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ON H. FRIEDRICH’S FORMULATION
OF THE EINSTEIN EQUATIONS WITH FLUID SOURCES

Yvonne Choquet-Bruhat — James W. York

Dedicated to Andrzej Granas

Abstract. We establish a variant of the symmetric quasi linear first or-
der system given by H. Friedrich for the evolution equations of gravitating

fluid bodies in General Relativity which can be important to solve realis-

tic problems. Our version has the advantage of introducing only physical
characteristics. We state explicitly the conditions under which the system

is hyperbolic and admits a well posed Cauchy problem.

1. Introduction

Cattaneo [4] and Ferrarese [8], have stressed long ago that the fundamental
physical data are those defined on time lines instead of those defined on spacelike
hypersurfaces. In the case of a fluid, timelike world lines have a material reality
given by the flow, the unknowns associated to them correspond to a lagrangian
picture, in contrast with the usual eulerian one. In many situations, particularly
in cosmology, the lagrangian description seems more fundamental. However,
one cannot be too confident because General Relativity holds many surprises.
For example, consider a fluid in internal equilibrium and in equilibrium with a
stationary black hole. Under some conditions (cf. [3]) the thermodynamic tem-
perature is found by certain eulerian observers whose world lines have vanishing
vorticity. This corresponds to our “well posedness” result given in Section 11.4.
We believe that eulerian and lagrangian descriptions are both usefull.
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Ferrarese [9], [10] has given a complete 3+1 decomposition of the connection
and Riemann tensor in a frame whose time axis is tangent to the time lines and
the space axes orthogonal to it. Using this decomposition he has written the
Einstein-dust equations as a (infinite dimensional) dynamical system. Recently
H. Friedrich [11] has used a lagangian description of the flow together with a
tetrad formalism to write the Einstein equations coupled with a perfect fluid as
a symmetric first order system, formally hyperbolic. His treatment includes dust
as a particular case.

The Einstein-dust system, as well as the Einstein-Euler system for a perfect
fluid, have been proved long ago [5] to form a well posed hyperbolic system in
the sense of Leray. The relativistic Euler system has been put in first order
symmetric hyperbolic form (FOSH) first by K. O. Friedrichs himself [12] , then
by general methods by Anile, Boillat and Ruggeri (see references in [1]). Rendall
[13] has obtained, for well chosen equations of state, FOSH systems for the
Euler equations which extend to vacuum, but do not yet permit, as he points
out himself, the solution of realistic problems of motion of compact fluid bodies
in otherwise empty space. The system obtained by H. Friedrich can be important
to solve such realistic problems.

In this article we establish a variant of Friedrich’s system for a lagrangian
and tetrad description of the flow and the spacetime geometry. Contrary to
Friedrich we will not work with the Weyl tensor but with the Riemann tensor,
as in [2]. It avoids the introduction of unphysical characteristics and seems to us
more natural in this non vacuum case as well as somewhat simpler. The systems
we obtain for vacuum, dust or perfect fluid are symmetric and hyperbolic in
the same sense as Friedrich’s system. They are hyperbolic in K. O. Friedrichs’s
sense, which leads to existence theorems for solutions in Sobolev spaces, only
if the time lines admit global spacelike sections, and the initial data are given
on such a section. These existence theorems are needed even if one wants to
consider the evolution equations as a well posed dynamical system.

2. Metric and coframe

We write the metric in an orthonormal frame, i.e.

(2.1) g = −(θ0)2 +
3∑

i=1

(θi)2.

We choose the time axis to be tangent to the time lines, i.e. the cobasis θ is such
that θi does not contain dx0. We set

(2.2) θi = ai
jdxj , θ0 = Udx0 + bidxi.
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We will call such a frame a C.F. (Cattaneo–Ferrarese) frame. We denote by Aj
i

the matrix inverse of aj
i . It holds that

dxi = Ai
jθ

j , dx0 = U−1(θ0 −Ai
jbiθ

j) .

The Pfaff derivatives ∂α in the C.F. frame are linked to the partial derivatives
∂/∂xα by the relations

∂

∂x0
= U∂0,

∂

∂xi
= aj

i∂j + bi∂0,

∂0 = U−1 ∂

∂x0
, ∂i = Aj

i

[
∂

∂xj
− U−1bj

∂

∂x0

]
.

