex numbers with derivative q′(z). Then,

sup
|z|≤1

|q′ (z)| ≤ n sup
|z|≤1

|q (z)| . (56)

Lemma 9 ( [32]): Let x1, · · · , xN be complex Gaussian
random variables with unit variance. Then,

E

[
max

1≤n≤N
|xi|
]
≤
√

lnN + 1. (57)

The derivation is divided into two steps. At the first step we
show that the dual atomic norm expressed in (54) can be upper
bounded by the maximum of its values on a uniform grid of
N points on the unit circle [0, 1). At the second step an upper
bound of the maximum is computed and the grid number N
is optimized. According to Lemma 8, for any f, s ∈ [0, 1) it
holds that ∣∣W (

ei2πf
)∣∣− ∣∣W (

ei2πs
)∣∣

≤
∣∣ei2πf − ei2πs∣∣W ′

=
∣∣∣eiπ(f+s) (eiπ(f−s) − eiπ(−f+s))∣∣∣W ′

≤ 2π |f − s| ·M ·W.

(58)

Let s take values in the set
{

0, 1
N , · · · ,

N−1
N

}
. For any f , we

may find some s in the set such that |f − s| ≤ 1
2N . It then

follows from (58) that W ≤ max0≤m≤N−1
∣∣W (

ei2πm/N
)∣∣+

πM
N W and thus

W ≤
(

1− πM

N

)−1
max

0≤m≤N−1

∣∣∣W (
ei2πm/N

)∣∣∣ . (59)

At the second step, it follows from (59) and Lemma 9 that

E ‖w‖∗A(Ω) ≤
√
Lσ

(
1− πM

N

)−1√
lnN + 1. (60)

Let N = pπM . Then it is easy to show that the right hand
side of (60) is minimized when p is the limit point of the
sequence {pj} with p0 > 2 and

pk+1 = 2 ln pk + 2 ln
(
πM

)
+ 3. (61)

Moreover, the limit point falls in the interval
(
2 lnM, 5 lnM

)
when M is modestly large.

C. Proof of (22)

For a column vector wΩ ∈ CL, its dual atomic norms are

‖wΩ‖∗A(Ω) = sup
f∈[0,1)

∣∣∣∣∣∑
m∈Ω

wme
−i2π(m−1)f

∣∣∣∣∣ , (62)

‖wΩ‖∗AN (Ω) = sup
f∈f̃

∣∣∣∣∣∑
m∈Ω

wme
−i2π(m−1)f

∣∣∣∣∣ . (63)

An immediate result is that ‖wΩ‖∗A(Ω) ≥ ‖wΩ‖∗AN (Ω).
On the other hand, by (59) we have ‖wΩ‖∗A(Ω) ≤(

1− πM
N

)−1
‖wΩ‖∗AN (Ω). So it holds that

‖wΩ‖∗AN (Ω) ≤ ‖wΩ‖∗A(Ω) ≤
(

1− πM

N

)−1
‖wΩ‖∗AN (Ω) ,

(64)
which concludes (22).
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