3. Bianchi equations

Whatever the coframe, the components of the Riemann tensor satisfy the
identities

(3.1) ∇αRβγ,λµ +∇βRγα,λµ +∇γRαβ,λµ ≡ 0,

hence, if the Ricci tensor Rαβ satisfies the Einstein equations

(3.2) Rαβ = ραβ ,

it holds that

(3.3) ∇αR...α
βγ::µ, = ∇βργµ −∇γρβµ.

Equations (3.1) and (3.3) imply the following ones (cf. an analogous system in [2])

(3.4) ∇0Rhk,0j +∇kR0h,0j −∇hR0k,0j = 0,

and, in using a symmetry of the Riemann tensor,

(3.5) ∇0R
0
:::i,0j +∇hRh

:::i,0j = Ji,0j ≡ ∇0ρji −∇jρ0i.

The equations (3.4) and (3.5) are for each given pair (0j) a first order system
for the components Rhk,0j and R0h,0j . The principal operator is a symmetric 6
by 6 matrix: 

∂0 0 0 ∂2 −∂1 0
0 ∂0 0 0 ∂3 −∂2

0 0 ∂0 −∂3 0 ∂1

∂2 0 −∂3 ∂0 0 0
−∂1 ∂3 0 0 ∂0 0
0 −∂2 ∂1 0 0 ∂0


.

Analogous equations and result hold with the pair (0j) replaced by (lm), l < m.
The system finally obtained has a principal matrix consisting of 6 identical 6 by
6 blocks around the diagonal, it is symmetric.
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However, the system obtained for the components of the Riemann tensor in
the coframe with time axis θ0 and space axis θi, with principal operator the
matrix Mα∂α, cannot be said to be hyperbolic in the usual sense: the principal
matrix M0 is the unit matrix hence positive definite, but the operators ∂α are
not partial derivatives. We say that the system is a quasi FOSH (First Order
Symmetric Hyperbolic) system (cf. Section 11).

Remark 1. One can associate with the Riemann tensor, as in the usual case
of the 3+1 splitting, two pairs of “electric” and “magnetic” 2-tensors whose non
zero components in the frame are:

Eij ≡ R0i,0j , Dij ≡
1
4
εihkεjlmRhk,lm,

Hij ≡
1
2
εihkRhk

:::::,0j , Bji ≡
1
2
εihkR:::::hk

0j ,

where εijk is the totally antisymmetric Kronecker tensor. These definitions imply
here

Rhk,0j ≡ εi
::hkHij , Rhk,lm ≡ εi

::hkεj
::lmDij , R0j,hk = εi

::hkBji.

The previous system is a quasi FOSH system for these pairs of tensors.

Remark 2. The system (3.1), (3.2) contains also the equations, which we
do not use for evolution,

(3.6) ∇hRij,λµ +∇jRhi,λµ +∇iRjh,λµ = 0

and

(3.7) ∇hRh
...0,λµ = ∇λρµ0 −∇µρλ0.

These equations are not usual constraints on a submanifold t = cons tan t be-
cause ∂i contains the transversal derivative ∂/∂t. We call them Bianchi quasi-
constraints.

4. Coframe structure coefficients

The structure coefficients c of the coframe are defined by

dθα ≡ −1
2
cα
βγθβ ∧ θγ .

We have
dθ0 = ∂iUθi ∧ dx0 + ∂αbθα ∧ dxi

that is,
dθ0 = U−1∂iUθi ∧ (θ0 −Ah

j bhθj) + Ah
j ∂αbhθα ∧ θj ,

therefore
c0
0i = U−1∂iU −Aj

i∂0bj = −c0
i0
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and, with f[ij] ≡ fij − fji,

c0
ij = U−1bhAh

[j∂i]U −Ah
[j∂i]bh

that is
c0
ij = UAh

[i∂j](U−1bh)

also
dθi = Aj

k(∂hai
jθ

h ∧ θk + ∂Oai
jθ

0 ∧ θk)

hence
ci
k0 = Aj

k∂0a
i
j , ci

hk = Aj
[h∂k]a

i
j .

Remark 3. If the time lines are not hypersurface orthogonal (i.e. if bi 6= 0)
the coefficients ch

ij are different from the structure coefficients of the space
frame θi.

5. Connection

The connection is such that

ωα
βγ − ωα

γβ = cα
βγ and ωγβ,λ + ωγλ,β = 0

with (η is the Minkowski metric) ωγβ,λ ≡ ηαλωα
γβ . We set cγβ,λ ≡ ηαλcα

γβ , and
we have (cf. Choquet-Bruhat–DeWitt I, p. 308)

ωαλ,µ =
1
2
(cαλ,µ − cαµ,λ − cλµ,α).

We find that, as foreseen from antisymmetry, ω0
00 = ω0

i0. We set Yi ≡ ω00,i, and
we have

Yi ≡ ω00,i = ω0
0i = ωi

00 = −c0i,0 = c0
0i = U−1∂iU −Aj

i∂0bj .

We know that ωj
0i = ω0i,j is antisymmetric in i and j. We set

ω0i,j ≡ fij =
1
2
{Ah

j ∂0a
i
h −Ah

i ∂0a
j
i + Ah

[i∂j]bh}.

Remark 4. Let e(α) ≡ ∂α be the frame dual to θα, i.e. with components
δλ
(α). Then

∇βeλ
(α) = ωλ

βα,

in particular ω0i,j is the projection on e(j) of the derivative of e(i) in the direction
of e(0). We have fij = 0 if the frame is Fermi transported along the time line.

The connection coefficient ωi0,j is the sum of a term symmetric in i and j

and an antisymmetric one, we have

Xij ≡ ωi0,j = ωj
i0 =

1
2
{Ah

j ∂0a
i
h + Ah

i ∂0a
j
i + Ah

[i∂j]bh}.

The antisymmetric term vanishes if the time lines are hypersurface orthogonal
(bi = 0).
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The coefficients ωh
ij are also linear expressions in terms of the first derivatives

of the frame coefficients, they are identical to the connection constructed with
the aj

i at fixed x0 if bi = 0.

6. Frame evolution

The relations between the connection coefficients ωh
ij and the frame coeffi-

cients aj
i give equations for the dragging of these coefficients along the time lines

when the connection is known. Indeed we have found

∂0a
i
j = ak

j ci
0k = 2ak

j (ωi
0k − ωi

k0) ≡ 2ak
j (f i

k −Xi
k),(6.1)

∂0bi = ah
i (−Yh + U−1∂hU.(6.2)

No equation gives the evolution of U . It can be considered as a gauge variable
fixing the time parameter. H. Friedrich chooses the coordinate x0 to be the
proper time along the given time lines, i.e. U = 1

The quantity f i
j is also a gauge variable fixing the evolution of the space

frame. If we choose it to be Fermi transported like Friedrich, then f i
j = 0.

7. Curvature

7.1. Evolution of connection. Using the general formula (cf. Choquet-
Bruhat–DeWitt, I p. 306, with opposite sign convention)

(7.1) R...α
λµ...β ≡ ∂λωα

µβ − ∂µωα
λβ − ωα

ρβ(ωρ
λµ − ωρ

µλ) + ωα
λρω

ρ
µβ − ωα

µρω
ρ
λβ ,

(7.2) R...i
0h...j ≡ ∂0ω

i
hj − ∇̃hf i

j − Yhf i
j − (fk

h −X ...k
h )ωi

kj + Y iX ...
hj − YjXh

i,

where ∇̃ is the pseudo covariant derivative constructed with ∂i and ωh
ij (Catta-

neo–Ferrarese transversal derivative). In the Fermi gauge R...i
0h...j reduces to

(7.3) R...i
0h...j ≡ ∂0ω

i
hj + X ...k

h ωi
kj + YiX

...j
h − YjXh

i.

The principal operator in these equations is the dragging along the time lines of
ωh

ij . We have

(7.4) R...i
h0...0 ≡ ∇̃hYi − ∂0X

...i
h + Y iYh −X ...j

h X ...i
j + f ...j

h X ...i
j − f ...i

j X ...j
h .

We deduce from this identity, in the Fermi gauge,

(7.5) R00 ≡ ∇̃iY
i − ∂0X

i
i + Y iYi −X ...j

h X ...h
j .

In the next sections we will write other equations to achieve the determination
of both Y and X.
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7.2. Quasi-constraints. The other components of the Riemann tensor are
given in the C-F frame by

(7.6) R...i
hk...j ≡ R̃...i

hk...j − f i
j(Xhk −Xkh) + X ...i

...kXjh −X .
jkXi

...h,

where R̃...i

hk...j denotes the expression formally constructed as a Riemann tensor
with the coefficients ωh

ij .

(7.7) R...0
kh...j ≡ ∂kω0

hj − ∂hω0
kj − ω0

ρj(ω
ρ
kh − ωρ

hk) + ω0
kρω

ρ
hj − ω0

hρω
ρ
kj ,

that is, with previous notations,

(7.8) R...0
kh...j ≡ ∇̃kXhj − ∇̃hXkj − Yj(Xkh −Xhk).

These equations do not enter in the evolution system for the connection that we
are considering, they do not contain the derivative ∂0, we call them connection
quasi-constraints.

Remark 5. Modulo the expression of the connection in terms of frame co-
efficients one has the well known symmetry:

Rkh,0j = R0j,kh.

One deduces from the identity (7.8)

Rh0 ≡ ∇̃jX
...j
h − ∇̃hXj

j − Y j(Xjh −Xhj).

8. Vacuum case

In the vacuum case there are no a priori given time lines. We can give
arbitrarily on the spacetime the projection Yi of ∇e(0)e(0) on e(i). The quantities
U and f j

i being also arbitrarily given the Bianchi equations together with (6.1),
(6.2), (7.3), (7.5) constitute a quasi FOSH system for the unknown Eij , Dij ,
Hij , Bij , aj

i , bi, ωh
ij , Xij . Its solution determines the spacetime metric.

9. Perfect fluid

9.1. Fluid equations. The stress energy tensor of a perfect fluid is

Tαβ = (µ + p)uαuβ + pgαβ .

Then

ραβ = (µ + p)uαuβ +
1
2
(µ− p)gαβ .

One supposes that the matter energy density µ is a given function of the pressure
p and entropy S; this last function is conserved along the flow lines

(9.1) uα∂αS = 0.



328 Y. Choquet-Bruhat — J. W. York

The Euler equations of the fluid express the generalized conservation law

∇αTαβ = 0,

and are equivalent to the equations

(µ + p)uα∇αuβ + (uαuβ + gαβ)∂αp = 0, with uαuα = −1

and
(µ + p)∇αuα + uα∂αµ = 0.

In our coframe they reduce to:

∂0S = 0,(9.2)

(µ + p)Yi + ∂ip = 0, Yi ≡ ωi
00,(9.3)

∂0µ + (µ + p)Xi
i = 0.(9.4)

Using the index F of the fluid defined by

F (p, S) =
∫

dp

µ(p, S) + p
,

the equation (9.3) reads

(9.5) Yi = −∂iF,

while (9.4) gives, modulo (9.2),

(9.6) µ′p∂0F + Xi
i = 0.

The commutation relation between Pfaff derivatives (∂0∂i − ∂i∂0)F = cα
0i∂αF

implies therefore

(9.7) µ′p[∂0Yi + Yi∂0F + (f j
i −Xj

i )∂jF ]− ∂iµ
′
p∂0F − ∂iX

h
h = 0.

The use of (9.5) and (9.6) replaces ∂αF by functions of Y , X and p, S. The
derivatives ∂iµ

′
p are functions of Y , p, S and ∂kS, since

∂iµ
′
p = µ”p2∂ip + µ′′pS∂iS.

We introduce Sk = ∂kS as new unknowns. They are dragged along the flow lines
by the following equation deduced from (9.2):

(9.8) ∂0Sk = cj
0kSj ≡ (f j

k −Xk
j )Sj .

Following H. Friedrich we replace in (9.7) ∂iX
h
h by its expression deduced

from the equation

Ri0 ≡ ∇̃hX ...h
i − ∇̃iX

h
h − Y h(Xhi −Xih) = 0,



Einstein Equations 329

and we obtain, changing names of indices

(9.9) µ′p∂0Yh − ∇̃jX
j
h − Y h(Xhi −Xih) + µ′p[Yh∂0F

+ (f j
h −Xj

h)∂jF ] + ∂hµ′p∂0F = 0.

In (7.4) we replace ∇̃hYi by ∇̃iYh + c0
hiY0, with

Y0 ≡ −∂0F ≡ −(µ′p)
−1Xi

i , c0
hi ≡ Xih −Xhi

and we obtain

(9.10) ∂0X
.i
h −∇̃iYh− c0

hiY0−YhY i +(X ...j
h − f ...j

h )X ...i
j + f ...i

j X ...j
h = −R...i

h0...0.

The principal operator on the unknowns Y and X in the equations (9.9), (9.10) is
diagonal by blocks. Each block, corresponding to a given index h, is symmetric,
it reads: 

µ′p∂0 −∂1 −∂2 −∂3

−∂1 ∂0 0 0
−∂2 0 ∂0 0
−∂3 0 0 ∂0

 .

If µ′p > 0 the matrix M0 is positive definite in the C.F. frame. The system
(9.9), (9.10) is a quasi FOSH system for the pairs Yh, Xj

h.

Remark 6. The characteristic determinant associated with the system (9.9),
(9.10), obtained by replacing ∂α with a covariant vector ξ is{

ξ2
0

(
µ′pξ

2
0 −

∑
i=1,2,3

ξ2
i

)}3

.

The roots of µ′pξ
2
0 −

∑
i=1,2,3 ξ2

i = 0 correspond to sound waves. Their speed is
at most 1 (speed of light) if and only if µ′p ≥ 1.

The full system of fluid equations is quasi diagonal by blocks. The matrices
Mα∂α corresponding to (9.2), (9.4), (9.8) reduce to ∂0.

9.2. Sources of the Bianchi equations. In our frame the source tensor
ραβ reduces to

ρ00 =
1
2
(µ + 3p), ρ0i = 0, ρij =

1
2
(µ− p)δij .

We have seen that ∂αp and ∂αµ are smooth functions of p, S, Si, Y and X. The
same property holds for Ji,0j and Ji,hk.

9.3. Conclusion. Assembling the results of the previous sections we find
the following theorem.
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Theorem 7. The EEF (Einstein–Euler–Friedrich) system for a gravitating
perfect fluid, with flow lines taken as time lines, U and f i

j ≡ ωi
0j given arbitrar-

ily, is a quasi FOSH system for the Riemann curvature tensor, the frame and
connection coefficients, the density of matter, the entropy and its space deriva-
tives.

As remarked in Section 3 the system is not a usual FOSH system: the time
lines are by choice timelike but the hypersurfaces x0 = cons tan t are not neces-
sarily spacelike for the characteristic cone.

10. Case of dust

10.1. Matter equations. The stress energy tensor of a dust source is

Tαβ ≡ µuαuβ .

The flow lines, tangent to the unit vector uα, are then geodesics, it holds that

(10.1) uα∇αuβ = 0,

while the conservation of matter reads:

(10.2) uα∂αµ + µ∇αuα = 0.

We take the flow lines as time lines, i.e. uα = δα
0 . Then (10.2) reads

(10.3) ∂0µ + µXi
i = 0,

while (10.1) gives

(10.4) ωi
00 ≡ Yi = 0.

Using this equation we see that, given arbitrarily on the spacetime the gauge
variables a0

0 the equations (6.1), (6.2) reduce to a quasi-diagonal system with
principal operator ∂0 for the frame coefficients when the connection (which ap-
pears undifferentiated) is known.

10.2. Bianchi equations. For a dust stress energy tensor it holds that

ραβ = µ

(
uαuβ +

1
2
gαβ

)
,

hence in the chosen frame

ρ00 =
1
2
µ, ρ0i = 0, ρij =

1
2
µδij .
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A straightforward computation gives then, choosing the Fermi transported frame
for simplicity

Ji,0j ≡ ∇0ρji −∇jρ0i = µ

(
− 1

2
δijX

h
h + Xji

)
,

Ji,hj ≡ ∇hρji −∇jρhi =
1
2
{∂hµδji − ∂jµδhi + µ(ωi

hj − ωi
jh)}.

There appears a difficulty which is the presence of the space derivatives ∂hµ

in Ji,hj . We get rid of this problem, inspired (though with a different choice) by
H. Friedrich’s treatment, by replacing the unknown R...i

hk...j by another unknown
with the same symmetries, namely

Fij,hk. = Rij,hk + δikRjh − δihRjk − δjkRih + δihRik + Dij,hkR

with
Dij,hk ≡

1
2
(δikδjh − δjkδih).

Using this unknown, the contracted Bianchi identities become

(10.5) ∇0R
0
:::i,hj +∇kF k

:::i,hj ≡ 0,

while the original ones become

(10.6) ∇0Fij,hk +∇jR0i,hk −∇iR0j,hk

≡ ∇0{δikRjh − δihRjk − δjkRih + δihRik + XijhkR}

One obtains a quasi FOSH system for R0i,hk and Fij,hk by replacing on the right
hand side of this equation Rαβ by ραβ : now there appears only the time deriv-
ative ∂0µ which, satisfying (10.3), can be eliminated in favor of undifferentiated
terms.

Note that Rij,hk does not appear in other equations than the Bianchi equa-
tions.

10.3. Conclusion. We have proved the following theorem

Theorem 8. The EDFF (Einstein–Dust–Ferrarese–Friedrich) system, with
flow lines taken as time lines, U and f i

j ≡ ωi
0j given arbitrarily, is a quasi FOSH

system for the Riemann curvature tensor, the frame and connection coefficients,
the density of matter and its space derivatives.

11. Cauchy problem

11.1. Hyperbolicity. The fact that for the systems that we have obtained
the hypersurfaces x0 = cons tan t are not necessarily spacelike for the charac-
teristic cones poses a difficulty for the Cauchy problem, since energy estimates
used in proving existence theorems rely on this property.

We have, using standard definitions



332 Y. Choquet-Bruhat — J. W. York

Proposition 9. A quasi FOSH system, with principal operator the matrix
Mα∂α, is a FOSH system with x0 as a time variable if the matrix of coefficients
of ∂/∂x0 is positive definite, namely if

M̃0 ≡ MαA0
α ≡ U−1(M0 −Ai

jbiM
j)

is positive definite.

11.1.1. Case of dust.

Lemma 10. The EDFF (Einstein–Dust–Ferrarese–Friedrich) system is a
FOSH system relative to x0 = cons tan t slices as long as the quadratic form

(11.1) gjh =
∑

i=1,2,3

ai
ja

i
h − bjbh

is positive definite and U > 0.

Proof. The matrix M̃0
(bian) of coefficients of ∂/∂x0 corresponding to the

Bianchi equations is after multiplication by U , setting

Bi ≡ −Aj
i bi,

1 0 0 B2 −B1 0
0 1 0 0 B3 −B2

0 0 1 −A3 0 B1

B2 0 −B3 1 0 0
−B1 B3 0 0 1 0

0 −B2 B1 0 0 1


.

Its eigenvalues are, each with multiplicity 2:

1, 1 +
√

(B2
2 + B2

3 + B2
1), 1−

√
(B2

2 + B2
3 + B2

1).

They are positive, because the given condition implies B2
2 + B2

3 + B2
1 < 1.

The other matrices M̃0
(conn) and M̃0

(matter) are unit matrices. �

11.1.2. Fluid case.

Lemma 11. The EEF (Einstein–Euler–Friedrich) system is a FOSH system
relatively to x0 = const slices as long as the quadratic form gjh given in (11.1)
is positive definite, U > 0 and µ′p ≥ 1.

Proof. The principal operator is symmetric and composed of blocks around
the diagonal.

The matrix M̃0
(bian) is the same as in the case of dust.
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The matrix M̃0
con corresponding to the connection evolution is, after multi-

plication by U 
µ′p −B1 −B2 −B3

−B1 1 0 0
−B2 0 1 0
−B3 0 0 1

 .

Its eigenvalues are 1, with multiplicity two, and:

(11.2)
1
2

{
1 + µ′p ± 2

√
1
4
(µ′p − 1)2 +

∑
B2

i )
}

.

These eigenvalues are positive under the hypothesis (11.1) if µ′p ≥ 1. �

Remark 12. The condition µ′p ≥ 1 expresses that the sound speed is at
most equal to the speed of light.

11.2. Cauchy data. The Cauchy problem is less natural in the C.F. for-
mulation than in the usual 3 + 1 decomposition.

11.2.1. Initial data. An initial data set on a coordinate patch of a 3 dimen-
sional submanifold is composed of the following elements:

(1) A field of coframes ai
j
j and a field of covariant vectors a0

i .
The quadratic form on M with coefficients

(11.3) gjh =
∑

i=1,2,3

ai
ja

i
h − bjbh

is supposed to be positive definite. The submanifold M0 ≡ M × {0}
of M × R is then spacelike for any lorentzian metric on M × R which
reduces on M to

−(Udx0 + bidxi)2 +
∑

i=1,2,3

(θ
i
)2, U > 0.

(2) Quantities ωh
ij , X

j

i , Y i.

(3) Pairs of 2-tensors E
ij

, Hij , Dij , Bij .
(4.a) (case of dust) A scalar function µ ≥ 0.
(4.b) (perfect fluid case) Two scalar functions p ≥ 0 and S ≥ 0, and equation

of state µ(p, S) such that µ′p ≥ 1 for all p in a neighbourhood of (p, S).

11.2.2. Constraints. The initial data on M do not determine on M the deriva-
tives ∂i ≡ ∂i−Aj

i bj∂0. To satisfy the quasi-constraints on M we must first deduce
from the given data and the considered evolution system the values on M of the
derivatives with respect to x0 of the relevant unknowns. The quasiconstraints
give then relations on the initial data which we call constraints and suppose to
be satisfied on M .
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11.3. Existence theorem for the reduced system. Local existence the-
orems for a solution of the Cauchy problem are a direct consequence of known
results for quasilinear FOSH systems. We enunciate the result in the perfect
fluid case. The spaces Hu.loc

s (M) are the usual uniformly local Sobolev spaces
on M .

Theorem 13. Let there be given an initial data set in Hu.loc
s (M), s > 3/2+1.

Then for any choice on M × I of the gauge variables in C0(I, Hu.loc
s (M)),with I

an interval of R containing 0, there exists a neighbourhood I ′ of 0 in R such that
the EEF equations admit a solution in C0(I ′,Hu.loc

s (M)) ∩ C1(I ′,Hu.loc
s−1 (M)).

To prove that the solution satisfies, modulo the initial constraints, the original
Einstein–Euler equations would be a messy task, which we will not endeavour.
The uniqueness of the obtained solution gives an indirect proof, modulo the
existence theorem already known [5], [6].

11.4. Irrotational flows. We recall the equation (6.2)

(11.4) ∂0bi = ah
i (−Yh + ∂h log U),

with, in the case of a perfect fluid, Yh = −∂hF . We choose then (gauge choice,
the geometrical result is independent of it) U = exp(−F ). The equation reduces
then to

(11.5) ∂0bi = 0.

Therefore it holds that bi = 0 througout the motion if it is so initially. It is
the well known property of conservation of zero vorticity (irrotationality) of a
perfect fluid flow.

For an irrotational flow it holds that Xij is a symmetric 2-tensor, equal up
to the sign to the extrinsic curvature of the space slices x0 = cons tan t (com-
ponents in the frame θi), and Yi = U−1∂iU , while ωh

ij = ωh
ij are the connection

coefficients of the space metric g =
∑

i=1,2,3(θ
i)2, θi ≡ ai

hdxh. The pseudo
covariant derivatives ∇̃i are covariant derivatives ∇i in the space metric.

For an irrotational flow the EFF system is a FOSH system.
The same result holds in the case of dust the appropriate gauge choice is

then U = cons tan t.

Remark 14. The relations between frame and connection, as well as con-
nection and curvature, for hypersurface orthogonal time lines are a special case
of those found in the 3 + 1 decomposition [7]. In particular, in the present
notations, the Einstein constraints take the familiar form:

(11.6) Ri0 ≡ ∇jX
j
i − ∂iX

j
j = 0,

(11.7) S00 ≡
1
2
(R00 + δijRij) ≡

1
2
(R−X .j

i X .i
j + (Xi

i )
2) = ρ00 =

1
2
(µ + 3p).
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